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Negative solutions of the generalized Lienard equation
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The aim of this paper is to state the conditions for the existence of

negative solutions of the Lienard equation

(1) x

Throughout this paper we will assume that

(2) xf(x) > 0, xg(x) > 0 for all x Φ 0 and

/ and g are continuous on R = (— oo, oo).

Under a negative solution x(t) of (1) we will understand a solution such

that x(t) < 0 on some interval [7^ oo).

Denote

(3) F(x)=\f(s)ds9 G(x)=\g(s)ds9 xe(- oo, oo).
Jo Jo

It follows from the assumptions (2) that F(x) > 0, G(x) > 0 for all x φ 0,

F(0) = G(0) = 0, F(x) and G(x) are decreasing for x < 0 and increasing for

x > 0 .

In the paper [1] we have made a qualitative analysis of the solutions of

(1). In the paper [2] we have considered the behaviour and the existence of

positive solutions of (1). In this paper we shall focus our attention on the

negative solutions of (1). First, we shall introduce some results from [1]

concerning the negative solutions of (1) and we shall use them later.

THEOREM A ([1], Theorem 4.1). Let x(ί) be a solution of (1) such that

x(ί0) < 0, x'(ί0) > 0. Then there exists τ > t0 such that x(τ) = 0.

COROLLARY 1. Let x(ί) < 0, t > ί0, be a solution of (1). Then x'(ί) < 0

for t ^ ί0.

THEOREM B ([1], Theorem 4.3). Let x(ί) < 0, t ^ tθ9 be a solution of

(1). Then lim x(ί) = — oo as ί-^ oo.

THEOREM C ([1], Theorem 4.5). Suppose that F(— oo) < oo and lim sup

g(x) < 0 as t -• - oo. Then the equation (1) has no negative solution.
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Theorem B says nothing about the boundedness of x'(ί). In the following

Theorems we will discuss this problem.

THEOREM 1. Let x(ί) < 0, t > ί0, be a solution of (1) and let be

F(- oo) < oo. Then limx'(ί) as ί-> oo exists and is finite.

PROOF. From Theorem B we get that lim x(r) = - oo as t -• oo and

from Corollary 1 we get that x'(ί) < 0 for t > t0. Then

[*•(*(*))]' =f(x(t))x'(ή > 0, [x'(ί) + F(x(r))]' = - g(x(t)) > 0 for t > t0.

Thus, F(x(ή) and x'(ί) + F(x(ή) are increasing on [ί 0, oo). Moreover, if

k = F(- oo) we have

x'(ί0) + F(x(t0)) < x'(t) + F(x(t)) < x'(t) + k < k

which implies that x'(ή + F(x(ή) is bounded from above and x'(ί) is bounded

from below. Therefore,

) = lim[x/(ί) + F(x(ί))] -l imF(x(ί)) a s ί - > o o

exists and is finite.

THEOREM 2. Let x(ί) < 0, t > t0, be a solution of (1) such that

x'(ί0) 4- F(x(t0)) > 0. Suppose that g(x) < F(x)f(x) for x < 0. Then limx'(ί)

as t -> oo exists and is finite.

PROOF. Let be x(ί) < 0 for t > t0 a solution of (1). Then x'(r) < 0 for

t > t0 (see Corollary 1). Then [x'(ί) + F(x(ή)J = - g(x(ή) > 0, [F(x (ή)J =

-/(x(O)x'(ί) > 0 for ί > ί 0 . Therefore, x'(ί) + F(x(ή) and F{x(t))' are

increasing for t > t0. Thus,

x'(ί) + F(x(ί)ϊ > x'(ί0) + ^(^(ίo)) > 0, x'(r) > - F(x(ί))

and

/(x(ί))xΛ(ί) < - F(x(ί))/(x(ί» < - g(x(i))

which implies that 0 < -f(x{t))x'(t) - g(x(ή) = x"(t) for t > t0. Therefore,

x'(r) is increasing for t > t0 and being negative, we get that limx'(f)> - oo

as r-» oo.

Now, we are going to state the conditions which quarantee the existence

of a negative solution x(ί) of (1). Assume that x(ί) < 0, t >t0, is a solution

of (1). From Corollary 1 we have that x'(ί) < 0 for t > t0. Therefore, x(ί) has

t h e inverse f u n c t i o n t = φ{x\ x<a = x(t0) < 0. L e t be y{x) = x'(φ(x)),

x< a. Evidently y(x) < 0 for x < a. It is easy to state that y(x) is a solution

of the equation
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dy Q(X)
(4) — = -fix) — on the interval ( - oo, a).

dx y(x)

Integration of this equation on [x, a] gives us

(5) y(x) = y(a) + F{a) - F(x) + Γ ^du.
J, y(u)

From this we have that y(x) - y(a) > F{a) — F(x),

0>y(x)>y(ά) + F(a)-F(x).

THEOREM 3. Let k > 1 and a < 0 be constants such that for x e ( - oo, a]

(6) F { a ) - m

F{a)mz

k - 1

holds. Then there exists a solution x(t) of (1) such that

(7) x{t) < 0, x'(ί) < 0 for all t > t0

and

(8) lim x(t) = - oo, x(ί0) = a.
f->oo

PROOF. TO prove this theorem is equivalent to finding a solution of the
equation (5). Consider the operator

(9) Uz{x) = y(a) + F(a) - F(x) + | ^ J ds9 x < a,
z(s)Γ

J X

on the set

(10) B = jz(x)eC((- oo, a]): - F(x) < z(x) < - fc|||j,

where C ( ( - oo, a]) is the space of all continuous functions with the topology
of uniform convergence on compact subintervals of the interval (— oo, a]. It
is easy to see that B is convex, closed and bounded in the topology of
C ( ( - oo, a]). We will prove that a) UBaB, b) U is continuous on B,
c) UB is relatively compact.

a) UBczB. Let z(x)eB. Then
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Uz(x) = y(a) + F(a) - F(x) + I — ds, x < a.Γ
J X

We have g{s)/z(s) > 0 and therefore

> 0, ί?!βds>0.
Jx z(s)

From this it follows that Uz(x) > - F(x) for all x < a. Moreover,

f(s)
s<a

implies that

and

Uz(x) < yia) + F(a) - Fix) - - f(s)ds

= y(a) + F(a) - F(x) - - (F(a) - F(x))

Respecting the fact that y(a) < — k —- and the condition (6) we get that
f(a)

Uz{x) < - fc—. Thus, Uz(x)eB and UB <= B.
fix)

b) U is continuous on B. Let |zπ(x)} be a sequence of the elements from
B which converges to z(x)eB uniformly on each compact subinterval of
(— oo, a]. Then

The sequence

\Uzn(x)-Uz(x)\<

g(s) g(s)

Γ
•1 x

g(s) g(s)

zn(s) z(s)
ds.

zn(s) z(s)
> converges pointwise to zero on (—00, a], and

g(s) g(s)

zJs) z{s)

g(s)

zn(s)
+ g(s)

φ) 4
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where 2|/(s)|/fc is integrable on compact subintervals of (-oo, α]. By
Lebesgue's dominated convergence theorem we get that {Uzn(x)} converges to
Uz(x) uniformly on each compact subinterval of (— oo, a],

Q) UB is a relatively compact set. This follows from the uniform boundedness
of Uz(x) and (Uz(x))' on compact subintervals of ( - oo, a]. Indeed,
\Uz(x)\ <F(x) and

\(Uz(x)Y\£f(x) 0(x)

z(x)
I/Ml+ J I/Ml

k

Thus, all conditions for use of Schauder's fixed point theorem are
satisfied. Therefore, the operator U has a fixed point y in B which is a
solution of (5) on the interval (— oo, a].

REMARK 1. It is possible to take k = 2 in (6) because k2/(k — 1) > 4 for all
k>2.

REMARK 2. In the case that x(t0) = a = 0 the condition (6) has to be

(11) F ( X ) / ( X ) < A _ 0 ( X ) ) x < o ,

the operator U has to have the form

(12) Uz(x) = y(0) - F(x) + Γ ^β ds9 x< 0, y(0) < 0
Jx z(s)

B = \z(x)eC((- oo, 0]): y(0) - F(x) < z(x) < -

and

^β j.
/M J

Then the conclusion of the Theorem 3 still holds.

EXAMPLE. Let /(x) = g{x\ xe(-oo, 0]. Then the conditions (6) and
the condition (11) are satisfied. In this case we have

which has the negative solutions

x(t) = - t + c.

REMARK 3. The operator U in Theorem 3 as well as the operator U in
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Remark 2 are monotone on the set B. Therefore, it is possible to prove

Theorem 3 by use of the theory of monotone operators.
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