
HIROSHIMA MATH. J.

23 (1993), 79-153

Continuity properties of potentials and

Beppo-Levi-Deny functions

Dedicated to Professor M. Ohtsuka on the

occasion of his seventieth birthday

Yoshihiro MIZUTA

(Received November 11, 1991)

1. Introduction

In this paper we first study the behavior of Riesz potentials of functions

near a given point, which may be assumed, without loss of generality, to be

the origin. For 0 < α < n and a nonnegative measurable function / o n Rn,

we define Uaf by

\χ-yΓnf(y)dy.

It is easy to see that VJφ oo if and only if

(1.1) u
By Sobolev's imbedding theorem, we know that if / is a nonnegative

function in Lp(Rn) satisfying (1.1), and if αp > n, then Uaf is continuous at

the origin (in fact, on Rn)'9 however, in case oφ < n, Uaf may fail to be

continuous at the origin. Thus, our main concern in this paper is the

bordering case p = n/α, and one of our aims is to find a condition on /,

which is stronger than the condition that feLp(Rn) with p = n/α but assures

the continuity at 0 of UΛf.

For this purpose, we assume that / satisfies a condition of the form:

(1.2)
r
I cf)

1

Here Φp{r) and ω(r) are positive monotone functions on the interval (0, oo)

with the following properties:

(φl) Φp(r) is of the form rpφ(r), where 1 < p < oo and φ is a positive

nondecreasing function on the interval [0, oo).

(φ2) φ is of logarithmic type, that is, there exists Aί>0 such that
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Af*φ(r) < φ(r2) < Aίφ(r) whenever r > 0.

(ωl) ω satisfies the (Λ2) condition; that is, there exists A2 > 0 such that

A2

 ίω(r) < ω(2r) < A2ω(r) whenever r > 0.

For example, φ(r) = [log(2 +>)]*, δ > 0, and ω(r) = rβ satisfy all the

conditions. We know in [18] that if ω = 1, p > 1 and

(1.3)
Jo

then l/α/ is continuous on Rn. Thus we aim to find a more general condition

relating to both φ and ω, under which C/α/ is continuous at the

origin. Further, if UΛf is not continuous at 0, then we shall find a function

K for which [ fed*!)]" 1 Uaf(x) tends to zero as x->0, possibly avoiding an

exceptional set. As an application of the existence of such fine limits, the

radial limit theorems can be derived. Our results will give generalizations of

those in [5] and [11], where φ(r) = 1 and ω(r) is of the form rβ.

We also deal with the limit of q-th means of Uaf over the spheres dB(0, r),

where dB (x, r) denotes the boundary of the open ball B(x, r) with center at

x and radius r. In case p = 1, our results imply Gardiner's results in [4].

If α is a positive integer, then Uaf is a Beppo-Levi-Deny function on Rn

(cf. Mizuta [8]); for the definition of Beppo-Levi-Deny functions, we refer the

reader to Deny-Lions [3] and Mizuta [8]. Conversely, Beppo-Levi-Deny

functions are represented as Riesz type potentials in [8], [16] and [19], as an

extension of a result by Wallin [26]. In this paper, we give another integral

representation, as a generalization of the sobolev integral representation for

infinitely differentiable functions with compact support.

Moreover, we are concerned with Beppo-Levi-Deny functions u on the

half space D = {x.- (xx,..., xn) e Rn xn > 0} satisfying

-ί
JG

(1.4) Σ\M = m\ Φp(\(d/dx)λu(x)\)ω(xn)dx<oo
JG

for any bounded open set G c D, and study the existence of limits along

curves or sets tangential to the boundary 3D, where n>2 and (d/dx)λ =

(d/dxi)*1 - " ( d / d x n ) λ n f o r a p o i n t x = ( x ι , . . . , x n ) a n d a m u l t i - i n d e x / = ( λ l 9 . . . 9 λ n )

with length |λ'| = λx H—' + 'λn. If φ satisfies condition (1.3), then u is

continuous on D as shown in [18]. We show that u has limits along the sets

Tψ(ζ, a) = {xεD; ψ ( \ x - ξ\) < a x n } ,

where ξ e 3D, a > 0 and φ is a positive nondecreasing function on the interval



Continuity properties of potentials 81

(0, oo). In case φ(r) — r, such limits are called nontangential limits; in case

φ(r) = rβ

9 β > 1, they are called tangential limits. First we prepare some

results concerning the existence of limits at points of dD for Riesz potentials

Uaf with nonnegative measurable functions / satisfying (1.1) and

Φp(f(y))ω(\yn\)dy< co for any bounded open set GczR",
JG

and then apply the same discussions to the study of boundary limits of

Beppo-Levi-Deny functions u on D satisfying condition (1.4), with the aid of

the integral representations. Nagel, Rudin and Shapiro [20] proved the

existence of (non) tangential limits of harmonic functions represented as Poisson

integrals in D. Their results will correspond to ours in the case where oφ > n

or condition (1.3) holds. The size of the exceptional sets of ξ, at which Uaf

or u fails to have a boundary limit under consideration, will be evaluated by

Hausdorff measures and Bessel type capacities.

Our arguments are applicable to the study of boundary limits of Green

potentials Gaf defined by

{\x-y\a~n-\x-y\a~n}f{y)dy incase α < π,

γ
log(\x - y\/\x-y\)f(y)dy incase α = n,γ

JD

w h e r e x = (xί9...9xn-ι, - xn) for x = (xl9...9xn-lJ xn) a n d / is a n o n n e g a t i v e

measurable function on D satisfying

ί Φp(f(y))ω(yn)dy < 00 for any bounded open set D' c D.P
D'

We try to give generalizations of results in Aikawa [1], Mizuta [14], Rippon

[23] and Wu [27].

In the last section, we investigate continuity properties for logarithmic

potentials Lf in Rn

9 which is defined by

Lf(x)= log- -f(y)dy;
J \χ-y\

here it is natural to assume

-\y\)\f(y)\dy<co.

We note that if feLP{Rn) with p > 1, then Lf is continuous on Rn. Thus we
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deal mainly with functions / satisfying

\φι(\f(y)\)ω(\y\)dy< co9

and give extensions of the results in [15].

The author is grateful to Professor Fumi-Yuki Maeda for a number of

useful suggestions and improvements.

2. Preliminary lemmas

First we give several properties which follow from conditions (φl) and

(φ2):

(φ3) φ satisfies the (Δ2) condition, that is, there exists Λ3 > 1 such that

φ(2r) < A3φ(r) whenever r > 0.

(φ4) For any γ > 0, there exists A(y)> 1 such that

A(γ)~1φ(r)< φ(rγ) < A(y)φ(r) whenever r > 0.

(φ5) If γ >0, then

s^is'1) < A^φiΓ1) whenever 0 < s < t < A^1/y.

Throughout this paper, let M, Ml9 M2,..., denote various constants

independent of the variables in question.

For xeRn-{0}, the Riesz potential UJ o f / satisfying (1.1) will be

written as U1 + U2 + U3, where

uί(χ)= I \χ-yΓnf(y)dy9
;2\χ\)

lW= ί
JRn-B(0,2

U2(χ)=[ \χ-yΓnf(y)dy,
JB(0,2\X\)-B(X,\X\I2)

U3(χ)=\ \χ-yΓ'f(y)dy.
lB(x,\x\l2)

Then we can easily find a positive constant M such that

(2.1) VX{X)<M\ \yΓ"f(y)dy

J Rn-B(0,2\x\)

and
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(2.2) l / 2 ( x ) < M | x r π f f(y)dy.r- f j
JB(0,2|*|)

LEMMA 2.1. Let p > 1, 0 < δ < β < n and f be a nonnegatiυe measurable

function on R". If 0 < 2r < a < 1, then

f. IjΊ' ' ./Wy £ ί l3'l'""/(y)<i3' + Ma'-'
J/?n-B(O,r) JK"-5(0,«)

α \ i- i/p/ f \I/P

[t--^ι/(ί)]1/<1-'>ί-1Λ * P (/ω)ω(|y |)dy ,
r / \Jβ(O,β) /where η(t) = φ(ί" 1)ω(ί) fl«rf M w fl positive constant independent of x and a.

PROOF. Let 0 < a < 1 and assume that / = 0 outside B(0, a). We write

f \y\β-nf(y)dy= ί
jRn-B(O,r) J{

+ f
J{

From Holder's inequality, we obtain

{y€R»-B(O,ry,f(y)>\y\-δ}

( f \y\β-nίφ(f(y))ω(\y\)ΓpΊpdy)llP ,
\ J{yeRn-B(O,r);f(y)>\y\-δ} /

f
{yeRn-B(O,r);f(y)>\y\-δ}

where 1/p + 1/p' = 1. By condition (φ4), we see that

whenever f(y) >\y\~δ. Hence

Λ"-B(O,r)

On the other hand,

β(O,α)-B(O,r)

Thus Lemma 2.1 is proved.

For η(r) = φ(r~Λ)ω(r), set
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ltn~Λpη{t)ΫpΊpΓ1dt\ , incase p > 1,

L t
a~n[η(t)']~1

9 i n c a s e P = 1»

where 0 < r < 1/2; further, set κx{r) = κ ̂ l/2) when r > 1/2.

COROLLARY 2.1. Le/ 0 < δ < α ««ί// ό^ a nonnegative measurable function

on Rn. If 0 < 2|x| < a < 1, ίλe«

iχ->>r7ω^-

+ MKl(\x\)

where M is a positive constant independent of x and a.

The case p > 1 follows readily from (2.1) and Lemma 2.1 with β = α and

r = |x|, and the case p = 1 is trivial.

By using (2.2) and the case β = n in Lemma 2.1, we can establish the

following result.

COROLLARY 2.2. If 0 < δ < α, then there exists a positive constant M such

that

U2(x) < Mκ2(\x\) ( I Φp(f(y))ω(\y\)dy\IP + M\xΓδ

\JB(0,2|X|) /

/or any xe£(0, 1/2) - {0}, where

ra wsup0 < i< r[^y(i)] \ incase p = 1.

For a set E c jRπ and an open set G c= R", we define

α , φ p (£;G) = infg ί 0
JG

where the infinum is taken over all nonnegative measurable functions g on Rn

such that g vanishes outside G and Uag(x)> 1 for every xeE.

The following results can be proved easily by the definition of Ca0p (cf.

[11, Lemmas 1 and 2]).

LEMMA 2.2. Let G and G' be bounded open sets in Rn.
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( i ) Caφp{; G) is countably subadditive.

(ii) If F is a compact subset of Gf)Gr, then there exists M > 0 such that

Ca,φp(E;G)<MCa,φp(E; G') for any E c= F.

(iii) // Cα > φ j,(£; G) = 0, then C α > φ p ( £ n G ' ; G) = 0.

(iv) If Caφp(E; G) = 0, E c G, ίΛe/i, /or #/2y positive nonincreasing

function ω on (0, oo), ίAere ex/sto α nonnegative measurable function

f on G such that UJφ oo, Uaf = oo o« £ am/ Φpί/Mίωίpί) ; ) )^

< oo, where p(y) denotes the distance of y from the boundary dG.

For the reader's convenience, we give a proof for (iv). Let {α,-} be a

sequence of positive numbers. If we define G} = {xeG; p(x) >j~1} for each

positive integer j9 then CatΦp(Er\Gj'9 G7) = 0 by (iii). Hence, for each j , we

can find a nonnegative measurable function fj on G7 such that JJΛfj > 1 on

EπGj and Φp(fj(y))dy < ajt Consider the function / = supj2Jfj. Then
JGj

Uj(x) > 2j UJj(x) > 2j for x e E n Gp so that

l/β/(x) = oo on E.

On the other hand, M = sup r > 0 Φ p (2r)/Φ p (r) < oo and hence

\φp(f(y))ω(p(y))dy<Σj f * P ( 2 ^

Now choose {α̂  } so that the last sum is convergent.

LEMMA 2.3. Let f be a nonnegative function satisfying condition (1.2), and

χ be a positive function on (0, 1] for which there is a positive constant M such

that χ(r) < Mχ(s) whenever 0<r<s<ί2r< 1. Then there exists a set E a Rn

such that

(i) Umx^xeRn.

(ϋ) ΣT-i ίK*yJω(2-J)Ca>φp(Ej; B) < oo,

where

Ej ={xeE;2-}<\x\<2-j+1},

2-J-1 <\x\<2~J+2},
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/V — S U p o < r s < 1 / 2

PROOF. For a sequence \a^ of positive numbers, we set

Ej = [XERn', 2~J < \x\ < 2~J , U3(x) > CLJ χ( |x |)} 5 j = 1, 2,...,

and

Since U3(x) < \ \x - y\a~nf{y)dy iϊ xeEj, we have by the definition of C α φ p ,
J Bj

",Φp J - J P

By condition (1.2) we can find a sequence {fcj} of positive numbers such that

limj^^bj = oo but

-Γ-iJ W/ω)ω(M)d>><oo.

By (φ3) there exists ε0 > 1 such that φ(st)/φ(t) < M2s
εo whenever 5 > 1 and

t > 0. Now

follows that

ί > 0 . Now let aP+εo = bj. Then, since ^J°=1 Φp(ajf(y))ω(\y\)dy< oo, it

)C α f φ p ( i i j ; Bj) < oo.

Since (i) follows readily, Lemma 2.3 is established.

REMARK 2.1. If Φp{r) = rp, ω{r) = rβ and χ(r) = r-
{n-*p+β)/p

9 then (ii)

implies

where Cap = Cα φ p is the usual (α, /?)-capacity.

3. Fine limits

Our first aim is to establish the following result.

THEOREM 3.1. If f is a nonnegative measurable function on Rn satisfying

conditions (1.1) and (1.2), then there exists a set E c Rn such that
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and

where Ej and Bj are as in Lemma 2.3.

PROOF. If Uaf(0) = oo, then, by the lower semicontinuity of Uaf9 we see

lim^ o t/ α /(x)=cx) = l/α/(0).

If Uaf(0) < oo, then Lebesgue's dominated convergence theorem implies

since |x - y\a~n < 3n~a|y|a~n for yeRn - B(x, |x|/2). Thus Lemma 2.3 with

χ = 1 yields the required assertion.

In case Uaf(0) = oo, we discuss the order of infinity at the origin.

THEOREM 3.2. Let f be a nonnegatίve measurable function on Rn satisfying
conditions (1.1) and (1.2). Set K = /q + κ2. If limr_0κ{r) = oo, then there
exists a set Ea Rn such that

and

Σ?=1K-Jω(2-j)Ca,φp(Ej', Bj) < oo,

where Ej and Bj are as before, and

K = suP o < r > s < 1 / 2[Φp(s/κ(r))]/[Φp(S/fc(2r))].

PROOF. By Corollary 2.1, we have

B(O,a)

for any a > 0, which implies that the left hand side is equal to zero. Further,

from Corollary 2.2 it follows that

Thus, applying Lemma 2.3 with χ = K, we can complete the proof of Theorem

3.2.

EXAMPLE 3.1. In case η(r) = rβ, where ccp - n < β < (p - 1) n, we see that

1 if αp — n < β < n (p — 1)
κ(r) ~ r x

\{\og(\/r)}ι-llp if β = <xp-n or j8 = n(p-
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as r-»0. In addition, if ω(r) = rβ (and hence φ(r)== 1), then E in Theorem

3.2 satisfies

Therefore, by use of the inversion: x->x/ |x | 2 , Theorem 3.2 gives a

generalization of Theorem 4.5 in [5].

If p > 1 and

(3.1) I [_tn-*pφ{Γι)YpΊpt-γdt<oo,
Jo

then we consider the function

where

Here note that

(3.2) φ

and

(3.3) K(r)>M[rn-*pη{r)Yιlp

for r > 0.

THEOREM 3.3. Let p > 1 and assume that (3.1) Λo/ίfe. Iff is as in Theorem

3.2 and l im r_ 0K(r) = oo, then

// K(r) is bounded, then UJ(0) is finite and UJ(x) tends to UJ(0) asx-+0.

COROLLARY 3.1 (cf. Theorem 1 in [18]). Let p = n/a > 1 and φ*(l) < oo.

If f is a nonnegatiυe measurable function on Rn satisfying (1.1) and

ί Φp(f(y))dy < oo, then Uaf is continuous on Rn in the usual sense.

PROOF OF THEOREM 3.3. Let 0 < δ < α. Since

JjBJB(0,\x\l2)

we have by Lemma 2.1
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1*1/2 \l/p'

x ( I Φp(f(x + y))dy)/P + M^xΓ3

\Jj>(0,l*l/2) /

α \l/p

*p(f{y)M\y\)dy)
B(x,\x\/2) J

If K(r) -• oo as r -> 0, then it follows that

lim^o[X(|x|)]-1L/3(χ) = 0.

As in the proof of Theorem 3.2, we have

Dl-^I/^x) + U2(x)} = 0,

and hence

If X(r) is bounded, then U3(x)-+0 as x->0. Also, Corollary 2.1 implies

l i o ί / ^ x ) < oo,

and Corollary 2.2 implies that U2(x) tends to zero as x-*0. It follows that
UJ(0) < oo and

lim^o UJ(x) = lim,.0{l/iW + U2(x)} =

as in the proof of Theorem 3.1. Thus we complete the proof of Theorem 3.3.

Here we discuss the best-possibility of Theorem 3.3 as to the order of
infinity.

PROPOSITION 3.1. Let ap = n, and suppose <p*(l) < oo,

l im r ^ 0 [ω(r)]- 1 / >*(r)= oo and limr^of
tlp'[ω{r)yιlpφ*(r) = 0.

Then, for any positive nondecreasing function on a(r) on (0, oo) such that
limr-oα(r) = oo, there exists a nonnegative measurable function f on Rn

satisfying (1.1) and (1.2) such that

PROOF. Let { J be a sequence of positive integers such that jt + 2 <ji+ί

and Σia^1/P < °°> w h e r e ai = a(ri) a n d ri = 2~ji. Setting x(i) = (rh 0,...,0)eR",
we define

f[y) - aTιlplφ*^rp'lpiω^rιlp\x^ - yΓίφ(\x{i) - y l " 1 ) ] "^
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if yeB(x(i), r,/2) for i = 1, 2,..., and f(y) = 0 o n ί " - UΓ=i 5(x(i), r,/2). Then
we have

ί
iχ( i )-yrαc<p(iχ( i )->'r1)]"p'/ί'ί/>'

«>,iϊ/2)

< MiΣ, ef1/P D ^ M Γ P'/P [ω(rj] " '" i f" <p*(r/'

= M 1 Σ ί αΓ 1 / p K / p ' {ω( ' ί)}"1/''<P*(' i)] < oo,

so that / satisfies (1.1) by our assumption. Note that {a{llp} and
{r?/p'ω(ri)"1/p<jί)*(rί)} are bounded. Hence, using (3.2), we obtain

f(y) < M2[φ*(r i)]-"'/"[r?"'>*(r i)]-1 |x( i> - yΓίφ(\x{i) - y\~ 1 ) ] " p 7 p

^MjIx^-yΓ" ' " ' - 0 1

on B(x(ί), rJΊ). Hence, in view of (φ3) and (φ4),

there. Consequently, by condition (ωl) we establish

[φp(f(y))ω{\y\)dy £ M^a'1 [ς» (rl)]-'<[

ί |x(i» -
JB(xC),ri)

M^a^ < oo,

which implies that / satisfies (1.2). Since

LJ
we find

as i-> oo. Thus / has all the required properties.

REMARK 3.1. In Proposition 3.1, if φ*(l) = oo, then we can find a
nonnegative measurable function / on Rn, which satisfies (1.1) and (1.2), and
a set A, which is of the form \Ji[B(O, 2rt) - £(0, rt)] with some sequence {rj
of positive numbers tending to zero, such that
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4. Radial limits

Before discussing the existence of radial limits of Riesz potentials, we

prepare two lemmas concerning the capacity CaΦp.

A mapping T: G-+G' is said to be bi-Lipschitzian if there exists A > 1

such that

A~ί\x-y\ < \Tx- Ty\ < A\x - y\ for all x,yeG.

The following result can be proved easily by the definition of Caφp (cf.

[11, Lemma 3]).

LEMMA 4.1. Let T be a bi-Lipschitzian mapping from G onto TG. Then

Cx,φp(TE; TG) <: MCa,φp(E; G) for any E c G,

where M is a positive constant which may depend on A (the Lipschitz constant

of T).

For a set EaRn, we denote by E the set of all ξedB(09 1) such that

rξeE for some r > 0. By using Lemma 4.1 and applying the methods in the

proof of Lemma 5 in [11], we can prove the following lemma.

LEMMA 4.2. There exists a positive constant M such that

C α , φ p ( £ ; B(0, 4)) < MCaφp(E; B(0, 4))

whenever E c β(0, 2) - β(0, 1).

We consider the quantity

o ^ ( 2 <
φ(t)

LEMMA 4.3. // Σ™=ι2
njKjCΛiΦp(Er Bj) < oo, then

CΛ,φp(E*;B(0, 2)) = 0,

where E* = ()k-Λ

PROOF. Let / be a nonnegative measurable function on Rn such that

/ = 0 outside Bj and Uaf{x) > 1 on £, . If xeEp then

1 < I |x - yΓnf(y)dy = 2~*j \ \2jx - zΓnf(2~jz)dz.
JBj JBo
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Hence, by the definition of capacity Cα φp, we obtain

ί Φp(2~ΛJf(y))dy< ί
JB BJ

Φp(f(y))dy,
BJ

which implies

C,,Φ,(2Έ,; Bo) < l

Therefore it follows from Lemma 4.2 that

Cα,φp(E,.; B(0, 4)) < M^jVEj; B(0, 4)) < ,

with positive constants Mι and M2 independent ofy. Thus, Ca φp(E*; B(0, 4))
= 0, which together with Lemma 2.2 (iii) gives the required result.

Now we show radial limit theorems as generalizations of the results in

[H]

By Lemma 4.3 and Theorem 3.1, we have

THEOREM 4.1. Let f be as in Theorem 3.1, and suppose

supjl2
njKj']/ω(2-iy<oo.

Then there exists a set E c <3£(0, 1) such that CΛφp{E; £(0, 2)) = 0 and

limr.o UJ(rξ) = UJ(0) for every ξedB(09 1) - E.

By Lemma 4.3 and Theorem 3.2, we can prove

THEOREM 4.2. Let /, K and K be as in Theorem 3.2, and suppose

2njKj

sup. — —7- < oo.
J K~Jω(2~J)

7/Ίimr_>0/c(r) = oo, then there exists a set E a dB(0, 1) such that Caφp{E; 5(0, 2))
= 0 and

1 UJ(rξ) = 0 for every ξedB(0, 1) - E.

Theorems 4.1 and 4.2 give generalizations of Theorems 1 and 2 in [11].

5. 9-th means of potentials

For q > 0 and a nonnegative Borel function u on Rn, define
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/

( 1 Γ
\ C n r JδB(O,r)

where cn denotes the area of the unit sphere dB(09 1).

Set Ra(x, y) = \χ- y\*-\ 0 < α < n.

LEMMA 5.1. Let β = δq{n-<x) for δ > 0. Then

where

I(t, r) =

t β in case t > 2r,

r~β in case r/2 < t < 2r and n - 1 - β > 0,

r~β(\t-r\/r)n'1~β in case r/2 < t <2r and n - 1 - β < 0,

r~βlog(2r/\t-r\) in case r/2 < t <2r and n - l - β = 0,

r~β in case t < r/2,

and M is a positive constant independent of r, t and y.

PROOF. Let t = \y\. First we note

If ί > 2 r , then Sq(RΛ( , yf, r) < M2Γ
β/q. If ί < r/2, then Sq(Ra(>, yf,r)

< M2>r~βlq. If r/2 < t < 2r, then

Sq(Ra(.9y)δ

9r)<MJr-β\ θn~2{l(t - r)/^2 + θ2}-β'2dθ\ .

Hence we obtain the required inequalities.

For 0 < β < n, we define an outer capacity by setting

Cβ(E) = Cf(E) = inf μ{R% E cz R"9

where the infimum is taken over all nonnegative measures μ on Rn such that

\x — y\β~ndμ(y)> I for every xeE.

For simplicity, let R+ denote the open interval (0, oo).

LEMMA 5.2. Let 0 < β < 1 and μ be a nonnegative measure on R+ such

that μ(R+) < oo. Then there exists a set E c R+ such that
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\imχ-+O,xeR+-Eχβ \X -lim^n ^,-Px
β I \x-y\~βdμ(y) = O

and

where C,.β = C?ϊ.β and Ej = { x e £ ; 2~j <x< 2~j+1}.

PROOF. For x > 0, we write \\x - y\~βdμ(y) = u1(x) + u2(x), where

{y,\χ-y\<x/2}

and

ι ι2(x)= f
J{yeR+ ;\x-y-y\>x/2}

If |x — j ; | > x/2, then xβ\x - y\~β <2β. Hence we can apply Lebesgue's

dominated convergence theorem to obtain

limx^0x
βu2(x) = 0.

For each positive integer j9 we define

Ej = {x; 2~J <x< 2-J+ι, 2'jβu1(x) > aj1},

where {aj} is a sequence of positive integers so chosen that

lim^α^oo

and

Σj°MDj) < °° w i t h DJ = (2~J~ι> 2~j+2)

Then it follows from the dual definition of Cx-β that

C1_β(Ej)<aj2^βμ(Dj).

If we set E = \JjEj9 then we see easily that E has the required properties.

Let Ij = [2- ' , 2'J+ι). Then we have

r ri-J/2

\x - y\~βdx < 2 \x\~βdx = 2(1 - >8)-x(
Jlj JO

If |x - yΓβdμ(y) > 1 on /,., then
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f dx< ί ([\x-y\-l>dμ(y)\dx

"id I* - y\-βdxjdμ(y)

which implies 2βJC1-β{IJ) >Aβl> 0. Thus /,- - £ 7 - ^ 0 for large , so that

Lemma 5.2 gives the following result.

COROLLARY 5.1. If μ and β are as in Lemma 5.2, then

~ y\~βdμ(y) = 0.
JRR +

Now we study the behavior at 0 of spherical means of Riesz potentials.

THEOREM 5.1. Let αp > 1, q > 0 and (n — <xp)/p(n - 1) < \/q. If

limr_0 κ(r) = oo, and if f is a nonnegatiυe measurable function on Rn satisfying

conditions (1.1) and (1.2), then

REMARK 5.1. In case p = 1, Theorem 5.1 implies a result by Gardiner [4].

PROOF OF THEOREM 5.1. For xeRn, set E(x) = B(x, \x\/2). First we

consider the case q > p > 1. Take δ such that

n — ocp „ n — 1
0 < δ < 1 and — < δ <

p(n - α) q(n - α)

Since (α — n)(l — <5) + n/p' > 0, by the computations as in the proof of Lemma

2.1 and using Holder's inequality, we have

χ, yΏ»Φ,(f{y))dyX" + f |χ -
/ J £(x)

) /

where 0 < ε < α. Using Minkowski's inequality and (φ4), we obtain
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x ί (Sq(Rx(-,y)s,r)rΦp(f(y))ω(\y\)dy
J B(0,2r)

Here we note

a ir \l/p'

[tn~Λpη{t)yp>lprιdt\ >
Since δq <(n- l)/(n — α), by Lemma 5.1, we find

for yeB(0, 2r), so that

(5.2) Sq(U3, rγ < M5lκ(r)γί Φp(f(y))ω(\y\)dy + M2r^)p.
JB(0,2r)

This is true in case p = 1, too. Since Sq(u, r) is nondecreasing with respect

to q, (5.2) also holds for q smaller than p. Thus the required result holds

for U3 instead of Uaf. The same fact is also valid for U1 and L/2, in view

of Corollaries 2.1 and 2.2, and hence Theorem 5.1 is established.

THEOREM 5.2. Let q>0 and \jp - α/(w - 1) < l/q. If f is a nonnegatiυe

measurable function on Rn as in Theorem 5.1, then

l iminf^o^r)- 1 ^^/, r) = 0.

PROOF. First we consider the case q> p > 1. Take δ such that

n - 1 j n ~ αP ' * n ~ 1 '
< δ < 1 and < δ < hq(n-(x) p(n-oc) q(n - α) p(w - α)

Then, as in the previous proof, we have

Sq(U39 r)p < M1[/a''n)il-δ)+Λ/ptγiφ(r-1)ω(r)']'1

x f (Sq(Ra( , y)δ, r)YΦp(f(y))ω(\y\)dy + M ^ ^
J
f (

Jβ(0,2r)

Set β= -pln-1-δq(n-a)]/q. Then 0 < β < 1. By Lemma 5.1, we

obtain

Sq(U3, rγ < M2[κ(r)Y ί [ ^ L z ^

If p = 1, g > 1 and (n — l)/(n — a) < q <(n — ί)/(n — oc — 1), then the above

inequality also holds with β = n — α — (n — l)/q. Now, applying Corollary

5.1, we see that the required result holds for U3 instead of L/α/, if q > p. Thus,
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using the monotonicity of Sq(u, r) with respect to q, Corollaries 2.1 and 2.2,

we end the proof.

6. Global fine limits

Let D denote the half space {x = (x', x^eR"'1 x R1, xn> 0}. In this

section we study the global fine limit at the boundary dD of the Riesz potential

Uaf9 where / is a nonnegative measurable function on Rn satisfying condition

(1.1) and

(6.1) ΦP(f(y))w(\yn\)dy < oo for any bounded open set G c i C ;
JG

recall that ω is a positive and monotone function on the interval (0, oo)

satisfying the (A2) condition (see (ωl)). As an application, we shall study the

fine boundary limits of Beppo-Levi-Deny functions u on D satisfying (1.4), and

give a generalization of [17, Theorem 1] (see Section 10).

In what follows, let p > 1.

Our aim in this section is to establish

THEOREM 6.1. Assume that

{ωl) rβ~1/pω{r)~1/p is nondecreasίng on (0, oo) for some β < 1.

Let f be a nonnegative measurable function on Rn satisfying (1.1) and (6.1). If

lim^ofcjr) = oo,

then there exists a set E c D such that

for any bounded open set D' c D and

Σ ; , , K-V2^)C..*,(E,nB(0, AT); Dj(\B(0, 2N)) < oo

for any N > 0, where K = K* in Lemma 2.3 with χ = κl9 Ej = {x = (x', xn)e

E 2-j <xn< 2~j+1} and Dj = {x = (χ\ xn); 2 " ^ 1 < xn < 2~j+2}.

REMARK 6.1. In case ω(r) = rβ, {ωl) holds if and only if β < p - 1. In

fact, if β<p-l then take βxel(l + β)lp, 1) and note that rβl-llpω{r)-1/p is

nondecreasing on (0, oo).

Before giving a proof of Theorem 6.1, we prepare the following result

similar to Lemma 2.1.

L E M M A 6 .1 . Let yί9

:y2^0> δ>0 and assume that rβ~iJpω(r)~1/p is
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nondecreasing on (0, oo) for some β < 1 + y2- Let f be a nonnegative

measurable function on Rn. If x = (x\ xn)eD and 0 < s < xn/2 < r/4, then

| x — y \ a n \ x
JDnB(x,r)-B(x,s)

•(f
rf lχ-

J DnB(x,r)-B(x,s)

" ( ί ••

<,MF(r)ϊ( Γ

Q Xr, \IIP'

J
M

where x = (x1, - xn) and F(r) = 1 1 Φp(f(y))ω(yn)dy Ϋ".

PROOF. AS in the proof of Lemma 2.1, we have by Holder's inequality

2f(y)dyI \χ-yΓπ\χ-y\-yifn2

J DnB(x,r)-B(x,s)

<F(r)j+ f ix-
JDnB(x,r)-B(x,s)

where

J - ( ί
\jDnB(x,r)-B(x,s)s)

In order to evaluate J, we set

;|x - yΓn\x - y\-
Ej

where

Ex = {yeB(x, r) - B(x, s);yn> x π /2},

&2 = {^eDπB(x, r) — £(x, s); j M < xn/2}.

Since yn < xn + |x — y|, we see from condition (ω2) that

^ " 1 / p [ ω ( ^ π ) ] " 1 / p < (xn + |x - y | / " 1 / p [ω(x M + |x -

for yeZ). Set ί = |x — y\ and |xπ — yn\ = ί cos 0, and note

3yM > |xπ - yn\ + xw > (ί + xjcos <9 for any yeEx.
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Since p'(y2 - β + 1/p) > - 1, we see that

r*/2

Joo

If γ2 — β + 1/p < 0, then, applying polar coordinates about x, we have

J1 < M

Q
[tn-«pφ{Γι)YP'lpt-ιdt

Similarly, if y2 — β + 1/p > 0, then, noting yn < xn 4- |x — y\, we derive the

same estimate of J x as above. Next, since yn<\z — y\ if yeE2, where

z = (x',0), by the condition on ω again, we have

Lωωr11" < y;β+llp\z - y\"~ 1

for y e £ 2 - Consequently, by using polar coordinates about z, we obtain

J2 <
DnB(z,xn/2)

G l/P'
/ 1 1 /

+ M 4

Jxn/2

Λlp'£ M ' ( Γ .
the last inequality follows from the (zf2) conditions on φ and ω (see

(5.1)). Now our lemma is proved.

REMARK 6.2. If α — δ - y1 + y2 > 0, then

J |x - yΓn-δ\x - yΠ'fSdy < Mr*-*'^*.

REMARK 6.3. The above proof shows that if ω is as in Lemma 6.1, then
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ί\x - ι

B(x,r)-B(x,s)

iXn

Vl/P'

+ MxΓ[ω(xπ)]-1 /^J

In view of Remark 6.3, we obtain

LEMMA 6.2. Let 0 < δ < α and assume that ω satisfies (ω2). Let f be a
nonnegative measurable function on Rn. If x = (xf, xn)eD and 0 < s <2~1xn <
4~1r, then

ί \χ-yΓnf(y)dy
JB(x,r)-B(xts)

Φp(f(y))ω(\yJ)dyYΊ( Γ lf-*>φ(

[ ί " " β J > φ ( r 1 ) ] - | > ' / l > ί - 1 Λ ) > + Mr*~δ.

PROOF OF THEOREM 6.1. For x = (x\ xn)eD, we write Uaf(x) = u^
M2(x), where

-ί Rn-B(x,xn/2)

B(x,xn/2)

For a > 1 and a bounded open set /)' in Z), let Z)'(α) = {x = (x'} xje/)'; 0 <
x π < α } . For xeD'(a), write

ί
Jβ(x,2α)-B(x,jcM/

|χ - yΓnf(y)dy + ί |χ -
-B(x,2α) J

= ι/n(x) +w12(x).

By condition (1.1), we see that uxι is bounded on /^(tf), so that

lίπi^o.xeD'CKlWΓ^llM = 0.

For w12, we obtain by Lemma 6.2,
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\ i / p

u12(x)<Mίκ1(xn)n ΦP(f(y))ω(\yn\)dy)

for any xeD', where D" = \JxeD>B(x, 2a). Hence it follows that [κί(xn)']~1uί2{x)
tends to zero as x n -*0, xeDr. To complete the proof, take a sequence {a3)
of positive numbers such that

f
JB

P(f(y))co(yn)dy< oo,

where £,- = {x = (x\ xn)e£>nl?(0, 2)); 0 < xn < α j . Further take a sequence
{b,̂ } of positive numbers such that

linv^fc,., = oc

and

> ί
1*

< 00,

where z/jV = BjOD, when 2"^ < fl7 /2; cf. the proof of Lemma 2.3. As in the
proof of Lemma 2.3, we consider the sets

Ehi = {xeDnB(0J)ι 2~e < xn < 2 " ' + 1 , u2(x) > bj) K,{xn)}

for 7 and i such that 2~€ <aJ2\ we set £ ^ = 0 for other (j, 0 If
0, α), then, since £(x, xrt/2) cz J^nB(0,,2α), we find

, α); Z),nB(O, 2α))

f Φ,{bjjf(y))ω(yJdy.

Define £ = ( J Λ . / We see that £^5(0, a) a [j{j.2-^aj/2}E^(]B(0, a), so
that E has all the required properties. Hence the proof of Theorem 6.1 is
completed.

REMARK 6.4. If /q is bounded, then we can take K = 1 in Theorem
6.1. Hence, in view of the proof of Theorem 6.1, Uaf(x) tends to Uaf(ξ) as
x-+ξ9 xeD - £, for any ξedD, where

7 p , 0 , 2N)) < oo

for any N > 0.
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7. J^-limits

Let φ be a positive nondecreasing continuous function on the interval

(0,.oo) satisfying the (A2) condition and the following:

(\j/\) r~xφ(r) is nondecreasing on the interval (0, oo).

For a > 0 and ξ e 3D, we set

Tφ(ξ, a) = {x = (x\ x j e * " - 1 x R1; ψ(\x - ξ\) < axn}.

We say that a function u has a Tψ-limit / at ξedD if

for any α > 0 ; i f φ(r) = ry, then we say "7^-limit" instead of 7^-limit. We

here discuss the existence of Tφ -limits of Riesz potentials Uaf for functions /

satisfying condition (6.1), when φ satisfies a condition similar to (1.3).

We consider the quantity

ΦP(g{y))ω{\yH\)dyP
G

for a set E and an open set G, where the infimum is taken over all nonnegative

measurable functions g on G such that |x — y\Λ~ng{y)dy > 1 for every

xeE. For simplicity, we write

if C β ( φ p t ω ( £ n G ; G) = 0 for any bounded open set G cz Rn. In case ω(r) = rβ,

we write Caφptβ for C α > φ p > ω ; with this notation, remark C β t Φ p ι 0 = C Λ ,Φ P

Let ft be a positive nondecreasing function on (0, oo) satisfying the (A2)

condition. We denote by Hh the Hausdorff measure with the measure

function h. Set

and

Ef = \ξedD; ί\ξ - yΓnf(y)dy = oo j

>,„ = iξedD; lim supr.o [Λ(r)]"1 f Φ,(f(y))ω{\yH\)dy > ol

for a nonnegative measurable function / o n

By the definition of C α φ ω , we have
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LEMMA 7.1. If f is a nonnegative measurable function on Rn satisfying

(1.1) and (6.1), then

C*,Φp,ω(Ef) = 0.

Applying a covering lemma ([25, Lemma 1.6, Chapter 1]), we prove

LEMMA 7.2. Let h be a positive nondecreasing function on (0, oo) satisfying

the (A2) condition. Let g be a nonnegative function in Lι(Rn) and set

F = \ξGΘD lim supr_0 [Λ(r)]"' ί g(y)dy>θ\.

Then Hh(F) = 0.

PROOF. For ε > 0, consider the set

F(ε) = \ξedD; lim supΓ^0 [Λ(r)] " * | giy) dy>ε\.

Let ^ > 0. By definition, for each ξeF(ε), there exists a number r(ξ) such

that 0 < r(ξ) < δ and

f g(y)dy>εh(r(ξ)).
<JB(ξ,r(ξ))

By using the covering lemma mentioned above, we can find a disjoint family

{B{ξj9rj)} of balls such that ξjeF(ε)9 rj = r{ξj) and {B{ξj9 Srj)} covers

F(ε). Then note

'••-ί g(y)dy,
D(δ)

where Z)(5) = [JξedDB(ξ, ε). Letting 5 ->0, we find

Hh(F(ε)) = 0,

which implies Hh(F) = 0.

COROLLARY 7.1. If f is a nonnegative measurable function on Rn satisfying

(1.1) and (6.1), then

Hh(Ffth) = 0
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for any measure function h.

REMARK 7.1. If h(0) > 0, then Ffjh is empty.

LEMMA 7.3. Let ω be a monotone function on (0, oo) satisfying (col), (α>2)

and

(ω3) rβω(r) is nondecreasing on(0, oo) for some β< 1.

Then, for any a > 0, there exists M > 1 swc/i ί/iαί

M-ι[_κUa{r)Yp < Cα,φ p,ω(£(0, r); B(0, a)) < M\κι%a(r)Yp

whenever 0 < r < α/2,

PROOF. If suffices to prove the required inequality for a = 1, by

considering a change of variables: x -» ax in this case, κUa = /q. Consider

the function

p 7 p if 3 ^ ( 0 , 1 ) - B ( 0 , r ) ,

0 otherwise.

If xeβ(0,>), then | x - y i < 2 | > / | for ^eB(0, 1) - £(0, r), so that

- yΓ"fr(y)dy > 2*-" ί \yΓHl\yΓ*pη(\y\)rpΊp'dy
Jβ(O,l)-B(O,r)

Hence it follows that

, r,; 8(0, 1» S

By (ω2), there exists ft < 1 such that ω( | )> |Γ 1 / p < M2\y\'Pι + llp- for

0, 1), so that

^ M \yΓβ

whenever yeB(0, 1), for β = α + (n - <xp)p'/p + {βγ - l/p)p''. Thus we find

Φp
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On the other hand, by (ω3), rβiω{r) is nondecreasing on (0, oo) for some
β2 < l Consequently we establish

C.,.F>ω(β(O,r);B(O,l))

l\yΓ"'η(\y\)rp'\yΓ'"'<p(\yΓ1)a>(\yn\)dy
B(0,l)-B(0,r)

' I ί\yΓ"pη(\y\)Γp'\y\~"'η(\y\)\y\β2\ynΓβ2dy
J B(0,l)~B(0,r)

Conversely, take a nonnegative measurable function g on R" such that
g = 0 outside 2?(0, 1) and Uxg > 1 on .8(0, r). Then we have

f dx<ί (\\χ- yΓng(y)dy)dx

\χ-yΓ"dx)g(y)dy
fl(0,r) /

Let ε > 0 and 0 < δ < α. As in the proofs of Lemmas 2.1 and 6.1, Holder's
inequality gives

= ί (r + wr-ffO')^ + f
J{j>;ff(y)>ε|>>|-*} J{y,0<giy)<ε\

\y\Γng(y)dy

f (»•

β(O,l)

x ( \φp(9(y))o>(\yn\ )dy)1"' + e ί (r +

By (<p3) and

for any t > 0. By condition (ω2),



106 Yoshihiro MIZUTA

for yeB(09 r), where βί < 1. Hence,

(ί
1/P'

B(0,r)

'( |
\JB B(0,r)

< M(ε)M9tr
n-*pη(r)y1/p < M(ε)Mloκί(r)

by (5.1). Similarly,

α )
Γ \1/p/
Γ

tpfia-n)

Jβ(0,l)-B(0,r)

Q lQ 1/P'

Thus we derive

(V + \y\f'ngiy)dy < M(ε)Mί2κι(r)( \ Φp(g (y))ω(\yn\)dy ) + M12ε,

so that

> j M 0 , r); fl(0, l ) ) ] 1 / p + M1 3ε.

If M 1 3 ε = 1/2, then we establish

0, r); B(0, 1)).

By using a covering lemma (cf. [25, Lemma 1.6, Chapter 1]), we have

COROLLARY 7.2. Let ω be as in Lemma 7.3. If G and G' are bounded

open sets in Rn such that G' c= G, then there exists M > 0, depending on the

distance between dGf and dG, such that

Ca,φp,ω(E'9G)<M Hh(E)

for any set E c dDf)G', where h(r) = [κγ(r)Yp.

In view of Theorem 12.2 given later, we have

COROLLARY 7.3. Let -l<β<p-l, and assume CΛfφpfβ(E) = 0. If

E a dD, then E has Hausdorjf dimension at most n — ccp + β; if E c D, then E

has Hausdorff dimension at most n — cup.
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COROLLARY 7.4. Let ω be as in Lemma 7.3. Then, for xoedD,

Ca,Φp,ω{{x0}) = 0 if and only if κx(0) = oo.

For xoeD,

Cα,Φp({xo}) = 0 if and only if [\tn-*pφ(Γ1)y1/ip-1)Γιdt=cc.
Jo

THEOREM 7.1. Assume that (ω2) holds and φ*(l) < oo, that is,

(7.1)
[r π " β p φ(r" 1 )]" l > ' / l > r" 1 dr<oo.

Joo

Let φ be as above, and set

τ(r) = min{τ1(r), τ2(r)},

h(r) = τ{ψ(r))

for 0 < r < 1. Let f be a nonnegatiυe measurable function on Rn satisfying

(1.1) and (6.1). Then there exist El9 E2 a 3D such that

C α , Φ p , ω ( £ i ) = 0, Hh(E2) = 0

and Uaf(x) has a finite TψΊimit Uaf{ξ) at ξedD - ( £ x u £ 2 ) . If in addition

τ(0) > 0, then Uaf{x) has a limit Uaf(ξ) at any ξedD', in this case, Eί[)E2= 0.

PROOF. For xeD, we write Uaf{x) = u^x) + u2(x), where

\χ-yΓnf(y)dy= ί
JR)R»-B(ξ,2\x-ξ\)

and

JB(ξ,2\x-ξ
u2(x)= I \χ-yΓnf(y)dy.

-ξ\)

Since yeRn - B(ξ, 2\ξ-x\) implies \ξ - y\ < 2\x - y\, we can apply Lebesgue's

dominated convergence theorem to obtain

W l ( x ) — > υ j { ξ ) as x — > ξ .

If ξEdD-Ef, then Uf(ξ) < oo. By Lemma 7.1, C β f φ j i i ω ( £ / ) = 0. O n the

other hand, in view of Lemma 6.2 with r = 3|x - £|, s = 0 and / replaced by

the restriction of / to the ball B(ξ, 2\x - ξ\), we can establish
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W ] " 1 f
JB(ξ,2\x-ξ

u2{x) < MJ[TW]"1 f Φp(f(y))ω(\yn\)dy) + Mx\x- ξΓ\

where 0<<5<α. If ξedD-Ffh9 then, noting that [τ{xn)']~1£Af(a)[h{\x-ξ\)']~1

for xeTψ(ξ, a), we see that u2(x) tends to zero as x->ξ along Tφ(ξ, a). In

case τ(0) > 0, τ ίx j " 1 is bounded for 0 < xn < 1, so that w2(x) tends to zero

as x->£, XGD. Since Hh{Ffh) = 0 by Corollary 7.1, the proof of Theorem

7.1 is completed.

By using Theorem 7.1 and Corollary 7.2, we have

THEOREM 7.2. Assume that (ω2) and (7.1) hold. Let f be a nonnegatiυe

measurable function on Rn satisfying (1.1) and (6.1). If τx{r) < Mτ2(r) for

0 < r < 1, then there exists a set E cz dD such that Caφpω(E) = 0 and UΛf(x)

has a nontangential limit at any ξedD — E; that is, Uaf(x) has a finite Tγ-limit

at any ξedD — E.

COROLLARY 7.5. Let 0 < ocp - n < β < p - 1. Let f be a nonnegatiυe

measurable function on Rn satisfying (1.1) and

(7.2) Φp(\f(y)\)\yn\
βdy < oo for any bounded open set G cz Rn.

Then there exists a set E c dD such that CatΦ β(E) = 0 and t/α/(x) has a

nontangential limit at any ξ e dD — E.

In fact, in case oφ > n, <p*(l) < oo and, moreover, we find

τ2(r)~r"-ap+βφ(r-1) as r >0,

so that τi(r) < M1τ2(r) for 0 < r < 1. Now Corollary 7.5 is a direct

consequence of Theorem 7.2.

THEOREM 7.3. Assume that (7.1) is satisfied, and let - 1 < β < p — 1. Let

f be a nonnegative measurable function on Rn satisfying (1.1) and (7.2).

( i ) If n — ap + β > 0, ίλe« /or γ > 1, ίΛere ex/ste a .se/ £ v cz <9D such that

Hh(Ey) = 0, where h(r) = τ2(ry) with

L/α/ λ&s a finite Ty-limit at any ξedD — Eγ.

(ii) If β = dp — n > 0, fAe/i /Aere exists a set E cz dD swcA ίAα/ C^Φpβ{E)

= 0 tf«d L/α/ Aαs1 α yz«//̂  Ty4imit at any ξedD — E for any γ > 1.

(iii) If β - (xp - n = 0 or n — ocp + β < 0, /Ae« l/ α / Aα.y β ^/n7β ///wi7. at
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any ξedD.

PROOF. First note by (7.1) that ocp > n. Hence, if n - up + β > 0, then
β > 0 and

for 0 < r < 1, according to the notation in Theorem 7.1. Now we apply
Theorem 7.1, together with Corollary 7.3, in order to prove (i).

If β = cap - n > 0, then

so that τ2(0) > 0. Further, in this case, τx(ry) ~ [κ1(r)]~~p for any γ>\.
Hence, if we set hγ(r) = τ(rγ) with τ in Theorem 7.1, then hy(r) ~ [ κ 1 ( r ) ] " p for
any y > 1. It follows from Corollary 7.2 that Caφp,β(Ffthy) = 0. Now (ii) is
a consequence of Theorem 7.1.

If β < 0, then

on account of (7.1). Further, in this case, τ2(0) > 0. If 0 < β < up - n, then
/c^O) < oo, so that τJO) > 0, and further τ2(0) > 0, as seen above. In the case
of (iii), it follows that τ(0) > 0. Thus (iii) also follows from Theorem 7.1.

REMARK 7.2. Theorem 7.2, together with Theorem 7.3, (ii), is best possible
as to the size of the exceptional sets; that is, if E c 3D and C α Φ p ω ( £ ) = 0,
then we can find a nonnegative measurable function / on Rn such that
UJΨ oo, Uaf= oo on E and

ίφp(fiy))<*>(\yn\)dy<*>

(cf. the proof of Lemma 2.2, (iv)). Clearly, Uaf does not have a finite 7 ,̂-limit
at any ξeE, by the lower semicontinuity of Uaf.

REMARK 7.3. In Theorem 7.2, if (7.1) does not hold, then we can not
generally expect the existence of limits of u along Tψ(ξ9 a).

In fact, by Corollary 7.4, CaΦp(F) = 0 for any countable set F c D.
Hence we can find a nonnegative measurable function f on D such that
UJΦ oo, Uaf= oo on F and

(7.3) I Φp{f{y))ω{yn)dy<cc

(see Lemma 2.2, (iv)). If in addition F is everywhere dense in D, then we
see easily that Uaf does not have a finite Γ^-limit at any boundary point of D.
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8. Curvilinear limits

Let φ be a positive nondecreasing continuous function on [0, oo) satisfying

conditions (A2) and (i/Ί), as before. Take continuous functions φj9 j = 2, 3,...,

n — 1, on [0, oo) such that φj(O) = 0 and

\ΨM) - Φj(s)\ <M\t-s\ for any s, t > 0.

For convenience, let ψ^ή^r, ψn(r) = ψ(r) and Ψ(r) = (ψ1(r)9...,ψn{r)). For

ξedD, we define

ξ(r) = ξ+Ψ(r) and LΨ(ξ) = {{(r); 0 < r < 1}.

THEOREM 8.1. Lei ω be a positive nondecreasing function on (0, oo)

satisfying both (ωl) and (α>2). Assume further that there exists a positive

nondecreasing function ω* on (0, oo) satisfying the following conditions:

(i) ω*(2r) < Mω*(r) on (0, oo);

(ii) ω*(s)lfps~1 ds < Mω(r)ί/P for any r > 0,
Jo

where M is a positive constant. Let τ1 be as in Theorem 7.1,

and

/or 0 < r < 1. Le/ f be a nonnegative measurable function on Rn satisfying

conditions (1.1) and (6.1). 7%e« /Λere ex^r two sets Ex and E2 such that

CΛ,Φp,JEi) = 0, Hh*(E2) = 0

limΓ.o UJ{ξ(r)) = UJ(ξ) for any ξedD - (E1[)E2).

PROOF. Letting α = 1 0 " 1 and ξedD, we write UJ(x) = ux(x) + u2(x)

H- M3(x), where

-ί
-L

R»-B{ζ,2\x-ξ\)

B(ξ,2\x-ξ\)-B(x,axn)

If <ϊ;edD - £ / 5 then, as in the proof of Theorem 7.1, u^x) has the finite limit

U*f(ξ) at ξ. Further Lemma 6.2 yields
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P + Mx\x - ξΓδ

B(ξ,2\x-ξ\)

for xeDf)B(ξ, 1), where 0 < δ < α. If we set

£' = iξGdD limsxxp^olτ^φirm'1 ί ΦP(f(y))ω(\yH\)dy > θl,
I J J

1 ί
then Lemma 7.2 implies fίΛ*(£') = 0. Moreover, if b > 0 and x e 7^({, b), then

we have

-l/p

for some positive constant M(b). Hence we see that u2 has 7^-limit zero

when ξedD - E'. If x = ξ ( r ) e L ^ ) , r > 0, then

so that

^( |x - ξ\) < Φ(M2r) < M3φ(r) = M 3 x π .

Consequently, L^(ί) c Tψ(ξ, M 3 ), and it follows that u2(x) tends to zero as

x -• ξ along the curve LΨ(ξ) when ξeδD - Ef. Thus it suffices to prove that

M3(x) tends to zero as x -» ξ along the curve LΨ(ξ), for any ξ e ^ D except those

in a set E" such that Hh*{E") = 0. For this purpose, we may assume that / = 0

outside D(]B(09 N) for some ΛΓ > 1, so that / satisfies (7.3). Set

Xj = {xeD; 2~j <xn< 2~j+\ u3(x) > α/1},

where {α,} is a sequence of positive numbers such that

(8.1) l im^,, cij = oo, l im^ „ " x α, = 0

and

f Φp(f(y))ω(yn)dy< oo
P

with D; = { X G D ; 2" 7 ' " 1 < xn < 2 " j + 2 } . For a set I c Z), we denote by X

the set of all ξedD such that ξ(r)eX for some r with 0 < r < 1. We consider

the set

Then it is easy to see that u3(ξ(r)) tends to zero as r->0 whenever

ξedD - E". What remains is to prove that Hh*(E") = 0. If xeXj9 then
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aj'< I \χ-yΓnf(y)dy
J B(x,axn)

= (n - α) Γ V i ί x , r ) ^ - " " 1 rfr + (ax/" "F^x, ax^
Jo

where Fx(x, r)= f{y)dy. By Lemma 2.1, we have
JB(x,r)

(8.2) Fx(x, r) < M4lr
n~ε + r ^ i r " 1 ) } - 1 ' ' ^ * , r)}1/p],

where 0 < ε < m i n { l , α} and Fφp(x, r) = Φp(fiy))dy. Let X6^Γ7 and

assume that

(8.3) Fφ.p(x9 r)

for any r with 0 < r < axn. Then it follows from (8.2) that

/ Γaxn

1 <M4(n-α)ία7. r*-'"1

fflX"
+ M1/P{ω(xπ)}"1/P .{τ

Γ1Ί'{τuaxJ}lip)

Since τf<r) < ω*(r)\rn~<xpφ{r~1)~], in view of conditions (i) and (ii) for ω*, we
see that

/ ~ Cax» \
1 <M5taj(axn)

a-ε + M1/p{ω(xn)}-1/p {ω*{r)γipr~ι dr\
V Jo /

+ M^Mllp{ω(axn)}-1/p{ω*(axn)}1/p < M6aj2-Jia'e) + M6M
1/P,

where M6 does not depend on j nor M. In view of (8.1), there is j 0 such
that M6aj2~jia~ε) < 2" 1 for any >; 0 . Thus, if xeXj9 j >jθ9 and (8.3) holds
for all re(0, αxj, then M must satisfy

M 6 M 1 / P > 2 " 1 .

Now, if we take M so small that M6M
1/P < 2" 1 , then, for any xeXp j >j0,

we can find r(x), 0 < r(x) < αxπ, such that

FΦp(x, r(x))

Since {5(x, r(x)); X G I J } covers Xj, there exists a mutually disjoint (finite or)
countable family {B(Xj^9rJ%k)}9 rJtk = r{xjtk)9 such that xhkεX} for all k and
{£(xM, 5rM)} covers• Xj. Then
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(8.4) Σ**ίM

Now we are ready to show

MΊa] f

HAE") = 0.

Let ^ t k be the point on dD such that xjk = ξjtk(sjΛ) for some s M > 0. Since

ι^(r) is strictly increasing on account of condition (i/Ί), for any r > 0 we can

find only one r* satisfying ψ(r*) — r. If ξedD, ζedD, x = £(ί), j ; = ζ(s) and

}^B(x, r) with r < axn < 1, then condition (φl) gives

φ(\s - t\)<\φ(s) -φ(t)\ = \xn - y n \ < \ x - y \ < r = φ(r%

so that \s-t\<r*. Also, if 0 < r < 1, then r* = ̂ - 1 ( r ) < ^ ( l ) , . which

together with (φ\) yields

ψ{r*) 1 r*
-^—~ < or r < .

φχ{\) φ\\)
Hence

lί - C| < \x - y\ + Σ"="i IW5) " ΦM\ < r + Is - ί| + (n - 2)M|s ~ ί| < M 8 r* .

This implies \Jj±ΛΌk{B(ξj,k9 M8(5r j>k)*)}) ZD £ " for any / > ; 0 , so that

by (8.4), where ^? = sup^^ (sup k M 8 (5r M )*}. Here note

φ(δf) =

so that l im < f ^ o o ^ = 0. Thus it follows that Hh*(E") = 0, and the proof of

Theorem 8.1 is completed.

COROLLARY 8.1. Let ocp - n < β < p — 1. Let φ(r) = ry for y > \; in this

case, Ψ{r) = (r, φ2(ή^"^Φn-i(r)^ f7)- Further, let f be as in Theorem 7.3.

( i ) If β > 0, n — ocp + β > 0 tfwrf y > 1, //ze« //zere exists a set E a dD

such that Hh(E) = 0 with h(r) = iΏir^^it
yin'ap+β)φ(Γ1) and UJ has

a finite limit along the curve LΨ(ξ), for any ξedD — E.

(ii) If β > 0, n — ap + β > 0 and y = 1, then there exists a set E a dD

such that CΛyΦ jβ(E) = 0 and Uaf has a finite limit along the curve

LΨ(ξ), for any ξedD - E.
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(iii) If β < 0 and y > 1, then there exists a set E a dD such that

Hy{n-ap+δ)(E) = 0 for any δ > 0, that is, E has Hausdorff dimension

at most γ(n — cup), and Uaf has a finite limit along the curve Lψ(ξ),

for any ξedD — E.

PROOF. If β > 0, then we can take

ω *(r) = ω{r) = rV and τj(r) = i n f r ί ^ 1 ί " - β ' + M ί ~ 1 )

in Theorem 8.1 If in addition n — αp + β > 0, then h* = h. In case y > 1,

CafΦp,β(F) = 0 implies Hh*(F) = 0 by Corollary 7.3. Thus (i) follows from

Theorem 8.1. In case y = 1, τ^r) < Mτf (r) by (5.1) and A*(r) - [/c1(r)]-p. In

view of Corollary 7.2, HΛ(F) = 0 implies Ca,φptβ(F) = 0. Hence (ii) also follows

from Theorem 8.1.

If β < 0, then, for δ > 0, consider

ω*(r) = ωj(r) = rδ.

Since n - ccp + δ > n — αp + β > 0, we can apply (i) with β = δ to establish (iii).

Here we give radial limit results as generalizations of [12, Theorems 3

and 4].

THEOREM 8.2. Let-l<β<p-l and f be as in Theorem 7.3. Then

there exists a set E c dD satisfying

(i) C.,.,(£) = 0;

(ii) to eαcΛ ξedD — E9 there corresponds a set Eξ such that CΛφp{Eξ) — 0

and

limr^o I/./K + r 0 = 1/./K) / ^ ^ ζeDf]dB(0, 1) - £€.

This fact can be proved by [14, Theorem 2'] and the contractive property
of the capacity C α φ p , which is derived in the same manner as that of Cap

(see [11, Lemma 5]). More precisely, to complete the proof, apply the proofs

of [12, Theorem 4] and [14, Theorem 4].

THEOREM 8.3. Let ω be a nonnegative nondecreasing function on [0, oo)

satisfying (ωl) and (α>2). Let ζeD be fixed. If f is a nonnegative measurable

function on Rn satisfying (1.1) and (6.1), then there exists a set E a dD such

that Q φ p , ω ( £ ) = 0 and

limfl0 UJ(ξ + ίθ = UJ(ξ) at any ξedD-E.

PROOF. Define
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\χ-yΓnf(y)dy,
J Rn-B(x,

u2{x) =

Xn/2)

\χ-yΓnf(y)dy
n/2)

for xeD. If x = ξ + tζ9 ξedD, ί > 0 and yeRn - £(x, xn/2)9 then

so that

for every ξedD. In fact, if Uaf(ξ) = oo, then it follows readily from Fatou's
lemma; if Uaf(ξ)<oo, then apply Lebesgue's dominated convergence
theorem. As in the proof of Theorem 6.1, we can find a set E c D such that

and

Σ7 = 1 ω(2-;)Cα,φp(£;nΛ(0); ̂ 0^(2^)) < oo

for any a > 0, where Λ(α) = {x = (xl9...9xj; \xj\ < a for any ;}. Define

Ef = {(*', 0); (x', ί)e£j for some t > 0},

£7. = {(χ'5 0); (xr, 0) + tζeEj for some ί > 0}.

Letting D] = {(x', xπ); |xj < 2" j + 2 }, we have by the contractive property of
Ca,Φp (cf. [10, Lemma 1]),

CΛtΦp(Ef.0A(a); D'jf)A(2a)) < CΛtΦp(Ejf]A{a); Dfj()A(2a))9

so that

Ca,φp,ω(Efί)A(a); A(2a)) < Ca,φp,ω(EfnA{a); D'jf)A(2a))

< ω(2-j+2)Ca,φp(Ef0A(a); Dt

J(]A{2a))

< M1ω(2- J)Cα > φ p(£ in^(α); Dj(\A(2a)).

On the other hand,

CatΦp9a(Ej0A(a)9 A(2a)) < M2Ca,φp,ω(EfnA(a); A(2a))

(cf. [11, Lemma 3]). Hence if we set E = Π?«i U£*£j> t h e n CΛtΦptJE) = 0
and

limf^0u2{ξ + tζ) = 0 whenever ξedD - E.
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Thus Theorem 8.3 is obtained.

REMARK 8.1. In case φ == 1, these results are considered in Wu [27] and

Mizuta [14].

Finally we study the best-possibility of our theorems, as far as the

exceptional sets are concerned.

THEOREM 8.4. Let n = 2. Let ω and φ be positive nondecreasing

continuous functions on (0, oo) satisfying the (Δ2) condition, together with the

following:

(i) φ satisfies (φl).

(ii) ω satisfies both (ω2) and (ω3).

Suppose there exists c > 2φ(l) such that 2κι(cr) < K^φir)) for 0 < r < 1, and

set h{r) = [κ1(φ(r))']~p. If E a δD and Hh(E) = 0, then there exists a

nonnegative measurable function f on D such that Uafφ oo, Φp{f{y))^{yi)dy

< oo and

lim supΓ_0 Uaf(ξ + (r, φ(r))) = oo for any ξeE.

PROOF. For each positive integer i, we can find a family {£*,,•} of discs

such that Bifj = B(xitj, ritj)9 Σjh(ritJ) < 2" 1 and E a \JjBtj. Here we may

a s s u m e fur ther t h a t XijβdD a n d r i t j < l . L e t z{/h( — x{j + {tritj, 0) a n d

Cijs^Biztj^criJ-Biztj^l-^irJ)) for ^ = 0,1. For simplicity, set

η(r) = r 2 " e > ( r " > ( r ) , and define

/p\y - z^Πηdy - zw\)YpΊpfuAy) = iih(rtj)Y/p\y - z^Πηdy - zw\)

for yeDftCij^; and define fij^iy) — 0 otherwise. Consider the function

f = supij^fij^. Since, by (ω2), rβi~1/pω(r)~1/p is nondecreasing on (0, oo)

for some βx < 1, we note

for β > α + (2 - ocp)p'/p + (/?! - l/p)p'. Hence we have

ΦP(ftj.<{y))ω(y2)dyί
J

\y - z,.j,,\-2lη(\y - zu,,
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j'\h(rι.j)Y \ lη{r)YpΊpr-ί

J2-'φ[nj)

<M5Fh(riJ),

so that

ί Φp{f(y))ω(y2)dy < £,,., ί 0p(fij
JD JD

Next we see that for xeDf]B{ziJt^ ψ{ritJ))9

[\x ~ yΓ2f(y)dy > M6i\h{r^γ'ip ί \y - zU

J JcttJt,

< oo.

Let ξeE. For each i, there is /. such that ξeBi%j. Further observe that the

curve LΨ(ξ) intersects at least one of two half balls Dr\B(zitj^9\l/(ritJ)),

ί = 0, 1. Consequently,

lim supr^o UΛf(ξ + (r, ψ(r))) > lim sup^,, M8i = oo.

REMARK 8.2. Let ω(r) = rβ. If - 1 < β < p - 1, then ω satisfies both

(ω2) and (ω3). If in addition 2 — αp + /? > 0, then one can take c so large that

IK^CY) < K^φir)) for any 0 < r < 1

in this case, h(r) ~ r2~ap+βφ(r~1) as r-+0, in Theorem 8.4. Moreover, if α

is a positive integer m, then, as will be shown later (see Lemma 12.1),

ί Φp{\VmΌmf{x)\)\xn\
βdx < oo for any bounded open set G c Rn.P

G

9. Beppo-Levi-Deny functions

For an open set G cz Rn, we denote by BLm(Lp(G)) the space of all

functions ueLPl0C(G) such that DλueLP(G) for any λ with | / | = m, where

Oλ = (d/dx)λ = {d/dx1)
λι'"(d/dxn)

λn; if the restriction of w to any relatively

compact open subset G' of G belongs to BLm(Lp{G'))9 then we write

14 eBL m (LUG)) (see [3]).

In order to study the boundary behavior of Beppo-Levi-Deny functions

on D, we have to prepare an integral representation for functions in

BLm(Lp(Rn)). The following sobolev integral representation for infinitely

differentiable functions with compact support is fundamental (cf. Reshetnyak

[22]).
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LEMMA 9.1. // ψeCg(Rn), then

where {aλ} are constants', aλ = m/(cnλ\).

Our first aim in this section is to show the following result.

THEOREM 9.1. If u is a function in BLm(Lp

l0C(Rn)) such that

(9.1) ί(
for any λ with length m, then there exists a polynomial P of degree at most

m — 1 such that

| | ^ D>u{y)dy + P[x)

holds for almost every x in Rn.

REMARK 9.1. In [8, Theorem 3.1], this representation is given under the

assumption of the existence of {ψj} a C^°(i?") such that

PROOF OF THEOREM 9.1. Let ψeCgiR") and |μ| = m. By condition (9.1),

we can apply Fubini's lemma and Lemma 9.1 to obtain
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= (-l)mh(y)D"u(y)dy

= ίU(y)D"φ(y)dy.

Hence it follows that wW-Σμι=m α A — — ^ D λ u ( y ) d y is equal a.e. to a

polynomial of degree at most m - 1.

COROLLARY 9.1. If u is a function in BLn(L}0C(Rn)), then there exists a

continuous function on Rn which is equal to u a.e. on Rn.

PROOF. For any i//eQ°(G), φu can be seen as a function in BL^L^R")),

and hence by Theorem 9.1 there exists a polynomial P such that

(9.2) (φu)(x) = Σ μ | = n α Λ \{^ζDλ{φu){y)dy + P(x)
J\x-y\n

for almost every xeRn. It is easy to see that the right hand side of (9.2) is

continuous on Rn. Hence the required assertion follows.

Here we relax condition (9.1). To do this, we introduce the kernel

functions:

kλ(χ) = χλ\χ\~n

and

if \y\< U

(see [16], [19]). We now show an extension of Theorem 9.1, in the same

manner as [16, Theorem 1] and [19, Theorems 1 and Γ].

THEOREM 9.2. Let ueBLm(Lp(Rn)). Then there exists a polynomial P of

degree at most m — 1 such that

= Σμι=m«A jV,(*. y)Diu{y)dy + P(x)

holds for almost every x in R", where ( is the integer such that f < m — n/p

<(+ 1.

REMARK 9.2. In view of [16] and [19], the function u is also represented

as
Γ

i(y)dy + P(x),^ J * * / ( * . y)Dλu(
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where k\{ is defined as above with kλ replaced by kf = DλR2m, R2m denoting

the Riesz kernel of order 2m, {bλ} are constants, f is the integer given in

Theorem 9.2 and P is a polynomial. More precisely, {bλ} is chosen so that

^ = ^ Σ μ , = m M 2 A

with some constant c. In the latter representation of w, the logarithmic term

may appear, and hence Corollary 9.1 may not follow from this representation.

PROOF OF THEOREM 9.2. Set

By the mean value theorem, we see that

ik^A^y^^M.lxf^lyr-"-'-1

whenever |>;| > 1 and \y\ > 2\x\ (cf. Lemma 2 in [19]). Hence, if xeB(0, a),

a > 1, then Holder's inequality gives

I \kλA*>y)\\Dλu(y)\dy
jRn-B(0,2a)

<Mxa
e+l I \y\m-n-'-ι\Dλu(y)\dy< oo

for any λ with length m. Since

+ a polynomial,kλ,Λ
x> y)Dλu(y)dy = kλ(* - y)Dλ

Jβ(O,2α) Jβ(O,2α)

\xσDλ\U is defined almost everywhere and UeL}0C(Rn). Note that xσDλφ(x)dx = 0

whenever |σ| < |A| and ψeCo(Rn). Hence, as in the proof of Theorem 9.1, we

have for φeCξ'iR"), \μ\ = m and |v| = m,

[u(x)D* +

(x - y)Dμ + vφ(x)dxjDλu(y)dy.

For a positive integer j , set kψ = xλ{\x\2 + (l/j)2}~n/2. Then, in view of

Lemma 3.3 in [8], we see that

\kψ(x - y)Dμ + vφ(x)dx > \kλ(x - y)Dμ + φ(x)dx
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as j-+ oo in Lq(Rn) for any number q > 1. Hence we apply Fubini's lemma

again to establish

= ( - lΓlim,.^ (Y ίϋμkψ(x - y)D*ψ(x)dx\Dλu(y)dy

y)Dλu(y)dy)dz

(

kλ(x - y)Dfl + λψ{x)dx)Dvu(y)dy.

Therefore, as in the proof of Theorem 9.1, we find

U(x)Dμ + vψ(x)dx = \u(x)Dμ +

Thus P(x) = u(x) — U(x) is equal a.e. to a polynomial of degree at most

2m — 1. By the above considerations, we see also that if |μ| = m, then

kλ(x - y)Dμψ(x)dx)Dλu(y)dyU(x)Dμψ{x)dx

on account of Lemma 3.3 in [8]. This implies DμPeLp(Rn) for |μ| = m, so

that the degree of the polynomial P is at most m — 1.

THEOREM 9.3. Lei ueBLm(Lp(G)) satisfy

If' φ*(l)< oo, ίΛtfί w, [ r π " m > φ ( r ~ 1 ) ] 1 / ( 1 " l > ) r " 1 έ / r < oo, then there exists a
Jo

continuous function u* on G such that u = u* a.e. on G.

PROOF. For any φeCo(G), φu can be seen as a function in BLm(Lp(Rn))

by [24, Chap. 9, Theoreme XV (Kryloff)], and hence by Theorem 9.1 there
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exists a polynomial P such that

(9.3) (φu)(x) = ̂ =maλ[
{^^nD

λ(xl,u){y)dy + P(x)

for almost every xeRn. In view of the proof of Theorem 3.3, note that if

G' is a bounded open set in Rn and Φp{\f(y)\)dy < oo, then the function
JG'

(x-y)\
I I v -f(y)dy

is continuous on G' when |A| = m; in case mp > n, the continuity is well
known as a part of Sobolev's imbedding theorem. Hence, if in addition φ = 1
on a neighborhood of a point xoeG, say, ψ = l on #0co> ro)> then

L
is continuous on B(x0, r0) and

f ί ^ 5 D*u(y)dy
JB(Xo,ro)\χ-y\ J

is continuous at x0, by the above consideration. Thus we can find a
continuous function u* on G which is equal to u a.e. on G.

REMARK 9.3. In case mp > n, φ*(l) < oo. Hence Theorem 9.3 gives an
extension of Sobolev's imbedding theorem, concerning the continuity of
Beppo-Levi-Deny functions.

10. Boundary limits of Beppo-Levi-Deny functions

In this section we study the boundary limits of Beppo-Levi-Deny functions
u on the half space D = {x = (*', xJeR"'1 x R1 xn > 0} satisfying (1.4).

We say that a function u on an open set G c Rn is (m, Φp)-quasicontinuous
on G if for any ε > 0 and any bounded open set G' c G, there exists an open
set G" a G' such that Cmφp{G"\ G') < ε and the restriction of u to G' - G"
is continuous. As in Lemma 2.3 in [8], if u is a function in BLm(Lp

loc(D))
satisfying (1.4), then we can find a function u* such that u* = u a.e. on D
and u* is (m, Φp)-quasicontinuous on D. In case mp > n, w* may be taken
as a continuous function on D (cf. Remark 9.3).

THEOREM 10.1. Let u be a function in BLm(Lp

loc(D)) satisfying (1.4). If
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(10.1) lφ(Γ1)ω{t)yp>/pdt< oo,
Jo

then there exists a function u* EBLm(L]0C(Rn)) such that u* = u a.e. on D and

u* is (m, Φp)-quasicontinuous on D.

PROOF. Let a > 1. As in the proof of Lemma 2.1, using Holder's

inequality, we have

I \Dλu(x)\dx < ( I Φp(\Dλu(x)\)ω(xn)dx\IP

J DnB(0,a) \JDnB(0,a) J

x ( ί [φ(χ/rV(χπ)rp7p^Y/P + f x 'dx
\JDnB(0,a) / J DnB(0,a)

Φp(\Dλu(x)\)ω(xn)dx) )
Z)nB(0,α)

for any λ with length m, where 0 < δ < 1. This implies that the restriction

of u to the set D()B{0, a) belongs to BLm(L 1(Dn5(0, a))). Hence, in view of

the extension theorem in Stein's book [25, Chap. 6], we can find a function

ύ in BLm(L]0C(Rn)) such that ύ = u a.e. on D. For this u we have only to

take an (m, Φp)-quasicontinuous representation on D.

REMARK 10.1. Condition (ω2) implies (10.1).

As applications of the results in Sections 6-8 concerning Riesz potentials,

we can study the existence of boundary limits of Beppo-Levi-Deny functions,

generalizing the results in the case m = 1 see Wallin [26] and Mizuta

[9], [12], [17].

For this purpose, let

f o r O < r < 2 " 1 .

THEOREM 10.2. Let ω be as in Theorem 6.1, and let u be an

(m, Φp)-quasicontinuous function on D satisfying condition (1.4). If K^G) = oo,
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then there exists a set E c D such that

limXn^o f*6G-£[Mx»)]~ luM = °

for any bounded open set G a D and

(10.2) Σ?^iκ'Jω(2'J)Cm.ΦP(EJnB(09 a); Djf]B(0, 2a)) < oo

for any a > 0, where K, Ej and Dj are defined as in Theorem 6.1.

PROOF. It follows from condition (ω2) that (10.1) holds. Hence, by

Theorem 10.1, there exists a function u*eBLm(L]0C{Rn)) which is equal to u

on D. For a > 1, take ζe Cg(Rn) such that ζ = 1 on £(0, 2a). Then it follows

from Theorem 9.1 that

holds for almost every xeRn, where P is a polynomial. Since u is

(m, Φp)-quasicontinuous on D, (10.2) holds for every xsD except those in a

set E' with C m f φ p (£ / ) = 0. But, since E' satisfies (10.2) clearly, we may assume

that (10.3) holdsPfor every xeD. Set fa(y) = S|A|=ml(3/^)A(C"*)(y)l- τ h e n i l

satisfies

ί
Jβ(O,2

In view of Theorem 6.1, we can find Ea c DnB(0, a) such that

Σ j O l i « " " M 2 - j ) C m f φ p ( £ β J ; D,.ni*(0, 2a)) < oo,

where EaJ = {xeEa; 2~j < xn < 2~j+1}9 and

Now, as in the proof of Theorem 6.1, we can find a sequence {ja} of positive

integers such that E = {Jΐ=i(\Jj>jaEa,j) has all the required properties.

Similarly, by Theorems 7.2 and 7.3, we obtain the following results.

THEOREM 10.3. Assume that (ω2) holds and φ*(l) < oo. Let u be a

continuous function on D satisfying condition (1.4). If τx(r) < Mτ2(r) for

0 < r < 1, then there exists a set E a δD such that C m φ p > ω ( £ ) = 0 and u has

a nontangential limit at any ξedD — E.

COROLLARY 10.1. Assume that 0 < mp — n < β < p — 1 and u is a

continuous function on D satisfying

(10.4) £ Φp(\Dιu(x)\)x>dx<co-« ί Φp(\Dλu{
JG
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for any bounded open set G cz D. Then there exists a set E c dD such that

Cmφpfβ(E) = 0 and u has a nontangential limit at any ξedD — E.

THEOREM 10.4. Let — 1 < β < p - 1, φ*(l) < oo and u be as in Corollary

10.1.

( i ) If n — mp + β > 0, then for y > 1, there exists a set Eγ c= dD such

that Hh(Ey) = 0 with h(r) = τ2(rγ) and u has a finite TyΊimit at any

ξedD-Er

(ii) If β = mp — n > 0, /λew ίλere exists a set E a dD such that

Cm Φp β(E) = 0 tf«rf M has a finite Tγ limit at any ξedD — E for any

y > Γ
(iii) If β = mp — n = 0 or n — mp + β <0, then u has a finite limit at

any ξ e dD.

In the above theorem,

-P/P'a
THEOREM 10.5. Let ω and ω* be as in Theorem 8.1, and set

τί(r) = inf r^^ 1ί"-^ω*(ί)

τ*(r) = min{τ1(r),τj(r)},

/or 0 < r < 1. If u is an (m, Φ^-quasicontinuous function satisfying (1.4), then

there exist E1 and E2 such that Ca0pt(O(El) = 0, Hh*(E2) = 0 and u has a finite

limit along LΨ{ξ), for any ξedD — (£1L)£2)

PROOF. For simplicity we assume that u vanishes outside some bounded

set. In this case,

holds for every xeD — E\ where P is a polynomial and E' is a subset of D

with Cm > φ p(£') = 0. Denote by w* the function defined by the above

summation about λ. Since CmΦp{E') = 0, we can find a nonnegative

measurable function f on D such that Umfφ oo, £/„/= oo on E' and (7.3)

holds. Then, in view of Theorem 8.1, there exist E[ and E'2 such that

Cm,Φp,ω(E[) = 0, Hh*(E'2) = 0 and Umf has a finite limit at ξedD- (E[[)E2).

This "implies that if ξedD - (E[ [)E'2)9 then u = w* + P on L y(ξ)nB(ξ, r5) for

some rξ > 0. Now we apply the same discussions as in Theorem 8.1 to the

function w*, and complete the proof.
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Noting Corollary 8.1, we have

COROLLARY 10.2. Let mp - n < β < p - 1, y > 1 and Ψ be of the form

(r, ψ2(
r)>-">Φn-i(r)9 r7) a s ™ Corollary 8.1. Further, let u be an (m, Φp)

quasicontinuous function on D satisfying (10.4). Then:

( i ) If β > 0, n — mp + β > 0 and y > 1, then there exists a set E c dD

such that Hh(E) = 0 with h(r) = i n f ^ i ί y ( "" m p + ^ ) φ(ί" 1 ) and " Aαs a

finite limit along the curve LΨ(ξ), for any ξedD — E.

(ii) If β > 0, n — mp + β > 0 and y = 1, //ze« /Aere exists a set E a dD

such that CmtΦpiβ(E) = 0 and u has a finite limit along the curve

LΨ{ξ), for any PξedD - E.

(iii) If β < 0 and y > 1, then there exists a set E a dD such that E has

Hausdorjf dimension at most y(n — mp) and u has a finite limit along

the curve LΨ(ξ)9 for any ξsdD — E.

By Theorems 8.2 and 8.3 we derive radial limit results for Beppo-Levi-

Deny functions on D.

THEOREM 10.6. Let — 1 < β <p— 1 and let u be an (m, Φp)-quasicontinuous

function on D satisfying (10.4). Then there exists a set E c dD such that

Cmφpβ(E) = 0 and if ξedD — E, then u(ξ + rζ) has a finite limit as r -• 0 for

every ζeDftdB (0, 1) except those in a set Eξ with Cmφp(Eξ) = 0.

THEOREM 10.7. Let ω be a nonnegative nondecreasing function on ([0, oo)

satisfying (ω 1) and (ωl). Let ζeD be fixed. If u is an (m, Φp)-quasicontinuous

function on D satisfying (1.4), then there exists a set E a dD such that

Cm,Φp,ω(E) = 0 and u(ξ 4- tζ) has a finite limit as ί | 0 at any ξedD - E.

11. Green potentials

In the half space D, we consider the function

c( \- j\χ-y\a~n-\x-y\a~n incase α < π,

(.logd'x - y\l\x - y\) in case α = n,

where x = (xl9...9xn-.l9 - xn) for x = (xu...9xn-u xn), and define

GJ(x)= ί GΛ(x,y)f{y)dy
J D

for a nonnegative locally integrable function / on D.

The following lemma can be proved by elementary calculations (cf. [14,
Lemma 9]):



that
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LEMMA 11.1. If a <n, then there exist positive constants Mj and M2 such

if <x = n, then for any ε, 0 < ε < 1, there exist positive constants M3 and M(ε)

such that

M χ.y. G { } M ( ε ) * • * • —

COROLLARY 11.1. For αwj nonnegative measurable function f on D, Gaf

oo if and only if

(π.i) f.<
In this section we are concerned only with the case α < n.

We can derive the following result from the Corollary 3.1.

THEOREM 11.1. Let f be a nonnegative measurable function on D satisfying

(11.1) such that

ί Φp(f(y))dy < oo for any bounded open set D' with closure in D.
p

D'

If (7.3) is fulfilled, then Gaf is continuous on D.

THEOREM 11.2. Let ω be a positive monotone function on the interval

(0, oo) satisfying (ωl) and

(ω4) rβ~ί/pω(r)~1/p is nondecreasing on (0, oo) for some β < 2.

Define

α yip'

for 0<r<2~1, where η(t) = φ(t~ι)ω(t) as before. Let f be a nonnegative

measurable function on D satisfying (11.1) and

I(11.2) Φp{f(y))ω(yn)dy < oo for any bounded open set D' a D.
p

D

Then there exists a set E a D such that

= 0 if l im_ 0 κ 3 ( r ) = oo,
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\vcaXn^OxeD,_EGaf{x) = 0 if κ3(r) is bounded on (0, 2"1)

for any bounded open set Df and

X7=1 K-Jω(2-j)Ca,φp(Ejr\B(0, a); Djf)B(0, 2a)) < oo

for any a > 0, where K = K* in Lemma 2.3 with χ = max{l, κ3}.

PROOF. First, from condition (11.1), we can apply Lebesgue's dominated
convergence theorem to see that, if Dr c DnB(0, N)9 N > 1, then

' ί Ga(x,y)f(y)dy = 0.
JD-B(0,2N)

For x = (x', xn)eD, 0 < a < 1 and N > 1, we write

DnB(0,2N)-B(x,xn/2)

,2)V)-B(x,xn/2);).n>a}

G«(x,.J')/0')^.
{yeDnB(0,2N)-B(x,Xnl2);yn<a}

Then we see easily that GlaNf(x) tends to zero as xπ->0, xeD. Further
we have by Lemma 11.1,

f
J { ,2N)-BU,W2):)'n<«)

By (α>4) we can apply Lemma 6.1 with δ > 0 such that α — 1 < <5 < α, and
obtain

G2,a,Nf(x) < M2κ3(xn)(ί ΦP(f(y))ω(yn)dy\llP + M2

for 0 < xn < 2" 1 . Thus, if l i m ^ o ^ r ) = oo, then we find

Wm%\x^x^0ιXeD[κ3{xn)yιGNf{x)<M2[ I Φp(f(y))ω(yn)dy\
\ J{yeDnB(0,2N);yn<a}

Letting a -+ 0, we establish

By Lemma 11.1, note
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I Gx(x,y)f(y)dy<\ \x - yΓ"f(y)dy.
JB(x,xn/2) JB(x,xn/2)

The right hand side is just equal to u2(x) in Theorem 6.1. Hence, considering

Eje as in the proof of Theorem 6.1, with κ1 replaced by /c3, and noting

Remark 6.4, we complete the proof.

Next we discuss the existence of tangential limits of Green potentials Gaf

for / satisfying conditions (11.1) and (11.2).

THEOREM 11.3. Assume that (7.1) and (ω4) hold. Let φ be a positive

nondecreasing function on (0, oo) satisfying conditions (Δ2) and (ψl), and define

τ3(r) = inf τ < ί < 1 |>3(r)]~ p ,

τ 0 = min{τ2(r), τ3(r)},

ho(r) = τo{φ(r))

for 0 < r < 1, where τ 2 is as in Theorem 7.1. If f is as in Theorem 11.2, then

there exists a set E a dD such that Hho(E) = 0 and

for any a > 0 and any ξedD — E. If in addition τo(0) > 0, then

for any ξedD.

Before proving this theorem, we note the following lemma (cf. [13, Lemma

3]).

LEMMA 11.2. For ξedD, set gξ(x)= GΛ(x, y)f{y)dy. Then
JD-B(ξ,2\x-ξ\)

l i m ^ ^ ^ ί x ) = 0 if and only if lim^or"""-1 ynf(y)dy = 0.
J DnB(ξ,r)

PROOF OF THEOREM 11.3. For ξedD, we write G α / = v1 + v2 4- gξ, where

M*)= ί Ga(x9y)f(y)dy9

J DnB(ξ,2\x-ξ\)-B(x,axn)

v2(x) = f
JB(X,

G.(χ, y)f(y)dy.
axn)

Define
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E = lξedD; lim sup^M')"1 ί ΦP(f(y)Myn)dy
t JDnB(ξ,r)

Then, by Lemma 7.2, we see that Hho(E) = 0, By (ω4),

I iω{ynr
xlpynY dy <\rt-ιlvω{ryιlpγ' f ^ ' (

JDnβ(ξ,r) JDnB(ξ,r)

= M1r
n+plω(r)YpΊp.

Hence, as in the proof of Lemma 2.1, we have for δ, 0 < δ < α,

yj(y)dy
DnB(ξ,r) J{yeDnB(ξ,r)',f(y)>r-δ}

ynf(y)dy
{yeDnB(ξ,r)',f(y)<r~δ}

DnB(ξ,r)

(ί l<p{f{y))oy(yn)Yp'"'yp

ndy)1"'
{yeDnB(ξ,r);f(y)>r-6)

yndy
DnB(ξ,r)

ΦP(f(y))ω(yn)dy)1"'
DnB(ξ,r) /

Here note

κ3(r)>M3[rn-"pη(r)T1/p

and

ho(r)<τo(φ(l)r)<M4[κ3(r)rp

for 0 < r < 1. Therefore, if £e<3D - £, then it follows that

lim_orα " x ynf(y)dy = O.
JDnB(ξ,r)

Lemma 11.2 implies that gξ(x) tends to zero as x-*ξ, xeD. By Lemmas 6.1
and 11.1, we find

ΦP(f(y))ω(yn)dy) +M2\x-ξ\ια — δ
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for any xeD[)B(ξ, 1). Thus, since κ3(xn)<M3lh0{\x- ξ\)Yιlp for xeTψ(ξ, a),

if ξedD — E, then v1(x) tends to zero as x-*ξ, xeT^ξ, a). Finally, Lemma

6.1 yields

Φp(f(y))ω(yn)dy\'P + Mrf-'.
B(x,xn/2) /

Hence it follows that v2(x) tends to zero asx-> ξ, xeTψ(ξ, α), if ξedD — E. In

case τo(0) > 0, limx^ξfXeDGaf(x) = 0 for any ξedD. Now Theorem 11.3 is

proved.

In the same way as Theorem 7.3, we can derive the following result.

COROLLARY 11.2. Assume that (7.1) holds. Let — 1 < β < 2p — 1 and let

f be a nonnegatίυe measurable function on D satisfying (11.1) and

i for any bounded open set D' cz D.
D'

(i) If n — up + β > 0, then, for each y > 1, there exists Eγ cz dD such that

Hhγ{Eγ) = 0, where hγ(r) = τ2(ry) with

Γ t \-P/P'

and Gaf(x) has Ty-limit zero at any ξedD — Ey.

(ii) If n — ccp + β < 0, then Gaf(x) has limit zero at any ξedD.

In fact, if β<2p—l, then ω(r) = rβ satisfies condition (ω4). If in

addition n — up + p + β > 0, then the corresponding τ 2 and τ 3 in Theorem

11.3 satisfy

τ3(r) > M 1 r " - a p + V ( ' * " 1 ) > M 2 τ 2 (r),

so that (i) follows from Theorem 11.3. On the other hand, in case

- p < n - up + β < 0, the above facts also imply τ3(0) > 0; in case n - up 4- p

so that τ3(0) > 0. Thus, if n - up + β < 0, then

τ 3 ( 0 ) > 0 .

Further, in case 0 < β < ocp - n,
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so that τ2(0) > 0. In case β < 0, τ2(0) > 0, too. Thus, if n - ocp + β < 0, then
τ2(0) > 0. Now, if n — αp + β < 0, then τo(0) > 0 and the proof of Theorem
11.3 yields the required conclusion of (ii).

In case β>2p — 1, ω(r) = rβ does not satisfy condition (ω4). We can,
however, give some results concerning nontangential limits.

PROPOSITION 11.1. Let β > 2p - 1. For τ2 in Corollary 11.2, (i), define

/i(r) = min{rn-α + 1,τ2(r)} for r > 0.

If f is as in Corollary 11.2, then there exists a set E a dD such that Hh(E) = 0
and Gaf has nontangential limit zero at any ξedD — E.

PROOF. Consider the set

\ yj(y)dy> θ\.\ \
DnB(ξ,r) )

Lemma 7.2 together with (11.1) implies Rh(A) = 0. It follows from Lemma
11.2 that gξ has limit zero at any ξedD — A. Further, in the proof of Theorem
11.3,

f i M ^ M ^ - " - 1 ί ynf(y)dy,
JDnB(ξ,2\x-ξ\)

which implies that υλ has nontangential limit zero at any ξedD —A. Since
v2 can be evaluated in the same manner as in the proof of Theorem 11.3,
the required result now follows.

PROPOSITION 11.2. Let f be a nonnegative measurable function on D
satisfying (11.1) and

ί
JG

P
for any bounded open set G c D. Suppose [φ(ί x)] pΊpt 1rfί<oo4, and
j n Jo
define

If ocp > n9 then there exists a set E c dD such that Hh(E) = 0 and Gaf has
nontangential limit zero at any ξ e dD — E.

PROOF. AS in the proof of Theorem 11.3, we have
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1 ί y.fiy)dy <;i*-'-ι( f Φ,(fiy))yl'-ιdy
JDnB(ξ,r) \ J DnB(ξ,r) /

' ( ί y;1ίφ(y;s)rpΊpdy)1"' + r"---1 f yi~*dy
\JDnB(ξ,r) / JDnB(ξ,r)

Γ -i -P'/P -i Y / P Y Γ
'0 / \JDnB(ξ,r)

\1/P

φP(f{y))ylp~ιdy) +Mir*-\
DnB(ξ,r) /

where 0 < δ < min{2, α}. Hence Hh(A) = 0 by Lemma 7.2, for the set A in

the proof of Proposition 11.1. On the other hand, if ω(r) = r 2 p " 1 , then τ 2

in Theorem 11.3 satisfies

α'ί \-Plp'

o /

Thus, as in the proof of Proposition 11.1, we see that Gaf has nontangential

limit zero at any ξedD — E, where Hh(E) = 0.

By the proofs of Theorems 8.1 and 11.3, we can derive the following result.

THEOREM 11.4. Let τ* be as in Theorem 8.1 and τ3, φ be as in Theorem

11.3. Define

for 0 < r < 1 define Λg(r) = /zg(l) for r > 1. If f is as in Theorem 11.2, then

there exists a set E a 3D such that Hh*(E) = 0 and

limr^0 GJ(ξ(ή) = 0 for any ξedD-E,

where ξ(r) = ξ + Ψ(r) with Ψ{r) = (r, ψ2(r), ,Ψn-Λr)9 Φ(r)) is as in Section 8.

COROLLARY 11.3. Let - l < β < 2 p - l and Ψ(r) = (r, ̂ W . Ά ^ W .

rv), y > 1, as in Corollary 8.1. Further let f be as in Corollary 11.2.

(i) If β > 0 αrn/ n — αp + /? > 0, /λe« ίλere έjtϋϋ a set E a dD such that

Hh(E) = 0 and GΛf has limit zero along the curve LΨ(ξ), for any ξe

dD-E, where h(r) = τ2(rγ) with τ2(r ) = inf r< ί<1 ί̂ ί [ s " " β p ς o ( s " 1 ) ] " p 7 p

\-PlP' " " ^ J o

ds/sj .

(ii) If β < 0 and n — ccp > 0, ίΛe« there exists a set E a dD such that E
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has Hausdorff dimension at most γ(n — ap) and Gaf has limit zero

along the curve LΨ(ξ), for any ξedD — E.

REMARK 11.1. Our results give generalizations of the results in Rippon

[23], Wu [27], Aikawa [1] and Mizuta [14].

12. Singular integrals

In view of Theorem 9.2, if ueBLm{U{Rn)), then

f P(x)

for almost every xeRn, where f < m and P is a polynomial of degree at most

m — 1. Conversely, it is known (cf. [16, Lemma 3]) that each integral in the

above equality belongs to BLm(Lp(Rn)).

Let us begin with the following result, concerning the Φp estimate for the

derivatives of potentials.

LEMMA 12.1 (cf. [9, Lemma 6], [18]). Let -\<β<p-\ and f be a

nonnegative measurable function on Rn such that

(1 + \y\Y~*f{y)dy< oo and Φp(f(y)\yn\
β/P)dy < oo.

Set

u(x)= f kλ(χ-y)f(y)dy,

where kλ(x) = xλ/\x\n and \λ\ = m. Then u is a function in BLm(Lq

loc(Rn)) for

q such that 1 < q < min{p, p/(β + 1)}. Further, u is (m, Φp)-quasicontinuous

on D and satisfies

[[φp{\Vmu{x)\ \xn\
β/p)dx <

with a positive constant M independent off, where | P m t φ c ) | = ( Σ | λ | = JI) A ιφc) | 2 ) 1 / 2 .

PROOF. First of all, if we note Φp(f(y))dy < oo for any relatively
JG

compact open set G in D, then u is (m, p)-quasicontinuous on D in the sense

of [8]. If the required inequality of the present lemma is obtained, then we

see that u is (m, Φp)-quasicontinuous on D. If 1 < q < min{p, p/(β + 1)}, then

we have by Holder's inequality
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fiyfdy < Q fW\y»?d?j*[[\yn\-*"*-*dyj '" < oo

for any bounded open set G c Rn. Consequently it follows from [8, Lemma
3.3] that uGBLm(Lq

l0C(Rn)). For ε > 0, set kf{x) = xA(|x|2 + ε2)""'2, and
consider the function

«.(*) = ί*
In view of [8, Lemma 3.3], we see that (d/δxyuε(x) tends to (d/δx)vu(x) in
Lq

loc(Rn) as ε -»0 for any v with length m. First we show

(12.1) [\(d/dxYuε (x)\p\xn\
βdx < Mι [f(y)p\yn\

β dy,

where |v| = m and Mi is a positive constant independent of ε and / For
this, note

(d/dxγuε(x) - [{d/dxγmx - y)f(y)dy.

Setting vε(x)= Ud/dxYk^(x-y)g(y)dy with g(y)=f(y)\yH\βlp

9 we have

(12.2) Γ|Fmι;ε(x)|*dx < M2L(yYdy,

in view of the proof of [8, Lemma 3.2] (see also Stein [25, Theorem 2, Section
3.2, Chapter 2]). Further, we obtain

\xnf{d/dχγug(χ) - (d/dxγvε(x)\ < M 3 f'~ V ^ 1 ; ; 1 - 1 ]g(y)dy
J. \x-y\"

%\i-L\χn\/\yn\yip\
G(χ',χn,ytt)dyn,

', xπ, yn) = f — '*" /"'where G(x', xn, yn) = j ^ _ 2 " + - ^ 2 <?(/, yjd/. As in the

proof of Lemma 6 in [9], using Minkowski's inequality (see [25, Appendix
A.I]) and the property of Poisson integral in the half space, we find

|| |xJ'"(3/3x)X( , xn) - (d/dxγvε( , x J I L ^ - , ,

— • — || G( , xn, yn) \\pdyn

\χΛ-y»\
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Moreover, by [25, Appendix A. 3], the ZΛnorm in R1 of the right hand side
is dominated by M 5 | | # | | p as long as

ί"1

Jo

_ r-p/p||l -r\-ιr-llpdr< oo,
o

which is true because — 1 < β < p — 1. Thus (12.1) is obtained with the aid

of (12.2). Letting ε->0, we establish

(12.3) [\(d/dxγu{x)\p\x*\βdx < M6 [fW\yH\βdy9

which proves the case φ = 1. Now we apply the usual interpolation methods
(cf. [28], [25, Appendix B]) and prove

(φp(\(d/dxγu(x)\\Xn\βlp)dx < MΪφp(f(y)\yn\
βlp)dy.

For this purpose, let y = β/p and note from (12.3)

(12.4) J[|(d/3x)vu(x)| \xn\Ύdx

for any q such that q > 1 and —l<γq<q — l. Since — l/p <y < 1/p', we

can take qι,q2 such that

1 1
1 <Qi<P <Q2 a n d <y<-y' >

recall that p' and q[ are the exponents conjugate to p and qί9 respectively. For

a > 0, decompose / as faΛ + fOt2> where

'••'<"> " i n 0 * i f

t lf
W-α > e<y)-f<y)\y.r,

10 otherwise,

and write ual and wα 2 f°Γ u with f = faΛ and /α>2, respectively. Applying
(12.4), we have

\l\(d/dxYua>i(x)\ \xn\ψdx < M7 [ifaΛyWT dy

for / = 1, 2. Here remark that M 7 does not depend on a. Since u = uaΛ + ua2,
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mn({x;\(d/dxγu(x)\\xn\*>2a})
qι ί\(d/dχγua,2(x)\\xn\yn

where mn denotes the ^-dimensional Lebesgue measure. Hence,

ίφp(\(d/dxYu(x)\ \xn\
y)dx = (mn({x; \(d/dxYu(x)\ |x.|" > 2a})dΦp(2a)

Γ / Γθ(y)

<MΊ \g(y)qι( a~qιdΦp(2a)
J VJo .

+ M7 \g(yr( Γ a
J \Jfl(y)

By (<pl) and (φ5),

and s-"^δΦp(2s) > M8Γ
q>+iΦp(2t)

whenever 0 < s < t, where δ > 0 is chosen so that qι + δ < p < q2 — δ. Hence
it follows that

Γg(y) ΓθW

a'"'dΦp(2a)=\ Φp(2a)d(-a-"') +
Jo Jo

Γg(y)

Jo

ίg(y)ΓqιΦp(2g(y))
Jo

<M9Φp(g(y))[g(y)y«>.

Similarly,

\ a-q2dΦp(2a) < M10Φp(g(y))g(yΓ«\

Now we find

{φp(\(d/dxYu(x)\\xn\ηdx < M^U^gWdy = MX1 Up(f(y)\yn\
y)dy,

which yields the required inequality. Thus the proof of Lemma 12.1 is

completed.

REMARK 12.1. If we replace kλ by Rm or kf = DλR2m, then the same

conclusions as in Lemma 12.1 still hold.
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LEMMA 12.2. Let — 1 < β < p — 1. For a nonnegative measurable func-
tion f on Rn

9

ί Φp(f(y)\yn\
β/P)dy < oo for any bounded open set G a Rn

if and only if

p(f(y))\yn\
βdy < oo for any bounded open set G <= Rn.ί

JG
PROOF. Let ε > 0 and β(l + ε x) > - 1. Then, for a bounded open set

G cz Rn, we have

ί ΦP(f(y)\yn\
βίp)dy

JG

< ί ΦP(f(y)\yn\
β/p)dy+ ί ΦP(f(y)\yn\

β/p)dy
J{yeG;f(y)°>\yn\β/P} J {yeG;f(y)°< \yn\^'P)

< ί Lf(y)\yn\βlΎ<p(f(y)1+ε)dy+ ί Φ(\yn\
(1+ε~l)βlp)dy

JG JG

< M ( ε ) | ί Φp(f(y))\yn\
βdy+ ί \yn\

il+ε~l)βφ(\yn\
β)dy\.

Since β(l + ε - 1 ) > — 1, the last integral is convergent. Thus the "if" part
follows. The "only if" part can be proved similarly.

THEOREM 12.1. Let — 1 < β < p — 1 and f be a nonnegative measurable
function on Rn such that

(12.5) f Φp(f(y))\yn\
βdy <oo.

If ί <m — n/p - β/p < ί + 1, then the function

satisfies

(12.6) Φp(\Vmu{x)\)\xn\
βdx < oo for any bounded open set G a Rn.

JG

PROOF. Since feU{R% 1 < q < min{p, p/(l + /?)}, by the proof of
Lemma 12.1, we see that ueBLm(Lq

loc(Rn)) by [19, Lemma 5]. For a > 0, set
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B(0,2a)

J Rn-B(0,2a)

Since u'ά is infinitely differentiable on B(0, 2α), it satisfies

ί Φp(\FmK(x)\)\xnfdx<π.
J B(O,a)

va(χ) = ί I
JB(0,2a)

On the other hand, u'a{x) is of the form va(x) = I kλ(x — y)f{y)dy + wa(x),
Jβ(0,2α)

where wfl is a polynomial. Lemma 12.1 implies

ί ΦP(\rmΌa(χ)\ \χn\
β/p)dx < M f Φp(f(y)\yn\

βlp)dy < oo.
J R " Jβ(0,2α)

Hence, if we note Lemma 12.2, then we have

ΦP(\rMx)\)\xn\'dx<ao.ίJ B(O,a)

Therefore,

1JB(O,a)

Since a is arbitrary, Theorem 12.1 is obtained.

LEMMA 12.3. Let ω be a positive monotone function on (0, oo) satisfying

(ωl) and (ω2). If Caφpω(E) = 0, then there exists a nonnegative measurable

function f on Rn such that

ί\ΦP{f{y))ω{\yn\)dy<co

and

Uaf(x) = oo for

PROOF. For any a > 0, C α Φ j p > ω (£Π£(0, α) β(0, α)) = 0 by our assumption.

Hence we can find a nonnegative measurable function fa such that fa = 0
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outside β(0, α), UJa = oo on £n£(0, α) and ΦP(/αO0)ω(|;yΛ|)έty < oo.

As in the proof of Lemma 6.1, we establish

f(i + \y\Γ*fa(y)dy < M(a) f Φp(fa(y))ω(\yn\)dy

J JB(0,a)

for some constant M{a) > 0. For a sequence {ε7} of positive numbers, consider
the function / = sup7 εj/) . Then

UJ(x) > εjUJj =oo for any x e E n B(0, j),

which shows that

Uaf(x) = oo for any xsE.

On the other hand,

\φp(f{y))ω{\yn\)dy < £ . ί Φpίβ^WJ

and

f «-. Γ
J J B(O,j)

Now choose {β̂ } so small that the last two sums are convergent.

LEMMA 12.4. Let — \ < β < p — 1 and let f be a nonnegatiυe measurable

function on Rn satisfying (12.5). If we define

E = ίξedD; ί \ξ - yΓnf(y)dy = αol,

PROOF. For a > 0, consider the function

«.M= ί \χ-yΓnf(y)dy.
Jβ(O.fl)

Then Lemma 12.2 yields

ί ΦP(f(y)\yΛ\
βtp)dy<co.

JB(O,a)

Hence, in view of Lemma 12.1 and Remark 12.1, we see that

r
J p
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Define

E' = \ξedD; f \ξ - y\m-β"'Λl\VmuΛ{y)\ \ynf
p-]dy = oo}.

ί JB«.D J

Then it follows from the definition of Cm_βlPyφp that Cm.β/Pfφp(Er) = 0. If
we show £nJ3(0, α) c £', then we obtain Cm_^/p>φp(£nJ5(0, α)) = 0, so that

Cm.β/PtΦp{E) = 0. If ξeδDnl*(0, α ) - F , then f I C - y Γ ' Ί ^ i i
Jβ(ξ,i)nΓi(ξ,i)

< oo, which together with [12, Lemma 3] implies

ί \ξ-y\1-nW1u
JB(ξΛ)c\Tι(ξ,l)

By using polar coordinates, we deduce that u(ξ + rη) is absolutely continuous
on [0, 1] for almost every ηedB(0, 1)0^(0, 1), and hence it follows that
u(ξ) < oo. Thus, ξφ £, so that E Π £(0, a) c E'. Now the proof is completed.

THEOREM 12.2. Let - 1 < β < p - 1. For E c <3D, C m φ p ̂ (£) = 0// am/
OT(y if Cm_β/Pfφp(E) = 0.

PROOF. The "only if" part follows from Lemmas 12.3 and 12.4. We
show the "if" part. For this purpose, assume Cm-.β/pφp(E) = 0. Then, by
Lemma 12.3, there exists a nonnegative measurable function/on Rn such that

(i + iyirvω^<oo,

and

Uaf(x) = oo for any xe£,

where α = m — j8/p. Consider the Bessel potential

F(xf) = gΛ*/(*', 0) = L((x ' , 0) - y)f(y)dy

and the Poisson integral

u(x\xn) = PXn*F(x');

see Stein's book [25] for the definitions of Bessel kernel gΛ and Poisson kernel
Pt. First we treat the case when / is bounded and has compact
support. Thus feLq(Rn) for any q > 1. Then F belongs to the Lipschitz
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space Al-i^iR--1) and

as long as a > ί/q, on account of [25, §4.3 of Chapter 6]. In view of [25,

(62') and (63) in p. 152],

(IJD

for any integer k greater than α — 1/p. If we set k = m > (1 + /?)/#, then

ί [I^IΦOIXJ^ΛC < M{qy[f{yfdy.

As in the proof of Lemma 12.1, we find

ί Φp{\Vmu{x)\xί'ηdx<M[φp{f{y))dy.

Since the constant M does not depend on /, this inequality holds for general

/, so that

I
By the property of Poisson integral,

limx^ξxeDu(x) = oo for any ξeE.

As in the proof of Lemma 12.4, set

i f 1
E' — {ξedD: If — v|m n\Vmu(y)\dy = oo >.

V. JB(ξ,l) J

Then it follows that Cm,φptβ(E') = 0 and u(ξ + rζ) has a finite limit as r->0

for almost every ζedB(O, l )nD whenever ξedD — E'. Therefore E cz E' and

hence Cm φptβ(E) = 0, as required.

By Theorem 12.2, we can rewrite our theorems by replacing the condition

CatΦptβ(E) = 0 by the condition Ca-β/pφp(E) = 0. Among them, we give the

following results.

THEOREM 12.3 (cf. Corollary 10.1). Let 0 < mp - n < β < p - 1. If u is

a continuous function on D satisfying (10.4), then there exists a set E a dD

such that Cm_βiPiΦp(E) = 0 and u has a nontangential limit at any ξedD — E.

T H E O R E M 1 2 . 4 (cf. T h e o r e m 10.4, ( i i)) . L e t 0<mp-n<p-l. If u is
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a continuous function on D satisfying

Φp(\Vmu(x)\)\xn\
mp~ndx < oo for any bounded open set G a D,

JG

then there exists a set E c dD such that Cn/pφp(E) = 0 and u has a finite

Tγ-limit at any ξedD — E for any y > 1.

THEOREM 12.5 (cf. Theorem 10.6). Let - 1 < β < p - 1 and let u be an

(m, Φp)-quasicontinuous function on D satisfying (10.4). Then there exists a set

EcdD such that Cm_β/PtΦp(E) = 0 and if ξedD-E, then u(ζ + rζ) has a

finite limit as r->0 for every ζeδD(ΊB(0, 1) except those in a set Eξ with

Cm,Φp(Eξ) = 0.

THEOREM 12.6 (cf. Theorem 10.7). Let 0 < β < p - 1 and ζsD. If u is

an (m, Φpyquasicontinuous function on D satisfying (10.4), then there exists a

set E a dD such that Cm-β/Ptφp(E) = 0 and u(ξ + rζ) has a finite limit as r -• 0

at every ξedD — E.

We now give an integral representation for Beppo-Levi-Deny functions in

the half space D.

THEOREM 12.7. Let — 1 < β < p — 1 and let u be a function in

such that

(12.7) f #J,(|Fmιι(x)|xί^dx<oo.
JD

If I is the integer such that ί < m — n/p - β/p < £ + 1, then

Λ(x)ί
JD

for almost every xeD, where h is a function which is polyharmonic of order

m in D satisfying (12.7); see Remark 9.2 for bλ and k\^.

This is a Riesz-type decomposition of Beppo-Levi-Deny functions as the

sum of potentials and polyharmonic functions.

PROOF OF THEOREM 12.7. For ieCξ(Jΰ), we have by Fubini's theorem

and [16, (3)]

Σ | A | = , Λ J *!.,(*, y)Dλu(y)

= Σ μ i - Λ j ( JfcW*> y)Λmχ{x)dχS)jDλu{y)dy
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Dλχ(y)Dλu(y)dy

I
D

= Xiy)Δmu{y)dy
JD

where c* = (— l)mc with c in Remark 9.2. Thus Lemma 12.1 establishes the

required assertion.

THEOREM 12.8. Let —\<β<p—\ and < be the integer such that

i < m - n/p - β/p < £ + 1. If u is a function in BLm(Lp

loc(D)) satisfying (12.7),

then there exist a function u* e BLm(L]0C(Rn)) satisfying

(12.8) ί Φp(\Vmu*(x)\\xnf
p)dx<oo

and a polynomial P of degree at most m—\ such that

«(*) = Σ w - A ί k*Λ^ y)Dλu*(y)dy + P(x)

for almost every xeD.

To show this theorem, by the extension theorem in Stein's book [25,

Chapter 6], we can find a function u* satisfying (12.8) such that u* = u a.e.

on D. In view of the proof of Theorem 12.8,

«*(*) = Σ μ i - Λ ί kV(x, y)Dxu*(y)dy +
JD

h(x)

for almost every xeD, where h is a function which is polyharmonic of order

m in Rn satisfying (12.8). As in the proof of [8, Lemma 4.1], we see that h is

a polynomial of degree at most m — 1.

In the same way we can prove

THEOREM 12.9. If β, £ and u are as above, then there exist a function

u* e BLm(L}0C(Rn)) satisfying (12.8) and a polynomial P of degree at most m—\

such that

ί *,.,(*• y)Dιu*(y)dy + P(x)
J Rn

for almost every xeD.
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13. Logarithmic potentials

For a nonnegative measurable function / o n Rn, we define

L/(x) = I log --f(y)dy,= log-

J I * -

where we always assume that

(13.1)

In this case L/(x) > - oo for all xeRn and \Lf\ ψ oo.
In what follows, we investigate the behavior of logarithmic potentials Lf

at the origin, where / satisfies (13.1) and

(13.2) {φΛf(y))ω(\y\)dy< oo.

For xεRn - {0}, we write L/(x) = Lx(x) + L2(x) + L3(x), where

L x(x)= ί logα/lx-yD/Md);,

L2(x)= I log(l/|x-
JB(0,2\X\)-B(X,\X\/2)

L3(x)= ί \og(l/\x-y\)f(y)dy.
)B(x,\x\/2)

Then we can easily find

log(2/\y\)f(y)dy
Rn-B(0,2\x\)

and

L2(x)<log(2/|x|)| f(y)dy.•L,
For nonnegative functions <p and ω as before, we set

/ci(r) = sup r< f<1[log(l/ί)][^(ί)]"1 with η(r) = φ(r-χ)ω(r)

for 0 < r < 1/2 and /ci(r) = κ[(l/2) for r > 1/2.
The following results can be proved in the same manner as the lemmas

in Section 2.
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LEMMA 13.1. Let 0 < δ < n. If 0 < 2\x\ < a < 1, then

\og(2/\y\)f(y)dy + Man-*log(2/a)ί
Rn-B(O,a)

Mκ[(\x\)(! ΦΛf(y)M\y\)dy),[(\x\)(! ΦΛ

where M is a positive constant independent of x and a.

LEMMA 13.2. IfO<δ<n, then there exists a positive constant M such that

L 2 (x) < Mκ'2 (\x\)( ί ΦΛf(y))ω(\y\)dy) + M|xΓ*log(l/|x|)

for any xeB(0, 1/2) - {0}, where

κ'2(r) = Πog-

for 0 < r < 1/2 and κ'2(r) = κi(l/2) for r > 1/2.

For an open set G c Rn, we define

JG

where the infimum is taken over all nonnegative measurable functions g on Rn

such that g vanishes outside G and

L+ g(x) = L a x jo, log —ί—-1 g(y) dy > 1 for every xeE.

LEMMA 13.3. Let f be a nonnegative measurable function on Rn satisfying
condition (13.2), and χ be a positive function on (0, oo) for which there are
positive constants M and r0 such that χ(r) < Mχ(s) whenever 0 <r < s <2r <r0.
Then there exists a set E c Rn such that

(i) Iim^o.«u-£Uc(|x|)]"1I-3M = 0;

(ϋ) Σ7-ilK*rJa>&~J)Cn.Φl(Ej; Bj) < oo,

where
Ej ={xeE;2-ί<\x\<2-J+ι},

Bj ={xeRn;2-J-1 <\x\<2~i+2},

Φi(s/X(r))
K* = SUpo<r,s£ro/2

Φi(s/χ(2r))'
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Using these lemmas, we obtain the following theorems on the existence

of fine limits for logarithmic potentials.

THEOREM 13.1 (cf. Theorem 3.1). If f is a nonnegative measurable function

on Rn satisfying conditions (13.1) and (13.2), then there exists a set E c Rn

such that

and

In case L/(0) = oo, we are concerned with the order of infinity at the

origin.

THEOREM 13.2 (cf. Theorem 3.2). Let f be a nonnegative measurable

function on Rn satisfying conditions (13.1) and (13.2), and set K' = κ[ + κ'2. If

limr_>oκ:'(r) = oo, then there exists a set E a Rn such that

and

where Ej and Bj are as before, and

K = supo< r,^1 / 2[Φ1(s/fc'(r))]/[Φ1(s//c'(2r))].

THEOREM 13.3 (cf. Theorem 5.1). Under the same assumptions as in

Theorem 13.2,

for q>0.

For this, it suffices to treat only L 3 . In case q > 1, setting A(r) =

B(0, 3r/2) - B(0, r/2), 0 < r < 2 " 1 , we have

Sq(L3,r)< ί ίSq(\og\'-yl
JA(r)

f{y)dy

ί [ dy1 ) ] - 1 ί ΦAfiy))dy + M^XogilIr)-]r~ι [
JA(r) JA(r)
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< M2κ[(r) f ΦΛf(y))co{\y\)dy + Λί
JA(r)

so that

THEOREM 13.4 (cf. Theorem 3.3). Let f be as above. Set

K(r) = κ'(r) + [ ω ( r ) ] " 1 supo< ί < r[log(l/ί)] [ φ ( r 1 ) ] "

and assume K(r) < oo for r > 0. 7/* limΓ_>0K(r) = oo, then

// K{r) is bounded, then L/(0) is finite and Lf{x) tends to L/(0) as x-»0.

COROLLARY 13.1 (cf. Corollary 3.1). Let f be a nonnegative measurable

function on Rn satisfying (13.1) and

(13.3)

then Lf is continuous on Rn.

REMARK 13.1. If / is a nonnegative function in Lp(Rn), p > 1, satisfying

condition (13.1), then Lf is continuous as a consequence of Corollary 13.1. In

this case, in view of Lemma 4.3 in [8], we find \Vn(Lf)(x)\pdx < oo.

REMARK 13.2. I f / i s a nonnegative measurable function on Rn satisfying

condition (13.1), then there exists a set E, which is thin at the origin, such that

and

^ = 0.

These facts follow readily from Theorems 13.1 and 13.2. For other

generalizations of these facts, see Mizuta [15].

Next we consider the boundary limits of Green potentials of order n. We

recall (see Corollary 11.1) that, for a nonnegative measurable function / on

D, Gnf ψ oo if and only if

03.4) I (l + \y\Γ2ynf(y)dy<oo.
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From Corollary 13.1, we have

THEOREM 13.5. If f is a nonnegatiυe measurable function on D satisfying

(13.4) such that

L>(13.5) f(y)log(2+f(y))dy<ao
JD'

for any bounded open set D' with closure in D, then Gnf is continuous on D.

LEMMA 13.4. Let ω be a positive monotone function on (0, oo) satisfying

(ωl) and

(α>5) ^ ~ 1 [ o > ( r ) ] " 1 is nondecreasing on (0, oo) for some β < 2.

Set κ 3 (r) = s u p ^ ^ i MήT1 forO<r< 2 " 1 and κ 3 (r) = K ^ " 1 ) for r>2'x.

Then

Gn(x,y)ίη(yn)T1 <Mκ'3(xn) whenever 0 < yn < 1 and 0 < xn < 2\x - y\.

PROOF. If yn > xn> 0 and |x — y\ >.xj'29 then Lemma 11.1 implies

Gn(x, yKηωr1 ^ MΛηiyjr1 ^ MlK'3(xn).

If 0 < yn < xn < 2\x — y\9 then L e m m a 11.1 implies

Thus the present lemma is proved.

By Lemma 13.4 and the proof of Theorem 11.2, we have

THEOREM 13.6. Let ω be as in Lemma 13.4. If lim r^0/c3(r) = oo and f

is a nonnegative measurable function on D satisfying (13.4) and

3.6) ί Φx
JD'

(13.6) ^i(/(y))ω(yn)dy < oo for any bounded open set D' a D,
JD'

then there exists a set E a D such that

HraXn^xeD,.E[.κ'3(xn)r1GJ(x) = 0

for any bounded open set D' <=: D and

Σ; = 1 ^^ω(2^)C B , Φ l (£ J .nβ(0 ) a); Dj(\B(0, 2a)) < oo

for any a > 0, where K = K* in Lemma 13.3 with χ = κ'3.
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THEOREM 13.7. Assume

(13.7) φ{r~ι)> M l o g ( 2 ί / r ) whenever 0<r<t

for a positive constant M and

(ω6) rLω(rΏ~1 is nondecreasing on (0, oo).

Let ψ be a positive nondecr easing continuous function on (0, oo) satisfying

conditions (A2) and {ψl)9 and set

h'(r) = τ'2(ψ(ή) with τ'2(r) = inf Γ ^^ {ω(ί)inf0< s< ί[log(2ί/s)]-1φ(5-1)}

for 0 < r < 1. If f is a nonnegative measurable function on D satisfying (13.4)

and (13.6), then there exists a set E a 3D such that Hh(E) = 0 and

for any ξedD — E and a > 0.

PROOF. For ξedD, as in the proof of Theorem 11.3, we write

Gnf'
= vi + V2 + 9ξ> a n ( i consider the set

E = \ξedD lim sup r.o[fc'(r)]"* ί Φx(f(y))ω(yn)dy>θ\.

Then, by (13.6) and Lemma 7.2, we see that Hh\E) = 0. Using (ω6), we have

for δ, 0 < 5 < 2,

1 ί Λ/ω^^Af^φίr-Xr)]-1! ΦΛf(y))ω{yJdy + M
JDnB(ξ,r) JDnB{ξ,r)

^ M2ίτ'2(r)T1 f ΦΛf(y))ω{yJdy + M^~δ.
J DnB(ξ,r)

Hence, if ξe5Z) - £, then

lim^or"1 ί
JDΐ\B(ξ,r)

Since Lemma 11.2 is still true in the present case (α = ή), gξ(x) tends to zero

as x-+ξ, xeD. By Lemmas 11.1 and 13.4, we find

vΛ*)< ί
J DnB(ξ,2\x-ξ\)-B(x,xn/2)

Gn(x, y)yn

 δdy
JDnB(ξ,2\x-ξ\)
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< M3[τ'2(χH)']'~1 &i(f(y))<D(yn)dy -f M 3 | x — ξ\n~δ

JDnB(ξ,2\χ-ξ\)

and

v2(x) < Mi I log(3xn/|x - y\)f(y)dy
JB(xtxn/2)

<M 5[ω(xM)]- 1{sup 0< r<X n / 2[log(3xπ/r)][φ(r-- 1 ) ]" 1 } f * i
JB(x,xn/2)

1 f Φ
JB(X,Xnl2)

Hence it follows that

for any ξeδD — E and any a > 0. Now Theorem 13.7 is proved.

The case p > 1 is quite similar to Theorem 11.3. In fact we can prove

THEOREM 13.8. Assume that p > 1 and (ω4) Ao/di. Let ψ be a positive
nondecreasing continuous function on (0, oo) satisfying (t/Ί), and set

\1/P'

fc'W = τί(φ{r))

for 0 < r < 2 " 1 . If f is a nonnegative measurable function on D satisfying
(13.4) am/ (1.1.2), ίλen ίΛ r̂e exists a set EczdD such that Hh»(E) = 0 and

for any ξedD - E and a > 0. If in addition τ'4(0) > 0, then

limx^X€DGJ(x) = 0

for any ξedD.

REMARK 13.3. If ω(r) = rβ and β > n(p - 1), then

τ ; ( r ) ~ r " - ' i p + V ( r " 1 ) as r >0.

Here we may assume n — np + β <n — 1, when we evaluate the size of the
exceptional sets in the boundary 3D. In the bordering case β = np — 1, ω
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does not satisfy (ω4). In this case, however, by (13.4),

ynf(y)dy = o
DnB(ξ,r)

for every ξedD — E, where H1(E)^ 0. Hence the proofs of Theorems 13.7

and 11.3 show that Gnf has nontangential limit zero at almost every boundary

point of D.

Corresponding to Theorems 8.1 and 11.4, we also 1

THEOREM 13.9. Let ω and ω* be positive nondecreasing functions on the

interval (0, oo) satisfying (ωl), (α>6) and, further,

ί ω*(s)s ι ds < ω(r) for any r >
o

Let φ be as in Theorem 13.8, and define

h*(r) = τ5#(r)> with τ*2(r) = ' m f , ^ {ω*(ί)inf0 < s < ί [log(2ί/s)Γ V ^ " 1 ) }

for 0 < r < 1. If f is a nonnegάtive measurable function on D satisfying

conditions (13.4) and(\3.6)ythen there exists a set E such that Hh*(E) = 0 and

lim r.oGn/(ξ(r)) = 0 for any ξedD-E,

where ξ(r) = ξ + Ψ{r) with Ψ(r) = (r, ^ 2 ( r ) , . . . , ^ - i W , ψ{r)).
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