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Introduction

The stationary axisymmetric Einstein-Maxwell equations have been closely
investigated by many mathematicians and physicists since Weyl solved completely
the static axially symmetric class of vacuum gravitational fields in 1917 [12]. In
particular this subject experienced a drastic scene in the years 1978-1980 with
the development of solution generating methods. Geroch has found that each
given stationary axisymmetric solution of the Einstein field equations is
accompanied by an infinite family of potentials [5]. This fact has led to the fact
that there exists an action of some infinite dimensional group, so called Geroch
group, on the space of (local) solutions. This symmetry is sometimes called the
hidden symmetry. He also conjectured that this action is transitive up to gauge
transformations. This conjecture, called the Geroch conjecture, was proved
affirmatively by I. Hauser and F. J. Ernst [7]. They derived a non-linear
differential equation for matrix-valued functions from the field equations and
generalized their results to the case which has N Abelian gauge potentials
interacting with the gravitational field. In [3] H. Doi and K. Okamoto
generalized the results of [7] to the case that the field equations take their values
in an affine symmetric space, so that a "Kac-Moody" Lie group acts transitively
on the space of solutions.

The purpose of this paper is to give a recipe for constructing solutions,
following the method explored by P. Breitenlohner and D. Maison [1], who dealt

with the Einstein equations there. But in this paper we treat the gravitational
field interacting with electro-magnetic fields. The essential point of [1] was that

the Ernst equations derived from the Einstein field equations [4] should be
formulated as a σ-model which takes its value in an affine symmetric space or a
Riemannian symmetric space. (The former is transformed into the latter by

Kramer-Neugebauer transformation.) A linearization is, as in [1], carried out
after introducing a 1-form taking its value in some Lie algebra with a spectral
parameter.

In this paper we discuss in the category of formal power series. We treat
only a σ-model with values in a Riemannian symmetric space which is derived
from the Einstein-Maxwell field equations. In order to do that, we have to
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employ a different formulation of the Ernst equations from that in [3], where the
fields take their value in an affine symmetric space.

The contents of this paper are as follows: In § 1, we introduce the stationary
axisymmetric Einstein-Maxwell equations in matrix form and write down the
Ernst equations. For derivation of the Ernst equations from the stationary
axisymmetric Einstein-Max well equations, we refer to [3]. In §2, we show that
the Ernst equations are equivalent to a σ-model which takes its value in
5(17(1) x U(2))\SU(l, 2) and construct a 1-form so that the integrability
condition of this 1-form is equivalent to the equation of motion for that
σ-model. In §3 we provide a recipe for constructing solutions of the Ernst
equation. In §4 we follow the recipe described above and give some examples of
solutions, the first one of which was provided by Nagatomo [10]. We have,
however, not succeeded in constructing an action of the Geroch group G(oo) on
the space of the solutions, and restricted ourselves to letting it act only on the
identity which correspends to the vacuum field.

We remark that all these results can be generalized immediately to the case
of the interaction between N Abelian gauge potentials and the gravitational field
which corresponds to S(U(l) x U(N + 1))\S17(1, N + 1), although we deal only
with the case N = 1.

Finally the authors would like to express their sincere gratitude to Professor
K. Okamoto for valuable discussions and encouragement and to Professor H. Doi
for valuable advices.

1. Ernst equations

In this section, following [1] we shall introduce the Ernst equations through
the stationary axisymmetric Einstein-Maxwell field equations. Let g be a metric
on a Lorentzian manifold given by

-λ 0

0 -λ/

with Λ, > 0 and h0ί = hlo. And let A=^ιAidxi be an abelian gauge
potential. Here we adopt the coordinates (x°, x1, x2, x3) = (ί, φ, z, p) with t
being time and (φ, z, p) the cylindrical coordinates of R3. Since we deal with
the stationary axisymmetric fields, the functions h = (Λ^ ), λ and At depend only
on z and p. Moreover, we assume that h00 φ 0, det h = — p2 and A2 = A3 = 0,
which is physically reasonable.

Then the stationary axisymmetric Einstein-Maxwell field equations are given,
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in matrix form, as follows:

(1.1) d(ph~l *dA) = Q

(1.2) d{ph~l * dh - 2(ph~1 * dA)AT - 2εΛ(p/Γ1 * dA)τε} = 0,

(1.3A) — = -tr(h-ίdphh-1dzh)-2pdpA
τh-1dzA,

A T

0 1 |

(1.3B) -̂ — = 1— tr {(h~1dph)2 — (h~1dzh)2}
λ 2p 8

-p(dpA
τh-1dpA-dsA

τh-ldzA)9

/ 0 1\
where 4 = (A0, A^y, ε = I j and * = Hodge operator for the metric

dz2 + dp2. Since /ι00 7* 0 and det h = — p2, we can parametrize h as

^(/1/c/^2/

Now we can write down the Ernst equations which are described by Ernst
potentials w, v constructed from h and A by the standard method. The following
proposition is well-known:

PROPOSITION 1.1. The stationary axisymmetric Einstein-Maxwell equations
(1.1), (1.2) are equivalent to the Ernst equations given by.

(1.4) f(d * du + p~ ldp Λ * du) = (du -f 2vdv) Λ * du,

(1.5) f ( d * dv + p~*dp /\ * dv) = (du + 2vdv) Λ *dv,

where f = Re u -h \v\2.

In terms of the Ernst potentials u and v9 (1.3A) and (1.3B) turn into:

2 / 2/2

p (S u_

~2f**f~2
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+ {(dzu - dj + 2vdzv)2 - (dpu - dpf + 2vdpv)2}

-(δzvdzϋ-dpvdpυ).

Note that the integrability condition of the equations (1.3), or (1.6) follows easily
from (1.1) and (1.2), or (1.4) and (1.5) respectively [3]. But we employ a different
definition / = Re u — \v\2 so that (1.4) and (1.5) turn into :

(1.7) f(d * du 4- p~^dp Λ *du) = (du — 2ϋdv) Λ *dn,

(1.8) f(d *dv + ρ~ldρ Λ *dv) = (du - 2vdv) A *dv.

Similarly (1.6 A) and (1.6B) turn, by our definition, into:

- -̂  (Spu - dpf - 2vdpv)(dzu - dj - 2vdzv)

P

4/:
{(dzu - dj - 2vdzv)2 - (dpu - dpf - 2vdpv)2}

- j(dzvdzv-dpvdpv).

Since the integrability condition of the equations (1.9) follows from (1.7) and (1.8)
as before, we shall be concerned with (1.7) and (1.8) henceforth.

2. Linearization

Let G = {geSL3(C)',g*Jg = J}^SU(l,2)9 where J =

— i
and K its maximal compact subgroup, i.e., K = {geG; g*g = 1}. We define the
Cartan involution τ by τ(g) = (g*)"1 for geG. In this section, from the Ernst
equations (1.7) and (1.8), we derive an equation of motion for a σ-model (2.2)
which takes its value in the Riemannian symmetric space K \ G. The reason
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why we have changed the Ernst equations in § 1 is that we want to treat a σ-model
with values in a Riemannian symmetric space, not in an affine symmetric space.
Then we linearize the equation, or we introduce a 1-form with a spectral parameter.
The integrability condition of this 1-form is equivalent to the equation mentioned
above.

Let G = KAN be an Iwasawa decomposition (see [9]) with

A =

N =

Thanks to this decomposition, we can choose uniquely an element in AN as a
representative of an element in K \ G. Now we parametrize an element P in AN
as follows [6]:

/1/2 0 0

2v 1 0(2.1) P = _

v/2ii>//"2 I//1'2

where / and υ are the ones in (1.7), (1.8), and x = Imu.

It is well-known that (M, v) is a solution of (1.7), (1.8) if and only if P is a
solution of the following equation:

(2.2) d(p*dMM~1) = Q with M^τίP^P.

Let g the Lie algebra of G, i.e.,

g - {Xesl3(C); X*J + JX = O},

where J is as above. We also denote by τ the involution of g induced from the
involution of G.

DEFINITION. Let stf and J be ^-valued \-forms defined by

s/ = -(dPP~l + T^PP-1)), J = -(dPp-1 -

We define a ^-valued I-form Ω with a spectral parameter to be

(2.3) β = β(s) = j/ + 1~25Z~2^!t/
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where we put A = {(I - 2sz)2 + 4s2ρ2}1(2.

Since we discuss in the category of formal power series, we expand A in the
form

(2.4) A = i + Σ 2(i-i) (i-fc + i) (_ 4sz + 4s2z2 + 4s2p2)k
k>l k\

= 1 - 2sz + 2s2 p2 + 0(s3).

In view of (2.4) each coefficient of sk in the above expansion of A belongs to m*,
where m is the maximal ideal of C[[z, p]], a ring of formal power series in
z, p. Note that β(0) = j* + ./ = dPP~ l .

PROPOSITION 2.1. Ω satisfies the integr ability condition, i.e.,

(2.5) dΩ - Ω Λ Ω = 0

z/ and only if P is a solution of (2.2).

PROOF : We first note that (2.2) is equivalent to

(2.6) d(p * dPP'1) - d(pτ(* dPP'1))

+ p(dPP~1 Λ τ(* dPP'1) - τ(dPP~l) Λ * dPP~l) = 0.

Next we introduce a scalar function ί defined by

(2.7) t = ~
2sρ

with A expanded as (2.4). Then £ satisfies the following equation:

(2.8) (1 - t 2 ) at + 2ί * at = ί(l + ί2) — .
P

ί2 can be rewritten, using ί, in the form

1 + t2 1 + ί2

from which, it follows that

(2.9) 0 = j--2 ((1 - ί iJdPp-1 + ί(* + t)τ(dPP~1)).

Using (2.9), we obtain
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(2.10)

dΩ - Ω Λ Ω = t—— (d(p * dPP-x) - d(pτ(* άPP'1)))
(1 + ί2)p

L ΛφdPP' 1 )- τ(dPP~1)Λ *rfPP~ 1 )

Λ ' * 4PP "

The last four terms of (2.10) can be rewritten in the form

1 / t(l + ί2) \
' (1 - ί2) * at - 2tdt - V ; * dp Λ

(i + ί2)2 V P

Now the result follows immediately from (2.6) and (2.8). Π

For any solution P of the equation (2.2), by Proposition 2.1, there exists
& = 0>(s; z, p)eSL(3, C[[z, p, 5]]) which satisfies

where C[[z, p, s]] is a ring of formal power series in z, p, s and 5L(3, C[[z, p, s]])
is a group consisting of all matrices of determinant 1 whose entries are the elements
ofC[[z, p, s]].

3. Constructing solutions

In this section we give a recipe for constructing exact local-solutions of the
equations (2.2) around the origin (z, p) = (0, 0). This method was originally
explored in [1].

Let G(oo) be an infinite dimensional group

(0(5)GSL(3, CHS'1]]); g(s)*Jg(s) = J},

where C[[5~x]] is a ring of formal power series in s"1 and g(s)* = g(s)T.

Next we introduce a formal loop group ^R, following [11]. Let R be a ring

of formal power series C[[z, p]] and / an ideal of R generated by p, i.e.,
/ = (p). We put Rn = Γ for n > 0 and Rn = R for n < 0. We regard ί as a
parameter. Then we define

&R = {u = Σ wnί"; u

negl& Rn), u0 is invertible},
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and its subgroups

^R = {u = Σ Unfe9R\ un = 0(n> 0), u0 = 1},
nez

0>R = {u = Σ "nt"e^R; un = 0(n< 0)}.
nez

REMARK. If we define

^ = {u = Σ *nf\ unegl(3, tf _„), u0 is invertible},
nez

then y(£] also forms a group. For any #(s)e G(oo),

Our main theorem is :

THEOREM 3.1. For any g(s)eG(oo), there exists uniquely an element
which satisfies the following conditions :
( i ) τ(/c(— 1/ί)) = fc(ί), where τ is the Carton involution of G;
(ii) k(t)g((p/t + 2z - pi)"1)"1 is an element of 0>R;
(iii) The leading term of k(t]g((p/t + 2z — pi)"1)"1 is an element of AN and is
a solution of the Ernst equation (2.2).

For the proof we reduce the problem to Birkhoff decomposition (3.17) of formal
loop groups established in [11] :

LEMMA 3.2. Any element u of ^R can be uniquely decomposed as

PROOF OF THEOREM 3. 1 : First we show the uniqueness of k(t). For a given
g(s)9 assume that there exist k1(t) and fe2(ί) which satisfy the conditions
(i), (ii), (iii). We put

»ι(t) = ki(t)g((p/t + 2z - pi)"1)"1 (i = I 2)

and decompose ^(ί) as

where u$ is the leading term of ^(ί) so that the leading term of w(+(ί) is 1.
Then we have

and
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Since

τ(^ (- l/fΓ1)^) = τ(g((p/t + 2z - p t Γ l ) ) g ( ( p / t + 2z - pi)"1)"1,

it follows from the uniqueness of Birkhoff decomposition that

*Ί (0 = ^2(0,

hence

MO = Mί)

Now we show the existence of k(t). Let

Jί(t} = τ(g((p/t + 2z - pί)"1))^((p/ί + 2z - pi)'1)'1.

Then ̂ (ί) belongs to ̂ κ n ̂ j? }. By Lemma 3.2, it can be uniquely decomposed as

We rewrite u + (£) in the form u0 u + (t), where w0 is the leading term of v + (t) so

that the leading term of u+ is 1. Noting that τ(Jί(— 1/ί)"1) = ^(ί)> we have

Since τ(w + (— 1/ί)) also belongs to J^, multiplying it to the right of the both
sides, we obtain

Therefore, by the uniqueness of Birkhoff decomposition, it follows that

Hence we can find uniquely p e SL(3, ft) which takes its value in AN and satisfies
u0 = τ(p~i)p. We shall show that p is a solution of the equation (2.2).

Now we assume that t satisfies

(3.1) at = * ((1 - t2)dp + 2tdz),

which certainly holds if t satisfies (2.7).

By Proposition 2.1, writing ^(t) = p - u + (t), it is sufficient to show that

(3.2)

where jtf and </ are constructed from p as in §2. It is easy to show that (3.2) is
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equivalent to

(3.3) dUU-1 = —L^Λf-H- *dM - tdM)

where we put U = u + (t) and M = u0.
If we define

then (3.3) is rewritten with S(t) in the form

(3.4) S(t) = M~ί(- tdM -

Using (3.1), we obtain dJί(t) = 0. Namely, we have

0 = - S ( -- ) M -f ( — + t }dM + MS(t).
\ t J \ t J

= M-^Sl- — ) M - (— + t]dM\
\ \ t J \ t J J

Therefore

(3.5) S(t)

Since the left hand side of (3.5) contains no negative power terms in ί, it can be
written in the form

(3.6) S(t) = M~1(- tdM + G),

where G is a matrix whose entries are R-valued 1-forms.
Taking (2.8) into account, we obtain

(3.7) *S(ί) = iS(ί)modί-i,

where " = mod t - ί" means that each entry of the coefficient matrix of dz (resp.
dp) in the left hand side is equivalent to that of dz (resp. dp) in the right hand
side, modulo the ideal generated by t — i in R[f], a ring of polynomials in t with
coefficients in R.

Similarly

(3.8) * S(t) = - iS(t) mod t + L

On the other hand, from (3.6) we have

(3.9) S(t) = M-^G =F M~ldM mod ί ± i.
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It follows from (3.7), (3.8), (3.9) that

G = -*dM

which is nothing but (3.4).

We put k(t) = 0>(i)g((ρ/t + 2z - pi)'1)- Then we have to show that k(t)
satisfies the conditions (i), (ii), (iii). We have already shown that k(t) satisfies (ii)
and (iii). Note that by definition

*W = τ(flf((p/ί + 2z - p t Γ l ) ) g ( ( p / t + 2z - pi)"1)"1,

and from the construction of

from which it follows that k(t) satisfies (i). Π

4. Examples

In this section we give some examples of solutions of the equation (2.2)
following the recipe (Theorem 3.1) given in the last section.

We note that SL(2, R) can be embedded in G by

b

,d
We use this embedding when we deal with the fields without electro-magnetic fields.

The first two examples below deal with the case where the gravitational field
does not interact with electro-magnetic fields.

/ I s^V 1

EXAMPLE 1. For g(s) = 1 1 , the element k(t) E &R in Theorem 3.1 is

given by

k(t) =

with
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where we put λ = ^/(\ — p2)2 + 4z2.

Hence k(t)g((p/t + 2z - pί)~1)"1(=:^(ί)) is given by

1-P2

1 - p2 + zpί (- 2p(l - p2) + 4z2p)ί - 2zp2ί2

X \2z - p(l - p2)ί (1 - p2)2 4 4z2 - 2zp(2 - p2)ί 4 P2(l - P2)t2 J'

Therefore M = τ(p(0)~1)P(0) is given by

1 / 1 2 z
(4.1) M =

l - p 2 \ 2 z (l-p 2) 2 + 4z2

This is the first example given in [10] modulo scaling transformation of (z, p). The
second example in [10] is obtained by multiplying

l/>/2

to the right of (4.1) and its transpose to the left.

/ 1 O N - 1

EXAMPLE 2. For g(s) = I 2 I , (where C0,cl9c2 are

arbitrary real numbers) k(t) is given by

/ a(t) b(t)
k(t) = (

\-b(- 1/ί) α(-

with

a(t) = ((l+c2p4) + (c1c2 + 4c2

b(t) = ( — (c1 4- 4zc2)pί 4 (c2p
2

where

μ = {(l+ c2

2p
4 4 (c1 + 4c2z)p)(l 4 c2p4 - (cλ 4 4c2z)p)(l

Hence k(t)g((p/t 4 2z - pi)'1)"1 (=:^(f)) is given by

1 P22

where

Pn = - ~ {- 1 - (1 + 02(- 1 + ί)2P8cί - (2 - 2ί2 + ί4)p
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+ ((1 + ί)(- 1 + t)p4c2 + (- 3 + 2f2))(Cl + 4zc2)p3ίc2

- (- c2 + (c2 + c0c2)t2 + 2(Cl + 2zc2)(- 4 + 5ί2)zc2)p2

+ (- P5tc3

2 + (cx + 4zc2))(c0 + 2zc, + 4z2c2)pί}

1

μ
i
μ

+ (1 + P4c2)(- 2 + t2)p2c2 -(!+(!+ ί)(— 1 + t)p4c2)(c1 + 4zc2)pt

- t2c2 + 2(Cl + 2zc2)(- 3 + 4ί2)zc2)p4c2}

P5tc\ + (c, + 4zc2))pί}

i 4- 4z2c2 - (c0 + 2zCi + 4z2c2)(c1 + 4zc2)p3ίc2

(- c2

P22 = ~ -{- 1 ~ Ai + (Ci + 4zc2)/>3ίc2}.

Therefore M = is given by

M =
m1 2

m21 m22

where

1
-f

+ 4(c2 + 2c0c2)z2 + 2(c2 - 2c0c2

- 2(c2 + 2c0c2 + 12zc!C2 + 24z2c2

2)p2

- (~ 7c| - cί + 2c0c
2c2 - c2c2 - 144z3c1cl -

8z2c2)p6c2

- c (- 5c2 + 2c0c2)z2c2)p4}

m1 2 = -- i + 4z2c2 - 2p2c2 - 2p6c2

12z2c2)p4c2}

μ
and μ is as above.

1

EXAMPLE 3. Similarly for g(s) = I C5~

ί |c | 2 s~ 2 /2

(where c is



458 Takashi HASHIMOTO and Ryuichi SAWAE

an arbitrary complex number), k(t) is given by

(
a -cpat -ί\c\2p2at2/2

-2cpΓ1/(2-\c\2p2) (2 + |dV)/(2-klV) 2ίcpt/(2 - \c\2p2)

i\c\2p2at~2/2 -ίcpaΓ1 a

hence k(t)g((p/t + 2z - pi)"1)"1 (=:^(0) is given by

( Pll Pl2 Pl3 \

P21 P22 P23 >

P31 P32 P33 /

where

pn = α{ί4|dV - 4ί3|c|4p3z + 2t2\c\2p2(- |c|2p2 + 2\c\2z2 + 2)

+ 4t\c\2 pz(\c\2 p2 - 2) + |c|4p4 - 4|c|2p2 + 4}/4

Pi2 = ~ a(t*c\c\2p* - 2t2c\c\2p2z + tcp(- \c\2p2 + 2))/2

|2p3 - 4ί2c|c|2p2z 4- tcp(- \c\2p2 + 4|c|2z2 + 2)

p22 = (2ί2|c| V - 4ί|c|2pz - |c|2p2 + 2)/2α

p31 = a(t2\c\2ip2 - 4t\c\2ipz + 4\c\2ίz2)/2

p32 = α(2icz — ipct)

P33 = fl

and

a =
2 - k l V '

Therefore M = τ(^(ϋ)-l)^(G) is given by

/ α-2 + 4|c|2z2 + 4α2|c|4z4 2cz + 4α2c|c|2z3 -2ία2|c|V

M = [ 2cz + 4α2c|c|2z3 l+4α 2 | c | 2 z 2 - 2ί'α2cz

\ 2i'α2|c|2z2 2iα2cz α2

Example 3 gives a solution with nontrivial electro-magnetic potentials.
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