# Continuity properties of potentials and Beppo-Levi-Deny functions 

Dedicated to Professor M. Ohtsuka on the occasion of his seventieth birthday

## Yoshihiro Mizuta

(Received November 11, 1991)

## 1. Introduction

In this paper we first study the behavior of Riesz potentials of functions near a given point, which may be assumed, without loss of generality, to be the origin. For $0<\alpha<n$ and a nonnegative measurable function $f$ on $R^{n}$, we define $U_{\alpha} f$ by

$$
U_{\alpha} f(x)=\int_{R^{n}}|x-y|^{\alpha-n} f(y) d y .
$$

It is easy to see that $U_{\alpha} f \not \equiv \infty$ if and only if

$$
\begin{equation*}
\int_{R^{n}}(1+|y|)^{\alpha-n} f(y) d y<\infty . \tag{1.1}
\end{equation*}
$$

By Sobolev's imbedding theorem, we know that if $f$ is a nonnegative function in $L^{p}\left(R^{n}\right)$ satisfying (1.1), and if $\alpha p>n$, then $U_{\alpha} f$ is continuous at the origin (in fact, on $R^{n}$ ); however, in case $\alpha p \leq n, U_{\alpha} f$ may fail to be continuous at the origin. Thus, our main concern in this paper is the bordering case $p=n / \alpha$, and one of our aims is to find a condition on $f$, which is stronger than the condition that $f \in L^{p}\left(R^{n}\right)$ with $p=n / \alpha$ but assures the continuity at 0 of $U_{\alpha} f$.

For this purpose, we assume that $f$ satisfies a condition of the form:

$$
\begin{equation*}
\int_{R^{n}} \Phi_{p}(f(y)) \omega(|y|) d y<\infty . \tag{1.2}
\end{equation*}
$$

Here $\Phi_{p}(r)$ and $\omega(r)$ are positive monotone functions on the interval $(0, \infty)$ with the following properties:
$(\varphi 1) \quad \Phi_{p}(r)$ is of the form $r^{p} \varphi(r)$, where $1 \leq p<\infty$ and $\varphi$ is a positive nondecreasing function on the interval $[0, \infty)$.
( $\varphi$ 2) $\quad \varphi$ is of logarithmic type, that is, there exists $A_{1}>0$ such that

$$
A_{1}^{-1} \varphi(r) \leq \varphi\left(r^{2}\right) \leq A_{1} \varphi(r) \quad \text { whenever } \quad r>0 .
$$

( $\omega 1$ ) $\omega$ satisfies the $\left(\Lambda_{2}\right)$ condition; that is, there exists $A_{2}>0$ such that

$$
A_{2}^{-1} \omega(r) \leq \omega(2 r) \leq A_{2} \omega(r) \quad \text { whenever } \quad r>0 .
$$

For example, $\varphi(r)=[\log (2+r)]^{\delta}, \delta \geq 0$, and $\omega(r)=r^{\beta}$ satisfy all the conditions. We know in [18] that if $\omega \equiv 1, p>1$ and

$$
\begin{equation*}
\int_{0}^{1}\left[\varphi\left(r^{-1}\right)\right]^{-1 /(p-1)} \frac{d r}{r}<\infty, \tag{1.3}
\end{equation*}
$$

then $U_{\alpha} f$ is continuous on $R^{n}$. Thus we aim to find a more general condition relating to both $\varphi$ and $\omega$, under which $U_{\alpha} f$ is continuous at the origin. Further, if $U_{\alpha} f$ is not continuous at 0 , then we shall find a function $\kappa$ for which $[\kappa(|x|)]^{-1} U_{\alpha} f(x)$ tends to zero as $x \rightarrow 0$, possibly avoiding an exceptional set. As an application of the existence of such fine limits, the radial limit theorems can be derived. Our results will give generalizations of those in [5] and [11], where $\varphi(r) \equiv 1$ and $\omega(r)$ is of the form $r^{\beta}$.

We also deal with the limit of $q$-th means of $U_{\alpha} f$ over the spheres $\partial B(0, r)$, where $\partial B(x, r)$ denotes the boundary of the open ball $B(x, r)$ with center at $x$ and radius $r$. In case $p=1$, our results imply Gardiner's results in [4].

If $\alpha$ is a positive integer, then $U_{\alpha} f$ is a Beppo-Levi-Deny function on $R^{n}$ (cf. Mizuta [8]); for the definition of Beppo-Levi-Deny functions, we refer the reader to Deny-Lions [3] and Mizuta [8]. Conversely, Beppo-Levi-Deny functions are represented as Riesz type potentials in [8], [16] and [19], as an extension of a result by Wallin [26]. In this paper, we give another integral representation, as a generalization of the sobolev integral representation for infinitely differentiable functions with compact support.

Moreover, we are concerned with Beppo-Levi-Deny functions $u$ on the half space $D=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n} ; x_{n}>0\right\}$ satisfying

$$
\begin{equation*}
\sum_{|\lambda|=m} \int_{G} \Phi_{p}\left(\left|(\partial / \partial x)^{\lambda} u(x)\right|\right) \omega\left(x_{n}\right) d x<\infty \tag{1.4}
\end{equation*}
$$

for any bounded open set $G \subset D$, and study the existence of limits along curves or sets tangential to the boundary $\partial D$, where $n \geq 2$ and $(\partial / \partial x)^{\lambda}=$ $\left(\partial / \partial x_{1}\right)^{\lambda_{1}} \ldots\left(\partial / \partial x_{n}\right)^{\lambda_{n}}$ for a point $x=\left(x_{1}, \ldots, x_{n}\right)$ and a multi-index $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with length $|\lambda|=\lambda_{1}+\cdots+\lambda_{n}$. If $\varphi$ satisfies condition (1.3), then $u$ is continuous on $D$ as shown in [18]. We show that $u$ has limits along the sets

$$
T_{\psi}(\xi, a)=\left\{x \in D ; \psi(|x-\xi|)<a x_{n}\right\}
$$

where $\xi \in \partial D, a>0$ and $\psi$ is a positive nondecreasing function on the interval
$(0, \infty)$. In case $\psi(r)=r$, such limits are called nontangential limits; in case $\psi(r)=r^{\beta}, \beta>1$, they are called tangential limits. First we prepare some results concerning the existence of limits at points of $\partial D$ for Riesz potentials $U_{\alpha} f$ with nonnegative measurable functions $f$ satisfying (1.1) and

$$
\int_{G} \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y<\infty \quad \text { for any bounded open set } \quad G \subset R^{n}
$$

and then apply the same discussions to the study of boundary limits of Beppo-Levi-Deny functions $u$ on $D$ satisfying condition (1.4), with the aid of the integral representations. Nagel, Rudin and Shapiro [20] proved the existence of (non) tangential limits of harmonic functions represented as Poisson integrals in $D$. Their results will correspond to ours in the case where $\alpha p>n$ or condition (1.3) holds. The size of the exceptional sets of $\xi$, at which $U_{\alpha} f$ or $u$ fails to have a boundary limit under consideration, will be evaluated by Hausdorff measures and Bessel type capacities.

Our arguments are applicable to the study of boundary limits of Green potentials $G_{\alpha} f$ defined by

$$
G_{\alpha} f(x)= \begin{cases}\int_{D}\left\{|x-y|^{\alpha-n}-|\bar{x}-y|^{\alpha-n}\right\} f(y) d y & \text { in case } \quad \alpha<n \\ \int_{D} \log (|\bar{x}-y| /|x-y|) f(y) d y & \text { in case } \quad \alpha=n\end{cases}
$$

where $\bar{x}=\left(x_{1}, \ldots, x_{n-1},-x_{n}\right)$ for $x=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$ and $f$ is a nonnegative measurable function on $D$ satisfying

$$
\int_{D^{\prime}} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y<\infty \quad \text { for any bounded open set } \quad D^{\prime} \subset D .
$$

We try to give generalizations of results in Aikawa [1], Mizuta [14], Rippon [23] and Wu [27].

In the last section, we investigate continuity properties for logarithmic potentials $L f$ in $R^{n}$, which is defined by

$$
L f(x)=\int \log \frac{1}{|x-y|} f(y) d y ;
$$

here it is natural to assume

$$
\int \log (2+|y|)|f(y)| d y<\infty .
$$

We note that if $f \in L^{p}\left(R^{n}\right)$ with $p>1$, then $L f$ is continuous on $R^{n}$. Thus we
deal mainly with functions $f$ satisfying

$$
\int \Phi_{1}(|f(y)|) \omega(|y|) d y<\infty,
$$

and give extensions of the results in [15].
The author is grateful to Professor Fumi-Yuki Maeda for a number of useful suggestions and improvements.

## 2. Preliminary lemmas

First we give several properties which follow from conditions $(\varphi 1)$ and $(\varphi 2)$ :
( $\varphi$ 3) $\varphi$ satisfies the $\left(\Delta_{2}\right)$ condition, that is, there exists $A_{3}>1$ such that

$$
\varphi(2 r) \leq A_{3} \varphi(r) \quad \text { whenever } \quad r>0 .
$$

( $\varphi 4$ ) For any $\gamma>0$, there exists $A(\gamma)>1$ such that

$$
A(\gamma)^{-1} \varphi(r) \leq \varphi\left(r^{\gamma}\right) \leq A(\gamma) \varphi(r) \quad \text { whenever } \quad r>0
$$

( $\varphi 5$ ) If $\gamma>0$, then

$$
s^{y} \varphi\left(s^{-1}\right) \leq A_{1} t^{\nu} \varphi\left(t^{-1}\right) \quad \text { whenever } \quad 0<s<t<A_{1}^{-1 / \gamma}
$$

Throughout this paper, let $M, M_{1}, M_{2}, \ldots$, denote various constants independent of the variables in question.

For $x \in R^{n}-\{0\}$, the Riesz potential $U_{\alpha} f$ of $f$ satisfying (1.1) will be written as $U_{1}+U_{2}+U_{3}$, where

$$
\begin{aligned}
& U_{1}(x)=\int_{R^{n}-B(0,2|x|)}|x-y|^{\alpha-n} f(y) d y \\
& U_{2}(x)=\int_{B(0,2|x|)-B(x,|x| / 2)}|x-y|^{\alpha-n} f(y) d y \\
& U_{3}(x)=\int_{B(x,|x| / 2)}|x-y|^{\alpha-n} f(y) d y
\end{aligned}
$$

Then we can easily find a positive constant $M$ such that

$$
\begin{equation*}
U_{1}(x) \leq M \int_{R^{n}-B(0,2|x|)}|y|^{\alpha-n} f(y) d y \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{2}(x) \leq M|x|^{\alpha-n} \int_{B(0,2|x|)} f(y) d y . \tag{2.2}
\end{equation*}
$$

Lemma 2.1. Let $p>1,0<\delta<\beta \leq n$ and $f$ be a nonnegative measurable function on $R^{n}$. If $0 \leq 2 r<a<1$, then

$$
\begin{aligned}
& \int_{R^{n}-B(0, r)}|y|^{\beta-n} f(y) d y \leq \int_{R^{n-B(0, a)}}|y|^{\beta-n} f(y) d y+M a^{\beta-\delta} \\
& \quad+M\left(\int_{r}^{a}\left[t^{n-\beta p} \eta(t)\right]^{1 /(1-p)} t^{-1} d t\right)^{1-1 / p}\left(\int_{B(0, a)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}
\end{aligned}
$$

where $\eta(t)=\varphi\left(t^{-1}\right) \omega(t)$ and $M$ is a positive constant independent of $x$ and $a$.
Proof. Let $0<a<1$ and assume that $f=0$ outside $B(0, a)$. We write

$$
\begin{aligned}
\int_{R^{n}-B(0, r)}|y|^{\beta-n} f(y) d y= & \int_{\left\{y \in R^{n}-B(0, r) ; f(y)>|y|^{-\delta}\right\}}|y|^{\beta-n} f(y) d y \\
& +\int_{\left\{y \in R^{n}-B(0, r) ; 0<f(y) \leq|y|^{-\delta}\right\}}|y|^{\beta-n} f(y) d y \\
= & U_{11}(x)+U_{12}(x) .
\end{aligned}
$$

From Hölder's inequality, we obtain

$$
\begin{aligned}
U_{11}(x) \leq & \left(\int_{\left\{y \in R^{n}-B(0, r) ; f(y)>|y|-\delta\right\}} f(y)^{p} \varphi(f(y)) \omega(|y|) d y\right)^{1 / p} \\
& \times\left(\int_{\left\{y \in R^{n}-B(0, r) ; f(y)>|y|-\delta\right\}}|y|^{\beta-n}[\varphi(f(y)) \omega(|y|)]^{-p^{\prime} \mid p} d y\right)^{1 / p^{\prime}},
\end{aligned}
$$

where $1 / p+1 / p^{\prime}=1$. By condition ( $\varphi 4$ ), we see that

$$
\varphi(f(y)) \geq \varphi\left(|y|^{-\delta}\right) \geq M_{1} \varphi\left(|y|^{-1}\right)
$$

whenever $f(y)>|y|^{-\delta}$. Hence

$$
U_{11}(x) \leq M_{2}\left(\int_{r}^{a}\left[t^{n-\beta p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}\left(\int_{R^{n}-B(0, r)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}
$$

On the other hand,

$$
U_{12}(x) \leq M_{3} \int_{B(0, a)-B(0, r)}|y|^{\beta-\delta-n} d y \leq M_{3} a^{\beta-\delta} .
$$

Thus Lemma 2.1 is proved.
For $\eta(r)=\varphi\left(r^{-1}\right) \omega(r)$, set

$$
\kappa_{1}(r)= \begin{cases}\left(\int_{r}^{1}\left[t^{n-\alpha p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}, & \text { in case } \quad p>1, \\ \sup _{r \leq t<1} t^{\alpha-n}[\eta(t)]^{-1}, & \text { in case } \quad p=1,\end{cases}
$$

where $0<r \leq 1 / 2$; further, set $\kappa_{1}(r)=\kappa_{1}(1 / 2)$ when $r>1 / 2$.
Corollary 2.1. Let $0<\delta<\alpha$ and $f$ be a nonnegative measurable function on $R^{n}$. If $0<2|x|<a<1$, then

$$
\begin{aligned}
U_{1}(x) \leq & \int_{R^{n-B(0, a)}}|x-y|^{\alpha-n} f(y) d y+M a^{\alpha-\delta} \\
& +M \kappa_{1}(|x|)\left(\int_{B(0, a)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}
\end{aligned}
$$

where $M$ is a positive constant independent of $x$ and $a$.
The case $p>1$ follows readily from (2.1) and Lemma 2.1 with $\beta=\alpha$ and $r=|x|$, and the case $p=1$ is trivial.

By using (2.2) and the case $\beta=n$ in Lemma 2.1, we can establish the following result.

Corollary 2.2. If $0<\delta<\alpha$, then there exists a positive constant $M$ such that

$$
U_{2}(x) \leq M \kappa_{2}(|x|)\left(\int_{B(0,2|x|)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}+M|x|^{\alpha-\delta}
$$

for any $x \in B(0,1 / 2)-\{0\}$, where

$$
\kappa_{2}(r)= \begin{cases}r^{\alpha-n}\left(\int_{0}^{r}[\eta(t)]^{-p^{\prime} / p} t^{n-1} d t\right)^{1 / p^{\prime}}, & \text { in case } p>1 \\ r^{\alpha-n} \sup _{0<t \leq r}[\eta(t)]^{-1}, & \text { in case } p=1\end{cases}
$$

For a set $E \subset R^{n}$ and an open set $G \subset R^{n}$, we define

$$
C_{\alpha, \boldsymbol{\Phi}_{p}}(E ; G)=\inf _{g} \int_{G} \Phi_{p}(g(y)) d y
$$

where the infinum is taken over all nonnegative measurable functions $g$ on $R^{n}$ such that $g$ vanishes outside $G$ and $U_{\alpha} g(x) \geq 1$ for every $x \in E$.

The following results can be proved easily by the definition of $C_{\alpha, \Phi_{p}}$ (cf. [11, Lemmas 1 and 2]).

Lemma 2.2. Let $G$ and $G^{\prime}$ be bounded open sets in $R^{n}$.
(i) $C_{\alpha, \Phi_{p}}(\cdot ; G)$ is countably subadditive.
(ii) If $F$ is a compact subset of $G \cap G^{\prime}$, then there exists $M>0$ such that

$$
C_{\alpha, \Phi_{p}}(E ; G) \leq M C_{\alpha, \Phi_{p}}\left(E ; G^{\prime}\right) \quad \text { for any } \quad E \subset F .
$$

(iii) If $C_{\alpha, \Phi_{p}}(E ; G)=0$, then $C_{\alpha, \Phi_{p}}\left(E \cap G^{\prime} ; G^{\prime}\right)=0$.
(iv) If $C_{\alpha, \Phi_{p}}(E ; G)=0, E \subset G$, then, for any positive nonincreasing function $\omega$ on $(0, \infty)$, there exists a nonnegative measurable function $f$ on $G$ such that $U_{\alpha} f \not \equiv \infty, U_{\alpha} f=\infty$ on $E$ and $\int_{G} \Phi_{p}(f(y)) \omega(\rho(y)) d y$ $<\infty$, where $\rho(y)$ denotes the distance of $y$ from the boundary $\partial G$.

For the reader's convenience, we give a proof for (iv). Let $\left\{a_{j}\right\}$ be a sequence of positive numbers. If we define $G_{j}=\left\{x \in G ; \rho(x)>j^{-1}\right\}$ for each positive integer $j$, then $C_{\alpha, \Phi_{p}}\left(E \cap G_{j} ; G_{j}\right)=0$ by (iii). Hence, for each $j$, we can find a nonnegative measurable function $f_{j}$ on $G_{j}$ such that $U_{\alpha} f_{j} \geq 1$ on $E \cap G_{j}$ and $\int_{G_{j}} \Phi_{p}\left(f_{j}(y)\right) d y<a_{j}$. Consider the function $f=\sup _{j} 2^{j} f_{j}$. Then $U_{\alpha} f(x) \geq 2^{j} U_{\alpha} f_{j}(x) \geq 2^{j}$ for $x \in E \cap G_{j}$, so that

$$
U_{\alpha} f(x)=\infty \quad \text { on } \quad E .
$$

On the other hand, $M=\sup _{r>0} \Phi_{p}(2 r) / \Phi_{p}(r)<\infty$ and hence

$$
\begin{aligned}
\int \Phi_{p}(f(y)) \omega(\rho(y)) d y & \leq \sum_{j} \int_{G_{j}} \Phi_{p}\left(2^{j} f_{j}(y)\right) \omega(\rho(y)) d y \\
& \leq \sum_{j} M^{j} \omega\left(j^{-1}\right) \int_{G_{j}} \Phi_{p}\left(f_{j}(y)\right) d y \\
& \leq \sum_{j} M^{j} \omega\left(j^{-1}\right) a_{j} .
\end{aligned}
$$

Now choose $\left\{a_{j}\right\}$ so that the last sum is convergent.
Lemma 2.3. Let $f$ be a nonnegative function satisfying condition (1.2), and $\chi$ be a positive function on $(0,1]$ for which there is a positive constant $M$ such that $\chi(r) \leq M \chi(s)$ whenever $0<r \leq s \leq 2 r \leq 1$. Then there exists a set $E \subset R^{n}$ such that
(i) $\lim _{x \rightarrow 0, x \in R^{n}-E}[\chi(|x|)]^{-1} U_{3}(x)=0$;
(ii) $\sum_{j=1}^{\infty}\left[K^{*}\right]^{-j} \omega\left(2^{-j}\right) C_{\alpha, \Phi_{p}}\left(E_{j} ; B_{j}\right)<\infty$,
where

$$
\begin{aligned}
& E_{j}=\left\{x \in E ; 2^{-j} \leq|x|<2^{-j+1}\right\}, \\
& B_{j}=\left\{x \in R^{n} ; 2^{-j-1}<|x|<2^{-j+2}\right\},
\end{aligned}
$$

$$
K^{*}=\sup _{0<r, s<1 / 2} \frac{\Phi_{p}(s / \chi(r))}{\Phi_{p}(s / \chi(2 r))}
$$

Proof. For a sequence $\left\{a_{j}\right\}$ of positive numbers, we set

$$
E_{j}=\left\{x \in R^{n} ; 2^{-j} \leq|x|<2^{-j+1}, U_{3}(x) \geq a_{j}^{-1} \chi(|x|)\right\}, \quad j=1,2, \ldots,
$$

and

$$
E=\bigcup_{j=1}^{\infty} E_{j} .
$$

Since $U_{3}(x) \leq \int_{B_{j}}|x-y|^{\alpha-n} f(y) d y$ if $x \in E_{j}$, we have by the definition of $C_{\alpha, \Phi_{p}}$,

$$
\begin{aligned}
C_{\alpha, \Phi_{p}}\left(E_{j} ; B_{j}\right) & \leq \int_{B_{j}} \Phi_{p}\left(M_{1} a_{j}\left[\chi\left(2^{-j}\right)\right]^{-1} f(y)\right) d y \\
& \leq K^{* j} \int_{B_{j}} \Phi_{p}\left(M_{1} a_{j}[\chi(1)]^{-1} f(y)\right) d y
\end{aligned}
$$

By condition (1.2) we can find a sequence $\left\{b_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} b_{j}=\infty$ but

$$
\sum_{j=1}^{\infty} \int_{B_{j}} b_{j} \Phi_{p}(f(y)) \omega(|y|) d y<\infty
$$

By $(\varphi 3)$ there exists $\varepsilon_{0}>1$ such that $\varphi(s t) / \varphi(t) \leq M_{2} s^{\varepsilon_{0}}$ whenever $s>1$ and $t>0$. Now let $a_{j}^{p+\varepsilon_{0}}=b_{j}$. Then, since $\sum_{j=1}^{\infty} \int_{B_{j}} \Phi_{p}\left(a_{j} f(y)\right) \omega(|y|) d y<\infty$, it follows that

$$
\sum_{j=1}^{\infty}\left[K^{*}\right]^{-j} \omega\left(2^{-j}\right) C_{\alpha, \Phi_{p}}\left(E_{j} ; B_{j}\right)<\infty
$$

Since (i) follows readily, Lemma 2.3 is established.
Remark 2.1. If $\Phi_{p}(r)=r^{p}, \omega(r)=r^{\beta}$ and $\chi(r)=r^{-(n-\alpha p+\beta) / p}$, then (ii) implies

$$
\sum_{j=1}^{\infty} 2^{-j(n-\alpha p)} C_{\alpha, p}\left(E_{j} ; B_{j}\right)<\infty,
$$

where $C_{\alpha, p}=C_{\alpha, \Phi_{p}}$ is the usual ( $\alpha, p$ )-capacity.

## 3. Fine limits

Our first aim is to establish the following result.
Theorem 3.1. If $f$ is a nonnegative measurable function on $R^{n}$ satisfying conditions (1.1) and (1.2), then there exists a set $E \subset R^{n}$ such that

$$
\lim _{x \rightarrow 0, x \in R^{n}-E} U_{\alpha} f(x)=U_{\alpha} f(0)
$$

and

$$
\sum_{j=1}^{\infty} \omega\left(2^{-j}\right) C_{\alpha, \Phi_{p}}\left(E_{j} ; B_{j}\right)<\infty,
$$

where $E_{j}$ and $B_{j}$ are as in Lemma 2.3.
Proof. If $U_{\alpha} f(0)=\infty$, then, by the lower semicontinuity of $U_{\alpha} f$, we see that $\lim _{x \rightarrow 0} U_{\alpha} f(x)=\infty=U_{\alpha} f(0)$.

If $U_{\alpha} f(0)<\infty$, then Lebesgue's dominated convergence theorem implies

$$
\lim _{x \rightarrow 0}\left[U_{1}(x)+U_{2}(x)\right]=U_{\alpha} f(0)
$$

since $|x-y|^{\alpha-n} \leq 3^{n-\alpha}|y|^{\alpha-n}$ for $y \in R^{n}-B(x,|x| / 2)$. Thus Lemma 2.3 with $\chi \equiv 1$ yields the required assertion.

In case $U_{\alpha} f(0)=\infty$, we discuss the order of infinity at the origin.
Theorem 3.2. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying conditions (1.1) and (1.2). Set $\kappa=\kappa_{1}+\kappa_{2}$. If $\lim _{r \rightarrow 0} \kappa(r)=\infty$, then there exists a set $E \subset R^{n}$ such that

$$
\lim _{x \rightarrow 0, x \in R^{n}-E}[\kappa(|x|)]^{-1} U_{\alpha} f(x)=0
$$

and

$$
\sum_{j=1}^{\infty} K^{-j} \omega\left(2^{-j}\right) C_{\alpha, \Phi_{p}}\left(E_{j} ; B_{j}\right)<\infty,
$$

where $E_{j}$ and $B_{j}$ are as before, and

$$
K=\sup _{0<r, s<1 / 2}\left[\Phi_{p}(s / \kappa(r))\right] /\left[\Phi_{p}(s / \kappa(2 r))\right]
$$

Proof. By Corollary 2.1, we have

$$
\lim \sup _{x \rightarrow 0}[\kappa(|x|)]^{-1} U_{1}(x) \leq M\left(\int_{B(0, a)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}
$$

for any $a>0$, which implies that the left hand side is equal to zero. Further, from Corollary 2.2 it follows that

$$
\lim _{x \rightarrow 0}[\kappa(|x|)]^{-1} U_{2}(x)=0
$$

Thus, applying Lemma 2.3 with $\chi=\kappa$, we can complete the proof of Theorem 3.2.

Example 3.1. In case $\eta(r)=r^{\beta}$, where $\alpha p-n \leq \beta \leq(p-1) n$, we see that

$$
\kappa(r) \sim r^{-(n-\alpha p+\beta) / p} \times \begin{cases}1 & \text { if } \alpha p-n<\beta<n(p-1) \\ \{\log (1 / r)\}^{1-1 / p} & \text { if } \beta=\alpha p-n \quad \text { or } \beta=n(p-1)\end{cases}
$$

as $r \rightarrow 0$. In addition, if $\omega(r)=r^{\beta}$ (and hence $\varphi(r) \equiv 1$ ), then $E$ in Theorem 3.2 satisfies

$$
\sum_{j=1}^{\infty} 2^{-j(n-\alpha p)} C_{\alpha, p}\left(E_{j} ; B_{j}\right)<\infty .
$$

Therefore, by use of the inversion: $x \rightarrow x /|x|^{2}$, Theorem 3.2 gives a generalization of Theorem 4.5 in [5].

If $p>1$ and

$$
\begin{equation*}
\int_{0}^{1}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t<\infty \tag{3.1}
\end{equation*}
$$

then we consider the function

$$
K(r)=\kappa(r)+[\omega(r)]^{-1 / p} \varphi^{*}(r)
$$

where

$$
\varphi^{*}(r)=\left(\int_{0}^{r}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}} .
$$

Here note that

$$
\begin{equation*}
\varphi^{*}(r) \geq M\left[r^{n-\alpha p} \varphi\left(r^{-1}\right)\right]^{-1 / p} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
K(r) \geq M\left[r^{n-\alpha p} \eta(r)\right]^{-1 / p} \tag{3.3}
\end{equation*}
$$

for $r>0$.
Theorem 3.3. Let $p>1$ and assume that (3.1) holds. If $f$ is as in Theorem 3.2 and $\lim _{r \rightarrow 0} K(r)=\infty$, then

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-1} U_{\alpha} f(x)=0 .
$$

If $K(r)$ is bounded, then $U_{\alpha} f(0)$ is finite and $U_{\alpha} f(x)$ tends to $U_{\alpha} f(0)$ as $x \rightarrow 0$.
Corollary 3.1 (cf. Theorem 1 in [18]). Let $p=n / \alpha>1$ and $\varphi^{*}(1)<\infty$. If $f$ is a nonnegative measurable function on $R^{n}$ satisfying (1.1) and $\int \Phi_{p}(f(y)) d y<\infty$, then $U_{\alpha} f$ is continuous on $R^{n}$ in the usual sense.

Proof of Theorem 3.3. Let $0<\delta<\alpha$. Since

$$
U_{3}(x)=\int_{B(0,|x| / 2)}|y|^{\alpha-n} f(x+y) d y
$$

we have by Lemma 2.1

$$
\begin{aligned}
U_{3}(x) \leq & M_{1}\left(\int_{0}^{|x| / 2}\left[r^{n-\alpha p} \varphi\left(r^{-1}\right)\right]^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}} \\
& \times\left(\int_{B(0,|x| / 2)} \Phi_{p}(f(x+y)) d y\right)^{1 / p}+M_{1}|x|^{\alpha-\delta} \\
\leq & M_{2} \varphi^{*}(|x|)[\omega(|x|)]^{-1 / p}\left(\int_{B(x,|x| / 2)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}+M_{1}|x|^{\alpha-\delta} .
\end{aligned}
$$

If $K(r) \rightarrow \infty$ as $r \rightarrow 0$, then it follows that

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-1} U_{3}(x)=0
$$

As in the proof of Theorem 3.2, we have

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-1}\left\{U_{1}(x)+U_{2}(x)\right\}=0
$$

and hence

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-1} U_{\alpha} f(x)=0 .
$$

If $K(r)$ is bounded, then $U_{3}(x) \rightarrow 0$ as $x \rightarrow 0$. Also, Corollary 2.1 implies

$$
\lim \sup _{x \rightarrow 0} U_{1}(x)<\infty,
$$

and Corollary 2.2 implies that $U_{2}(x)$ tends to zero as $x \rightarrow 0$. It follows that $U_{\alpha} f(0)<\infty$ and

$$
\lim _{x \rightarrow 0} U_{\alpha} f(x)=\lim _{x \rightarrow 0}\left\{U_{1}(x)+U_{2}(x)\right\}=U_{\alpha} f(0)
$$

as in the proof of Theorem 3.1. Thus we complete the proof of Theorem 3.3.
Here we discuss the best-possibility of Theorem 3.3 as to the order of infinity.

Proposition 3.1. Let $\alpha p=n$, and suppose $\varphi^{*}(1)<\infty$,

$$
\lim _{r \rightarrow 0}[\omega(r)]^{-1 / p} \varphi^{*}(r)=\infty \quad \text { and } \quad \lim _{r \rightarrow 0} r^{n / p^{\prime}}[\omega(r)]^{-1 / p} \varphi^{*}(r)=0
$$

Then, for any positive nondecreasing function on $a(r)$ on $(0, \infty)$ such that $\lim _{r \rightarrow 0} a(r)=\infty$, there exists a nonnegative measurable function $f$ on $R^{n}$ satisfying (1.1) and (1.2) such that

$$
\lim _{\sup _{x \rightarrow 0}} a(|x|)[\omega(|x|)]^{1 / p}\left[\varphi^{*}(|x|)\right]^{-1} U_{\alpha} f(x)=\infty .
$$

Proof. Let $\left\{j_{i}\right\}$ be a sequence of positive integers such that $j_{i}+2<j_{i+1}$ and $\sum_{i} a_{i}^{-1 / p}<\infty$, where $a_{i}=a\left(r_{i}\right)$ and $r_{i}=2^{-j_{i}}$. Setting $x^{(i)}=\left(r_{i}, 0, \ldots, 0\right) \in R^{n}$, we define

$$
f(y)=a_{i}^{-1 / p}\left[\varphi^{*}\left(r_{i}\right)\right]^{-p^{\prime} / p}\left[\omega\left(r_{i}\right)\right]^{-1 / p}\left|x^{(i)}-y\right|^{-\alpha}\left[\varphi\left(\left|x^{(i)}-y\right|^{-1}\right)\right]^{-p^{\prime} / p}
$$

if $y \in B\left(x^{(i)}, r_{i} / 2\right)$ for $i=1,2, \ldots$, and $f(y)=0$ on $R^{n}-\bigcup_{i=1}^{\infty} B\left(x^{(i)}, r_{i} / 2\right)$. Then we have

$$
\begin{aligned}
\int f(y) d y= & \sum_{i} a_{i}^{-1 / p}\left[\varphi^{*}\left(r_{i}\right)\right]^{-p^{\prime} / p}\left[\omega\left(r_{i}\right)\right]^{-1 / p} \\
& \times \int_{B\left(x^{(i)}, r_{i} / 2\right)}\left|x^{(i)}-y\right|^{-\alpha}\left[\varphi\left(\left|x^{(i)}-y\right|^{-1}\right)\right]^{-p^{\prime} / p} d y \\
\leq & M_{1} \sum_{i} a_{i}^{-1 / p}\left[\varphi^{*}\left(r_{i}\right)\right]^{-p^{\prime} / p}\left[\omega\left(r_{i}\right)\right]^{-1 / p} r_{i}^{n / p^{\prime}} \varphi^{*}\left(r_{i}\right)^{p^{\prime}} \\
= & M_{1} \sum_{i} a_{i}^{-1 / p}\left[r_{i}^{n / p^{\prime}}\left\{\omega\left(r_{i}\right)\right\}^{-1 / p} \varphi^{*}\left(r_{i}\right)\right]<\infty,
\end{aligned}
$$

so that $f$ satisfies (1.1) by our assumption. Note that $\left\{a_{i}^{-1 / p}\right\}$ and $\left\{r_{i}^{n / p^{\prime}} \omega\left(r_{i}\right)^{-1 / p} \varphi^{*}\left(r_{i}\right)\right\}$ are bounded. Hence, using (3.2), we obtain

$$
\begin{aligned}
f(y) & \leq M_{2}\left[\varphi^{*}\left(r_{i}\right)\right]^{-p^{\prime} / p}\left[r_{i}^{n / p^{\prime}} \varphi^{*}\left(r_{i}\right)\right]^{-1}\left|x^{(i)}-y\right|^{-\alpha}\left[\varphi\left(\left|x^{(i)}-y\right|^{-1}\right)\right]^{-p^{\prime} / p} \\
& \leq M_{3}\left|x^{(i)}-y\right|^{-n / p^{\prime}-\alpha}
\end{aligned}
$$

on $B\left(x^{(i)}, r_{i} / 2\right)$. Hence, in view of $(\varphi 3)$ and ( $\varphi 4$ ),

$$
\varphi(f(y)) \leq M_{4} \varphi\left(\left|x^{(i)}-y\right|^{-1}\right)
$$

there. Consequently, by condition ( $\omega 1$ ) we establish

$$
\begin{aligned}
& \int \Phi_{p}(f(y)) \omega(|y|) d y \leq M_{5} \sum_{i} a_{i}^{-1}\left[\varphi^{*}\left(r_{i}\right)\right]^{-p^{\prime}} \\
& \quad \times \int_{B\left(x^{(i)}, r_{i}\right)}\left|x^{(i)}-y\right|^{-\alpha p}\left[\varphi\left(\left|x^{(i)}-y\right|^{-1}\right)\right]^{-p^{\prime} / p} d y \leq M_{6} \sum_{i} a_{i}^{-1}<\infty,
\end{aligned}
$$

which implies that $f$ satisfies (1.2). Since

$$
\begin{aligned}
U_{\alpha} f\left(x^{(i)}\right) \geq & a_{i}^{-1 / p}\left[\varphi^{*}\left(r_{i}\right)\right]^{-p^{\prime} / p}\left[\omega\left(r_{i}\right)\right]^{-1 / p} \\
& \times \int_{B\left(x^{(i)}, r_{i} / 2\right)}\left|x^{(i)}-y\right|^{-n}\left[\varphi\left(\left|x^{(i)}-y\right|^{-1}\right)\right]^{-p^{\prime} / p} d y \\
\geq & M_{7} a_{i}^{-1 / p}\left[\omega\left(r_{i}\right)\right]^{-1 / p} \varphi^{*}\left(r_{i}\right),
\end{aligned}
$$

we find

$$
a\left(\left|x^{(i)}\right|\right)\left[\omega\left(\left|x^{(i)}\right|\right)\right]^{1 / p}\left[\varphi^{*}\left(\left|x^{(i)}\right|\right)\right]^{-1} U_{\alpha} f\left(x^{(i)}\right) \geq M_{7}\left[a\left(\left|x^{(i)}\right|\right)\right]^{1 / p^{\prime}} \longrightarrow \infty
$$

as $i \rightarrow \infty$. Thus $f$ has all the required properties.
Remark 3.1. In Proposition 3.1, if $\varphi^{*}(1)=\infty$, then we can find a nonnegative measurable function $f$ on $R^{n}$, which satisfies (1.1) and (1.2), and a set $A$, which is of the form $\bigcup_{i}\left[B\left(0,2 r_{i}\right)-B\left(0, r_{i}\right)\right]$ with some sequence $\left\{r_{i}\right\}$ of positive numbers tending to zero, such that

$$
\lim _{x \rightarrow 0, x \in A} a(|x|)[\omega(|x|)]^{1 / p}\left[\varphi^{*}(|x|)\right]^{-1} U_{\alpha} f(x)=\infty
$$

## 4. Radial limits

Before discussing the existence of radial limits of Riesz potentials, we prepare two lemmas concerning the capacity $C_{\alpha, \boldsymbol{\Phi}_{p}}$.

A mapping $T: G \rightarrow G^{\prime}$ is said to be bi-Lipschitzian if there exists $A>1$ such that

$$
A^{-1}|x-y| \leq|T x-T y| \leq A|x-y| \quad \text { for all } x, y \in G
$$

The following result can be proved easily by the definition of $C_{\alpha, \Phi_{p}}$ (cf. [11, Lemma 3]).

Lemma 4.1. Let The a bi-Lipschitzian mapping from $G$ onto $T G$. Then

$$
C_{\alpha, \Phi_{p}}(T E ; T G) \leq M C_{\alpha, \Phi_{p}}(E ; G) \quad \text { for any } E \subset G,
$$

where $M$ is a positive constant which may depend on $A$ (the Lipschitz constant of $T$ ).

For a set $E \subset R^{n}$, we denote by $\tilde{E}$ the set of all $\xi \in \partial B(0,1)$ such that $r \xi \in E$ for some $r>0$. By using Lemma 4.1 and applying the methods in the proof of Lemma 5 in [11], we can prove the following lemma.

Lemma 4.2. There exists a positive constant $M$ such that

$$
C_{\alpha, \Phi_{p}}(\tilde{E} ; B(0,4)) \leq M C_{\alpha, \Phi_{p}}(E ; B(0,4))
$$

whenever $E \subset B(0,2)-B(0,1)$.
We consider the quantity

$$
\tilde{K}=2^{-\alpha p} \sup _{t>0} \frac{\varphi\left(2^{-\alpha} t\right)}{\varphi(t)} \quad\left(\leq 2^{-\alpha p}<1\right)
$$

Lemma 4.3. If $\sum_{j=1}^{\infty} 2^{n j} \tilde{K}^{j} C_{\alpha, \oplus_{p}}\left(E_{j} ; B_{j}\right)<\infty$, then

$$
C_{\alpha, \Phi_{p}}\left(E^{*} ; B(0,2)\right)=0,
$$

where $E^{*}=\bigcap_{k=1}^{\infty}\left(\bigcup_{j=k}^{\infty} \tilde{E}_{j}\right)$.
Proof. Let $f$ be a nonnegative measurable function on $R^{n}$ such that $f=0$ outside $B_{j}$ and $U_{\alpha} f(x) \geq 1$ on $E_{j}$. If $x \in E_{j}$, then

$$
1 \leq \int_{B_{j}}|x-y|^{\alpha-n} f(y) d y=2^{-\alpha j} \int_{B_{0}}\left|2^{j} x-z\right|^{\alpha-n} f\left(2^{-j_{z}} z\right) d z
$$

Hence, by the definition of capacity $C_{\alpha, \Phi_{p}}$, we obtain

$$
\begin{aligned}
C_{\alpha, \Phi_{p}}\left(2^{j} E_{j} ; B_{0}\right) & \leq \int_{B_{0}} \Phi_{p}\left(2^{-\alpha j} f\left(2^{-j_{z}}\right)\right) d z=2^{j n} \int_{B_{j}} \Phi_{p}\left(2^{-\alpha j} f(y)\right) d y \\
& \leq 2^{j n} \tilde{K}^{j} \int_{B_{j}} \Phi_{p}(f(y)) d y
\end{aligned}
$$

which implies

$$
C_{\alpha, \Phi_{p}}\left(2^{j} E_{j} ; B_{0}\right) \leq 2^{j n} \tilde{K}^{j} C_{\alpha, \Phi_{p}}\left(E_{j} ; B_{j}\right) .
$$

Therefore it follows from Lemma 4.2 that

$$
C_{\alpha, \Phi_{p}}\left(\tilde{E}_{j} ; B(0,4)\right) \leq M_{1} C_{\alpha, \Phi_{p}}\left(2^{j} E_{j} ; B(0,4)\right) \leq M_{2} 2^{j n} \tilde{K}^{j} C_{\alpha, \Phi_{p}}\left(E_{j} ; B_{j}\right)
$$

with positive constants $M_{1}$ and $M_{2}$ independent of $j$. Thus, $C_{\alpha, \Phi_{p}}\left(E^{*} ; B(0,4)\right)$ $=0$, which together with Lemma 2.2 (iii) gives the required result.

Now we show radial limit theorems as generalizations of the results in [11].

By Lemma 4.3 and Theorem 3.1, we have
Theorem 4.1. Let $f$ be as in Theorem 3.1, and suppose

$$
\sup _{j}\left[2^{n j} \tilde{K}^{j}\right] / \omega\left(2^{-j}\right)<\infty
$$

Then there exists a set $\tilde{E} \subset \partial B(0,1)$ such that $C_{\alpha, \Phi_{p}}(\tilde{E} ; B(0,2))=0$ and

$$
\lim _{r \rightarrow 0} U_{\alpha} f(r \xi)=U_{\alpha} f(0) \quad \text { for every } \xi \in \partial B(0,1)-\tilde{E}
$$

By Lemma 4.3 and Theorem 3.2, we can prove
Theorem 4.2. Let $f, \kappa$ and $K$ be as in Theorem 3.2, and suppose

$$
\sup _{j} \frac{2^{n j} \tilde{K}^{j}}{K^{-j} \omega\left(2^{-j}\right)}<\infty
$$

If $\lim _{r \rightarrow 0} \kappa(r)=\infty$, then there exists a set $\tilde{E} \subset \partial B(0,1)$ such that $C_{\alpha, \Phi_{p}}(\tilde{E} ; B(0,2))$ $=0$ and

$$
\lim _{r \rightarrow 0}[\kappa(r)]^{-1} U_{\alpha} f(r \xi)=0 \quad \text { for every } \xi \in \partial B(0,1)-\tilde{E}
$$

Theorems 4.1 and 4.2 give generalizations of Theorems 1 and 2 in [11].

## 5. $q$-th means of potentials

For $q>0$ and a nonnegative Borel function $u$ on $R^{n}$, define

$$
S_{q}(u, r)=\left(\frac{1}{c_{n} r^{n-1}} \int_{\partial B(0, r)} u(x)^{q} d S(x)\right)^{1 / q},
$$

where $c_{n}$ denotes the area of the unit sphere $\partial B(0,1)$.
Set $R_{\alpha}(x, y)=|x-y|^{\alpha-n}, 0<\alpha<n$.
Lemma 5.1. Let $\beta=\delta q(n-\alpha)$ for $\delta>0$. Then

$$
S_{q}\left(R_{\alpha}(\cdot, y)^{\delta}, r\right) \leq M[I(|y|, r)]^{1 / q}
$$

where

$$
I(t, r)= \begin{cases}t^{-\beta} & \text { in case } t \geq 2 r, \\ r^{-\beta} & \text { in case } r / 2<t<2 r \text { and } n-1-\beta>0, \\ r^{-\beta}(|t-r| / r)^{n-1-\beta} & \text { in case } r / 2<t<2 r \text { and } n-1-\beta<0, \\ r^{-\beta} \log (2 r /|t-r|) & \text { in case } r / 2<t<2 r \text { and } n-1-\beta=0, \\ r^{-\beta} & \text { in case } t \leq r / 2,\end{cases}
$$

and $M$ is a positive constant independent of $r, t$ and $y$.
Proof. Let $t=|y|$. First we note

$$
S_{q}\left(R_{\alpha}(\cdot, y)^{\delta}, r\right) \leq M_{1}\left(\int_{0}^{1} \theta^{n-2}\left\{(t-r)^{2}+\operatorname{tr} \theta^{2}\right\}^{-\beta / 2} d \theta\right)^{1 / q}
$$

If $t \geq 2 r$, then $S_{q}\left(R_{\alpha}(\cdot, y)^{\delta}, r\right) \leq M_{2} t^{-\beta / q}$. If $t \leq r / 2$, then $S_{q}\left(R_{\alpha}(\cdot, y)^{\delta}, r\right)$ $\leq M_{3} r^{-\beta / q}$. If $r / 2<t<2 r$, then

$$
S_{q}\left(R_{\alpha}(\cdot, y)^{\delta}, r\right) \leq M_{4}\left(r^{-\beta} \int_{0}^{1} \theta^{n-2}\left\{[(t-r) / r]^{2}+\theta^{2}\right\}^{-\beta / 2} d \theta\right)^{1 / q} .
$$

Hence we obtain the required inequalities.
For $0<\beta<n$, we define an outer capacity by setting

$$
C_{\beta}(E)=C_{\beta}^{(n)}(E)=\inf \mu\left(R^{n}\right), \quad E \subset R^{n},
$$

where the infimum is taken over all nonnegative measures $\mu$ on $R^{n}$ such that

$$
\int|x-y|^{\beta-n} d \mu(y) \geq 1 \quad \text { for every } \quad x \in E .
$$

For simplicity, let $R_{+}$denote the open interval $(0, \infty)$.
Lemma 5.2. Let $0<\beta<1$ and $\mu$ be a nonnegative measure on $R_{+}$such that $\mu\left(R_{+}\right)<\infty$. Then there exists a set $E \subset R_{+}$such that

$$
\lim _{x \rightarrow 0, x \in R_{+}-E} x^{\beta} \int_{R_{+}}|x-y|^{-\beta} d \mu(y)=0
$$

and

$$
\sum_{j}{ }^{2 \beta} C_{1-\beta}\left(E_{j}\right)<\infty,
$$

where $C_{1-\beta}=C_{1-\beta}^{(1)}$ and $E_{j}=\left\{x \in E ; 2^{-j} \leq x<2^{-j+1}\right\}$.
Proof. For $x>0$, we write $\int|x-y|^{-\beta} d \mu(y)=u_{1}(x)+u_{2}(x)$, where

$$
u_{1}(x)=\int_{\{y ;|x-y|<x / 2\}}|x-y|^{-\beta} d \mu(y)
$$

and

$$
u_{2}(x)=\int_{\left\{y \in R_{+} ;|x-y| \geq x / 2\right\}}|x-y|^{-\beta} d \mu(y) .
$$

If $|x-y| \geq x / 2$, then $x^{\beta}|x-y|^{-\beta} \leq 2^{\beta}$. Hence we can apply Lebesgue's dominated convergence theorem to obtain

$$
\lim _{x \rightarrow 0} x^{\beta} u_{2}(x)=0 .
$$

For each positive integer $j$, we define

$$
E_{j}=\left\{x ; 2^{-j} \leq x<2^{-j+1}, 2^{-j \beta} u_{1}(x)>a_{j}^{-1}\right\}
$$

where $\left\{a_{j}\right\}$ is a sequence of positive integers so chosen that

$$
\lim _{j \rightarrow \infty} a_{j}=\infty
$$

and

$$
\sum_{j} a_{j} \mu\left(D_{j}\right)<\infty \quad \text { with } \quad D_{j}=\left(2^{-j-1}, 2^{-j+2}\right)
$$

Then it follows from the dual definition of $C_{1-\beta}$ that

$$
C_{1-\beta}\left(E_{j}\right) \leq a_{j} 2^{-j \beta} \mu\left(D_{j}\right) .
$$

If we set $E=\bigcup_{j} E_{j}$, then we see easily that $E$ has the required properties.
Let $I_{j}=\left[2^{-j}, 2^{-j+1}\right)$. Then we have

$$
\int_{I_{j}}|x-y|^{-\beta} d x \leq 2 \int_{0}^{2-j / 2}|x|^{-\beta} d x=2(1-\beta)^{-1}\left(2^{-j-1}\right)^{1-\beta} \equiv A_{\beta} 2^{j(\beta-1)}
$$

If $\int|x-y|^{-\beta} d \mu(y) \geq 1$ on $I_{j}$, then

$$
\begin{aligned}
\int_{I_{j}} d x & \leq \int_{I_{j}}\left(\int|x-y|^{-\beta} d \mu(y)\right) d x \\
& =\int\left(\int_{I_{j}}|x-y|^{-\beta} d x\right) d \mu(y) \leq A_{\beta} 2^{j(\beta-1)} \mu\left(R_{+}\right)
\end{aligned}
$$

which implies $2^{\beta j} C_{1-\beta}\left(I_{j}\right) \geq A_{\beta}^{-1}>0$. Thus $I_{j}-E_{j} \neq \emptyset$ for large $j$, so that Lemma 5.2 gives the following result.

Corollary 5.1. If $\mu$ and $\beta$ are as in Lemma 5.2, then

$$
\lim \inf _{x \rightarrow 0} x^{\beta} \int_{R_{+}}|x-y|^{-\beta} d \mu(y)=0
$$

Now we study the behavior at 0 of spherical means of Riesz potentials.
Theorem 5.1. Let $\alpha p>1, \quad q>0$ and $(n-\alpha p) / p(n-1)<1 / q$. If $\lim _{r \rightarrow 0} \kappa(r)=\infty$, and if $f$ is a nonnegative measurable function on $R^{n}$ satisfying conditions (1.1) and (1.2), then

$$
\lim _{r \rightarrow 0}[\kappa(r)]^{-1} S_{q}\left(U_{\alpha} f, r\right)=0 .
$$

Remark 5.1. In case $p=1$, Theorem 5.1 implies a result by Gardiner [4].
Proof of Theorem 5.1. For $x \in R^{n}$, set $E(x)=B(x,|x| / 2)$. First we consider the case $q \geq p>1$. Take $\delta$ such that

$$
0<\delta<1 \quad \text { and } \quad \frac{n-\alpha p}{p(n-\alpha)}<\delta<\frac{n-1}{q(n-\alpha)}
$$

Since $(\alpha-n)(1-\delta)+n / p^{\prime}>0$, by the computations as in the proof of Lemma 2.1 and using Hölder's inequality, we have

$$
\begin{aligned}
U_{3}(x) \leq & \left(\int_{E(x)}\left[R_{\alpha}(x, y)\right]^{(1-\delta) p^{\prime}}\left[\varphi\left(|x-y|^{-\varepsilon}\right)\right]^{-p^{\prime} / p} d y\right)^{1 / p^{\prime}} \\
& \times\left(\int_{E(x)}\left[R_{\alpha}(x, y)\right]^{\delta p} \Phi_{p}(f(y)) d y\right)^{1 / p}+\int_{E(x)}|x-y|^{\alpha-n-\varepsilon} d y \\
\leq & M_{1}|x|^{(\alpha-n)(1-\delta)+n / p^{\prime}}\left[\varphi\left(|x|^{-\varepsilon}\right)\right]^{-1 / p} \\
& \times\left(\int_{E(x)}\left[R_{\alpha}(x, y)\right]^{\delta p} \Phi_{p}(f(y)) d y\right)^{1 / p}+M_{1}|x|^{\alpha-\varepsilon},
\end{aligned}
$$

where $0<\varepsilon<\alpha$. Using Minkowski's inequality and ( $\varphi 4$ ), we obtain

$$
S_{q}\left(U_{3}, r\right)^{p} \leq M_{2}\left[r^{(\alpha-n)(1-\delta)+n / p^{\prime}}\right]^{p}\left[\varphi\left(r^{-1}\right) \omega(r)\right]^{-1}
$$

$$
\times \int_{B(0,2 r)}\left(S_{q}\left(R_{\alpha}(\cdot, y)^{\delta}, r\right)\right)^{p} \Phi_{p}(f(y)) \omega(|y|) d y+M_{2} r^{(\alpha-\varepsilon) p}
$$

Here we note

$$
\begin{equation*}
\kappa_{1}(r) \geq\left(\int_{r}^{2 r}\left[t^{n-\alpha p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}} \geq M_{3}\left[r^{n-\alpha p} \eta(r)\right]^{-1 / p} \tag{5.1}
\end{equation*}
$$

Since $\delta q<(n-1) /(n-\alpha)$, by Lemma 5.1, we find

$$
S_{q}\left(R_{\alpha}(\cdot, y)^{\delta}, r\right) \leq M_{4} r^{\delta(\alpha-n)}
$$

for $y \in B(0,2 r)$, so that

$$
\begin{equation*}
S_{q}\left(U_{3}, r\right)^{p} \leq M_{5}[\kappa(r)]^{p} \int_{B(0,2 r)} \Phi_{p}(f(y)) \omega(|y|) d y+M_{2} r^{(\alpha-\varepsilon) p} . \tag{5.2}
\end{equation*}
$$

This is true in case $p=1$, too. Since $S_{q}(u, r)$ is nondecreasing with respect to $q$, (5.2) also holds for $q$ smaller than $p$. Thus the required result holds for $U_{3}$ instead of $U_{\alpha} f$. The same fact is also valid for $U_{1}$ and $U_{2}$, in view of Corollaries 2.1 and 2.2, and hence Theorem 5.1 is established.

Theorem 5.2. Let $q>0$ and $1 / p-\alpha /(n-1)<1 / q$. If $f$ is a nonnegative measurable function on $R^{n}$ as in Theorem 5.1, then

$$
\lim \inf _{r \rightarrow 0} \kappa(r)^{-1} S_{q}\left(U_{\alpha} f, r\right)=0
$$

Proof. First we consider the case $q \geq p>1$. Take $\delta$ such that

$$
\frac{n-1}{q(n-\alpha)}<\delta<1 \quad \text { and } \quad \frac{n-\alpha p}{p(n-\alpha)}<\delta<\frac{n-1}{q(n-\alpha)}+\frac{1}{p(n-\alpha)}
$$

Then, as in the previous proof, we have

$$
\begin{aligned}
S_{q}\left(U_{3}, r\right)^{p} & \leq M_{1}\left[r^{(\alpha-n)(1-\delta)+n / p^{\prime}}\right]^{p}\left[\varphi\left(r^{-1}\right) \omega(r)\right]^{-1} \\
& \times \int_{B(0,2 r)}\left(S_{q}\left(R_{\alpha}(\cdot, y)^{\delta}, r\right)\right)^{p} \Phi_{p}(f(y)) \omega(|y|) d y+M_{1} r^{(\alpha-\varepsilon) p}
\end{aligned}
$$

Set $\beta=-p[n-1-\delta q(n-\alpha)] / q$. Then $0<\beta<1$. By Lemma 5.1, we obtain

$$
S_{q}\left(U_{3}, r\right)^{p} \leq M_{2}[\kappa(r)]^{p} \int_{B(0,2 r)}\left(\frac{| | y|-r|}{r}\right)^{-\beta} \Phi_{p}(f(y)) \omega(|y|) d y+M_{1} r^{(\alpha-\varepsilon) p} .
$$

If $p=1, q \geq 1$ and $(n-1) /(n-\alpha)<q<(n-1) /(n-\alpha-1)$, then the above inequality also holds with $\beta=n-\alpha-(n-1) / q$. Now, applying Corollary 5.1, we see that the required result holds for $U_{3}$ instead of $U_{\alpha} f$, if $q \geq p$. Thus,
using the monotonicity of $S_{q}(u, r)$ with respect to $q$, Corollaries 2.1 and 2.2 , we end the proof.

## 6. Global fine limits

Let $D$ denote the half space $\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1} ; x_{n}>0\right\}$. In this section we study the global fine limit at the boundary $\partial D$ of the Riesz potential $U_{\alpha} f$, where $f$ is a nonnegative measurable function on $R^{n}$ satisfying condition (1.1) and

$$
\begin{equation*}
\int_{G} \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y<\infty \quad \text { for any bounded open set } G \subset R^{n} \tag{6.1}
\end{equation*}
$$

recall that $\omega$ is a positive and monotone function on the interval $(0, \infty)$ satisfying the $\left(\Delta_{2}\right)$ condition (see $(\omega 1)$ ). As an application, we shall study the fine boundary limits of Beppo-Levi-Deny functions $u$ on $D$ satisfying (1.4), and give a generalization of [17, Theorem 1] (see Section 10).

In what follows, let $p>1$.
Our aim in this section is to establish
Theorem 6.1. Assume that
( $\omega 2$ ) $\quad r^{\beta-1 / p} \omega(r)^{-1 / p} \quad$ is nondecreasing on $(0, \infty)$ for some $\beta<1$.
Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (1.1) and (6.1). If ,

$$
\lim _{r \rightarrow 0} \kappa_{1}(r)=\infty,
$$

then there exists a set $E \subset D$ such that

$$
\lim _{x_{n} \rightarrow 0, x \in D^{\prime}-E}\left[\kappa_{1}\left(x_{n}\right)\right]^{-1} U_{\alpha} f(x)=0
$$

for any bounded open set $D^{\prime} \subset D$ and

$$
\sum_{j=1}^{\infty} K^{-j} \omega\left(2^{-j}\right) C_{\alpha, \Phi_{p}}\left(E_{j} \cap B(0, N) ; D_{j} \cap B(0,2 N)\right)<\infty
$$

for any $N>0$, where $K=K^{*}$ in Lemma 2.3 with $\chi=\kappa_{1}, E_{j}=\left\{x=\left(x^{\prime}, x_{n}\right) \in\right.$ $\left.E ; 2^{-j} \leq x_{n}<2^{-j+1}\right\}$ and $D_{j}=\left\{x=\left(x^{\prime}, x_{n}\right) ; 2^{-j-1}<x_{n}<2^{-j+2}\right\}$.

Remark 6.1. In case $\omega(r)=r^{\beta},(\omega 2)$ holds if and only if $\beta<p-1$. In fact, if $\beta<p-1$, then take $\beta_{1} \in[(1+\beta) / p, 1)$ and note that $r^{\beta_{1}-1 / p} \omega(r)^{-1 / p}$ is nondecreasing on ( $0, \infty$ ).

Before giving a proof of Theorem 6.1, we prepare the following result similar to Lemma 2.1.

Lemma 6.1. Let $\gamma_{1}, \gamma_{2} \geq 0, \delta>0$ and assume that $r^{\beta-1 / p} \omega(r)^{-1 / p}$ is
nondecreasing on $(0, \infty)$ for some $\beta<1+\gamma_{2}$. Let $f$ be a nonnegative measurable function on $R^{n}$. If $x=\left(x^{\prime}, x_{n}\right) \in D$ and $0 \leq s \leq x_{n} / 2<r / 4$, then

$$
\begin{aligned}
& \int_{D \cap B(x, r)-B(x, s)}|x-y|^{\alpha-n}|\bar{x}-y|^{-\gamma_{1}} y_{n}^{\gamma_{2}} f(y) d y \\
& \quad \leq M F(r)\left\{\left(\int_{x_{n}}^{r}\left[t^{n-\alpha p+\left(\gamma_{1}-\gamma_{2}\right) p} \varphi\left(t^{-1}\right) \omega(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}\right. \\
& \left.\quad+x_{n}^{-\gamma_{1}+\gamma_{2}}\left[\omega\left(x_{n}\right)\right]^{-1 / p}\left(\int_{s}^{x_{n}}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}\right\} \\
& \quad+M \int_{D \cap B(x, r)-B(x, s)}|x-y|^{\alpha-n-\delta}|\bar{x}-y|^{-\gamma_{1}} y_{n}^{\gamma_{2}} d y
\end{aligned}
$$

where $\bar{x}=\left(x^{\prime},-x_{n}\right)$ and $F(r)=\left(\int_{D \cap B(x, r)} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y\right)^{1 / p}$.
Proof. As in the proof of Lemma 2.1, we have by Hölder's inequality

$$
\begin{aligned}
& \int_{D \cap B(x, r)-B(x, s)}|x-y|^{\alpha-n}|\bar{x}-y|^{-\gamma_{1}} y_{n}^{\gamma_{2}} f(y) d y \\
& \quad \leq F(r) J+\int_{D \cap B(x, r)-B(x, s)}|x-y|^{\alpha-n-\delta}|\bar{x}-y|^{-\gamma_{1}} y_{n}^{\gamma_{2}} d y
\end{aligned}
$$

where

$$
J=\left(\int_{D_{B}(x, r)-B(x, s)}\left[|x-y|^{\alpha-n}|\bar{x}-y|^{-\gamma_{1}}\left\{\varphi\left(|x-y|^{-\delta}\right) \omega\left(y_{n}\right)\right\}^{-1 / p} y_{n}^{\gamma_{2}}\right]^{p^{\prime}} d y\right)^{1 / p^{\prime}}
$$

In order to evaluate $J$, we set

$$
J_{j}=\left(\int_{E_{j}}\left[|x-y|^{\alpha-n}|\bar{x}-y|^{-\gamma_{1}}\left\{\varphi\left(|x-y|^{-\delta}\right) \omega\left(y_{n}\right)\right\}^{-1 / p} y_{n}^{\gamma_{2}}\right]^{p^{\prime}} d y\right)^{1 / p^{\prime}}
$$

where

$$
\begin{aligned}
& E_{1}=\left\{y \in B(x, r)-B(x, s) ; y_{n}>x_{n} / 2\right\}, \\
& E_{2}=\left\{y \in D \cap B(x, r)-B(x, s) ; y_{n}<x_{n} / 2\right\} .
\end{aligned}
$$

Since $y_{n} \leq x_{n}+|x-y|$, we see from condition ( $\omega 2$ ) that

$$
y_{n}^{\beta-1 / p}\left[\omega\left(y_{n}\right)\right]^{-1 / p} \leq\left(x_{n}+|x-y|\right)^{\beta-1 / p}\left[\omega\left(x_{n}+|x-y|\right)\right]^{-1 / p}
$$

for $y \in D$. Set $t=|x-y|$ and $\left|x_{n}-y_{n}\right|=t \cos \theta$, and note

$$
3 y_{n} \geq\left|x_{n}-y_{n}\right|+x_{n} \geq\left(t+x_{n}\right) \cos \theta \quad \text { for any } \quad y \in E_{1}
$$

Since $p^{\prime}\left(\gamma_{2}-\beta+1 / p\right)>-1$, we see that

$$
\int_{0}^{\pi / 2}(\cos \theta)^{p^{\prime}\left(\gamma_{2}-\beta+1 / p\right)} d \theta<\infty .
$$

If $\gamma_{2}-\beta+1 / p<0$, then, applying polar coordinates about $x$, we have

$$
\begin{aligned}
J_{1} \leq & M_{1}\left(\int_{s}^{r}\left[t^{\alpha-n}\left\{\varphi\left(t^{-1}\right) \omega\left(x_{n}+t\right)\right\}^{-1 / p}\left(x_{n}+t\right)^{-\gamma_{1}+\beta-1 / p}\right]^{p^{\prime}}\right. \\
& \left.\times\left(x_{n}+t\right)^{p^{\prime}\left(\gamma_{2}-\beta+1 / p\right)} t^{n-1} d t\right)^{1 / p^{\prime}} \\
\leq & M_{2}\left(\int_{x_{n}}^{r}\left[t^{\alpha-n / p-\gamma_{1}+\gamma_{2}}\left\{\varphi\left(t^{-1}\right) \omega(t)\right\}^{-1 / p}\right]^{p^{\prime}} t^{-1} d t\right)^{1 / p^{\prime}} \\
& +M_{2} x_{n}^{-\gamma_{1}+\gamma_{2}}\left[\omega\left(x_{n}\right)\right]^{-1 / p}\left(\int_{s}^{x_{n}}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}} .
\end{aligned}
$$

Similarly, if $\gamma_{2}-\beta+1 / p \geq 0$, then, noting $y_{n} \leq x_{n}+|x-y|$, we derive the same estimate of $J_{1}$ as above. Next, since $y_{n} \leq|z-y|$ if $y \in E_{2}$, where $z=\left(x^{\prime}, 0\right)$, by the condition on $\omega$ again, we have

$$
\left[\omega\left(y_{n}\right)\right]^{-1 / p} \leq y_{n}^{-\beta+1 / p}|z-y|^{\beta-1 / p}[\omega(|z-y|)]^{-1 / p}
$$

for $y \in E_{2}$. Consequently, by using polar coordinates about $z$, we obtain

$$
\begin{aligned}
J_{2} \leq & M_{3} x_{n}^{\alpha-n-\gamma_{1}+\beta-1 / p}\left\{\varphi\left(x_{n}^{-1}\right) \omega\left(x_{n}\right)\right\}^{-1 / p}\left(\int_{D_{\cap} B\left(z, x_{n} / 2\right)} y_{n}^{p^{\prime}\left(1 / p-\beta+\gamma_{2}\right)} d y\right)^{1 / p^{\prime}} \\
& +M_{3}\left(\int_{x_{n} / 2}^{r}\left[t^{\alpha-n / p-\gamma_{1}+\gamma_{2}}\left\{\varphi\left(t^{-1}\right) \omega(t)\right\}^{-1 / p}\right]^{p^{\prime}} t^{-1} d t\right)^{1 / p^{\prime}} \\
\leq & M_{4} x_{n}^{\alpha-n / p-\gamma_{1}+\gamma_{2}}\left[\varphi\left(x_{n}^{-1}\right) \omega\left(x_{n}\right)\right]^{-1 / p} \\
& +M_{4}\left(\int_{x_{n} / 2}^{r}\left[t^{\alpha-n / p-\gamma_{1}+\gamma_{2}}\left\{\varphi\left(t^{-1}\right) \omega(t)\right\}^{-1 / p}\right]^{p^{\prime}} t^{-1} d t\right)^{1 / p^{\prime}} \\
\leq & M_{5}\left(\int_{x_{n}}^{r}\left[t^{\alpha-n / p-\gamma_{1}+\gamma_{2}}\left\{\varphi\left(t^{-1}\right) \omega(t)\right\}^{-1 / p}\right]^{p^{\prime}} t^{-1} d t\right)^{1 / p^{\prime}}
\end{aligned}
$$

the last inequality follows from the $\left(\Delta_{2}\right)$ conditions on $\varphi$ and $\omega$ (see (5.1)). Now our lemma is proved.

Remark 6.2. If $\alpha-\delta-\gamma_{1}+\gamma_{2}>0$, then

$$
\int_{D \cap B(x, r)-B(x, s)}|x-y|^{\alpha-n-\delta}|\bar{x}-y|^{-\gamma_{1}} y_{n}^{\gamma_{2}} d y \leq M r^{\alpha-\delta-\gamma_{1}+\gamma_{2}}
$$

Remark 6.3. The above proof shows that if $\omega$ is as in Lemma 6.1, then

$$
\begin{aligned}
& \left(\int_{B(x, r)-B(x, s)}\left[|x-y|^{\alpha-n}\left\{\varphi\left(|x-y|^{-1}\right) \omega\left(\left|y_{n}\right|\right)\right\}^{-1 / p}\left|y_{n}\right|^{\gamma_{2}}\right]^{p^{\prime}} d y\right)^{1 / p^{\prime}} \\
& \quad \leq M\left(\int_{x_{n}}^{r}\left[t^{\alpha-n / p+\gamma_{2}}\left\{\varphi\left(t^{-1}\right) \omega(t)\right\}^{-1 / p}\right]^{p^{\prime}} t^{-1} d t\right)^{1 / p^{\prime}} \\
& \quad+M x_{n}^{\gamma_{2}}\left[\omega\left(x_{n}\right)\right]^{-1 / p}\left(\int_{s}^{x_{n}}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}
\end{aligned}
$$

In view of Remark 6.3, we obtain
Lemma 6.2. Let $0<\delta<\alpha$ and assume that $\omega$ satisfies ( $\omega 2$ ). Let $f$ be a nonnegative measurable function on $R^{n}$. If $x=\left(x^{\prime}, x_{n}\right) \in D$ and $0 \leq s \leq 2^{-1} x_{n}<$ $4^{-1} r$, then

$$
\begin{aligned}
& \int_{B(x, r)-B(x, s)}|x-y|^{\alpha-n} f(y) d y \\
& \quad \leq M\left(\int_{B(x, r)} \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y\right)^{1 / p}\left\{\left(\int_{x_{n}}^{r}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right) \omega(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}\right. \\
& \left.\quad+\left[\omega\left(x_{n}\right)\right]^{-1 / p}\left(\int_{s}^{x_{n}}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}\right\}+M r^{\alpha-\delta} .
\end{aligned}
$$

Proof of Theorem 6.1. For $x=\left(x^{\prime}, x_{n}\right) \in D$, we write $U_{\alpha} f(x)=u_{1}(x)+$ $u_{2}(x)$, where

$$
\begin{aligned}
& u_{1}(x)=\int_{R^{n}-B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y) d y, \\
& u_{2}(x)=\int_{B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y) d y
\end{aligned}
$$

For $a>1$ and a bounded open set $D^{\prime}$ in $D$, let $D^{\prime}(a)=\left\{x=\left(x^{\prime}, x_{n}\right) \in D^{\prime} ; 0<\right.$ $\left.x_{n}<a\right\}$. For $x \in D^{\prime}(a)$, write

$$
\begin{aligned}
u_{1}(x) & =\int_{R^{n}-B(x, 2 a)}|x-y|^{\alpha-n} f(y) d y+\int_{B(x, 2 a)-B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y) d y \\
& =u_{11}(x)+u_{12}(x)
\end{aligned}
$$

By condition (1.1), we see that $u_{11}$ is bounded on $D^{\prime}(a)$, so that

$$
\lim _{x_{n} \rightarrow 0, x \in D^{\prime}}\left[\kappa_{1}\left(x_{n}\right)\right]^{-1} u_{11}(x)=0
$$

For $u_{12}$, we obtain by Lemma 6.2,

$$
u_{12}(x) \leq M_{1} \kappa_{1}\left(x_{n}\right)\left(\int_{D^{\prime \prime}} \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y\right)^{1 / p}+M_{1}
$$

for any $x \in D^{\prime}$, where $D^{\prime \prime}=\bigcup_{x \in D^{\prime}} B(x, 2 a)$. Hence it follows that $\left[\kappa_{1}\left(x_{n}\right)\right]^{-1} u_{12}(x)$ tends to zero as $x_{n} \rightarrow 0, x \in D^{\prime}$. To complete the proof, take a sequence $\left\{a_{j}\right\}$ of positive numbers such that

$$
\sum_{j=1}^{\infty} \int_{B_{j}} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y<\infty
$$

where $B_{j}=\left\{x=\left(x^{\prime}, x_{n}\right) \in D \cap B(0,2 j) ; 0<x_{n}<a_{j}\right\}$. Further take a sequence $\left\{b_{j, \ell}\right\}$ of positive numbers such that

$$
\lim _{\ell \rightarrow \infty} b_{j, \ell}=\infty
$$

and

$$
\sum_{j=1}^{\infty}\left(\sum_{\left\{\ell ; 2^{-\ell} \leq a_{j} / 2\right\}} \int_{\Delta_{j, \ell}} \Phi_{p}\left(b_{j, \ell} f(y)\right) \omega\left(y_{n}\right) d y\right)<\infty
$$

where $\Delta_{j, \ell}=B_{j} \cap D_{\ell}$ when $2^{-\ell} \leq a_{j} / 2$; cf. the proof of Lemma 2.3. As in the proof of Lemma 2.3, we consider the sets

$$
E_{j, \ell}=\left\{x \in D \cap B(0, j) ; 2^{-\ell} \leq x_{n}<2^{-\ell+1}, u_{2}(x) \geq b_{j, \ell}^{-1} \kappa_{1}\left(x_{n}\right)\right\}
$$

for $j$ and $\ell$ such that $2^{-\ell} \leq a_{j} / 2$; we set $E_{j, \ell}=\emptyset$ for other $(j, \ell)$. If $x \in E_{j, \ell} \cap B(0, a)$, then, since $B\left(x, x_{n} / 2\right) \subset \Delta_{j, \ell} \cap B(0,2 a)$, we find

$$
\begin{aligned}
C_{\alpha, \Phi_{p}}\left(E_{j, \ell} \cap B(0, a) ; D_{\ell} \cap B(0,2 a)\right) & \leq M_{1} \int_{\Delta_{j, \ell}} \Phi_{p}\left(b_{j, \ell} \kappa_{1}\left(2^{-\ell}\right)^{-1} f(y)\right) d y \\
& \leq M_{4} K^{\ell}\left[\omega\left(2^{-\ell}\right)\right]^{-1} \int_{\Delta_{j, \ell}} \Phi_{p}\left(b_{j, \ell} f(y)\right) \omega\left(y_{n}\right) d y .
\end{aligned}
$$

Define $E=\bigcup_{j, \ell} E_{j, \ell}$. We see that $E_{\ell} \cap B(0, a) \subset \bigcup_{\left\{j ; 2^{\left.-\iota \leq a_{j} / 2\right\}}\right.} E_{j, \ell} \cap B(0, a)$, so that $E$ has all the required properties. Hence the proof of Theorem 6.1 is completed.

Remark 6.4. If $\kappa_{1}$ is bounded, then we can take $K=1$ in Theorem 6.1. Hence, in view of the proof of Theorem 6.1, $U_{\alpha} f(x)$ tends to $U_{\alpha} f(\xi)$ as $x \rightarrow \xi, x \in D-E$, for any $\xi \in \partial D$, where

$$
\sum_{j=1}^{\infty} \omega\left(2^{-j}\right) C_{\alpha, \Phi_{p}}\left(E_{j} \cap B(0, N) ; D_{j} \cap B(0,2 N)\right)<\infty
$$

for any $N>0$.

## 7. $T_{\psi}$-limits

Let $\psi$ be a positive nondecreasing continuous function on the interval $(0, \infty)$ satisfying the $\left(\Delta_{2}\right)$ condition and the following:
$(\psi 1) \quad r^{-1} \psi(r) \quad$ is nondecreasing on the interval $(0, \infty)$.
For $a>0$ and $\xi \in \partial D$, we set

$$
T_{\psi}(\xi, a)=\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1} ; \psi(|x-\xi|)<a x_{n}\right\} .
$$

We say that a function $u$ has a $T_{\psi}$-limit $\ell$ at $\xi \in \partial D$ if

$$
\lim _{x \rightarrow \xi, x \in T_{\psi}(\xi, a)} u(x)=\ell
$$

for any $a>0$; if $\psi(r)=r^{\eta}$, then we say " $T_{\gamma}$-limit" instead of $T_{\psi}$-limit. We here discuss the existence of $T_{\psi}$-limits of Riesz potentials $U_{\alpha} f$ for functions $f$ satisfying condition (6.1), when $\varphi$ satisfies a condition similar to (1.3).

We consider the quantity

$$
C_{\alpha, \Phi_{p}, \omega}(E ; G)=\inf \int_{G} \Phi_{p}(g(y)) \omega\left(\left|y_{n}\right|\right) d y
$$

for a set $E$ and an open set $G$, where the infimum is taken over all nonnegative measurable functions $g$ on $G$ such that $\int_{G}|x-y|^{\alpha-n} g(y) d y \geq 1$ for every $x \in E$. For simplicity, we write

$$
C_{\alpha, \Phi_{p}, \omega}(E)=0
$$

if $C_{\alpha, \Phi_{p}, \omega}(E \cap G ; G)=0$ for any bounded open set $G \subset R^{n}$. In case $\omega(r)=r^{\beta}$, we write $C_{\alpha, \Phi_{p}, \beta}$ for $C_{\alpha, \Phi_{p}, \omega}$; with this notation, remark $C_{\alpha, \Phi_{p}, 0}=C_{\alpha, \Phi_{p}}$.

Let $h$ be a positive nondecreasing function on $(0, \infty)$ satisfying the $\left(\Delta_{2}\right)$ condition. We denote by $H_{h}$ the Hausdorff measure with the measure function $h$. Set

$$
E_{f}=\left\{\xi \in \partial D ; \int|\xi-y|^{\alpha-n} f(y) d y=\infty\right\}
$$

and

$$
F_{f, h}=\left\{\xi \in \partial D ; \lim \sup _{r \rightarrow 0}[h(r)]^{-1} \int_{B(\xi, r)} \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y>0\right\}
$$

for a nonnegative measurable function $f$ on $R^{n}$.
By the definition of $C_{\alpha, \Phi_{p}, \omega}$, we have

Lemma 7.1. If $f$ is a nonnegative measurable function on $R^{n}$ satisfying (1.1) and (6.1), then

$$
C_{\alpha, \Phi_{p}, \omega}\left(E_{f}\right)=0
$$

Applying a covering lemma ([25, Lemma 1.6, Chapter 1]), we prove
Lemma 7.2. Let h be a positive nondecreasing function on $(0, \infty)$ satisfying the $\left(\Delta_{2}\right)$ condition. Let $g$ be a nonnegative function in $L^{1}\left(R^{n}\right)$ and set

$$
F=\left\{\xi \in \partial D ; \lim \sup _{r \rightarrow 0}[h(r)]^{-1} \int_{B(\xi, r)} g(y) d y>0\right\} .
$$

Then $H_{h}(F)=0$.
Proof. For $\varepsilon>0$, consider the set

$$
F(\varepsilon)=\left\{\xi \in \partial D ; \lim \sup _{r \rightarrow 0}[h(r)]^{-1} \int_{B(\xi, r)} g(y) d y>\varepsilon\right\} .
$$

Let $\delta>0$. By definition, for each $\xi \in F(\varepsilon)$, there exists a number $r(\xi)$ such that $0<r(\xi)<\delta$ and

$$
\int_{B(\xi, r(\xi))} g(y) d y \geq \varepsilon h(r(\xi)) .
$$

By using the covering lemma mentioned above, we can find a disjoint family $\left\{B\left(\xi_{j}, r_{j}\right)\right\}$ of balls such that $\xi_{j} \in F(\varepsilon), r_{j}=r\left(\xi_{j}\right)$ and $\left\{B\left(\xi_{j}, 5 r_{j}\right)\right\}$ covers $F(\varepsilon)$. Then note

$$
\begin{aligned}
\sum_{j} h\left(5 r_{j}\right) & \leq M_{1} \sum_{j} h\left(r_{j}\right) \\
& \leq M_{1} \varepsilon^{-1} \sum_{j} \int_{B\left(\xi_{j}, r_{j}\right)} g(y) d y \\
& \leq M_{1} \varepsilon^{-1} \int_{D(\delta)} g(y) d y
\end{aligned}
$$

where $D(\delta)=\bigcup_{\xi \in D D} B(\xi, \varepsilon)$. Letting $\delta \rightarrow 0$, we find

$$
H_{h}(F(\varepsilon))=0,
$$

which implies $H_{h}(F)=0$.
Corollary 7.1. If $f$ is a nonnegative measurable function on $R^{n}$ satisfying (1.1) and (6.1), then

$$
H_{h}\left(F_{f, h}\right)=0
$$

for any measure function $h$.
Remark 7.1. If $h(0)>0$, then $F_{f, h}$ is empty.
Lemma 7.3. Let $\omega$ be a monotone function on $(0, \infty)$ satisfying $(\omega 1),(\omega 2)$ and
( $\omega 3$ ) $\quad r^{\beta} \omega(r) \quad$ is nondecreasing on $(0, \infty)$ for some $\beta<1$.
Then, for any $a>0$, there exists $M>1$ such that

$$
M^{-1}\left[\kappa_{1, a}(r)\right]^{-p} \leq C_{\alpha, \Phi_{p}, \omega}(B(0, r) ; B(0, a)) \leq M\left[\kappa_{1, a}(r)\right]^{-p}
$$

whenever $0<r<a / 2$, where

$$
\kappa_{1, a}(r)=\left(\int_{r}^{a}\left[t^{n-\alpha p} \eta(t)\right]^{-p^{\prime} / p} \frac{d t}{t}\right)^{1 / p^{\prime}}
$$

with $\eta(r)=\varphi\left(r^{-1}\right) \omega(r)$.
Proof. If suffices to prove the required inequality for $a=1$, by considering a change of variables: $x \rightarrow a x$; in this case, $\kappa_{1, a}=\kappa_{1}$. Consider the function

$$
f_{r}(y)= \begin{cases}|y|^{-\alpha}\left[|y|^{n-\alpha p} \eta(|y|)\right]^{-p^{\prime} / p} & \text { if } y \in B(0,1)-B(0, r) \\ 0 & \text { otherwise }\end{cases}
$$

If $x \in B(0, r)$, then $|x-y| \leq 2|y|$ for $y \in B(0,1)-B(0, r)$, so that

$$
\begin{aligned}
\int|x-y|^{\alpha-n} f_{r}(y) d y & \geq 2^{\alpha-n} \int_{B(0,1)-B(0, r)}|y|^{-n}\left[|y|^{n-\alpha p} \eta(|y|)\right]^{-p^{\prime} / p} d y \\
& \geq M_{1}\left[\kappa_{1}(r)\right]^{p^{\prime}} .
\end{aligned}
$$

Hence it follows that

$$
C_{\alpha, \Phi_{p}, \omega}(B(0, r) ; B(0,1)) \leq \int \Phi_{p}\left(\frac{f_{r}(y)}{M_{1}\left[\kappa_{1}(r)\right]^{p^{\prime}}}\right) \omega\left(\left|y_{n}\right|\right) d y .
$$

By $(\omega 2)$, there exists $\beta_{1}<1$ such that $\omega(|y|)^{-1 / p} \leq M_{2}|y|^{-\beta_{1}+1 / p}$ for $y \in B(0,1)$, so that

$$
\frac{f_{r}(y)}{\left[\kappa_{1}(r)\right]^{p^{\prime}}} \leq M_{3} \frac{|y|^{-\beta}}{\left[\kappa_{1}\left(2^{-1}\right)\right]^{p^{\prime}}}
$$

whenever $y \in B(0,1)$, for $\beta=\alpha+(n-\alpha p) p^{\prime} / p+\left(\beta_{1}-1 / p\right) p^{\prime}$. Thus we find

$$
\Phi_{p}\left(\frac{f_{r}(y)}{M_{1}\left[\kappa_{1}(r)\right]^{p^{\prime}}}\right) \leq M_{4}\left(\frac{f_{r}(y)}{\left[\kappa_{1}(r)\right]^{p^{\prime}}}\right)^{p} \varphi\left(|y|^{-\beta}\right)
$$

$$
\leq M_{5}\left[\kappa_{1}(r)\right]^{-p p^{\prime}}|y|^{-\alpha p}\left[|y|^{n-\alpha p} \eta(|y|)\right]^{-p^{\prime}} \varphi\left(|y|^{-1}\right)
$$

On the other hand, by $(\omega 3), r^{\beta_{2}} \omega(r)$ is nondecreasing on $(0, \infty)$ for some $\beta_{2}<1$. Consequently we establish

$$
\begin{aligned}
& C_{\alpha, \Phi_{p}, \omega}(B(0, r) ; B(0,1)) \\
& \quad \leq M_{5}\left[\kappa_{1}(r)\right]^{-p p^{\prime}} \int_{B(0,1)-B(0, r)}\left[|y|^{n-\alpha p} \eta(|y|)\right]^{-p^{\prime}}|y|^{-\alpha p} \varphi\left(|y|^{-1}\right) \omega\left(\left|y_{n}\right|\right) d y \\
& \quad \leq\left. M_{5}\left[\kappa_{1}(r)\right]^{-p p^{\prime}} \int_{B(0,1)-B(0, r)}\left[|y|^{n-\alpha p} \eta(|y|)\right]^{-p^{\prime}}|y|^{-\alpha p} \eta(|y|)|y|\right|^{\beta_{2}}\left|y_{n}\right|^{-\beta_{2}} d y \\
& \quad \leq M_{6}\left[\kappa_{1}(r)\right]^{-p} .
\end{aligned}
$$

Conversely, take a nonnegative measurable function $g$ on $R^{n}$ such that $g=0$ outside $B(0,1)$ and $U_{\alpha} g \geq 1$ on $B(0, r)$. Then we have

$$
\begin{aligned}
\int_{B(0, r)} d x & \leq \int_{B(0, r)}\left(\int|x-y|^{\alpha-n} g(y) d y\right) d x \\
& =\int\left(\int_{B(0, r)}|x-y|^{\alpha-n} d x\right) g(y) d y \\
& \leq M_{7} r^{n} \int(r+|y|)^{\alpha-n} g(y) d y
\end{aligned}
$$

Let $\varepsilon>0$ and $0<\delta<\alpha$. As in the proofs of Lemmas 2.1 and 6.1, Hölder's inequality gives

$$
\begin{aligned}
\int(r & +|y|)^{\alpha-n} g(y) d y \\
& =\int_{\left\{y ; g(y)>\left.\varepsilon|y|\right|^{-\delta}\right\}}(r+|y|)^{\alpha-n} g(y) d y+\int_{\{y ; 0<g(y) \leq \varepsilon|y|-\delta\}}(r+|y|)^{\alpha-n} g(y) d y \\
& \leq\left(\int_{B(0,1)}\left[(r+|y|)^{\alpha-n}\left\{\varphi\left(\varepsilon|y|^{-\delta}\right) \omega\left(\left|y_{n}\right|\right)\right\}^{-1 / p}\right]^{p^{\prime}} d y\right)^{1 / p^{\prime}} \\
& \times\left(\int \Phi_{p}(g(y)) \omega\left(\left|y_{n}\right|\right) d y\right)^{1 / p}+\varepsilon \int_{B(0,1)}(r+|y|)^{\alpha-n}|y|^{-\delta} d y
\end{aligned}
$$

By ( $\varphi 3$ ) and ( $\varphi 4$ ),

$$
\left[\varphi\left(\varepsilon t^{-\delta}\right)\right]^{-1 / p} \leq M(\varepsilon)\left[\varphi\left(t^{-\delta}\right)\right]^{-1 / p} \leq M(\varepsilon) M_{8}\left[\varphi\left(t^{-1}\right)\right]^{-1 / p}
$$

for any $t>0$. By condition ( $\omega 2$ ),

$$
\omega\left(\left|y_{n}\right|\right)^{-1 / p} \leq\left|y_{n}\right|^{1 / p-\beta_{1}} r^{\beta_{1}-1 / p} \omega(r)^{-1 / p}
$$

for $y \in B(0, r)$, where $\beta_{1}<1$. Hence,

$$
\begin{aligned}
& \left(\int_{B(0, r)}\left[(r+|y|)^{\alpha-n}\left\{\varphi\left(\varepsilon|y|^{-\delta}\right) \omega\left(\left|y_{n}\right|\right)\right\}^{-1 / p}\right]^{p^{\prime}} d y\right)^{1 / p^{\prime}} \\
& \quad \leq M(\varepsilon) M_{8} r^{\alpha-n+\beta_{1}-1 / p}[\eta(r)]^{-1 / p}\left(\int_{B(0, r)} \mid y_{n} p^{p^{\prime}\left(1 / p-\beta_{1}\right)} d y\right)^{1 / p^{\prime}} \\
& \quad \leq M(\varepsilon) M_{9}\left[r^{n-\alpha p} \eta(r)\right]^{-1 / p} \leq M(\varepsilon) M_{10} \kappa_{1}(r)
\end{aligned}
$$

by (5.1). Similarly,

$$
\begin{aligned}
& \left(\int_{B(0,1)-B(0, r)}\left[(r+|y|)^{\alpha-n}\left\{\varphi\left(\varepsilon|y|^{-\delta}\right) \omega\left(\left|y_{n}\right|\right)\right\}^{-1 / p}\right]^{p^{\prime}} d y\right)^{1 / p^{\prime}} \\
& \left.\quad \leq M(\varepsilon) M_{8} \int_{B(0,1)-B(0, r)} t^{p^{\prime}(\alpha-n)}\left[\eta(t) t^{p \beta_{1}-1}\right]^{-p^{\prime} / p}\left|y_{n}\right|^{p^{\prime}\left(1 / p-\beta_{1}\right)} d y\right)^{1 / p^{\prime}}, \quad t=|y|, \\
& \quad \leq M(\varepsilon) M_{11}\left(\int_{r}^{1}\left[t^{n-\alpha p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}} .
\end{aligned}
$$

Thus we derive

$$
\int(r+|y|)^{\alpha-n} g(y) d y \leq M(\varepsilon) M_{12} \kappa_{1}(r)\left(\int \Phi_{p}(g(y)) \omega\left(\left|y_{n}\right|\right) d y\right)^{1 / p}+M_{12} \varepsilon
$$

so that

$$
1 \leq M(\varepsilon) M_{13} \kappa_{1}(r)\left[C_{\alpha, \Phi_{p}, \omega}(B(0, r) ; B(0,1))\right]^{1 / p}+M_{13} \varepsilon .
$$

If $M_{13} \varepsilon=1 / 2$, then we establish

$$
M_{14}\left[\kappa_{1}(r)\right]^{-p} \leq C_{\alpha, \Phi_{p}, \omega}(B(0, r) ; B(0,1))
$$

By using a covering lemma (cf. [25, Lemma 1.6, Chapter 1]), we have
Corollary 7.2. Let $\omega$ be as in Lemma 7.3. If $G$ and $G^{\prime}$ are bounded open sets in $R^{n}$ such that $\bar{G}^{\prime} \subset G$, then there exists $M>0$, depending on the distance between $\partial G^{\prime}$ and $\partial G$, such that

$$
C_{\alpha, \Phi_{p}, \omega}(E ; G) \leq M H_{h}(E)
$$

for any set $E \subset \partial D \cap G^{\prime}$, where $h(r)=\left[\kappa_{1}(r)\right]^{-p}$.
In view of Theorem 12.2 given later, we have
Corollary 7.3. Let $-1<\beta<p-1$, and assume $C_{\alpha, \Phi_{p}, \beta}(E)=0$. If $E \subset \partial D$, then $E$ has Hausdorff dimension at most $n-\alpha p+\beta$; if $E \subset D$, then $E$ has Hausdorff dimension at most $n-\alpha p$.

Corollary 7.4. Let $\omega$ be as in Lemma 7.3. Then, for $x_{0} \in \partial D$,

$$
C_{\alpha, \Phi_{p}, \omega}\left(\left\{x_{0}\right\}\right)=0 \quad \text { if and only if } \quad \kappa_{1}(0)=\infty
$$

For $x_{0} \in D$,

$$
C_{\alpha, \Phi_{p}}\left(\left\{x_{0}\right\}\right)=0 \quad \text { if and only if } \quad \int_{0}^{1}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} t^{-1} d t=\infty .
$$

Theorem 7.1. Assume that $(\omega 2)$ holds and $\varphi^{*}(1)<\infty$, that is,

$$
\begin{equation*}
\int_{0}^{1}\left[r^{n-\alpha p} \varphi\left(r^{-1}\right)\right]^{-p^{\prime} / p} r^{-1} d r<\infty \tag{7.1}
\end{equation*}
$$

Let $\psi$ be as above, and set

$$
\begin{aligned}
& \tau_{1}(r)=\left[\kappa_{1}(r)\right]^{-p}, \\
& \tau_{2}(r)=\inf _{r \leq t \leq 1} \omega(t)\left[\varphi^{*}(t)\right]^{-p}, \\
& \tau(r)=\min \left\{\tau_{1}(r), \tau_{2}(r)\right\}, \\
& h(r)=\tau(\psi(r))
\end{aligned}
$$

for $0<r<1$. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (1.1) and (6.1). Then there exist $E_{1}, E_{2} \subset \partial D$ such that

$$
C_{\alpha, \Phi_{p}, \omega}\left(E_{1}\right)=0, \quad H_{h}\left(E_{2}\right)=0
$$

and $U_{\alpha} f(x)$ has a finite $T_{\psi}$-limit $U_{\alpha} f(\xi)$ at $\xi \in \partial D-\left(E_{1} \cup E_{2}\right)$. If in addition $\tau(0)>0$, then $U_{\alpha} f(x)$ has a limit $U_{\alpha} f(\xi)$ at any $\xi \in \partial D$; in this case, $E_{1} \cup E_{2}=\emptyset$.

Proof. For $x \in D$, we write $U_{\alpha} f(x)=u_{1}(x)+u_{2}(x)$, where

$$
u_{1}(x)=\int_{R^{n}-B(\xi, 2|x-\xi|)}|x-y|^{\alpha-n} f(y) d y
$$

and

$$
u_{2}(x)=\int_{B(\xi, 2|x-\xi|)}|x-y|^{\alpha-n} f(y) d y
$$

Since $y \in R^{n}-B(\xi, 2|\xi-x|)$ implies $|\xi-y| \leq 2|x-y|$, we can apply Lebesgue's dominated convergence theorem to obtain

$$
u_{1}(x) \longrightarrow U_{\alpha} f(\xi) \quad \text { as } x \longrightarrow \xi .
$$

If $\xi \in \partial D-E_{f}$, then $U_{f}(\xi)<\infty$. By Lemma 7.1, $C_{\alpha, \Phi_{p}, \omega}\left(E_{f}\right)=0$. On the other hand, in view of Lemma 6.2 with $r=3|x-\xi|, s=0$ and $f$ replaced by the restriction of $f$ to the ball $B(\xi, 2|x-\xi|)$, we can establish

$$
u_{2}(x) \leq M_{1}\left(\left[\tau\left(x_{n}\right)\right]^{-1} \int_{B(\xi, 2|x-\xi|)} \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y\right)^{1 / p}+M_{1}|x-\xi|^{\alpha-\delta}
$$

where $0<\delta<\alpha . \quad$ If $\xi \in \partial D-F_{f, h}$, then, noting that $\left[\tau\left(x_{n}\right)\right]^{-1} \leq M(a)[h(|x-\xi|)]^{-1}$ for $x \in T_{\psi}(\xi, a)$, we see that $u_{2}(x)$ tends to zero as $x \rightarrow \xi$ along $T_{\psi}(\xi, a)$. In case $\tau(0)>0, \tau\left(x_{n}\right)^{-1}$ is bounded for $0<x_{n}<1$, so that $u_{2}(x)$ tends to zero as $x \rightarrow \xi, x \in D$. Since $H_{h}\left(F_{f, h}\right)=0$ by Corollary 7.1, the proof of Theorem 7.1 is completed.

By using Theorem 7.1 and Corollary 7.2, we have
Theorem 7.2. Assume that $(\omega 2)$ and (7.1) hold. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (1.1) and (6.1). If $\tau_{1}(r) \leq M \tau_{2}(r)$ for $0<r<1$, then there exists a set $E \subset \partial D$ such that $C_{\alpha, \Phi_{p}, \omega}(E)=0$ and $U_{\alpha} f(x)$ has a nontangential limit at any $\xi \in \partial D-E$; that is, $U_{\alpha} f(x)$ has a finite $T_{1}$-limit at any $\xi \in \partial D-E$.

Corollary 7.5. Let $0<\alpha p-n \leq \beta<p-1$. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (1.1) and

$$
\begin{equation*}
\int_{G} \Phi_{p}(|f(y)|)\left|y_{n}\right|^{\beta} d y<\infty \quad \text { for any bounded open set } G \subset R^{n} \tag{7.2}
\end{equation*}
$$

Then there exists a set $E \subset \partial D$ such that $C_{\alpha, \Phi_{p}, \beta}(E)=0$ and $U_{\alpha} f(x)$ has a nontangential limit at any $\xi \in \partial D-E$.

In fact, in case $\alpha p>n, \varphi^{*}(1)<\infty$ and, moreover, we find

$$
\tau_{2}(r) \sim r^{n-\alpha p+\beta} \varphi\left(r^{-1}\right) \quad \text { as } \quad r \longrightarrow 0,
$$

so that $\tau_{1}(r) \leq M_{1} \tau_{2}(r)$ for $0<r<1$. Now Corollary 7.5 is a direct consequence of Theorem 7.2.

Theorem 7.3. Assume that (7.1) is satisfied, and let $-1<\beta<p-1$. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (1.1) and (7.2).
(i) If $n-\alpha p+\beta>0$, then for $\gamma>1$, there exists a set $E_{\gamma} \subset \partial D$ such that $H_{h}\left(E_{\gamma}\right)=0$, where $h(r)=\tau_{2}\left(r^{\gamma}\right)$ with

$$
\tau_{2}(r)=\inf _{\tau \leq t \leq 1} t^{\beta}\left(\int_{0}^{t}\left[s^{n-\alpha p} \varphi\left(s^{-1}\right)\right]^{-1 /(p-1)} d s / s\right)^{-p+1}
$$

and $U_{\alpha} f$ has a finite $T_{\gamma}$-limit at any $\xi \in \partial D-E_{\gamma}$.
(ii) If $\beta=\alpha p-n>0$, then there exists a set $E \subset \partial D$ such that $C_{\alpha, \Phi_{p}, \beta}(E)$ $=0$ and $U_{\alpha} f$ has a finite $T_{\gamma}$-limit at any $\xi \in \partial D-E$ for any $\gamma \geq 1$.
(iii) If $\beta=\alpha p-n=0$ or $n-\alpha p+\beta<0$, then $U_{\alpha} f$ has a finite limit at

$$
\text { any } \xi \in \partial D .
$$

Proof. First note by (7.1) that $\alpha p \geq n$. Hence, if $n-\alpha p+\beta>0$, then $\beta>0$ and

$$
\tau_{1}(r) \geq M_{1} r^{n-\alpha p+\beta} \varphi\left(r^{-1}\right) \geq M_{2} \tau_{2}(r)
$$

for $0<r<1$, according to the notation in Theorem 7.1. Now we apply Theorem 7.1, together with Corollary 7.3, in order to prove (i).

If $\beta=\alpha p-n>0$, then

$$
\tau_{2}(r) \geq M_{3} r^{n-\alpha p+\beta} \varphi\left(r^{-1}\right)
$$

so that $\tau_{2}(0)>0$. Further, in this case, $\tau_{1}\left(r^{\gamma}\right) \sim\left[\kappa_{1}(r)\right]^{-p}$ for any $\gamma>1$. Hence, if we set $h_{\gamma}(r)=\tau\left(r^{\gamma}\right)$ with $\tau$ in Theorem 7.1, then $h_{\gamma}(r) \sim\left[\kappa_{1}(r)\right]^{-p}$ for any $\gamma>1$. It follows from Corollary 7.2 that $C_{\alpha, \Phi_{p}, \beta}\left(F_{f, h_{\gamma}}\right)=0$. Now (ii) is a consequence of Theorem 7.1.

If $\beta \leq 0$, then

$$
\kappa_{1}(0) \leq \varphi^{*}(1)<\infty,
$$

on account of (7.1). Further, in this case, $\tau_{2}(0)>0$. If $0<\beta<\alpha p-n$, then $\kappa_{1}(0)<\infty$, so that $\tau_{1}(0)>0$, and further $\tau_{2}(0)>0$, as seen above. In the case of (iii), it follows that $\tau(0)>0$. Thus (iii) also follows from Theorem 7.1.

Remark 7.2. Theorem 7.2, together with Theorem 7.3, (ii), is best possible as to the size of the exceptional sets; that is, if $E \subset \partial D$ and $C_{\alpha, \Phi_{p}, \omega}(E)=0$, then we can find a nonnegative measurable function $f$ on $R^{n}$ such that $U_{\alpha} f \not \equiv \infty, U_{\alpha} f=\infty$ on $E$ and

$$
\int \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y<\infty
$$

(cf. the proof of Lemma 2.2, (iv)). Clearly, $U_{\alpha} f$ does not have a finite $T_{\psi}$-limit at any $\xi \in E$, by the lower semicontinuity of $U_{\alpha} f$.

Remark 7.3. In Theorem 7.2, if (7.1) does not hold, then we can not generally expect the existence of limits of $u$ along $T_{\psi}(\xi, a)$.

In fact, by Corollary $7.4, C_{\alpha, \Phi_{p}}(F)=0$ for any countable set $F \subset D$. Hence we can find a nonnegative measurable function $f$ on $D$ such that $U_{\alpha} f \not \equiv \infty, U_{\alpha} f=\infty$ on $F$ and

$$
\begin{equation*}
\int_{D} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y<\infty \tag{7.3}
\end{equation*}
$$

(see Lemma 2.2, (iv)). If in addition $F$ is everywhere dense in $D$, then we see easily that $U_{\alpha} f$ does not have a finite $T_{\psi}$-limit at any boundary point of $D$.

## 8. Curvilinear limits

Let $\psi$ be a positive nondecreasing continuous function on $[0, \infty)$ satisfying conditions $\left(\Delta_{2}\right)$ and $(\psi 1)$, as before. Take continuous functions $\psi_{j}, j=2,3, \ldots$, $n-1$, on $[0, \infty)$ such that $\psi_{j}(0)=0$ and

$$
\left|\psi_{j}(t)-\psi_{j}(s)\right| \leq M|t-s| \quad \text { for any } s, t \geq 0
$$

For convenience, let $\psi_{1}(r)=r, \psi_{n}(r)=\psi(r)$ and $\Psi(r)=\left(\psi_{1}(r), \ldots, \psi_{n}(r)\right)$. For $\xi \in \partial D$, we define

$$
\xi(r)=\xi+\Psi(r) \quad \text { and } \quad L_{\Psi}(\xi)=\{\xi(r) ; 0<r<1\} .
$$

Theorem 8.1. Let $\omega$ be a positive nondecreasing function on $(0, \infty)$ satisfying both ( $\omega 1$ ) and ( $\omega 2$ ). Assume further that there exists a positive nondecreasing function $\omega^{*}$ on $(0, \infty)$ satisfying the following conditions:
(i) $\quad \omega^{*}(2 r) \leq M \omega^{*}(r)$ on $(0, \infty)$;
(ii) $\int_{0}^{r} \omega^{*}(s)^{1 / p} S^{-1} d s \leq M \omega(r)^{1 / p} \quad$ for any $r>0$,
where $M$ is a positive constant. Let $\tau_{1}$ be as in Theorem 7.1,

$$
\tau_{2}^{*}(r)=\inf _{r \leq t \leq 1} t^{n-\alpha p} \omega^{*}(t) \varphi\left(t^{-1}\right)
$$

and

$$
h^{*}(r)=\min \left\{\tau_{1}(\psi(r)), \tau_{2}^{*}(\psi(r))\right\}
$$

for $0<r<1$. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying conditions (1.1) and (6.1). Then there exist two sets $E_{1}$ and $E_{2}$ such that $C_{\alpha, \Phi_{p}, \omega}\left(E_{1}\right)=0, H_{h^{*}}\left(E_{2}\right)=0$ and

$$
\lim _{r \rightarrow 0} U_{\alpha} f(\xi(r))=U_{\alpha} f(\xi) \quad \text { for any } \xi \in \partial D-\left(E_{1} \cup E_{2}\right) .
$$

Proof. Letting $a=10^{-1}$ and $\xi \in \partial D$, we write $U_{\alpha} f(x)=u_{1}(x)+u_{2}(x)$ $+u_{3}(x)$, where

$$
\begin{aligned}
& u_{1}(x)=\int_{R^{n}-B(\xi, 2|x-\xi|)}|x-y|^{\alpha-n} f(y) d y, \\
& u_{2}(x)=\int_{B(\xi, 2|x-\xi|)-B\left(x, a x_{n}\right)}|x-y|^{\alpha-n} f(y) d y, \\
& u_{3}(x)=\int_{B\left(x, a x_{n}\right)}|x-y|^{\alpha-n} f(y) d y .
\end{aligned}
$$

If $\xi \in \partial D-E_{f}$, then, as in the proof of Theorem 7.1, $u_{1}(x)$ has the finite limit $U_{\alpha} f(\xi)$ at $\xi$. Further Lemma 6.2 yields

$$
\left|u_{2}(x)\right| \leq M_{1} \kappa_{1}\left(x_{n}\right)\left(\int_{B(\xi, 2|x-\xi|)} \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y\right)^{1 / p}+M_{1}|x-\xi|^{\alpha-\delta}
$$

for $x \in D \cap B(\xi, 1)$, where $0<\delta<\alpha$. If we set

$$
E^{\prime}=\left\{\xi \in \partial D ; \lim \sup _{r \rightarrow 0}\left[\tau_{1}(\psi(r))\right]^{-1} \int_{B(\xi, r)} \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y>0\right\},
$$

then Lemma 7.2 implies $H_{h^{*}}\left(E^{\prime}\right)=0$. Moreover, if $b>0$ and $x \in T_{\psi}(\xi, b)$, then we have

$$
\kappa_{1}\left(x_{n}\right) \leq M(b)\left[\tau_{1}(\psi(|x-\xi|))\right]^{-1 / p}
$$

for some positive constant $M(b)$. Hence we see that $u_{2}$ has $T_{\psi}$-limit zero when $\xi \in \partial D-E^{\prime}$. If $x=\xi(r) \in L_{\Psi}(\xi), r>0$, then

$$
|x-\xi|=|\Psi(r)|=\left(\sum_{j=1}^{n}\left|\psi_{j}(r)\right|^{2}\right)^{1 / 2} \leq M_{2} r,
$$

so that

$$
\psi(|x-\xi|) \leq \psi\left(M_{2} r\right) \leq M_{3} \psi(r)=M_{3} x_{n} .
$$

Consequently, $L_{\psi}(\xi) \subset T_{\psi}\left(\xi, M_{3}\right)$, and it follows that $u_{2}(x)$ tends to zero as $x \rightarrow \xi$ along the curve $L_{\Psi}(\xi)$ when $\xi \in \partial D-E^{\prime}$. Thus it suffices to prove that $u_{3}(x)$ tends to zero as $x \rightarrow \xi$ along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D$ except those in a set $E^{\prime \prime}$ such that $H_{h^{*}}\left(E^{\prime \prime}\right)=0$. For this purpose, we may assume that $f=0$ outside $D \cap B(0, N)$ for some $N>1$, so that $f$ satisfies (7.3). Set

$$
X_{j}=\left\{x \in D ; 2^{-j} \leq x_{n}<2^{-j+1}, u_{3}(x)>a_{j}^{-1}\right\},
$$

where $\left\{a_{j}\right\}$ is a sequence of positive numbers such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} a_{j}=\infty, \quad \quad \lim _{j \rightarrow \infty} j^{-1} a_{j}=0 \tag{8.1}
\end{equation*}
$$

and

$$
\sum_{j} a_{j}^{p} \int_{D_{j}} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y<\infty
$$

with $D_{j}=\left\{x \in D ; 2^{-j-1}<x_{n}<2^{-j+2}\right\}$. For a set $X \subset D$, we denote by $\tilde{X}$ the set of all $\xi \in \partial D$ such that $\xi(r) \in X$ for some $r$ with $0<r<1$. We consider the set

$$
E^{\prime \prime}=\bigcap_{k}\left(\bigcup_{j>k} \tilde{X}_{j}\right) .
$$

Then it is easy to see that $u_{3}(\xi(r))$ tends to zero as $r \rightarrow 0$ whenever $\xi \in \partial D-E^{\prime \prime}$. What remains is to prove that $H_{h^{*}}\left(E^{\prime \prime}\right)=0$. If $x \in X_{j}$, then

$$
\begin{aligned}
a_{j}^{-1} & <\int_{B\left(x, a x_{n}\right)}|x-y|^{\alpha-n} f(y) d y \\
& =(n-\alpha) \int_{0}^{a x_{n}} F_{1}(x, r) r^{\alpha-n-1} d r+\left(a x_{n}\right)^{\alpha-n} F_{1}\left(x, a x_{n}\right),
\end{aligned}
$$

where $F_{1}(x, r)=\int_{B(x, r)} f(y) d y$. By Lemma 2.1, we have

$$
\begin{equation*}
F_{1}(x, r) \leq M_{4}\left[r^{n-\varepsilon}+r^{n / p^{\prime}}\left\{\varphi\left(r^{-1}\right)\right\}^{-1 / p}\left\{F_{\Phi_{p}}(x, r)\right\}^{1 / p}\right], \tag{8.2}
\end{equation*}
$$

where $0<\varepsilon<\min \{1, \alpha\}$ and $F_{\Phi_{p}}(x, r)=\int_{B(x, r)} \Phi_{p}(f(y)) d y$. Let $x \in X_{j}$ and assume that

$$
\begin{equation*}
F_{\Phi_{p}}(x, r)<\tilde{M} a_{j}^{-p} \omega\left(x_{n}\right)^{-1} \tau_{2}^{*}(r) \tag{8.3}
\end{equation*}
$$

for any $r$ with $0<r \leq a x_{n}$. Then it follows from (8.2) that

$$
\begin{aligned}
1 \leq & M_{4}(n-\alpha)\left(a_{j} \int_{0}^{a x_{n}} r^{\alpha-\varepsilon-1} d r\right. \\
& \left.+\tilde{M}^{1 / p}\left\{\omega\left(x_{n}\right)\right\}^{-1 / p} \int_{0}^{a x_{n}}\left\{\tau_{2}^{*}(r) r^{\alpha p-n} \varphi\left(r^{-1}\right)^{-1}\right\}^{1 / p} r^{-1} d r\right) \\
& +M_{4}\left(a a_{j}\left(a x_{n}\right)^{\alpha-\varepsilon}+\tilde{M}^{1 / p}\left(a x_{n}\right)^{\alpha-n / p}\left\{\varphi\left(\left(a x_{n}\right)^{-1}\right) \omega\left(a x_{n}\right)\right\}^{-1 / p}\left\{\tau_{2}^{*}\left(a x_{n}\right)\right\}^{1 / p}\right) .
\end{aligned}
$$

Since $\tau_{2}^{*}(r) \leq \omega^{*}(r)\left[r^{n-\alpha p} \varphi\left(r^{-1}\right)\right]$, in view of conditions (i) and (ii) for $\omega^{*}$, we see that

$$
\begin{aligned}
1 \leq & M_{5}\left(a_{j}\left(a x_{n}\right)^{\alpha-\varepsilon}+\tilde{M}^{1 / p}\left\{\omega\left(x_{n}\right)\right\}^{-1 / p} \int_{0}^{a x_{n}}\left\{\omega^{*}(r)\right\}^{1 / p} r^{-1} d r\right) \\
& +M_{4} \tilde{M}^{1 / p}\left\{\omega\left(a x_{n}\right)\right\}^{-1 / p}\left\{\omega^{*}\left(a x_{n}\right)\right\}^{1 / p} \leq M_{6} a_{j} 2^{-j(\alpha-\varepsilon)}+M_{6} \tilde{M}^{1 / p}
\end{aligned}
$$

where $M_{6}$ does not depend on $j$ nor $\tilde{M}$. In view of (8.1), there is $j_{0}$ such that $M_{6} a_{j} 2^{-j(\alpha-\varepsilon)}<2^{-1}$ for any $j \geq j_{0}$. Thus, if $x \in X_{j}, j \geq j_{0}$, and (8.3) holds for all $r \in\left(0, a x_{n}\right]$, then $\tilde{M}$ must satisfy

$$
M_{6} \tilde{M}^{1 / p} \geq 2^{-1}
$$

Now, if we take $\tilde{M}$ so small that $M_{6} \tilde{M}^{1 / p}<2^{-1}$, then, for any $x \in X_{j}, j \geq j_{0}$, we can find $r(x), 0<r(x) \leq a x_{n}$, such that

$$
F_{\Phi_{p}}(x, r(x)) \geq \tilde{M} a_{j}^{-p}\left\{\omega\left(x_{n}\right)\right\}^{-1} \tau_{2}^{*}(r(x)) .
$$

Since $\left\{B(x, r(x)) ; x \in X_{j}\right\}$ covers $X_{j}$, there exists a mutually disjoint (finite or) countable family $\left\{B\left(x_{j, k}, r_{j, k}\right)\right\}, r_{j, k}=r\left(x_{j, k}\right)$, such that $x_{j, k} \in X_{j}$ for all $k$ and $\left\{B\left(x_{j, k}, 5 r_{j, k}\right)\right\}$ covers $X_{j}$. Then

$$
\begin{equation*}
\sum_{k} \tau_{2}^{*}\left(r_{j, k}\right) \leq M_{7} a_{j}^{p} \int_{D_{j}} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y . \tag{8.4}
\end{equation*}
$$

Now we are ready to show

$$
H_{h^{*}}\left(E^{\prime \prime}\right)=0
$$

Let $\xi_{j, k}$ be the point on $\partial D$ such that $x_{j, k}=\xi_{j, k}\left(s_{j, k}\right)$ for some $s_{j, k}>0$. Since $\psi(r)$ is strictly increasing on account of condition $(\psi 1)$, for any $r>0$ we can find only one $r^{*}$ satisfying $\psi\left(r^{*}\right)=r$. If $\xi \in \partial D, \zeta \in \partial D, x=\xi(t), y=\zeta(s)$ and $y \in B(x, r)$ with $r<a x_{n}<1$, then condition $(\psi 1)$ gives

$$
\psi(|s-t|) \leq|\psi(s)-\psi(t)|=\left|x_{n}-y_{n}\right| \leq|x-y|<r=\psi\left(r^{*}\right),
$$

so that $|s-t|<r^{*}$. Also, if $0<r<1$, then $r^{*}=\psi^{-1}(r)<\psi^{-1}(1)$, which together with $(\psi)$ yields

$$
\frac{\psi\left(r^{*}\right)}{r^{*}} \leq \frac{1}{\psi^{-1}(1)} \quad \text { or } \quad r<\frac{r^{*}}{\psi^{-1}(1)}
$$

Hence
$|\xi-\zeta| \leq|x-y|+\sum_{i=1}^{n-1}\left|\psi_{i}(s)-\psi_{i}(t)\right| \leq r+|s-t|+(n-2) M|s-t| \leq M_{8} r^{*}$.
This implies $\bigcup_{j \geq \ell}\left(\bigcup_{k}\left\{B\left(\xi_{j, k}, M_{8}\left(5 r_{j, k}\right)^{*}\right)\right\}\right) \supset E^{\prime \prime}$ for any $\ell \geq j_{0}$, so that

$$
\begin{aligned}
H_{h^{*}}^{\left(\delta^{*}\right)}\left(E^{\prime \prime}\right) & \leq \sum_{j \geq \ell}\left(\sum_{k} h^{*}\left(M_{8}\left(5 r_{j, k}\right)^{*}\right)\right) \\
& \leq M_{9} \sum_{j \geq \ell}\left(\sum_{k} \tau_{2}^{*}\left(r_{j, k}\right)\right) \\
& \leq M_{10} \sum_{j \geq \ell} a_{j}^{p} \int_{D_{j}} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y
\end{aligned}
$$

by (8.4), where $\delta_{\ell}^{*}=\sup _{j \geq \ell}\left\{\sup _{k} M_{8}\left(5 r_{j, k}\right)^{*}\right\}$. Here note

$$
\psi\left(\delta_{\ell}^{*}\right)=\sup _{j \geq \ell}\left\{\sup _{k} \psi\left(M_{8}\left(5 r_{j, k}\right)^{*}\right)\right\} \leq M_{11} 2^{-\ell+1},
$$

so that $\lim _{\ell \rightarrow \infty} \delta_{l}^{*}=0$. Thus it follows that $H_{h^{*}}\left(E^{\prime \prime}\right)=0$, and the proof of Theorem 8.1 is completed.

Corollary 8.1. Let $\alpha p-n \leq \beta<p-1$. Let $\psi(r)=r^{\gamma}$ for $\gamma \geq 1$; in this case, $\Psi(r)=\left(r, \psi_{2}(r), \ldots, \psi_{n-1}(r), r^{\gamma}\right)$. Further, let $f$ be as in Theorem 7.3.
(i) If $\beta>0, n-\alpha p+\beta>0$ and $\gamma>1$, then there exists a set $E \subset \partial D$ such that $H_{h}(E)=0$ with $h(r)=\inf _{r \leq t \leq 1} t^{\gamma(n-\alpha p+\beta)} \varphi\left(t^{-1}\right)$ and $U_{\alpha} f$ has a finite limit along the curve $L_{\psi}(\xi)$, for any $\xi \in \partial D-E$.
(ii) If $\beta>0, n-\alpha p+\beta>0$ and $\gamma=1$, then there exists a set $E \subset \partial D$ such that $C_{\alpha, \Phi_{p}, \beta}(E)=0$ and $U_{\alpha} f$ has a finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D-E$.
(iii) If $\beta \leq 0$ and $\gamma>1$, then there exists a set $E \subset \partial D$ such that $H_{\gamma(n-\alpha p+\delta)}(E)=0$ for any $\delta>0$, that is, $E$ has Hausdorff dimension at most $\gamma(n-\alpha p)$, and $U_{\alpha} f$ has a finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D-E$.

Proof. If $\beta>0$, then we can take

$$
\omega^{*}(r)=\omega(r)=r^{\beta} \quad \text { and } \quad \tau_{2}^{*}(r)=\inf _{r \leq t \leq 1} t^{n-\alpha p+\beta} \varphi\left(t^{-1}\right)
$$

in Theorem 8.1 If in addition $n-\alpha p+\beta>0$, then $h^{*}=h$. In case $\gamma>1$, $C_{\alpha, \Phi_{p}, \beta}(F)=0$ implies $H_{h^{*}}(F)=0$ by Corollary 7.3. Thus (i) follows from Theorem 8.1. In case $\gamma=1, \tau_{1}(r) \leq M \tau_{2}^{*}(r)$ by (5.1) and $h^{*}(r) \sim\left[\kappa_{1}(r)\right]^{-p}$. In view of Corollary 7.2, $H_{h}(F)=0$ implies $C_{\alpha, \Phi_{p}, \beta}(F)=0$. Hence (ii) also follows from Theorem 8.1.

If $\beta \leq 0$, then, for $\delta>0$, consider

$$
\omega_{\delta}(r)=\omega_{\delta}^{*}(r)=r^{\delta}
$$

Since $n-\alpha p+\delta>n-\alpha p+\beta \geq 0$, we can apply (i) with $\beta=\delta$ to establish (iii).
Here we give radial limit results as generalizations of [12, Theorems 3 and 4].

Theorem 8.2. Let $-1<\beta<p-1$ and $f$ be as in Theorem 7.3. Then there exists a set $E \subset \partial D$ satisfying
(i) $C_{\alpha, \Phi_{p}, \beta}(E)=0$;
(ii) to each $\xi \in \partial D-E$, there corresponds a set $E_{\xi}$ such that $C_{\alpha, \Phi_{p}}\left(E_{\xi}\right)=0$ and

$$
\lim _{r \rightarrow 0} U_{\alpha} f(\xi+r \zeta)=U_{\alpha} f(\xi) \quad \text { for any } \quad \zeta \in D \cap \partial B(0,1)-E_{\xi}
$$

This fact can be proved by [14, Theorem $2^{\prime}$ ] and the contractive property of the capacity $C_{\alpha, \boldsymbol{\Phi}_{p}}$, which is derived in the same manner as that of $C_{\alpha, p}$ (see [11, Lemma 5]). More precisely, to complete the proof, apply the proofs of [12, Theorem 4] and [14, Theorem 4].

Theorem 8.3. Let $\omega$ be a nonnegative nondecreasing function on $[0, \infty)$ satisfying ( $\omega 1$ ) and ( $\omega 2$ ). Let $\zeta \in D$ be fixed. If $f$ is a nonnegative measurable function on $R^{n}$ satisfying (1.1) and (6.1), then there exists a set $E \subset \partial D$ such that $C_{\alpha, \Phi_{p}, \omega}(E)=0$ and

$$
\lim _{t \downarrow 0} U_{\alpha} f(\xi+t \zeta)=U_{\alpha} f(\xi) \quad \text { at any } \quad \xi \in \partial D-E
$$

Proof. Define

$$
\begin{aligned}
& u_{1}(x)=\int_{R^{n}-B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y) d y, \\
& u_{2}(x)=\int_{B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y) d y
\end{aligned}
$$

for $x \in D$. If $x=\xi+t \zeta, \xi \in \partial D, t>0$ and $y \in R^{n}-B\left(x, x_{n} / 2\right)$, then

$$
|y-\xi| \leq|y-x|+t|\zeta| \leq\left[1+2\left(|\zeta| / \zeta_{n}\right)\right]|x-y|,
$$

so that

$$
\lim _{t \downarrow 0} u_{1}(\xi+t \zeta)=U_{\alpha} f(\xi)
$$

for every $\xi \in \partial D$. In fact, if $U_{\alpha} f(\xi)=\infty$, then it follows readily from Fatou's lemma; if $U_{\alpha} f(\xi)<\infty$, then apply Lebesgue's dominated convergence theorem. As in the proof of Theorem 6.1, we can find a set $E \subset D$ such that

$$
\lim _{x_{n} \rightarrow 0, x \in D \cap A(a)-E} u_{2}(x)=0
$$

and

$$
\sum_{j=1}^{\infty} \omega\left(2^{-j}\right) C_{\alpha, \Phi_{p}}\left(E_{j} \cap A(a) ; D_{j} \cap A(2 a)\right)<\infty
$$

for any $a>0$, where $A(a)=\left\{x=\left(x_{1}, \ldots, x_{n}\right) ;\left|x_{j}\right|<a\right.$ for any $\left.j\right\}$. Define

$$
\begin{aligned}
& E_{j}^{*}=\left\{\left(x^{\prime}, 0\right) ;\left(x^{\prime}, t\right) \in E_{j} \text { for some } t>0\right\}, \\
& E_{j}=\left\{\left(x^{\prime}, 0\right) ;\left(x^{\prime}, 0\right)+t \zeta \in E_{j} \text { for some } t>0\right\} .
\end{aligned}
$$

Letting $D_{j}^{\prime}=\left\{\left(x^{\prime}, x_{n}\right) ;\left|x_{n}\right|<2^{-j+2}\right\}$, we have by the contractive property of $C_{\alpha, \Phi_{p}}$ (cf. [10, Lemma 1]),

$$
C_{\alpha, \Phi_{p}}\left(E_{j}^{*} \cap A(a) ; D_{j}^{\prime} \cap A(2 a)\right) \leq C_{\alpha, \Phi_{p}}\left(E_{j} \cap A(a) ; D_{j}^{\prime} \cap A(2 a)\right),
$$

so that

$$
\begin{aligned}
C_{\alpha, \Phi_{p}, \omega}\left(E_{j}^{*} \cap A(a) ; A(2 a)\right) & \leq C_{\alpha, \Phi_{p}, \omega}\left(E_{j}^{*} \cap A(a) ; D_{j}^{\prime} \cap A(2 a)\right) \\
& \leq \omega\left(2^{-j+2}\right) C_{\alpha, \Phi_{p}}\left(E_{j}^{*} \cap A(a) ; D_{j}^{\prime} \cap A(2 a)\right) \\
& \leq M_{1} \omega\left(2^{-j}\right) C_{\alpha, \Phi_{p}}\left(E_{j} \cap A(a) ; D_{j} \cap A(2 a)\right) .
\end{aligned}
$$

On the other hand,

$$
C_{\alpha, \Phi_{p}, \omega}\left(\tilde{E}_{j} \cap A(a) ; A(2 a)\right) \leq M_{2} C_{\alpha, \Phi_{p}, \omega}\left(E_{j}^{*} \cap A(a) ; A(2 a)\right)
$$

(cf. [11, Lemma 3]). Hence if we set $\tilde{E}=\bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} \tilde{E}_{j}$, then $C_{\alpha, \Phi_{p}, \omega}(\tilde{E})=0$ and

$$
\lim _{t \rightarrow 0} u_{2}(\xi+t \zeta)=0 \quad \text { whenever } \quad \xi \in \partial D-\tilde{E} .
$$

Thus Theorem 8.3 is obtained.
Remark 8.1. In case $\varphi \equiv 1$, these results are considered in Wu [27] and Mizuta [14].

Finally we study the best-possibility of our theorems, as far as the exceptional sets are concerned.

Theorem 8.4. Let $n=2$. Let $\omega$ and $\psi$ be positive nondecreasing continuous functions on $(0, \infty)$ satisfying the $\left(\Delta_{2}\right)$ condition, together with the following:
(i) $\psi$ satisfies $(\psi 1)$.
(ii) $\omega$ satisfies both ( $\omega 2$ ) and $(\omega 3)$.

Suppose there exists $c>2 \psi(1)$ such that $2 \kappa_{1}(c r)<\kappa_{1}(\psi(r))$ for $0<r<1$, and set $h(r)=\left[\kappa_{1}(\psi(r))\right]^{-p}$. If $E \subset \partial D$ and $H_{h}(E)=0$, then there exists a nonnegative measurable function $f$ on $D$ such that $U_{\alpha} f \not \equiv \infty, \int_{D} \Phi_{p}(f(y)) \omega\left(y_{2}\right) d y$ $<\infty$ and

$$
\limsup _{r \rightarrow 0} U_{\alpha} f(\xi+(r, \psi(r)))=\infty \quad \text { for any } \quad \xi \in E
$$

Proof. For each positive integer $i$, we can find a family $\left\{B_{i, j}\right\}$ of discs such that $B_{i, j}=B\left(x_{i, j}, r_{i, j}\right), \sum_{j} h\left(r_{i, j}\right)<2^{-i}$ and $E \subset \bigcup_{j} B_{i, j}$. Here we may assume further that $x_{i, j} \in \partial D$ and $r_{i, j}<1$. Let $z_{i, j, \ell}=x_{i, j}+\left(\ell r_{i, j}, 0\right)$ and $C_{i, j, \ell}=B\left(z_{i, j, \ell}, c r_{i, j}\right)-B\left(z_{i, j, \ell}, 2^{-1} \psi\left(r_{i, j}\right)\right)$ for $\ell=0,1$. For simplicity, set $\tilde{\eta}(r)=r^{2-\alpha p} \varphi\left(r^{-1}\right) \omega(r)$, and define

$$
f_{i, j, \ell}(y)=i\left[h\left(r_{i, j}\right)\right]^{p^{\prime} / p}\left|y-z_{i, j, \ell}\right|^{-\alpha}\left[\tilde{\eta}\left(\left|y-z_{i, j, \ell}\right|\right)\right]^{-p^{\prime} / p}
$$

for $y \in D \cap C_{i, j, \ell}$; and define $f_{i, j, \ell}(y)=0$ otherwise. Consider the function $f=\sup _{i, j, \ell} f_{i, j, \ell}$. Since, by $(\omega 2), r^{\beta_{1}-1 / p} \omega(r)^{-1 / p}$ is nondecreasing on $(0, \infty)$ for some $\beta_{1}<1$, we note

$$
f_{i, j, \ell}(y) \leq M_{1}\left|y-z_{i, j, \ell}\right|^{-\beta}
$$

for $\beta>\alpha+(2-\alpha p) p^{\prime} / p+\left(\beta_{1}-1 / p\right) p^{\prime}$. Hence we have

$$
\begin{aligned}
& \int_{D} \Phi_{p}\left(f_{i, j, \ell}(y)\right) \omega\left(y_{2}\right) d y \\
& \quad \leq M_{2} i^{p}\left[h\left(r_{i, j}\right)\right]^{p^{\prime}} \int_{D \cap c_{i, j, \ell}}\left|y-z_{i, j, \ell}\right|^{-\alpha p}\left[\tilde{\eta}\left(\left|y-z_{i, j, \ell}\right|\right)\right]^{-p^{\prime}} \varphi\left(\left|y-z_{i, j, \ell}\right|^{-1}\right) \omega\left(y_{2}\right) d y \\
& \quad \leq M_{3} i^{p}\left[h\left(r_{i, j}\right)\right]^{p^{\prime}} \int_{C_{i, j, \ell}}\left|y-z_{i, j, \ell}\right|^{-2}\left[\tilde{\eta}\left(\left|y-z_{i, j, \ell}\right|\right)\right]^{-p^{\prime}+1} d y
\end{aligned}
$$

$$
\begin{aligned}
& \leq M_{4} i^{p}\left[h\left(r_{i, j}\right)\right]^{p^{\prime}} \int_{2-1 \psi\left(r_{i, j}\right)}^{c r_{i, j}}[\tilde{\eta}(r)]^{-p^{\prime} / p} r^{-1} d r \\
& \leq M_{5} i^{p} h\left(r_{i, j}\right)
\end{aligned}
$$

so that

$$
\int_{D} \Phi_{p}(f(y)) \omega\left(y_{2}\right) d y \leq \sum_{i, j, \ell} \int_{D} \Phi_{p}\left(f_{i, j, \ell}(y)\right) \omega\left(y_{2}\right) d y \leq 2 M_{5} \sum_{i} i^{p} 2^{-i}<\infty
$$

Next we see that for $x \in D \cap B\left(z_{i, j, \ell}, \psi\left(r_{i, j}\right)\right)$,

$$
\begin{aligned}
\int|x-y|^{\alpha-2} f(y) d y & \geq M_{6} i\left[h\left(r_{i, j}\right)\right]^{p^{\prime} / p} \int_{C_{i, j, \ell}}\left|y-z_{i, j, \ell}\right|^{-2}\left[\tilde{\eta}\left(\left|y-z_{i, j, \ell}\right|\right)\right]^{-p^{\prime} / p} d y \\
& =M_{7} i\left[h\left(r_{i, j}\right)\right]^{p^{\prime} / p} \int_{2-1 \psi\left(r_{i, j}\right)}^{c r_{i, j}}[\tilde{\eta}(r)]^{-p^{\prime} / p} r^{-1} d r \geq M_{8} i .
\end{aligned}
$$

Let $\xi \in E$. For each $i$, there is $j$ such that $\xi \in B_{i, j}$. Further observe that the curve $L_{\Psi}(\xi)$ intersects at least one of two half balls $D \cap B\left(z_{i, j, \ell}, \psi\left(r_{i, j}\right)\right)$, $\ell=0,1$. Consequently,

$$
\lim \sup _{r \rightarrow 0} U_{\alpha} f(\xi+(r, \psi(r))) \geq \lim \sup _{i \rightarrow \infty} M_{8} i=\infty
$$

Remark 8.2. Let $\omega(r)=r^{\beta}$. If $-1<\beta<p-1$, then $\omega$ satisfies both ( $\omega 2$ ) and ( $\omega 3$ ). If in addition $2-\alpha p+\beta>0$, then one can take $c$ so large that

$$
2 \kappa_{1}(c r)<\kappa_{1}(\psi(r)) \quad \text { for any } \quad 0<r<1 ;
$$

in this case, $h(r) \sim r^{2-\alpha p+\beta} \varphi\left(r^{-1}\right)$ as $r \rightarrow 0$, in Theorem 8.4. Moreover, if $\alpha$ is a positive integer $m$, then, as will be shown later (see Lemma 12.1),

$$
\int_{G} \Phi_{p}\left(\left|\nabla_{m} U_{m} f(x)\right|\right)\left|x_{n}\right|^{\beta} d x<\infty \quad \text { for any bounded open set } \quad G \subset R^{n}
$$

## 9. Beppo-Levi-Deny functions

For an open set $G \subset R^{n}$, we denote by $B L_{m}\left(L^{p}(G)\right)$ the space of all functions $u \in L_{l o c}^{p}(G)$ such that $D^{\lambda} u \in L^{p}(G)$ for any $\lambda$ with $|\lambda|=m$, where $D^{\lambda}=(\partial / \partial x)^{\lambda}=\left(\partial / \partial x_{1}\right)^{\lambda_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\lambda_{n}}$; if the restriction of $u$ to any relatively compact open subset $G^{\prime}$ of $G$ belongs to $B L_{m}\left(L^{p}\left(G^{\prime}\right)\right)$, then we write $u \in B L_{m}\left(L_{\text {loc }}^{p}(G)\right)$ (see [3]).

In order to study the boundary behavior of Beppo-Levi-Deny functions on $D$, we have to prepare an integral representation for functions in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$. The following sobolev integral representation for infinitely differentiable functions with compact support is fundamental (cf. Reshetnyak [22]).

Lemma 9.1. If $\psi \in C_{0}^{\infty}\left(R^{n}\right)$, then

$$
\psi(x)=\sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda} \psi(y) d y,
$$

where $\left\{a_{\lambda}\right\}$ are constants; $a_{\lambda}=m /\left(c_{n} \lambda!\right)$.
Our first aim in this section is to show the following result.
Theorem 9.1. If $u$ is a function in $B L_{m}\left(L_{\text {loc }}^{p}\left(R^{n}\right)\right)$ such that

$$
\begin{equation*}
\int(1+|y|)^{m-n}\left|D^{\lambda} u(y)\right| d y<\infty \tag{9.1}
\end{equation*}
$$

for any $\lambda$ with length $m$, then there exists a polynomial $P$ of degree at most $m-1$ such that

$$
u(x)=\sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda} u(y) d y+P(x)
$$

holds for almost every $x$ in $R^{n}$.
Remark 9.1. In [8, Theorem 3.1], this representation is given under the assumption of the existence of $\left\{\varphi_{j}\right\} \subset C_{0}^{\infty}\left(R^{n}\right)$ such that

$$
\lim _{j \rightarrow \infty} \sum_{|\lambda|=m}\left\|D^{\lambda}\left(\varphi_{j}-u\right)\right\|_{p}=0
$$

Proof of Theorem 9.1. Let $\psi \in C_{0}^{\infty}\left(R^{n}\right)$ and $|\mu|=m$. By condition (9.1), we can apply Fubini's lemma and Lemma 9.1 to obtain

$$
\begin{aligned}
& \int\left(\sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda} u(y) d y\right) D^{\mu} \psi(x) d x \\
& \quad=\sum_{|\lambda|=m} a_{\lambda} \int\left(\int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\mu} \psi(x) d x\right) D^{\lambda} u(y) d y \\
& \quad=\sum_{|\lambda|=m} a_{\lambda} \int\left(\int \frac{z^{\lambda}}{|z|^{n}} D^{\mu} \psi(z+y) d z\right) D^{\lambda} u(y) d y \\
& \quad=\sum_{|\lambda|=m} a_{\lambda} \int \frac{z^{\lambda}}{|z|^{n}}\left(\int D^{\mu} \psi(z+y) D^{\lambda} u(y) d y\right) d z \\
& \quad=\sum_{|\lambda|=m} a_{\lambda} \int \frac{z^{\lambda}}{|z|^{n}}\left(\int D^{\lambda} \psi(z+y) D^{\mu} u(y) d y\right) d z \\
& \quad=\int\left(\sum_{|\lambda|=m} a_{\lambda} \int \frac{z^{\lambda}}{|z|^{n}} D^{\lambda} \psi(z+y) d z\right) D^{\mu} u(y) d y
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{m} \int \psi(y) D^{\mu} u(y) d y \\
& =\int u(y) D^{\mu} \psi(y) d y
\end{aligned}
$$

Hence it follows that $u(x)-\sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda} u(y) d y$ is equal a.e. to a polynomial of degree at most $m-1$.

Corollary 9.1. If $u$ is a function in $B L_{n}\left(L_{\text {loc }}^{1}\left(R^{n}\right)\right)$, then there exists $a$ continuous function on $R^{n}$ which is equal to $u$ a.e. on $R^{n}$.

Proof. For any $\psi \in C_{0}^{\infty}(G), \psi u$ can be seen as a function in $B L_{n}\left(L^{1}\left(R^{n}\right)\right)$, and hence by Theorem 9.1 there exists a polynomial $P$ such that

$$
\begin{equation*}
(\psi u)(x)=\sum_{|\lambda|=n} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda}(\psi u)(y) d y+P(x) \tag{9.2}
\end{equation*}
$$

for almost every $x \in R^{n}$. It is easy to see that the right hand side of (9.2) is continuous on $R^{n}$. Hence the required assertion follows.

Here we relax condition (9.1). To do this, we introduce the kernel functions:

$$
k_{\lambda}(x)=x^{\lambda}|x|^{-n}
$$

and

$$
k_{\lambda, \ell}(x, y)= \begin{cases}k_{\lambda}(x-y), & \text { if }|y|<1 \\ k_{\lambda}(x-y)-\sum_{|\mu| \leq \ell} \frac{x^{\mu}}{u!}\left(D^{\mu} k_{\lambda}\right)(-y), & \text { if }|y| \geq 1\end{cases}
$$

(see [16], [19]). We now show an extension of Theorem 9.1, in the same manner as [16, Theorem 1] and [19, Theorems 1 and $\left.1^{\prime}\right]$.

Theorem 9.2. Let $u \in B L_{m}\left(L^{p}\left(R^{n}\right)\right)$. Then there exists a polynomial $P$ of degree at most $m-1$ such that

$$
u(x)=\sum_{|\lambda|=m} a_{\lambda} \int k_{\lambda, \ell}(x, y) D^{\lambda} u(y) d y+P(x)
$$

holds for almost every $x$ in $R^{n}$, where $\ell$ is the integer such that $\ell \leq m-n / p$ $<\ell+1$.

Remark 9.2. In view of [16] and [19], the function $u$ is also represented as

$$
u(x)=\sum_{|\lambda|=m} b_{\lambda} \int k_{\lambda, \ell}^{*}(x, y) D^{\lambda} u(y) d y+P(x)
$$

where $k_{\lambda, \ell}^{*}$ is defined as above with $k_{\lambda}$ replaced by $k_{\lambda}^{*}=D^{\lambda} R_{2 m}, R_{2 m}$ denoting the Riesz kernel of order $2 m,\left\{b_{\lambda}\right\}$ are constants, $\ell$ is the integer given in Theorem 9.2 and $P$ is a polynomial. More precisely, $\left\{b_{\lambda}\right\}$ is chosen so that

$$
\Delta^{m}=c \sum_{|\lambda|=m} b_{\lambda} D^{2 \lambda}
$$

with some constant $c$. In the latter representation of $u$, the logarithmic term may appear, and hence Corollary 9.1 may not follow from this representation.

## Proof of Theorem 9.2. Set

$$
U(x)=\sum_{|\lambda|=m} a_{\lambda} \int k_{\lambda, \ell}(x, y) D^{\lambda} u(y) d y .
$$

By the mean value theorem, we see that

$$
\left|k_{\lambda, \ell}(x, y)\right| \leq M_{1}|x|^{\ell+1}|y|^{m-n-\ell-1}
$$

whenever $|y| \geq 1$ and $|y| \geq 2|x|$ (cf. Lemma 2 in [19]). Hence, if $x \in B(0, a)$, $a>1$, then Hölder's inequality gives

$$
\begin{aligned}
& \int_{R^{n-B(0,2 a)}}\left|k_{\lambda, \ell}(x, y)\right|\left|D^{\lambda} u(y)\right| d y \\
& \quad \leq M_{1} a^{\ell+1} \int_{R^{n}-B(0,2 a)}|y|^{m-n-\ell-1}\left|D^{\lambda} u(y)\right| d y<\infty
\end{aligned}
$$

for any $\lambda$ with length $m$. Since

$$
\int_{B(0,2 a)} k_{\lambda, \ell}(x, y) D^{\lambda} u(y) d y=\int_{B(0,2 a)} k_{\lambda}(x-y) D^{\lambda} u(y) d y+\text { a polynomial, }
$$

$U$ is defined almost everywhere and $U \in L_{l o c}^{1}\left(R^{\eta}\right)$. Note that $\int x^{\sigma} D^{\lambda} \psi(x) d x=0$ whenever $|\sigma|<|\lambda|$ and $\psi \in C_{0}^{\infty}\left(R^{n}\right)$. Hence, as in the proof of Theorem 9.1, we have for $\psi \in C_{0}^{\infty}\left(R^{n}\right),|\mu|=m$ and $|v|=m$,

$$
\begin{aligned}
\int U(x) D^{\mu+v} \psi(x) d x & =\sum_{|\lambda|=m} a_{\lambda} \int\left(\int k_{\lambda, \ell}(x, y) D^{\mu+v} \psi(x) d x\right) D^{\lambda} u(y) d y \\
& =\sum_{|\lambda|=m} a_{\lambda} \int\left(\int k_{\lambda}(x-y) D^{\mu+v} \psi(x) d x\right) D^{\lambda} u(y) d y
\end{aligned}
$$

For a positive integer $j$, set $k_{\lambda}^{(j)}=x^{\lambda}\left\{|x|^{2}+(1 / j)^{2}\right\}^{-n / 2}$. Then, in view of Lemma 3.3 in [8], we see that

$$
\int k_{\lambda}^{(j)}(x-y) D^{\mu+v} \psi(x) d x \longrightarrow \int k_{\lambda}(x-y) D^{\mu+v} \psi(x) d x
$$

as $j \rightarrow \infty$ in $L^{q}\left(R^{n}\right)$ for any number $q>1$. Hence we apply Fubini's lemma again to establish

$$
\begin{aligned}
& \int\left(\int k_{\lambda}(x-y) D^{\mu+v} \psi(x) d x\right) D^{\lambda} u(y) d y \\
& \quad=\lim _{j \rightarrow \infty} \int\left(\int k_{\lambda}^{(j)}(x-y) D^{\mu+v} \psi(x) d x\right) D^{\lambda} u(y) d y \\
& \quad=(-1)^{m} \lim _{j \rightarrow \infty} \int\left(\int D^{\mu} k_{\lambda}^{(j)}(x-y) D^{v} \psi(x) d x\right) D^{\lambda} u(y) d y \\
& \quad=(-1)^{m} \lim _{j \rightarrow \infty} \int D^{\mu} k_{\lambda}^{(j)}(z)\left(\int D^{v} \psi(z+y) D^{\lambda} u(y) d y\right) d z \\
& \quad=(-1)^{m} \lim _{j \rightarrow \infty} \int D^{\mu} k_{\lambda}^{(j)}(z)\left(\int D^{\lambda} \psi(z+y) D^{v} u(y) d y\right) d z \\
& \quad=\int\left(\int k_{\lambda}(x-y) D^{\mu+\lambda} \psi(x) d x\right) D^{v} u(y) d y
\end{aligned}
$$

Therefore, as in the proof of Theorem 9.1, we find

$$
\int U(x) D^{\mu+v} \psi(x) d x=\int u(x) D^{\mu+v} \psi(x) d x .
$$

Thus $P(x) \equiv u(x)-U(x)$ is equal a.e. to a polynomial of degree at most $2 m-1$. By the above considerations, we see also that if $|\mu|=m$, then

$$
\begin{aligned}
\left|\int U(x) D^{\mu} \psi(x) d x\right| & \leq\left|\sum_{|\lambda|=m} a_{\lambda} \int\left(\int k_{\lambda}(x-y) D^{\mu} \psi(x) d x\right) D^{\lambda} u(y) d y\right| \\
& \leq M\|\psi\|_{p^{\prime}}\left(\sum_{|\lambda|=m}\left\|D^{\lambda} u\right\|_{p}\right)
\end{aligned}
$$

on account of Lemma 3.3 in [8]. This implies $D^{\mu} P \in L^{p}\left(R^{n}\right)$ for $|\mu|=m$, so that the degree of the polynomial $P$ is at most $m-1$.

Theorem 9.3. Let $u \in B L_{m}\left(L^{p}(G)\right)$ satisfy

$$
\sum_{|\lambda|=m} \int_{G} \Phi_{p}\left(\left|D^{\lambda} u(x)\right|\right) d x<\infty .
$$

If $\varphi^{*}(1)<\infty$, that is, $\int_{0}^{1}\left[r^{n-m p} \varphi\left(r^{-1}\right)\right]^{1 /(1-p)} r^{-1} d r<\infty$, then there exists a continuous function $u^{*}$ on $G$ such that $u=u^{*}$ a.e. on $G$.

Proof. For any $\psi \in C_{0}^{\infty}(G), \psi u$ can be seen as a function in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ by [24, Chap. 9, Théorème XV (Kryloff)], and hence by Theorem 9.1 there
exists a polynomial $P$ such that

$$
\begin{equation*}
(\psi u)(x)=\sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda}(\psi u)(y) d y+P(x) \tag{9.3}
\end{equation*}
$$

for almost every $x \in R^{n}$. In view of the proof of Theorem 3.3, note that if $G^{\prime}$ is a bounded open set in $R^{n}$ and $\int_{G^{\prime}} \Phi_{p}(|f(y)|) d y<\infty$, then the function

$$
\int_{G^{\prime}} \frac{(x-y)^{\lambda}}{|x-y|^{n}} f(y) d y
$$

is continuous on $G^{\prime}$ when $|\lambda|=m$; in case $m p>n$, the continuity is well known as a part of Sobolev's imbedding theorem. Hence, if in addition $\psi=1$ on a neighborhood of a point $x_{0} \in G$, say, $\psi=1$ on $B\left(x_{0}, r_{0}\right)$, then

$$
\int_{R^{n}-\boldsymbol{B}\left(x_{0}, r_{0}\right)} \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda}(\psi u)(y) d y
$$

is continuous on $B\left(x_{0}, r_{0}\right)$ and

$$
\int_{B\left(x_{0}, r_{0}\right)} \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda}(\psi u)(y) d y=\int_{B\left(x_{0}, r_{0}\right)} \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda} u(y) d y
$$

is continuous at $x_{0}$, by the above consideration. Thus we can find a continuous function $u^{*}$ on $G$ which is equal to $u$ a.e. on $G$.

Remark 9.3. In case $m p>n, \varphi^{*}(1)<\infty$. Hence Theorem 9.3 gives an extension of Sobolev's imbedding theorem, concerning the continuity of Beppo-Levi-Deny functions.

## 10. Boundary limits of Beppo-Levi-Deny functions

In this section we study the boundary limits of Beppo-Levi-Deny functions $u$ on the half space $D=\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1} ; x_{n}>0\right\}$ satisfying (1.4).

We say that a function $u$ on an open set $G \subset R^{n}$ is ( $m, \Phi_{p}$ )-quasicontinuous on $G$ if for any $\varepsilon>0$ and any bounded open set $G^{\prime} \subset G$, there exists an open set $G^{\prime \prime} \subset G^{\prime}$ such that $C_{m, \Phi_{p}}\left(G^{\prime \prime} ; G^{\prime}\right)<\varepsilon$ and the restriction of $u$ to $G^{\prime}-G^{\prime \prime}$ is continuous. As in Lemma 2.3 in [8], if $u$ is a function in $B L_{m}\left(L_{l o c}^{p}(D)\right)$ satisfying (1.4), then we can find a function $u^{*}$ such that $u^{*}=u$ a.e. on $D$ and $u^{*}$ is $\left(m, \Phi_{p}\right)$-quasicontinuous on $D$. In case $m p>n, u^{*}$ may be taken as a continuous function on $D$ (cf. Remark 9.3).

Theorem 10.1. Let $u$ be a function in $B L_{m}\left(L_{\text {loc }}^{p}(D)\right)$ satisfying (1.4). If

$$
\begin{equation*}
\int_{0}^{1}\left[\varphi\left(t^{-1}\right) \omega(t)\right]^{-p^{\prime} / p} d t<\infty \tag{10.1}
\end{equation*}
$$

then there exists a function $u^{*} \in B L_{m}\left(L_{\text {loc }}^{1}\left(R^{n}\right)\right)$ such that $u^{*}=u$ a.e. on $D$ and $u^{*}$ is $\left(m, \Phi_{p}\right)$-quasicontinuous on $D$.

Proof. Let $a>1$. As in the proof of Lemma 2.1, using Hölder's inequality, we have

$$
\begin{aligned}
& \int_{D \cap B(0, a)}\left|D^{\lambda} u(x)\right| d x \leq\left(\int_{D \cap B(0, a)} \Phi_{p}\left(\left|D^{\lambda} u(x)\right|\right) \omega\left(x_{n}\right) d x\right)^{1 / p} \\
& \quad \times\left(\int_{D_{\cap B(0, a)}}\left[\varphi\left(x_{n}^{-\delta}\right) \omega\left(x_{n}\right)\right]^{-p^{\prime} / p} d x\right)^{1 / p^{\prime}}+\int_{D_{\cap}(0, a)} x_{n}^{-\delta} d x \\
& \leq M_{1}\left(\int_{D_{\cap B(0, a)}} \Phi_{p}\left(\left|D^{\lambda} u(x)\right|\right) \omega\left(x_{n}\right) d x\right)^{1 / p}\left(\int_{0}^{a}\left[\varphi\left(t^{-1}\right) \omega(t)\right]^{-p^{\prime} / p} d t\right)^{1 / p^{\prime}} \\
& \quad+M_{1} a^{n-\delta}
\end{aligned}
$$

for any $\lambda$ with length $m$, where $0<\delta<1$. This implies that the restriction of $u$ to the set $D \cap B(0, a)$ belongs to $B L_{m}\left(L^{1}(D \cap B(0, a))\right)$. Hence, in view of the extension theorem in Stein's book [25, Chap. 6], we can find a function $\tilde{u}$ in $B L_{m}\left(L_{l o c}^{1}\left(R^{n}\right)\right)$ such that $\tilde{u}=u$ a.e. on $D$. For this $\tilde{u}$ we have only to take an ( $m, \Phi_{p}$ )-quasicontinuous representation on $D$.

Remark 10.1. Condition ( $\omega 2$ ) implies (10.1).
As applications of the results in Sections 6-8 concerning Riesz potentials, we can study the existence of boundary limits of Beppo-Levi-Deny functions, generalizing the results in the case $m=1$; see Wallin [26] and Mizuta [9], [12], [17].

For this purpose, let

$$
\begin{aligned}
\kappa_{1}(r) & =\left(\int_{r}^{1}\left[t^{n-m p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}, \\
\varphi^{*}(r) & =\left(\int_{0}^{r}\left[t^{n-m p} \varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}, \\
\tau_{1}(r) & =\left[\kappa_{1}(r)\right]^{-p} \\
\tau_{2}(r) & =\inf _{r \leq t \leq 1} \omega(t)\left[\varphi^{*}(t)\right]^{-p}
\end{aligned}
$$

for $0<r \leq 2^{-1}$.
Theorem 10.2. Let $\omega$ be as in Theorem 6.1, and let $u$ be an ( $m, \Phi_{p}$ )-quasicontinuous function on $D$ satisfying condition (1.4). If $\kappa_{1}(0)=\infty$,
then there exists a set $E \subset D$ such that

$$
\lim _{x_{n} \rightarrow 0, x \in G-E}\left[\kappa_{1}\left(x_{n}\right)\right]^{-1} u(x)=0
$$

for any bounded open set $G \subset D$ and

$$
\begin{equation*}
\sum_{j=1}^{\infty} K^{-j} \omega\left(2^{-j}\right) C_{m, \Phi_{p}}\left(E_{j} \cap B(0, a) ; D_{j} \cap B(0,2 a)\right)<\infty \tag{10.2}
\end{equation*}
$$

for any $a>0$, where $K, E_{j}$ and $D_{j}$ are defined as in Theorem 6.1.
Proof. It follows from condition ( $\omega 2$ ) that (10.1) holds. Hence, by Theorem 10.1, there exists a function $u^{*} \in B L_{m}\left(L_{l o c}^{1}\left(R^{n}\right)\right)$ which is equal to $u$ on $D$. For $a>1$, take $\zeta \in C_{0}^{\infty}\left(R^{n}\right)$ such that $\zeta=1$ on $B(0,2 a)$. Then it follows from Theorem 9.1 that

$$
\begin{equation*}
\left(\zeta u^{*}\right)(x)=\sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda}\left(\zeta u^{*}\right)(y) d y+P(x) \tag{10.3}
\end{equation*}
$$

holds for almost every $x \in R^{n}$, where $P$ is a polynomial. Since $u$ is ( $m, \Phi_{p}$ )-quasicontinuous on $D$, (10.2) holds for every $x \in D$ except those in a set $E^{\prime}$ with $C_{m, \Phi_{p}}\left(E^{\prime}\right)=0$. But, since $E^{\prime}$ satisfies (10.2) clearly, we may assume that (10.3) holds for every $x \in D$. Set $f_{a}(y)=\sum_{|\lambda|=m}\left|(\partial / \partial y)^{\lambda}\left(\zeta u^{*}\right)(y)\right|$. Then it satisfies

$$
\int_{B(0,2 a)} \Phi_{p}\left(f_{a}(y)\right) \omega\left(\left|y_{n}\right|\right) d y<\infty
$$

In view of Theorem 6.1, we can find $E_{a} \subset D \cap B(0, a)$ such that

$$
\sum_{j=1}^{\infty} K^{-j} \omega\left(2^{-j}\right) C_{m, \Phi_{p}}\left(E_{a, j} ; \mathrm{D}_{j} \cap B(0,2 a)\right)<\infty
$$

where $E_{a, j}=\left\{x \in E_{a} ; 2^{-j} \leq x_{n}<2^{-j+1}\right\}$, and

$$
\lim _{x_{n} \rightarrow 0, x \in D \cap B(0, a)-E_{a}}\left[\kappa_{1}\left(x_{n}\right)\right]^{-1} u(x)=0 .
$$

Now, as in the proof of Theorem 6.1, we can find a sequence $\left\{j_{a}\right\}$ of positive integers such that $E=\bigcup_{a=1}^{\infty}\left(\bigcup_{j \geq j_{a}} E_{a, j}\right)$ has all the required properties.

Similarly, by Theorems 7.2 and 7.3 , we obtain the following results.
Theorem 10.3. Assume that $(\omega 2)$ holds and $\varphi^{*}(1)<\infty$. Let $u$ be a continuous function on $D$ satisfying condition (1.4). If $\tau_{1}(r) \leq M \tau_{2}(r)$ for $0<r<1$, then there exists a set $E \subset \partial D$ such that $C_{m, \Phi_{p}, \omega}(E)=0$ and $u$ has a nontangential limit at any $\xi \in \partial D-E$.

Corollary 10.1. Assume that $0<m p-n \leq \beta<p-1$ and $u$ is a continuous function on D satisfying

$$
\begin{equation*}
\sum_{|\lambda|=m} \int_{G} \Phi_{p}\left(\left|D^{\lambda} u(x)\right|\right) x_{n}^{\beta} d x<\infty \tag{10.4}
\end{equation*}
$$

for any bounded open set $G \subset D$. Then there exists a set $E \subset \partial D$ such that $C_{m, \Phi_{p}, \beta}(E)=0$ and $u$ has a nontangential limit at any $\xi \in \partial D-E$.

Theorem 10.4. Let $-1<\beta<p-1, \varphi^{*}(1)<\infty$ and $u$ be as in Corollary 10.1.
(i) If $n-m p+\beta>0$, then for $\gamma>1$, there exists a set $E_{\gamma} \subset \partial D$ such that $H_{h}\left(E_{\gamma}\right)=0$ with $h(r)=\tau_{2}\left(r^{\gamma}\right)$ and $u$ has a finite $T_{\gamma}$-limit at any $\xi \in \partial D-E_{\gamma}$.
(ii) If $\beta=m p-n>0$, then there exists a set $E \subset \partial D$ such that $C_{m, \Phi_{p}, \beta}(E)=0$ and $u$ has a finite $T_{\gamma}$ limit at any $\xi \in \partial D-E$ for any $\gamma \geq 1$.
(iii) If $\beta=m p-n=0$ or $n-m p+\beta<0$, then $u$ has a finite limit at any $\xi \in \partial D$.
In the above theorem,

$$
\tau_{2}(r)=\inf _{r \leq t \leq 1} t^{\beta}\left(\int_{0}^{t}\left[s^{n-m p} \varphi\left(s^{-1}\right)\right]^{-p^{\prime} / p} s^{-1} d s\right)^{-p / p^{\prime}}
$$

Theorem 10.5. Let $\omega$ and $\omega^{*}$ be as in Theorem 8.1, and set

$$
\begin{aligned}
& \tau_{2}^{*}(r)=\inf _{r \leq t \leq 1} t^{n-m p} \omega^{*}(t) \varphi\left(t^{-1}\right) \\
& \tau^{*}(r)=\min \left\{\tau_{1}(r), \tau_{2}^{*}(r)\right\} \\
& h^{*}(r)=\tau^{*}(\psi(r))
\end{aligned}
$$

for $0<r<1$. If $u$ is an ( $m, \Phi_{p}$ )-quasicontinuous function satisfying (1.4), then there exist $E_{1}$ and $E_{2}$ such that $C_{\alpha, \oplus_{p}, \omega}\left(E_{1}\right)=0, H_{h^{*}}\left(E_{2}\right)=0$ and $u$ has a finite limit along $L_{\Psi}(\xi)$, for any $\xi \in \partial D-\left(E_{1} \cup E_{2}\right)$.

Proof. For simplicity we assume that $u$ vanishes outside some bounded set. In this case,

$$
u(x)=\sum_{|\lambda|=m} a_{\lambda} \int k_{\lambda}(x-y) D^{\lambda} u(y) d y+P(x)
$$

holds for every $x \in D-E^{\prime}$, where $P$ is a polynomial and $E^{\prime}$ is a subset of $D$ with $C_{m, \Phi_{p}}\left(E^{\prime}\right)=0$. Denote by $u^{*}$ the function defined by the above summation about $\lambda$. Since $C_{m, \boldsymbol{\Phi}_{p}}\left(E^{\prime}\right)=0$, we can find a nonnegative measurable function $f$ on $D$ such that $U_{m} f \not \equiv \infty, U_{m} f=\infty$ on $E^{\prime}$ and (7.3) holds. Then, in view of Theorem 8.1, there exist $E_{1}^{\prime}$ and $E_{2}^{\prime}$ such that $C_{m, \Phi_{p}, \omega}\left(E_{1}^{\prime}\right)=0, H_{h^{*}}\left(E_{2}^{\prime}\right)=0$ and $U_{m} f$ has a finite limit at $\xi \in \partial D-\left(E_{1}^{\prime} \cup E_{2}^{\prime}\right)$. This implies that if $\xi \in \partial D-\left(E_{1}^{\prime} \cup E_{2}^{\prime}\right)$, then $u=u^{*}+P$ on $L_{\Psi}(\xi) \cap B\left(\xi, r_{\xi}\right)$ for some $r_{\xi}>0$. Now we apply the same discussions as in Theorem 8.1 to the function $u^{*}$, and complete the proof.

Noting Corollary 8.1, we have
Corollary 10.2. Let $m p-n \leq \beta<p-1, \gamma \geq 1$ and $\Psi$ be of the form $\left(r, \psi_{2}(r), \ldots, \psi_{n-1}(r), r^{\gamma}\right)$ as in Corollary 8.1. Further, let $u$ be an $\left(m, \Phi_{p}\right)$ quasicontinuous function on D satisfying (10.4). Then:
(i) If $\beta>0, n-m p+\beta>0$ and $\gamma>1$, then there exists a set $E \subset \partial D$ such that $H_{h}(E)=0$ with $h(r)=\inf _{r \leq t \leq 1} t^{\gamma(n-m p+\beta)} \varphi\left(t^{-1}\right)$ and $u$ has $a$ finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D-E$.
(ii) If $\beta>0, n-m p+\beta>0$ and $\gamma=1$, then there exists a set $E \subset \partial D$ such that $C_{m, \Phi_{p}, \beta}(E)=0$ and $u$ has a finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D-E$.
(iii) If $\beta \leq 0$ and $\gamma>1$, then there exists a set $E \subset \partial D$ such that $E$ has Hausdorff dimension at most $\gamma(n-m p)$ and $u$ has a finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D-E$.

By Theorems 8.2 and 8.3 we derive radial limit results for Beppo-LeviDeny functions on $D$.

Theorem 10.6. Let $-1<\beta<p-1$ and let $u$ be an ( $m, \Phi_{p}$ )-quasicontinuous function on $D$ satisfying (10.4). Then there exists a set $E \subset \partial D$ such that $C_{m, \Phi_{p}, \beta}(E)=0$ and if $\xi \in \partial D-E$, then $u(\xi+r \zeta)$ has a finite limit as $r \rightarrow 0$ for every $\zeta \in D \cap \partial B(0,1)$ except those in a set $E_{\xi}$ with $C_{m, \Phi_{p}}\left(E_{\xi}\right)=0$.

Theorem 10.7. Let $\omega$ be a nonnegative nondecreasing function on ( $[0, \infty$ ) satisfying ( $\omega 1$ ) and ( $\omega 2$ ). Let $\zeta \in D$ be fixed. If $u$ is an $\left(m, \Phi_{p}\right)$-quasicontinuous function on $D$ satisfying (1.4), then there exists a set $E \subset \partial D$ such that $C_{m, \Phi_{p}, \omega}(E)=0$ and $u(\xi+t \zeta)$ has a finite limit as $t \downarrow 0$ at any $\xi \in \partial D-E$.

## 11. Green potentials

In the half space $D$, we consider the function

$$
G_{\alpha}(x, y)= \begin{cases}|x-y|^{\alpha-n}-|\bar{x}-y|^{\alpha-n} & \text { in case } \alpha<n \\ \log (|\bar{x}-y| /|x-y|) & \text { in case } \alpha=n\end{cases}
$$

where $\bar{x}=\left(x_{1}, \ldots, x_{n-1},-x_{n}\right)$ for $x=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$, and define

$$
G_{\alpha} f(x)=\int_{D} G_{\alpha}(x, y) f(y) d y
$$

for a nonnegative locally integrable function $f$ on $D$.
The following lemma can be proved by elementary calculations (cf. [14, Lemma 9]):

Lemma 11.1. If $\alpha<n$, then there exist positive constants $M_{1}$ and $M_{2}$ such that

$$
M_{1} \frac{x_{n} y_{n}}{|x-y|^{n-\alpha}|\bar{x}-y|^{2}} \leq G_{\alpha}(x, y) \leq M_{2} \frac{x_{n} y_{n}}{|x-y|^{n-\alpha}|\bar{x}-y|^{2}}
$$

if $\alpha=n$, then for any $\varepsilon, 0<\varepsilon<1$, there exist positive constants $M_{3}$ and $M(\varepsilon)$ such that

$$
M_{3} \frac{x_{n} y_{n}}{|\bar{x}-y|^{2}} \leq G_{n}(x, y) \leq M(\varepsilon) \frac{x_{n} y_{n}}{|x-y|^{\varepsilon}|\bar{x}-y|^{2-\varepsilon}} .
$$

Corollary 11.1. For any nonnegative measurable function $f$ on $D, G_{\alpha} f$ $\not \equiv \infty$ if and only if

$$
\begin{equation*}
\int_{D}(1+|y|)^{\alpha-n-2} y_{n} f(y) d y<\infty . \tag{11.1}
\end{equation*}
$$

In this section we are concerned only with the case $\alpha<n$.
We can derive the following result from the Corollary 3.1.
Theorem 11.1. Let $f$ be a nonnegative measurable function on $D$ satisfying (11.1) such that

$$
\int_{D^{\prime}} \Phi_{p}(f(y)) d y<\infty \quad \text { for any bounded open set } D^{\prime} \text { with closure in } D .
$$

If (7.3) is fulfilled, then $G_{\alpha} f$ is continuous on $D$.
Theorem 11.2. Let $\omega$ be a positive monotone function on the interval $(0, \infty)$ satisfying $(\omega 1)$ and
( $\omega 4$ ) $\quad r^{\beta-1 / p} \omega(r)^{-1 / p} \quad$ is nondecreasing on $(0, \infty)$ for some $\beta<2$.
Define

$$
\kappa_{3}(r)=r\left(\int_{r}^{1}\left[t^{n-\alpha p+p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}
$$

for $0<r \leq 2^{-1}$, where $\eta(t)=\varphi\left(t^{-1}\right) \omega(t)$ as before. Let $f$ be a nonnegative measurable function on $D$ satisfying (11.1) and

$$
\begin{equation*}
\int_{D^{\prime}} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y<\infty \quad \text { for any bounded open set } \quad D^{\prime} \subset D \tag{11.2}
\end{equation*}
$$

Then there exists a set $E \subset D$ such that

$$
\lim _{x_{n} \rightarrow 0, x \in D^{\prime}-E}\left[\kappa_{3}\left(x_{n}\right)\right]^{-1} G_{\alpha} f(x)=0 \quad \text { if } \lim _{r \rightarrow 0} \kappa_{3}(r)=\infty,
$$

$$
\lim _{x_{n} \rightarrow 0, x \in D^{\prime}-E} G_{\alpha} f(x)=0 \quad \text { if } \kappa_{3}(r) \text { is bounded on }\left(0,2^{-1}\right)
$$

for any bounded open set $D^{\prime}$ and

$$
\sum_{j=1}^{\infty} K^{-j} \omega\left(2^{-j}\right) C_{\alpha, \Phi_{p}}\left(E_{j} \cap B(0, a) ; D_{j} \cap B(0,2 a)\right)<\infty
$$

for any $a>0$, where $K=K^{*}$ in Lemma 2.3 with $\chi=\max \left\{1, \kappa_{3}\right\}$.
Proof. First, from condition (11.1), we can apply Lebesgue's dominated convergence theorem to see that, if $D^{\prime} \subset D \cap B(0, N), N>1$, then

$$
\lim _{x_{n} \rightarrow 0, x \in D^{\prime}} \int_{D-B(0,2 N)} G_{\alpha}(x, y) f(y) d y=0
$$

For $x=\left(x^{\prime}, x_{n}\right) \in D, 0<a<1$ and $N>1$, we write

$$
\begin{aligned}
G_{N} f(x) & =\int_{D \cap B(0,2 N)-B\left(x, x_{n} / 2\right)} G_{\alpha}(x, y) f(y) d y, \\
G_{1, a, N} f(x) & =\int_{\left\{y \in D \cap B(0,2 N)-B\left(x, x_{n} / 2\right) ; y_{n} \geq a\right\}} G_{\alpha}(x, y) f(y) d y, \\
G_{2, a, N} f(x) & =\int_{\left\{y \in D \cap B(0,2 N)-B\left(x, x_{n} / 2\right) ; y_{n}<a\right\}} G_{\alpha}(x, y) f(y) d y .
\end{aligned}
$$

Then we see easily that $G_{1, a, N} f(x)$ tends to zero as $x_{n} \rightarrow 0, x \in D$. Further we have by Lemma 11.1,

$$
G_{2, a, N} f(x) \leq M_{1} x_{n} \int_{\left\{y \in D \cap B(0,2 N)-B\left(x, x_{n} / 2\right) ; y_{n}<a\right\}}|x-y|^{\alpha-n}|\bar{x}-y|^{-2} y_{n} f(y) d y .
$$

By ( $\omega 4$ ) we can apply Lemma 6.1 with $\delta>0$ such that $\alpha-1<\delta<\alpha$, and obtain

$$
G_{2, a, N} f(x) \leq M_{2} \kappa_{3}\left(x_{n}\right)\left(\int_{\left\{y \in D \cap B(0,2 N) ; y_{n}<a\right\}} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y\right)^{1 / p}+M_{2}
$$

for $0<x_{n}<2^{-1}$. Thus, if $\lim _{r \rightarrow 0} \kappa_{3}(r)=\infty$, then we find $\lim \sup _{x_{n} \rightarrow 0, x \in D}\left[\kappa_{3}\left(x_{n}\right)\right]^{-1} G_{N} f(x) \leq M_{2}\left(\int_{\left\{y \in D \cap B(0,2 N) ; y_{n}<a\right\}} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y\right)^{1 / p}$
Letting $a \rightarrow 0$, we establish

$$
\lim _{x_{n} \rightarrow 0, x \in D}\left[\kappa_{3}\left(x_{n}\right)\right]^{-1} G_{N} f(x)=0
$$

By Lemma 11.1, note

$$
\int_{B\left(x, x_{n} / 2\right)} G_{\alpha}(x, y) f(y) d y \leq \int_{B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y) d y
$$

The right hand side is just equal to $u_{2}(x)$ in Theorem 6.1. Hence, considering $E_{j, \ell}$ as in the proof of Theorem 6.1, with $\kappa_{1}$ replaced by $\kappa_{3}$, and noting Remark 6.4, we complete the proof.

Next we discuss the existence of tangential limits of Green potentials $G_{\alpha} f$ for $f$ satisfying conditions (11.1) and (11.2).

Theorem 11.3. Assume that (7.1) and ( $\omega 4$ ) hold. Let $\psi$ be a positive nondecreasing function on $(0, \infty)$ satisfying conditions $\left(\Delta_{2}\right)$ and $(\psi)$, and define

$$
\begin{aligned}
\tau_{3}(r) & =\inf _{\tau \leq t<1}\left[\kappa_{3}(r)\right]^{-p} \\
\tau_{0} & =\min \left\{\tau_{2}(r), \tau_{3}(r)\right\} \\
h_{0}(r) & =\tau_{0}(\psi(r))
\end{aligned}
$$

for $0<r<1$, where $\tau_{2}$ is as in Theorem 7.1. If $f$ is as in Theorem 11.2, then there exists a set $E \subset \partial D$ such that $H_{h_{0}}(E)=0$ and

$$
\lim _{x \rightarrow \xi, x \in T_{\psi}(\xi, a)} G_{\alpha} f(x)=0
$$

for any $a>0$ and any $\xi \in \partial D-E$. If in addition $\tau_{0}(0)>0$, then

$$
\lim _{x \rightarrow \xi, x \in D} G_{\alpha} f(x)=0
$$

for any $\xi \in \partial D$.
Before proving this theorem, we note the following lemma (cf. [13, Lemma 3]).

Lemma 11.2. For $\xi \in \partial D$, set $g_{\xi}(x)=\int_{D-B(\xi, 2|x-\xi|)} G_{\alpha}(x, y) f(y) d y$. Then
$\lim _{x \rightarrow \xi, x \in D} g_{\xi}(x)=0$ if and only if $\lim _{r \rightarrow 0} r^{\alpha-n-1} \int_{D_{B}(\xi, r)} y_{n} f(y) d y=0$.
Proof of Theorem 11.3. For $\xi \in \partial D$, we write $G_{\alpha} f=v_{1}+v_{2}+g_{\xi}$, where

$$
\begin{aligned}
& v_{1}(x)=\int_{D \cap B(\xi, 2|x-\xi|)-B\left(x, a x_{n}\right)} G_{\alpha}(x, y) f(y) d y, \\
& v_{2}(x)=\int_{B\left(x, a x_{n}\right)} G_{\alpha}(x, y) f(y) d y
\end{aligned}
$$

Define

$$
E=\left\{\xi \in \partial D ; \lim \sup _{r \rightarrow 0} h_{0}(r)^{-1} \int_{D \cap B(\xi, r)} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y>0\right\} .
$$

Then, by Lemma 7.2, we see that $H_{h_{0}}(E)=0$. By $(\omega 4)$,

$$
\begin{aligned}
\int_{D \cap B(\xi, r)}\left[\omega\left(y_{n}\right)^{-1 / p} y_{n}\right]^{p^{\prime}} d y & \leq\left[r^{\beta-1 / p} \omega(r)^{-1 / p}\right]^{p^{\prime}} \int_{D \cap B(\xi, r)} y_{n}^{p^{\prime}(-\beta+(1 / p)+1)} d y \\
& =M_{1} r^{n+p^{\prime}}[\omega(r)]^{-p^{\prime} / p} .
\end{aligned}
$$

Hence, as in the proof of Lemma 2.1, we have for $\delta, 0<\delta<\alpha$,

$$
\begin{aligned}
& r^{\alpha-n-1} \int_{D \cap B(\xi, r)} y_{n} f(y) d y=r^{\alpha-n-1} \int_{\left(y \in D \cap B(\xi, r) ; f(y)>r^{-\delta}\right\}} y_{n} f(y) d y \\
& \quad+r^{\alpha-n-1} \int_{\left\{y \in D \cap B(\xi, r) ; f(y) \leq r^{-\delta}\right\}} y_{n} f(y) d y \\
& \leq r^{\alpha-n-1}\left(\int_{D \cap B(\xi, r)} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y\right)^{1 / p} \\
& \quad \times\left(\int_{\left\{y \in D \cap B(\xi, r) ; f(y)>r^{-\delta}\right\}}\left[\varphi(f(y)) \omega\left(y_{n}\right)\right]^{-p^{\prime} / p} y_{n}^{p^{\prime}} d y\right)^{1 / p^{\prime}} \\
& \quad+r^{\alpha-n-1-\delta} \int_{D_{\cap B(\xi, r)}} y_{n} d y \\
& \leq \\
& \leq M_{2}\left[r^{n-\alpha p} \eta(r)\right]^{-1 / p}\left(\int_{D \cap B(\xi, r)} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y\right)^{1 / p}+M_{1} r^{\alpha-\delta} .
\end{aligned}
$$

Here note

$$
\kappa_{3}(r) \geq M_{3}\left[r^{n-\alpha p} \eta(r)\right]^{-1 / p}
$$

and

$$
h_{0}(r) \leq \tau_{0}(\psi(1) r) \leq M_{4}\left[\kappa_{3}(r)\right]^{-p}
$$

for $0<r<1$. Therefore, if $\xi \in \partial D-E$, then it follows that

$$
\lim _{r \rightarrow 0} r^{\alpha-n-1} \int_{D \cap B(\xi, r)} y_{n} f(y) d y=0
$$

Lemma 11.2 implies that $g_{\xi}(x)$ tends to zero as $x \rightarrow \xi, x \in D$. By Lemmas 6.1 and 11.1 , we find

$$
v_{1}(x) \leq M_{2} \kappa_{3}\left(x_{n}\right)\left(\int_{D_{\cap B(\xi, 2|x-\xi|)}} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y\right)^{1 / p}+M_{2}|x-\xi|^{\alpha-\delta}
$$

for any $x \in D \cap B(\xi, 1)$. Thus, since $\kappa_{3}\left(x_{n}\right) \leq M_{3}\left[h_{0}(|x-\xi|)\right]^{-1 / p}$ for $x \in T_{\psi}(\xi, a)$, if $\xi \in \partial D-E$, then $v_{1}(x)$ tends to zero as $x \rightarrow \xi, x \in T_{\psi}(\xi, a)$. Finally, Lemma 6.1 yields

$$
v_{2}(x) \leq M_{4}\left[\tau_{2}\left(x_{n}\right)\right]^{-1 / p}\left(\int_{B\left(x, x_{n} / 2\right)} \Phi_{p}(f(y)) \omega\left(y_{n}\right) d y\right)^{1 / p}+M_{4} x_{n}^{\alpha-\delta}
$$

Hence it follows that $v_{2}(x)$ tends to zero as $x \rightarrow \xi, x \in T_{\psi}(\xi, a)$, if $\xi \in \partial D-E$. In case $\tau_{0}(0)>0, \lim _{x \rightarrow \xi, x \in D} G_{\alpha} f(x)=0$ for any $\xi \in \partial D$. Now Theorem 11.3 is proved.

In the same way as Theorem 7.3, we can derive the following result.
Corollary 11.2. Assume that (7.1) holds. Let $-1<\beta<2 p-1$ and let $f$ be a nonnegative measurable function on $D$ satisfying (11.1) and

$$
\int_{D^{\prime}} \Phi_{p}(f(y)) y_{n}^{\beta} d y<\infty \quad \text { for any bounded open set } \quad D^{\prime} \subset D
$$

(i) If $n-\alpha p+\beta>0$, then, for each $\gamma \geq 1$, there exists $E_{\gamma} \subset \partial D$ such that $H_{h_{\gamma}}\left(E_{\gamma}\right)=0$, where $h_{\gamma}(r)=\tau_{2}\left(r^{\gamma}\right)$ with

$$
\tau_{2}(r)=\inf _{r \leq t \leq 1} t^{\beta}\left(\int_{0}^{t}\left[s^{n-\alpha p} \varphi\left(s^{-1}\right)\right]^{-p^{\prime} / p} s^{-1} d s\right)^{-p / p^{\prime}}
$$

and $G_{\alpha} f(x)$ has $T_{\gamma}$-limit zero at any $\xi \in \partial D-E_{\gamma}$.
(ii) If $n-\alpha p+\beta \leq 0$, then $G_{\alpha} f(x)$ has limit zero at any $\xi \in \partial D$.

In fact, if $\beta<2 p-1$, then $\omega(r)=r^{\beta}$ satisfies condition ( $\omega 4$ ). If in addition $n-\alpha p+p+\beta>0$, then the corresponding $\tau_{2}$ and $\tau_{3}$ in Theorem 11.3 satisfy

$$
\tau_{3}(r) \geq M_{1} r^{n-\alpha p+\beta} \varphi\left(r^{-1}\right) \geq M_{2} \tau_{2}(r)
$$

so that (i) follows from Theorem 11.3. On the other hand, in case $-p<n-\alpha p+\beta \leq 0$, the above facts also imply $\tau_{3}(0)>0$; in case $n-\alpha p+p$ $+\beta \leq 0$,

$$
\kappa_{3}(r) \leq\left(\int_{0}^{1}\left[\varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{p^{\prime}-1} d t\right)^{1 / p^{\prime}}<\infty,
$$

so that $\tau_{3}(0)>0$. Thus, if $n-\alpha p+\beta \leq 0$, then

$$
\tau_{3}(0)>0 .
$$

Further, in case $0<\beta \leq \alpha p-n$,

$$
\tau_{2}(r) \geq M_{2} r^{n-\alpha p+\beta} \varphi\left(r^{-1}\right)
$$

so that $\tau_{2}(0)>0$. In case $\beta \leq 0, \tau_{2}(0)>0$, too. Thus, if $n-\alpha p+\beta \leq 0$, then $\tau_{2}(0)>0$. Now, if $n-\alpha p+\beta \leq 0$, then $\tau_{0}(0)>0$ and the proof of Theorem 11.3 yields the required conclusion of (ii).

In case $\beta \geq 2 p-1, \omega(r)=r^{\beta}$ does not satisfy condition ( $\omega 4$ ). We can, however, give some results concerning nontangential limits.

Proposition 11.1. Let $\beta \geq 2 p-1$. For $\tau_{2}$ in Corollary 11.2, (i), define

$$
h(r)=\min \left\{r^{n-\alpha+1}, \tau_{2}(r)\right\} \quad \text { for } \quad r>0 .
$$

If $f$ is as in Corollary 11.2, then there exists a set $E \subset \partial D$ such that $H_{h}(E)=0$ and $G_{\alpha} f$ has nontangential limit zero at any $\xi \in \partial D-E$.

Proof. Consider the set

$$
A=\left\{\xi \in \partial D ; \lim \sup _{r \rightarrow 0} r^{\alpha-n-1} \int_{D_{\cap B(\xi, r)}} y_{n} f(y) d y>0\right\} .
$$

Lemma 7.2 together with (11.1) implies $H_{h}(A)=0$. It follows from Lemma 11.2 that $g_{\xi}$ has limit zero at any $\xi \in \partial D-A$. Further, in the proof of Theorem 11.3,

$$
v_{1}(x) \leq M_{1} x_{n}^{\alpha-n-1} \int_{D_{n} B(\xi, 2|x-\xi|)} y_{n} f(y) d y
$$

which implies that $v_{1}$ has nontangential limit zero at any $\xi \in \partial D-A$. Since $v_{2}$ can be evaluated in the same manner as in the proof of Theorem 11.3, the required result now follows.

Proposition 11.2. Let $f$ be a nonnegative measurable function on $D$ satisfying (11.1) and

$$
\int_{G} \Phi_{p}(f(y)) y_{n}^{2 p-1} d y<\infty
$$

for any bounded open set $G \subset D$. Suppose $\int_{0}^{1}\left[\varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t<\infty$, and define

$$
h(r)=\inf _{r \leq t \leq 1} t^{n-1-p(\alpha-2)}\left(\int_{0}^{t}\left[\varphi\left(s^{-1}\right)\right]^{-p^{\prime} / p} S^{-1} d s\right)^{-p / p^{\prime}}
$$

If $\alpha p \geq n$, then there exists a set $E \subset \partial D$ such that $H_{h}(E)=0$ and $G_{\alpha} f$ has nontangential limit zero at any $\xi \in \partial D-E$.

Proof. As in the proof of Theorem 11.3, we have

$$
\begin{aligned}
r^{\alpha-n-1} & \int_{D \cap B(\xi, r)} y_{n} f(y) d y \leq r^{\alpha-n-1}\left(\int_{D \cap B(\xi, r)} \Phi_{p}(f(y)) y_{n}^{2 p-1} d y\right)^{1 / p} \\
& \times\left(\int_{D \cap B(\xi, r)} y_{n}^{-1}\left[\varphi\left(y_{n}^{-\delta}\right)\right]^{-p^{\prime} / p} d y\right)^{1 / p^{\prime}}+r^{\alpha-n-1} \int_{D \cap B(\xi, r)} y_{n}^{1-\delta} d y \\
\leq & M_{1} r^{\alpha-2-(n-1) / p}\left(\int_{0}^{r}\left[\varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}\left(\int_{D \cap B(\xi, r)} \Phi_{p}(f(y)) y_{n}^{2 p-1} d y\right)^{1 / p} \\
& +M_{1} r^{\alpha-\delta} \\
\leq & M_{1}\left([h(r)]^{-1} \int_{D \cap B(\xi, r)} \Phi_{p}(f(y)) y_{n}^{2 p-1} d y\right)^{1 / p}+M_{1} r^{\alpha-\delta}
\end{aligned}
$$

where $0<\delta<\min \{2, \alpha\}$. Hence $H_{h}(A)=0$ by Lemma 7.2, for the set $A$ in the proof of Proposition 11.1. On the other hand, if $\omega(r)=r^{2 p-1}$, then $\tau_{2}$ in Theorem 11.3 satisfies

$$
\tau_{2}(r) \geq \inf _{r \leq t \leq 1} t^{2 p-1} \times t^{n-\alpha p}\left(\int_{0}^{t}\left[\varphi\left(s^{-1}\right)\right]^{-p^{\prime} / p} S^{-1} d s\right)^{-p / p^{\prime}}=h(r) .
$$

Thus, as in the proof of Proposition 11.1, we see that $G_{\alpha} f$ has nontangential limit zero at any $\xi \in \partial D-E$, where $H_{h}(E)=0$.

By the proofs of Theorems 8.1 and 11.3, we can derive the following result.
Theorem 11.4. Let $\tau_{2}^{*}$ be as in Theorem 8.1 and $\tau_{3}, \psi$ be as in Theorem 11.3. Define

$$
h_{0}^{*}(r)=\min \left\{\tau_{2}^{*}(\psi(r)), \tau_{3}(\psi(r))\right\}
$$

for $0<r \leq 1$; define $h_{0}^{*}(r)=h_{0}^{*}(1)$ for $r>1$. If $f$ is as in Theorem 11.2, then there exists a set $E \subset \partial D$ such that $H_{h_{d}^{*}}(E)=0$ and

$$
\lim _{r \rightarrow 0} G_{\alpha} f(\xi(r))=0 \quad \text { for any } \quad \xi \in \partial D-E
$$

where $\xi(r)=\xi+\Psi(r)$ with $\Psi(r)=\left(r, \psi_{2}(r), \ldots, \psi_{n-1}(r), \psi(r)\right)$ is as in Section 8 .
Corollary 11.3. Let $-1<\beta<2 p-1$ and $\Psi(r)=\left(r, \psi_{2}(r), \ldots, \psi_{n-2}(r)\right.$, $\left.r^{\gamma}\right), \gamma \geq 1$, as in Corollary 8.1. Further let $f$ be as in Corollary 11.2.
(i) If $\beta>0$ and $n-\alpha p+\beta>0$, then there exists a set $E \subset \partial D$ such that $H_{h}(E)=0$ and $G_{\alpha} f$ has limit zero along the curve $L_{\Psi}(\xi)$, for any $\xi \in$ $\partial D-E$, where $h(r)=\tau_{2}\left(r^{v}\right)$ with $\tau_{2}(r)=\inf _{r \leq t \leq 1} t^{\beta}\left(\int_{0}^{t}\left[s^{n-\alpha p} \varphi\left(s^{-1}\right)\right]^{-p^{\prime} / p}\right.$ $d s / s)^{-p / p^{\prime}}$.
(ii) If $\beta \leq 0$ and $n-\alpha p \geq 0$, then there exists $a$ set $E \subset \partial D$ such that $E$
has Hausdorff dimension at most $\gamma(n-\alpha p)$ and $G_{\alpha} f$ has limit zero along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D-E$.

Remark 11.1. Our results give generalizations of the results in Rippon [23], Wu [27], Aikawa [1] and Mizuta [14].

## 12. Singular integrals

In view of Theorem 9.2, if $u \in B L_{m}\left(L^{p}\left(R^{n}\right)\right)$, then

$$
u(x)=\sum_{|\lambda|=m} a_{\lambda} \int k_{\lambda, \ell}(x, y) D^{\lambda} u(y) d y+P(x)
$$

for almost every $x \in R^{n}$, where $\ell<m$ and $P$ is a polynomial of degree at most $m-1$. Conversely, it is known (cf. [16, Lemma 3]) that each integral in the above equality belongs to $B L_{m}\left(L^{p}\left(R^{n}\right)\right.$ ).

Let us begin with the following result, concerning the $\Phi_{p}$ estimate for the derivatives of potentials.

Lemma 12.1 (cf. [9, Lemma 6], [18]). Let $-1<\beta<p-1$ and $f$ be a nonnegative measurable function on $R^{n}$ such that

$$
\int_{R^{n}}(1+|y|)^{m-n} f(y) d y<\infty \quad \text { and } \quad \int_{R^{n}} \Phi_{p}\left(f(y)\left|y_{n}\right|^{\beta / p}\right) d y<\infty
$$

Set

$$
u(x)=\int_{R^{n}} k_{\lambda}(x-y) f(y) d y,
$$

where $k_{\lambda}(x)=x^{\lambda} /|x|^{n}$ and $|\lambda|=m$. Then $u$ is a function in $B L_{m}\left(L_{\text {loc }}^{q}\left(R^{n}\right)\right)$ for $q$ such that $1<q<\min \{p, p /(\beta+1)\}$. Further, $u$ is $\left(m, \Phi_{p}\right)$-quasicontinuous on $D$ and satisfies

$$
\int \Phi_{p}\left(\left|\nabla_{m} u(x)\right|\left|x_{n}\right|^{\beta / p}\right) d x \leq M \int \Phi_{p}\left(f(y)\left|y_{n}\right|^{\beta / p}\right) d y
$$

with a positive constant $M$ independent of $f$, where $\left|\nabla_{m} u(x)\right|=\left(\sum_{|\lambda|=m}\left|D^{\lambda} u(x)\right|^{2}\right)^{1 / 2}$.
Proof. First of all, if we note $\int_{G} \Phi_{p}(f(y)) d y<\infty$ for any relatively compact open set $G$ in $D$, then $u$ is ( $m, p$ )-quasicontinuous on $D$ in the sense of [8]. If the required inequality of the present lemma is obtained, then we see that $u$ is $\left(m, \Phi_{p}\right)$-quasicontinuous on $D$. If $1<q<\min \{p, p /(\beta+1)\}$, then we have by Hölder's inequality

$$
\int_{G} f(y)^{q} d y \leq\left(\int_{G} f(y)^{p}\left|y_{n}\right|^{\beta} d y\right)^{q / p}\left(\int_{G}\left|y_{n}\right|^{-\beta q /(p-q)} d y\right)^{1-q / p}<\infty
$$

for any bounded open set $G \subset R^{n}$. Consequently it follows from [8, Lemma 3.3] that $u \in B L_{m}\left(L_{l o c}^{q}\left(R^{n}\right)\right)$. For $\varepsilon>0$, set $k_{\lambda}^{(e)}(x)=x^{\lambda}\left(|x|^{2}+\varepsilon^{2}\right)^{-n / 2}$, and consider the function

$$
u_{\varepsilon}(x)=\int k_{\lambda}^{(\varepsilon)}(x-y) f(y) d y
$$

In view of [8, Lemma 3.3], we see that $(\partial / \partial x)^{\nu} u_{\varepsilon}(x)$ tends to $(\partial / \partial x)^{v} u(x)$ in $L_{l o c}^{q}\left(R^{n}\right)$ as $\varepsilon \rightarrow 0$ for any $v$ with length $m$. First we show

$$
\begin{equation*}
\int\left|(\partial / \partial x)^{v} u_{\varepsilon}(x)\right|^{p}\left|x_{n}\right|^{\beta} d x \leq M_{1} \int f(y)^{p}\left|y_{n}\right|^{\beta} d y \tag{12.1}
\end{equation*}
$$

where $|v|=m$ and $M_{1}$ is a positive constant independent of $\varepsilon$ and $f$. For this, note

$$
(\partial / \partial x)^{v} u_{\varepsilon}(x)=\int(\partial / \partial x)^{v} k_{\lambda}^{(\varepsilon)}(x-y) f(y) d y
$$

Setting $v_{\varepsilon}(x)=\int(\partial / \partial x)^{\nu} k_{\lambda}^{(\varepsilon)}(x-y) g(y) d y$ with $g(y)=f(y)\left|y_{n}\right|^{\beta / p}$, we have

$$
\begin{equation*}
\int\left|\nabla_{m} v_{\varepsilon}(x)\right|^{p} d x \leq M_{2} \int g(y)^{p} d y \tag{12.2}
\end{equation*}
$$

in view of the proof of [8, Lemma 3.2] (see also Stein [25, Theorem 2, Section 3.2, Chapter 2]). Further, we obtain

$$
\begin{aligned}
\left|\left|x_{n}\right|^{\beta / p}(\partial / \partial x)^{v} u_{\varepsilon}(x)-(\partial / \partial x)^{v} v_{\varepsilon}(x)\right| & \leq M_{3} \int \frac{\left|1-\left[\left|x_{n}\right| /\left|y_{n}\right|\right]^{\beta / p}\right|}{|x-y|^{n}} g(y) d y \\
& =M_{3} \int \frac{\left|1-\left[\left|x_{n}\right| /\left|y_{n}\right|\right]^{\beta / p}\right|}{\left|x_{n}-y_{n}\right|} G\left(x^{\prime}, x_{n}, y_{n}\right) d y_{n}
\end{aligned}
$$

where $G\left(x^{\prime}, x_{n}, y_{n}\right)=\int_{R^{n-1}} \frac{\left|x_{n}-y_{n}\right|}{\left(\left|x^{\prime}-y^{\prime}\right|^{2}+\left|x_{n}-y_{n}\right|^{2}\right)^{n / 2}} g\left(y^{\prime}, y_{n}\right) d y^{\prime}$. As in the proof of Lemma 6 in [9], using Minkowski's inequality (see [25, Appendix A.1]) and the property of Poisson integral in the half space, we find

$$
\begin{aligned}
& \left\|\left|x_{n}\right|^{\beta / p}(\partial / \partial x)^{v} u_{\varepsilon}\left(\cdot, x_{n}\right)-(\partial / \partial x)^{v} v_{\varepsilon}\left(\cdot, x_{n}\right)\right\|_{L^{p}\left(R^{n-1}\right)} \\
& \quad \leq M_{3} \int \frac{\left|1-\left[\left|x_{n}\right| /\left|y_{n}\right|\right]^{\beta / p}\right|}{\left|x_{n}-y_{n}\right|}\left\|G\left(\cdot, x_{n}, y_{n}\right)\right\|_{p} d y_{n}
\end{aligned}
$$

$$
\leq M_{4} \int \frac{\left|1-\left[\left|x_{n}\right| /\left|y_{n}\right|\right]^{\beta / p}\right|}{\left|x_{n}-y_{n}\right|}\left\|g\left(\cdot, y_{n}\right)\right\|_{p} d y_{n} .
$$

Moreover, by [25, Appendix A.3], the $L^{p}$-norm in $R^{1}$ of the right hand side is dominated by $M_{5}\|g\|_{p}$ as long as

$$
\int_{0}^{\infty}\left|1-r^{-\beta / p}\right||1-r|^{-1} r^{-1 / p} d r<\infty
$$

which is true because $-1<\beta<p-1$. Thus (12.1) is obtained with the aid of (12.2). Letting $\varepsilon \rightarrow 0$, we establish

$$
\begin{equation*}
\int\left|(\partial / \partial x)^{v} u(x)\right|^{p}\left|x_{n}\right|^{\beta} d x \leq M_{6} \int f(y)^{p}\left|y_{n}\right|^{\beta} d y \tag{12.3}
\end{equation*}
$$

which proves the case $\varphi \equiv 1$. Now we apply the usual interpolation methods (cf. [28], [25, Appendix B]) and prove

$$
\int \Phi_{p}\left(\left|(\partial / \partial x)^{v} u(x)\right|\left|x_{n}\right|^{\beta / p}\right) d x \leq M \int \Phi_{p}\left(f(y)\left|y_{n}\right|^{\beta / p}\right) d y
$$

For this purpose, let $\gamma=\beta / p$ and note from (12.3)

$$
\begin{equation*}
\int\left[\left|(\partial / \partial x)^{v} u(x)\right|\left|x_{n}\right|^{v}\right]^{q} d x \leq M_{q} \int\left[f(y)\left|y_{n}\right|^{v}\right]^{q} d y \tag{12.4}
\end{equation*}
$$

for any $q$ such that $q>1$ and $-1<\gamma q<q-1$. Since $-1 / p<\gamma<1 / p^{\prime}$, we can take $q_{1}, q_{2}$ such that

$$
1<q_{1}<p<q_{2} \quad \text { and } \quad-\frac{1}{q_{2}}<\gamma<\frac{1}{q_{1}^{\prime}}
$$

recall that $p^{\prime}$ and $q_{1}^{\prime}$ are the exponents conjugate to $p$ and $q_{1}$, respectively. For $a>0$, decompose $f$ as $f_{a, 1}+f_{a, 2}$, where

$$
f_{a, 1}(y)=\left\{\begin{array}{ll}
f(y) & \text { if } g(y) \geq a, \\
0 & \text { otherwise },
\end{array} \quad g(y)=f(y)\left|y_{n}\right|^{\eta}\right.
$$

and write $u_{a, 1}$ and $u_{a, 2}$ for $u$ with $f=f_{a, 1}$ and $f_{a, 2}$, respectively. Applying (12.4), we have

$$
\int\left[\left|(\partial / \partial x)^{v} u_{a, i}(x)\right|\left|x_{n}\right|^{\gamma^{q_{i}}} d x \leq M_{7} \int\left[f_{a, i}(y)\left|y_{n}\right|^{\nu}\right]^{q_{i}} d y\right.
$$

for $i=1,2$. Here remark that $M_{7}$ does not depend on $a$. Since $u=u_{a, 1}+u_{a, 2}$,

$$
\begin{aligned}
& m_{n}\left(\left\{x ;\left|(\partial / \partial x)^{\nu} u(x)\right|\left|x_{n}\right|^{\gamma}>2 a\right\}\right) \\
& \quad \leq \int\left[\left(\frac{\left|(\partial / \partial x)^{v} u_{a, 1}(x)\right|\left|x_{n}\right|^{\gamma}}{a}\right)^{q_{1}}+\left(\frac{\left|(\partial / \partial x)^{v} u_{a, 2}(x)\right|\left|x_{n}\right|^{\nu}}{a}\right)^{q_{2}}\right] d x \\
& \quad \leq M_{7} a^{-q_{1}} \int\left[f_{a, 1}(y)\left|y_{n}\right|^{\nu}\right]^{q_{1}} d y+M_{7} a^{-q_{2}} \int\left[f_{a, 2}(y)\left|y_{n}\right|^{\mid}\right]^{q_{2}} d y,
\end{aligned}
$$

where $m_{n}$ denotes the $n$-dimensional Lebesgue measure. Hence,

$$
\begin{aligned}
\int \Phi_{p}\left(\left|(\partial / \partial x)^{v} u(x)\right|\left|x_{n}\right|^{\gamma}\right) d x= & \int m_{n}\left(\left\{x ;\left|(\partial / \partial x)^{v} u(x)\right|\left|x_{n}\right|^{\gamma}>2 a\right\}\right) d \Phi_{p}(2 a) \\
\leq & M_{7} \int g(y)^{q_{1}}\left(\int_{0}^{g(y)} a^{-q_{1}} d \Phi_{p}(2 a)\right) d y \\
& +M_{7} \int g(y)^{q_{2}}\left(\int_{g(y)}^{\infty} a^{-q_{2}} d \Phi_{p}(2 a)\right) d y .
\end{aligned}
$$

By ( $\varphi 1$ ) and ( $\varphi 5$ ),

$$
s^{-q_{1}-\delta} \Phi_{p}(2 s) \leq M_{8} t^{-q_{1}-\delta} \Phi_{p}(2 t) \quad \text { and } \quad s^{-q_{2}+\delta} \Phi_{p}(2 s) \geq M_{8} t^{-q_{2}+\delta} \Phi_{p}(2 t)
$$

whenever $0<s<t$, where $\delta>0$ is chosen so that $q_{1}+\delta<p<q_{2}-\delta$. Hence it follows that

$$
\begin{aligned}
& \int_{0}^{g(y)} a^{-q_{1}} d \Phi_{p}(2 a)=\int_{0}^{g(y)} \Phi_{p}(2 a) d\left(-a^{-q_{1}}\right)+[g(y)]^{-q_{1}} \Phi_{p}(2 g(y)) \\
& \quad \leq q_{1} M_{8} \Phi_{p}(2 g(y))[g(y)]^{-q_{1}-\delta} \int_{0}^{g(y)} a^{\delta-1} d a+[g(y)]^{-q_{1}} \Phi_{p}(2 g(y)) \\
& \quad \leq M_{9} \Phi_{p}(g(y))[g(y)]^{-q_{1}} .
\end{aligned}
$$

Similarly,

$$
\int_{g(y)}^{\infty} a^{-q_{2}} d \Phi_{p}(2 a) \leq M_{10} \Phi_{p}(g(y)) g(y)^{-q_{2}} .
$$

Now we find

$$
\int \Phi_{p}\left(\left|(\partial / \partial x)^{\nu} u(x)\right|\left|x_{n}\right|^{\gamma}\right) d x \leq M_{11} \int \Phi_{p}(g(y)) d y=M_{11} \int \Phi_{p}\left(f(y)\left|y_{n}\right|^{\gamma}\right) d y,
$$

which yields the required inequality. Thus the proof of Lemma 12.1 is completed.

Remark 12.1. If we replace $k_{\lambda}$ by $R_{m}$ or $k_{\lambda}^{*}=D^{\lambda} R_{2 m}$, then the same conclusions as in Lemma 12.1 still hold.

Lemma 12.2. Let $-1<\beta<p-1$. For a nonnegative measurable function $f$ on $R^{n}$,

$$
\int_{G} \Phi_{p}\left(f(y)\left|y_{n}\right|^{\beta / p}\right) d y<\infty \quad \text { for any bounded open set } G \subset R^{n}
$$

if and only if

$$
\int_{G} \Phi_{p}(f(y))\left|y_{n}\right|^{\beta} d y<\infty \quad \text { for any bounded open set } G \subset R^{n} .
$$

Proof. Let $\varepsilon>0$ and $\beta\left(1+\varepsilon^{-1}\right)>-1$. Then, for a bounded open set $G \subset R^{n}$, we have

$$
\begin{aligned}
& \int_{G} \Phi_{p}\left(f(y)\left|y_{n}\right|^{\beta / p}\right) d y \\
& \leq \int_{\left\{y \in G ; f(y)^{\varepsilon} \geq\left|y_{n}\right| \beta / p\right\}} \Phi_{p}\left(f(y)\left|y_{n}\right|^{\beta / p}\right) d y+\int_{\left\{y \in G ; f(y)^{\varepsilon<}\left|y_{n}\right|^{\beta / p}\right\}} \Phi_{p}\left(f(y)\left|y_{n}\right|^{\beta / p}\right) d y \\
& \leq \int_{G}\left[f(y)\left|y_{n}\right|^{\beta / p}\right]^{p} \varphi\left(f(y)^{1+\varepsilon}\right) d y+\int_{G} \Phi\left(\left|y_{n}\right|^{\left(1+\varepsilon^{-1}\right) \beta / p}\right) d y \\
& \leq M(\varepsilon)\left\{\int_{G} \Phi_{p}(f(y))\left|y_{n}\right|^{\beta} d y+\int_{G}\left|y_{n}\right|^{\left(1+\varepsilon^{-1}\right) \beta} \varphi\left(\left|y_{n}\right|^{\beta}\right) d y\right\}
\end{aligned}
$$

Since $\beta\left(1+\varepsilon^{-1}\right)>-1$, the last integral is convergent. Thus the "if" part follows. The "only if" part can be proved similarly.

Theorem 12.1. Let $-1<\beta<p-1$ and $f$ be a nonnegative measurable function on $R^{n}$ such that

$$
\begin{equation*}
\int_{R^{n}} \Phi_{p}(f(y))\left|y_{n}\right|^{\beta} d y<\infty \tag{12.5}
\end{equation*}
$$

If $\ell \leq m-n / p-\beta / p<\ell+1$, then the function

$$
u(x)=\int k_{\lambda, \ell}(x, y) f(y) d y
$$

satisfies

$$
\begin{equation*}
\int_{G} \Phi_{p}\left(\left|\nabla_{m} u(x)\right|\right)\left|x_{n}\right|^{\beta} d x<\infty \quad \text { for any bounded open set } \quad G \subset R^{n} \tag{12.6}
\end{equation*}
$$

Proof. Since $f \in L^{q}\left(R^{n}\right), \quad 1<q<\min \{p, p /(1+\beta)\}$, by the proof of Lemma 12.1, we see that $u \in B L_{m}\left(L_{\text {loc }}^{q}\left(R^{n}\right)\right)$ by [19, Lemma 5]. For $a>0$, set

$$
\begin{aligned}
& u_{a}^{\prime}(x)=\int_{B(0,2 a)} k_{\lambda, \ell}(x, y) f(y) d y \\
& u_{a}^{\prime \prime}(x)=\int_{R^{n}-B(0,2 a)} k_{\lambda, \ell}(x, y) f(y) d y
\end{aligned}
$$

Since $u_{a}^{\prime \prime}$ is infinitely differentiable on $B(0,2 a)$, it satisfies

$$
\int_{B(0, a)} \Phi_{p}\left(\left|\nabla_{m} u_{a}^{\prime \prime}(x)\right|\right)\left|x_{n}\right|^{\beta} d x<\infty
$$

On the other hand, $u_{a}^{\prime}(x)$ is of the form $v_{a}(x)=\int_{B(0,2 a)} k_{\lambda}(x-y) f(y) d y+w_{a}(x)$, where $w_{a}$ is a polynomial. Lemma 12.1 implies

$$
\int_{R^{n}} \Phi_{p}\left(\left|\nabla_{m} v_{a}(x)\right|\left|x_{n}\right|^{\beta / p}\right) d x \leq M \int_{B(0,2 a)} \Phi_{p}\left(f(y)\left|y_{n}\right|^{\beta / p}\right) d y<\infty .
$$

Hence, if we note Lemma 12.2, then we have

$$
\int_{B(0, a)} \Phi_{p}\left(\left|\nabla_{m} u_{a}^{\prime}(x)\right|\right)\left|x_{n}\right|^{\beta} d x<\infty .
$$

Therefore,

$$
\int_{B(0, a)} \Phi_{p}\left(\left|\nabla_{m} u(x)\right|\right)\left|x_{n}\right|^{\beta} d x<\infty .
$$

Since $a$ is arbitrary, Theorem 12.1 is obtained.
Lemma 12.3. Let $\omega$ be a positive monotone function on $(0, \infty)$ satisfying $(\omega 1)$ and $(\omega 2)$. If $C_{\alpha, \Phi_{p}, \omega}(E)=0$, then there exists a nonnegative measurable function $f$ on $R^{n}$ such that

$$
\begin{aligned}
& \int(1+|y|)^{\alpha-n} f(y)<\infty, \\
& \int \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y<\infty
\end{aligned}
$$

and

$$
U_{\alpha} f(x)=\infty \quad \text { for any } \quad x \in E
$$

Proof. For any $a>0, C_{\alpha, \Phi_{p}, \omega}(E \cap B(0, a) ; B(0, a))=0$ by our assumption. Hence we can find a nonnegative measurable function $f_{a}$ such that $f_{a}=0$
outside $B(0, a), U_{\alpha} f_{a}=\infty$ on $E \cap B(0, a)$ and $\int_{B(0, a)} \Phi_{p}\left(f_{a}(y)\right) \omega\left(\left|y_{n}\right|\right) d y<\infty$. As in the proof of Lemma 6.1, we establish

$$
\int(1+|y|)^{\alpha-n} f_{a}(y) d y \leq M(a) \int_{B(0, a)} \Phi_{p}\left(f_{a}(y)\right) \omega\left(\left|y_{n}\right|\right) d y
$$

for some constant $M(a)>0$. For a sequence $\left\{\varepsilon_{j}\right\}$ of positive numbers, consider the function $f=\sup _{j} \varepsilon_{j} f_{j}$. Then

$$
U_{\alpha} f(x) \geq \varepsilon_{j} U_{\alpha} f_{j}=\infty \quad \text { for any } \quad x \in E \cap B(0, j)
$$

which shows that

$$
U_{\alpha} f(x)=\infty \quad \text { for any } \quad x \in E
$$

On the other hand,

$$
\int \Phi_{p}(f(y)) \omega\left(\left|y_{n}\right|\right) d y \leq \sum_{j} \int_{B(0, j)} \Phi_{p}\left(\varepsilon_{j} f_{j}(y)\right) \omega\left(\left|y_{n}\right|\right) d y
$$

and

$$
\int(1+|y|)^{\alpha-n} f(y) d y \leq \sum_{j} \varepsilon_{j} M(j) \int_{B(0, j)} \Phi_{p}\left(f_{j}(y)\right) \omega\left(\left|y_{n}\right|\right) d y
$$

Now choose $\left\{\varepsilon_{j}\right\}$ so small that the last two sums are convergent.
Lemma 12.4. Let $-1<\beta<p-1$ and let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (12.5). If we define

$$
E=\left\{\xi \in \partial D ; \int_{B(\xi, 1)}|\xi-y|^{m-n} f(y) d y=\infty\right\}
$$

then $C_{m-\beta / p, \Phi_{p}}(E)=0$.
Proof. For $a>0$, consider the function

$$
u_{a}(x)=\int_{B(0, a)}|x-y|^{m-n} f(y) d y
$$

Then Lemma 12.2 yields

$$
\int_{B(0, a)} \Phi_{p}\left(f(y)\left|y_{n}\right|^{\beta / p}\right) d y<\infty .
$$

Hence, in view of Lemma 12.1 and Remark 12.1, we see that

$$
\int \Phi_{p}\left(\left|\nabla_{m} u_{a}(x)\right|\left|x_{n}\right|^{\beta / p}\right) d x<\infty
$$

Define

$$
E^{\prime}=\left\{\xi \in \partial D ; \int_{B(\zeta, 1)}|\xi-y|^{m-\beta / p-n}\left[\left|\nabla_{m} u_{a}(y)\right|\left|y_{n}\right|^{\beta / p}\right] d y=\infty\right\} .
$$

Then it follows from the definition of $C_{m-\beta / p, \Phi_{p}}$ that $C_{m-\beta / p, \Phi_{p}}\left(E^{\prime}\right)=0$. If we show $E \cap B(0, a) \subset E^{\prime}$, then we obtain $C_{m-\beta / p, \Phi_{p}}(E \cap B(0, a))=0$, so that $C_{m-\beta / p, \Phi_{p}}(E)=0$. If $\xi \in \partial D \cap B(0, a)-E^{\prime}$, then $\int_{B(\xi, 1) \cap T_{1}(\xi, 1)}|\xi-y|^{m-n}\left|\nabla_{m} u_{a}(y)\right| d y$ $<\infty$, which together with [12, Lemma 3] implies

$$
\int_{B(\xi, 1) \cap T_{1}(\xi, 1)}|\xi-y|^{1-n}\left|\nabla_{1} u_{a}(y)\right| d y<\infty .
$$

By using polar coordinates, we deduce that $u(\xi+r \eta)$ is absolutely continuous on [ 0,1 ] for almost every $\eta \in \partial B(0,1) \cap T_{1}(0,1)$, and hence it follows that $u(\xi)<\infty$. Thus, $\xi \notin E$, so that $E \cap B(0, a) \subset E^{\prime}$. Now the proof is completed.

Theorem 12.2. Let $-1<\beta<p-1$. For $E \subset \partial D, C_{m, \Phi_{p}, \beta}(E)=0$ if and only if $C_{m-\beta / p, \Phi_{p}}(E)=0$.

Proof. The "only if" part follows from Lemmas 12.3 and 12.4. We show the "if" part. For this purpose, assume $C_{m-\beta / p, \Phi_{p}}(E)=0$. Then, by Lemma 12.3, there exists a nonnegative measurable function $f$ on $R^{n}$ such that

$$
\begin{gathered}
\int(1+|y|)^{\alpha-n} f(y) d y<\infty \\
\int \Phi_{p}(f(y)) d y<\infty
\end{gathered}
$$

and

$$
U_{\alpha} f(x)=\infty \quad \text { for any } \quad x \in E,
$$

where $\alpha=m-\beta / p$. Consider the Bessel potential

$$
F\left(x^{\prime}\right)=g_{\alpha} * f\left(x^{\prime}, 0\right)=\int g_{\alpha}\left(\left(x^{\prime}, 0\right)-y\right) f(y) d y
$$

and the Poisson integral

$$
u\left(x^{\prime}, x_{n}\right)=P_{x_{n}} * F\left(x^{\prime}\right) ;
$$

see Stein's book [25] for the definitions of Bessel kernel $g_{\alpha}$ and Poisson kernel $P_{t}$. First we treat the case when $f$ is bounded and has compact support. Thus $f \in L^{q}\left(R^{n}\right)$ for any $q>1$. Then $F$ belongs to the Lipschitz
space $\Lambda_{\alpha-1 / q}^{q, q}\left(R^{n-1}\right)$ and

$$
\|F\|_{\Lambda q, q_{1 / q}\left(R^{n-1}\right)} \leq M(q)\|f\|_{q}
$$

as long as $\alpha>1 / q$, on account of [25, $\S 4.3$ of Chapter 6]. In view of [25, (62') and (63) in p. 152],

$$
\left(\int_{D}\left\{x_{n}^{k-(\alpha-1 / q)}\left|\nabla_{k} u(x)\right|\right\}^{q} x_{n}^{-1} d x\right)^{1 / q} \leq M(q, k)\|F\|_{A_{\alpha,-1 / q}^{q} \cdot q^{\prime}\left(R^{n-1}\right)}
$$

for any integer $k$ greater than $\alpha-1 / p$. If we set $k=m>(1+\beta) / q$, then

$$
\int_{D}\left[\left|\nabla_{m} u(x)\right| x_{n}^{\beta / p}\right]^{q} d x \leq M(q)^{\prime} \int f(y)^{q} d y
$$

As in the proof of Lemma 12.1, we find

$$
\int_{D} \Phi_{p}\left(\left|\nabla_{m} u(x)\right| x_{n}^{\beta / p}\right) d x \leq M \int \Phi_{p}(f(y)) d y
$$

Since the constant $M$ does not depend on $f$, this inequality holds for general $f$, so that

$$
\int_{D} \Phi_{p}\left(\left|\nabla_{m} u(x)\right| x_{n}^{\beta / p}\right) d x<\infty
$$

By the property of Poisson integral,

$$
\lim _{x \rightarrow \xi, x \in D} u(x)=\infty \quad \text { for any } \xi \in E
$$

As in the proof of Lemma 12.4, set

$$
E^{\prime}=\left\{\xi \in \partial D ; \int_{B(\xi, 1)}|\xi-y|^{m-n}\left|\nabla_{m} u(y)\right| d y=\infty\right\}
$$

Then it follows that $C_{m, \Phi_{p}, \beta}\left(E^{\prime}\right)=0$ and $u(\xi+r \zeta)$ has a finite limit as $r \rightarrow 0$ for almost every $\zeta \in \partial B(0,1) \cap D$ whenever $\xi \in \partial D-E^{\prime}$. Therefore $E \subset E^{\prime}$ and hence $C_{m, \Phi_{p}, \beta}(E)=0$, as required.

By Theorem 12.2, we can rewrite our theorems by replacing the condition $C_{\alpha, \Phi_{p}, \beta}(E)=0$ by the condition $C_{\alpha-\beta / p, \Phi_{p}}(E)=0$. Among them, we give the following results.

Theorem 12.3 (cf. Corollary 10.1). Let $0<m p-n \leq \beta<p-1$. If $u$ is a continuous function on $D$ satisfying (10.4), then there exists a set $E \subset \partial D$ such that $C_{m-\beta / p, \Phi_{p}}(E)=0$ and $u$ has a nontangential limit at any $\xi \in \partial D-E$.

Theorem 12.4 (cf. Theorem 10.4, (ii)). Let $0<m p-n<p-1$. If $u$ is
a continuous function on D satisfying

$$
\int_{G} \Phi_{p}\left(\left|\nabla_{m} u(x)\right|\right)\left|x_{n}\right|^{m p-n} d x<\infty \quad \text { for any bounded open set } \quad G \subset D
$$

then there exists a set $E \subset \partial D$ such that $C_{n / p, \Phi_{p}}(E)=0$ and $u$ has a finite $T_{\gamma}$-limit at any $\xi \in \partial D-E$ for any $\gamma \geq 1$.

Theorem 12.5 (cf. Theorem 10.6). Let $-1<\beta<p-1$ and let $u$ be an ( $m, \Phi_{p}$ )-quasicontinuous function on $D$ satisfying (10.4). Then there exists a set $E \subset \partial D$ such that $C_{m-\beta / p, \Phi_{p}}(E)=0$ and if $\xi \in \partial D-E$, then $u(\xi+r \zeta)$ has a finite limit as $r \rightarrow 0$ for every $\zeta \in \partial D \cap B(0,1)$ except those in a set $E_{\xi}$ with $C_{m, \Phi_{p}}\left(E_{\xi}\right)=0$.

Theorem 12.6 (cf. Theorem 10.7). Let $0 \leq \beta<p-1$ and $\zeta \in D$. If $u$ is an ( $m, \Phi_{p}$ )-quasicontinuous function on $D$ satisfying (10.4), then there exists a set $E \subset \partial D$ such that $C_{m-\beta / p, \Phi_{p}}(E)=0$ and $u(\xi+r \zeta)$ has a finite limit as $r \rightarrow 0$ at every $\xi \in \partial D-E$.

We now give an integral representation for Beppo-Levi-Deny functions in the half space $D$.

Theorem 12.7. Let $-1<\beta<p-1$ and let $u$ be a function in $B L_{m}\left(L_{\text {loc }}^{p}(D)\right)$ such that

$$
\begin{equation*}
\int_{D} \Phi_{p}\left(\left|\nabla_{m} u(x)\right| x_{n}^{\beta / p}\right) d x<\infty . \tag{12.7}
\end{equation*}
$$

If $\ell$ is the integer such that $\ell \leq m-n / p-\beta / p<\ell+1$, then

$$
u(x)=\sum_{|\lambda|=m} b_{\lambda} \int_{D} k_{\lambda, \ell}^{*}(x, y) D^{\lambda} u(y) d y+h(x)
$$

for almost every $x \in D$, where $h$ is a function which is polyharmonic of order $m$ in $D$ satisfying (12.7); see Remark 9.2 for $b_{\lambda}$ and $k_{\lambda, \ell}^{*}$.

This is a Riesz-type decomposition of Beppo-Levi-Deny functions as the sum of potentials and polyharmonic functions.

Proof of Theorem 12.7. For $\chi \in C_{0}^{\infty}(D)$, we have by Fubini's theorem and $[16,(3)]$

$$
\begin{aligned}
& \int\left(\sum_{|\lambda|=m} b_{\lambda} \int_{D} k_{\lambda, \ell}^{*}(x, y) D^{\lambda} u(y) d y\right) \Delta^{m} \chi(x) d x \\
& \quad=\sum_{|\lambda|=m} b_{\lambda} \int_{D}\left(\int k_{\lambda, \ell}^{*}(x, y) \Delta^{m} \chi(x) d x\right) D^{\lambda} u(y) d y
\end{aligned}
$$

$$
\begin{aligned}
& =c^{*} \sum_{|\lambda|=m} b_{\lambda} \int_{D} D^{\lambda} \chi(y) D^{\lambda} u(y) d y \\
& =\int_{D} \chi(y) \Delta^{m} u(y) d y
\end{aligned}
$$

where $c^{*}=(-1)^{m} c$ with $c$ in Remark 9.2. Thus Lemma 12.1 establishes the required assertion.

Theorem 12.8. Let $-1<\beta<p-1$ and $\ell$ be the integer such that $\ell \leq m-n / p-\beta / p<\ell+1$. If $u$ is a function in $B L_{m}\left(L_{\text {loc }}^{p}(D)\right)$ satisfying (12.7), then there exist a function $u^{*} \in B L_{m}\left(L_{\text {loc }}^{1}\left(R^{n}\right)\right)$ satisfying

$$
\begin{equation*}
\int_{R^{n}} \Phi_{p}\left(\left|\nabla_{m} u^{*}(x)\right|\left|x_{n}\right|^{\beta / p}\right) d x<\infty \tag{12.8}
\end{equation*}
$$

and a polynomial $P$ of degree at most $m-1$ such that

$$
u(x)=\sum_{|\lambda|=m} b_{\lambda} \int_{R^{n}} k_{\lambda, \ell}^{*}(x, y) D^{\lambda} u^{*}(y) d y+P(x)
$$

for almost every $x \in D$.
To show this theorem, by the extension theorem in Stein's book [25, Chapter 6], we can find a function $u^{*}$ satisfying (12.8) such that $u^{*}=u$ a.e. on $D$. In view of the proof of Theorem 12.8,

$$
u^{*}(x)=\sum_{|\lambda|=m} b_{\lambda} \int_{D} k_{\lambda, \ell}^{*}(x, y) D^{\lambda} u^{*}(y) d y+h(x)
$$

for almost every $x \in D$, where $h$ is a function which is polyharmonic of order $m$ in $R^{n}$ satisfying (12.8). As in the proof of [8, Lemma 4.1], we see that $h$ is a polynomial of degree at most $m-1$.

In the same way we can prove
Theorem 12.9. If $\beta, \ell$ and $u$ are as above, then there exist a function $u^{*} \in B L_{m}\left(L_{l o c}^{1}\left(R^{n}\right)\right)$ satisfying (12.8) and a polynomial $P$ of degree at most $m-1$ such that

$$
u(x)=\sum_{|\lambda|=m} a_{\lambda} \int_{R^{n}} k_{\lambda, c}(x, y) D^{\lambda} u^{*}(y) d y+P(x)
$$

for almost every $x \in D$.

## 13. Logarithmic potentials

For a nonnegative measurable function $f$ on $R^{n}$, we define

$$
L f(x)=\int \log \frac{1}{|x-y|} f(y) d y
$$

where we always assume that

$$
\begin{equation*}
\int f(y) \log (2+|y|) d y<\infty \tag{13.1}
\end{equation*}
$$

In this case $L f(x)>-\infty$ for all $x \in R^{n}$ and $|L f| \not \equiv \infty$.
In what follows, we investigate the behavior of logarithmic potentials $L f$ at the origin, where $f$ satisfies (13.1) and

$$
\begin{equation*}
\int \Phi_{1}(f(y)) \omega(|y|) d y<\infty \tag{13.2}
\end{equation*}
$$

For $x \in R^{n}-\{0\}$, we write $L f(x)=L_{1}(x)+L_{2}(x)+L_{3}(x)$, where

$$
\begin{aligned}
& L_{1}(x)=\int_{R^{n}-B(0,2|x|)} \log (1 /|x-y|) f(y) d y \\
& L_{2}(x)=\int_{B(0,2|x|)-B(x,|x| / 2)} \log (1 /|x-y|) f(y) d y \\
& L_{3}(x)=\int_{B(x,|x| / 2)} \log (1 /|x-y|) f(y) d y
\end{aligned}
$$

Then we can easily find

$$
L_{1}(x) \leq \int_{R^{n}-B(0,2|x|)} \log (2 /|y|) f(y) d y
$$

and

$$
L_{2}(x) \leq \log (2 /|x|) \int_{B(0,2|x|)} f(y) d y
$$

For nonnegative functions $\varphi$ and $\omega$ as before, we set

$$
\kappa_{1}^{\prime}(r)=\sup _{r \leq t \leq 1}[\log (1 / t)][\eta(t)]^{-1} \quad \text { with } \quad \eta(r)=\varphi\left(r^{-1}\right) \omega(r)
$$

for $0<r \leq 1 / 2$ and $\kappa_{1}^{\prime}(r)=\kappa_{1}^{\prime}(1 / 2)$ for $r>1 / 2$.
The following results can be proved in the same manner as the lemmas in Section 2.

Lemma 13.1. Let $0<\delta<n$. If $0<2|x|<a<1$, then

$$
\begin{aligned}
L_{1}(x) \leq & \int_{R^{n-B(0, a)}} \log (2 /|y|) f(y) d y+M a^{n-\delta} \log (2 / a) \\
& +M \kappa_{1}^{\prime}(|x|)\left(\int_{B(0, a)} \Phi_{1}(f(y)) \omega(|y|) d y\right)
\end{aligned}
$$

where $M$ is a positive constant independent of $x$ and $a$.
Lemma 13.2. If $0<\delta<n$, then there exists a positive constant $M$ such that

$$
L_{2}(x) \leq M \kappa_{2}^{\prime}(|x|)\left(\int_{B(0,2|x|)} \Phi_{1}(f(y)) \omega(|y|) d y\right)+M|x|^{n-\delta} \log (1 /|x|)
$$

for any $x \in B(0,1 / 2)-\{0\}$, where

$$
\kappa_{2}^{\prime}(r)=\left(\log \frac{2}{r}\right) \sup _{0<t \leq r}[\eta(t)]^{-1}
$$

for $0<r \leq 1 / 2$ and $\kappa_{2}^{\prime}(r)=\kappa_{2}^{\prime}(1 / 2)$ for $r>1 / 2$.
For an open set $G \subset R^{n}$, we define

$$
C_{n, \Phi_{1}}(E ; G)=\inf _{g} \int_{G} \Phi_{1}(g(y)) d y
$$

where the infimum is taken over all nonnegative measurable functions $g$ on $R^{n}$ such that $g$ vanishes outside $G$ and

$$
L^{+} g(x)=\int \max \left\{0, \log \frac{1}{|x-y|}\right\} g(y) d y \geq 1 \quad \text { for every } x \in E .
$$

Lemma 13.3. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying condition (13.2), and $\chi$ be a positive function on $(0, \infty)$ for which there are positive constants $M$ and $r_{0}$ such that $\chi(r) \leq M \chi(s)$ whenever $0<r \leq s \leq 2 r<r_{0}$. Then there exists a set $E \subset R^{n}$ such that
(i) $\lim _{x \rightarrow 0, x \in R^{n-E}}[\chi(|x|)]^{-1} L_{3}(x)=0$;
(ii) $\sum_{j=1}^{\infty}\left[K^{*}\right]^{-j} \omega\left(2^{-j}\right) C_{n, \Phi_{1}}\left(E_{j} ; B_{j}\right)<\infty$,
where

$$
\begin{aligned}
& E_{j}=\left\{x \in E ; 2^{-j} \leq|x|<2^{-j+1}\right\}, \\
& B_{j}=\left\{x \in R^{n} ; 2^{-j-1}<|x|<2^{-j+2}\right\}, \\
& K^{*}=\sup _{0<r, s \leq r_{0} / 2} \frac{\Phi_{1}(s / \chi(r))}{\Phi_{1}(s / \chi(2 r))} .
\end{aligned}
$$

Using these lemmas, we obtain the following theorems on the existence of fine limits for logarithmic potentials.

Theorem 13.1 (cf. Theorem 3.1). If $f$ is a nonnegative measurable function on $R^{n}$ satisfying conditions (13.1) and (13.2), then there exists a set $E \subset R^{n}$ such that

$$
\lim _{x \rightarrow 0, x \in R^{n}-E} L f(x)=L f(0)
$$

and

$$
\sum_{j=1}^{\infty} \omega\left(2^{-j}\right) C_{n, \Phi_{1}}\left(E_{j} ; B_{j}\right)<\infty .
$$

In case $L f(0)=\infty$, we are concerned with the order of infinity at the origin.

Theorem 13.2 (cf. Theorem 3.2). Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying conditions (13.1) and (13.2), and set $\kappa^{\prime}=\kappa_{1}^{\prime}+\kappa_{2}^{\prime}$. If $\lim _{r \rightarrow 0} \kappa^{\prime}(r)=\infty$, then there exists a set $E \subset R^{n}$ such that

$$
\lim _{x \rightarrow 0, x \in R^{n}-E}\left[\kappa^{\prime}(|x|)\right]^{-1} L f(x)=0
$$

and

$$
\sum_{j=1}^{\infty} K^{-j} \omega\left(2^{-j}\right) C_{n, \Phi_{1}}\left(E_{j} ; B_{j}\right)<\infty,
$$

where $E_{j}$ and $B_{j}$ are as before, and

$$
K=\sup _{0<r, s \leq 1 / 2}\left[\Phi_{1}\left(s / \kappa^{\prime}(r)\right)\right] /\left[\Phi_{1}\left(s / \kappa^{\prime}(2 r)\right)\right] .
$$

Theorem 13.3 (cf. Theorem 5.1). Under the same assumptions as in Theorem 13.2,

$$
\lim _{r \rightarrow 0}\left[\kappa^{\prime}(r)\right]^{-1} S_{q}(L f, r)=0
$$

for $q>0$.
For this, it suffices to treat only $L_{3}$. In case $q \geq 1$, setting $A(r)=$ $B(0,3 r / 2)-B(0, r / 2), 0<r<2^{-1}$, we have

$$
\begin{aligned}
S_{q}\left(L_{3}, r\right) & \leq \int_{A(r)}\left[S_{q}(\log |\cdot-y|, r)\right] f(y) d y \\
& \leq M_{1} \log (1 / r) \int_{A(r)} f(y) d y \\
& \leq M_{1}[\log (1 / r)]\left[\varphi\left(r^{-1}\right)\right]^{-1} \int_{A(r)} \Phi_{1}(f(y)) d y+M_{1}[\log (1 / r)] r^{-1} \int_{A(r)} d y
\end{aligned}
$$

$$
\leq M_{2} \kappa_{1}^{\prime}(r) \int_{A(r)} \Phi_{1}(f(y)) \omega(|y|) d y+M_{2}[\log (1 / r)] r^{n-1}
$$

so that

$$
\lim _{r \rightarrow 0}\left[\kappa^{\prime}(r)\right]^{-1} S_{q}\left(L_{3}, r\right)=0
$$

Theorem 13.4 (cf. Theorem 3.3). Let $f$ be as above. Set

$$
K(r)=\kappa^{\prime}(r)+[\omega(r)]^{-1} \sup _{0<t<r}[\log (1 / t)]\left[\varphi\left(t^{-1}\right)\right]^{-1}
$$

and assume $K(r)<\infty$ for $r>0$. If $\lim _{r \rightarrow 0} K(r)=\infty$, then

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-1} L f(x)=0
$$

If $K(r)$ is bounded, then $L f(0)$ is finite and $L f(x)$ tends to $L f(0)$ as $x \rightarrow 0$.
Corollary 13.1 (cf. Corollary 3.1). Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (13.1) and

$$
\begin{equation*}
\int f(y) \log (2+f(y)) d y<\infty \tag{13.3}
\end{equation*}
$$

then $L f$ is continuous on $R^{n}$.
Remark 13.1. If $f$ is a nonnegative function in $L^{p}\left(R^{n}\right), p>1$, satisfying condition (13.1), then $L f$ is continuous as a consequence of Corollary 13.1. In this case, in view of Lemma 4.3 in [8], we find $\int_{R^{n}}\left|\nabla_{n}(L f)(x)\right|^{p} d x<\infty$.

Remark 13.2. If $f$ is a nonnegative measurable function on $R^{n}$ satisfying condition (13.1), then there exists a set $E$, which is thin at the origin, such that

$$
\lim _{x \rightarrow 0, x \in R^{n}-E} L f(x)=L f(0)
$$

and

$$
\lim _{x \rightarrow 0, x \in R^{n}-E}[\log (1 /|x|)]^{-1} L f(x)=0
$$

These facts follow readily from Theorems 13.1 and 13.2. For other generalizations of these facts, see Mizuta [15].

Next we consider the boundary limits of Green potentials of order $n$. We recall (see Corollary 11.1) that, for a nonnegative measurable function $f$ on $D, G_{n} f \not \equiv \infty$ if and only if

$$
\begin{equation*}
\int_{D}(1+|y|)^{-2} y_{n} f(y) d y<\infty \tag{13.4}
\end{equation*}
$$

From Corollary 13.1, we have
Theorem 13.5. If $f$ is a nonnegative measurable function on $D$ satisfying (13.4) such that

$$
\begin{equation*}
\int_{D^{\prime}} f(y) \log (2+f(y)) d y<\infty \tag{13.5}
\end{equation*}
$$

for any bounded open set $D^{\prime}$ with closure in $D$, then $G_{n} f$ is continuous on $D$.
Lemma 13.4. Let $\omega$ be a positive monotone function on $(0, \infty)$ satisfying ( $\omega 1$ ) and
( $\omega 5$ ) $\quad r^{\beta-1}[\omega(r)]^{-1} \quad$ is nondecreasing on $(0, \infty)$ for some $\beta<2$.
Set $\kappa_{3}^{\prime}(r)=\sup _{r \leq t \leq 1}[\eta(t)]^{-1}$ for $0<r \leq 2^{-1}$ and $\kappa_{3}^{\prime}(r)=\kappa_{3}^{\prime}\left(2^{-1}\right)$ for $r>2^{-1}$. Then
$G_{n}(x, y)\left[\eta\left(y_{n}\right)\right]^{-1} \leq M \kappa_{3}^{\prime}\left(x_{n}\right)$ whenever $0<y_{n}<1$ and $0<x_{n}<2|x-y|$.
Proof. If $y_{n} \geq x_{n}>0$ and $|x-y| \geq x_{n} / 2$, then Lemma 11.1 implies

$$
G_{n}(x, y)\left[\eta\left(y_{n}\right)\right]^{-1} \leq M_{1}\left[\eta\left(y_{n}\right)\right]^{-1} \leq M_{1} \kappa_{3}^{\prime}\left(x_{n}\right) .
$$

If $0<y_{n}<x_{n} \leq 2|x-y|$, then Lemma 11.1 implies

$$
\begin{aligned}
G_{n}(x, y)\left[\eta\left(y_{n}\right)\right]^{-1} & \leq M_{2} x_{n}^{-1} y_{n}\left[\eta\left(y_{n}\right)\right]^{-1} \\
& =M_{2} x_{n}^{-1} \cdot y_{n}^{2-\beta}\left[\varphi\left(y_{n}^{-1}\right)\right]^{-1} \cdot y_{n}^{\beta-1}\left[\omega\left(y_{n}\right)\right]^{-1} \\
& \leq M_{3}\left[\eta\left(x_{n}\right)\right]^{-1} \leq M_{3} \kappa_{3}^{\prime}\left(x_{n}\right) .
\end{aligned}
$$

Thus the present lemma is proved.
By Lemma 13.4 and the proof of Theorem 11.2, we have
Theorem 13.6. Let $\omega$ be as in Lemma 13.4. If $\lim _{r \rightarrow 0} \kappa_{3}^{\prime}(r)=\infty$ and $f$ is a nonnegative measurable function on $D$ satisfying (13.4) and

$$
\begin{equation*}
\int_{D^{\prime}} \Phi_{1}(f(y)) \omega\left(y_{n}\right) d y<\infty \quad \text { for any bounded open set } \quad D^{\prime} \subset D \tag{13.6}
\end{equation*}
$$

then there exists a set $E \subset D$ such that

$$
\lim _{x_{n} \rightarrow 0, x \in D^{\prime}-E}\left[\kappa_{3}^{\prime}\left(x_{n}\right)\right]^{-1} G_{n} f(x)=0
$$

for any bounded open set $D^{\prime} \subset D$ and

$$
\sum_{j=1}^{\infty} K^{-j} \omega\left(2^{-j}\right) C_{n, \Phi_{1}}\left(E_{j} \cap B(0, a) ; D_{j} \cap B(0,2 a)\right)<\infty
$$

for any $a>0$, where $K=K^{*}$ in Lemma 13.3 with $\chi=\kappa_{3}^{\prime}$.

Theorem 13.7. Assume

$$
\begin{equation*}
\varphi\left(r^{-1}\right) \geq M \log (2 t / r) \quad \text { whenever } \quad 0<r<t \tag{13.7}
\end{equation*}
$$

for a positive constant $M$ and
$(\omega 6) \quad r[\omega(r)]^{-1}$ is nondecreasing on $(0, \infty)$.
Let $\psi$ be a positive nondecreasing continuous function on $(0, \infty)$ satisfying conditions $\left(\Delta_{2}\right)$ and ( $\psi 1$ ), and set

$$
h^{\prime}(r)=\tau_{2}^{\prime}(\psi(r)) \quad \text { with } \quad \tau_{2}^{\prime}(r)=\inf _{r \leq t \leq 1}\left\{\omega(t) \inf _{0<s<t}[\log (2 t / s)]^{-1} \varphi\left(s^{-1}\right)\right\}
$$

for $0<r<1$. If $f$ is a nonnegative measurable function on $D$ satisfying (13.4) and (13.6), then there exists a set $E \subset \partial D$ such that $H_{h^{\prime}}(E)=0$ and

$$
\lim _{x \rightarrow \xi, x \in T_{\psi}(\xi, a)} G_{n} f(x)=0
$$

for any $\xi \in \partial D-E$ and $a>0$.
Proof. For $\xi \in \partial D$, as in the proof of Theorem 11.3, we write $G_{n} f=v_{1}+v_{2}+g_{\xi}$, and consider the set

$$
E=\left\{\xi \in \partial D ; \lim \sup _{r \rightarrow 0}\left[h^{\prime}(r)\right]^{-1} \int_{D \cap B(\xi, r)} \Phi_{1}(f(y)) \omega\left(y_{n}\right) d y>0\right\}
$$

Then, by (13.6) and Lemma 7.2, we see that $H_{h^{\prime}}(E)=0$. Using ( $\omega 6$ ), we have for $\delta, 0<\delta<2$,

$$
\begin{aligned}
r^{-1} \int_{D \cap B(\xi, r)} y_{n} f(y) d y & \leq M_{1}\left[\varphi\left(r^{-1}\right) \omega(r)\right]^{-1} \int_{D \cap B(\xi, r)} \Phi_{1}(f(y)) \omega\left(y_{n}\right) d y+M_{1} r^{n-\delta} \\
& \leq M_{2}\left[\tau_{2}^{\prime}(r)\right]^{-1} \int_{D \cap B(\xi, r)} \Phi_{1}(f(y)) \omega\left(y_{n}\right) d y+M_{1} r^{n-\delta}
\end{aligned}
$$

Hence, if $\xi \in \partial D-E$, then

$$
\lim _{r \rightarrow 0} r^{-1} \int_{D_{B} \cap(\xi, r)} y_{n} f(y) d y=0
$$

Since Lemma 11.2 is still true in the present case $(\alpha=n), g_{\xi}(x)$ tends to zero as $x \rightarrow \xi, x \in D$. By Lemmas 11.1 and 13.4, we find

$$
\begin{aligned}
v_{1}(x) \leq & \int_{D \cap B(\xi, 2|x-\xi|)-B\left(x, x_{n} / 2\right)} G_{n}(x, y)\left[\varphi\left(y_{n}^{-\delta}\right)\right]^{-1} \Phi_{1}(f(y)) d y \\
& +\int_{D \cap B(\xi, 2|x-\xi|)} G_{n}(x, y) y_{n}^{-\delta} d y
\end{aligned}
$$

$$
\leq M_{3}\left[\tau_{2}^{\prime}\left(x_{n}\right)\right]^{-1} \int_{D \cap B(\xi, 2|x-\xi|)} \Phi_{1}(f(y)) \omega\left(y_{n}\right) d y+M_{3}|x-\xi|^{n-\delta}
$$

and

$$
\begin{aligned}
& v_{2}(x) \leq M_{4} \int_{B\left(x, x_{n} / 2\right)} \log \left(3 x_{n} /|x-y|\right) f(y) d y \\
\leq & M_{5}\left[\omega\left(x_{n}\right)\right]^{-1}\left\{\sup _{0<r<x_{n} / 2}\left[\log \left(3 x_{n} / r\right)\right]\left[\varphi\left(r^{-1}\right)\right]^{-1}\right\} \int_{B\left(x, x_{n} / 2\right)} \Phi_{1}(f(y)) \omega\left(y_{n}\right) d y \\
& +M_{5} x_{n}^{n-\delta} \\
\leq & M_{6}\left[\tau_{2}^{\prime}\left(x_{n}\right)\right]^{-1} \int_{B\left(x, x_{n} / 2\right)} \Phi_{1}(f(y)) \omega\left(y_{n}\right) d y+M_{5} x_{n}^{n-\delta} .
\end{aligned}
$$

Hence it follows that

$$
\lim _{x \rightarrow \xi, x \in T_{\psi}(\xi, a)}\left[v_{1}(x)+v_{2}(x)\right]=0
$$

for any $\xi \in \partial D-E$ and any $a>0$. Now Theorem 13.7 is proved.
The case $p>1$ is quite similar to Theorem 11.3. In fact we can prove
Theorem 13.8. Assume that $p>1$ and ( $\omega 4$ ) holds. Let $\psi$ be a positive nondecreasing continuous function on $(0, \infty)$ satisfying $(\psi 1)$, and set

$$
\begin{aligned}
& \kappa_{4}^{\prime}(r)=r\left(\int_{r}^{1}\left[t^{n-n p+p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}, \\
& \tau_{4}^{\prime}(r)=\inf _{r \leq t \leq 1}\left[\kappa_{4}^{\prime}(t)\right]^{-p}, \\
& h^{\prime \prime}(r)=\tau_{4}^{\prime}(\psi(r))
\end{aligned}
$$

for $0<r<2^{-1}$. If $f$ is a nonnegative measurable function on $D$ satisfying (13.4) and (11.2), then there exists a set $E \subset \partial D$ such that $H_{h^{\prime \prime}}(E)=0$ and

$$
\lim _{x \rightarrow \xi, x \in T_{\psi}(\xi, a)} G_{n} f(x)=0
$$

for any $\xi \in \partial D-E$ and $a>0$. If in addition $\tau_{4}^{\prime}(0)>0$, then

$$
\lim _{x \rightarrow \xi, x \in D} G_{n} f(x)=0
$$

for any $\xi \in \partial D$.
Remark 13.3. If $\omega(r)=r^{\beta}$ and $\beta>n(p-1)$, then

$$
\tau_{4}^{\prime}(r) \sim r^{n-n p+\beta} \varphi\left(r^{-1}\right) \quad \text { as } \quad r \longrightarrow 0 .
$$

Here we may assume $n-n p+\beta \leq n-1$, when we evaluate the size of the exceptional sets in the boundary $\partial D$. In the bordering case $\beta=n p-1, \omega$
does not satisfy ( $\omega 4$ ). In this case, however, by (13.4),

$$
\lim _{r \rightarrow 0} r^{-1} \int_{D \cap B(\xi, r)} y_{n} f(y) d y=0
$$

for every $\xi \in \partial D-E$, where $H_{1}(E)=0$. Hence the proofs of Theorems 13.7 and 11.3 show that $G_{n} f$ has nontangential limit zero at almost every boundary point of $D$.

Corresponding to Theorems 8.1 and 11.4 , we also 1
Theorem 13.9. Let $\omega$ and $\omega^{*}$ be positive nondecreasing functions on the interval $(0, \infty)$ satisfying $(\omega 1),(\omega 6)$ and, further,

$$
\int_{0}^{r} \omega^{*}(s) s^{-1} d s \leq \omega(r) \quad \text { for any } \quad r>
$$

Let $\psi$ be as in Theorem 13.8, and define

$$
h^{*}(r)=\tau_{2}^{*}(\psi(r)) \text { with } \tau_{2}^{*}(r)=\inf _{r \leq t \leq 1}\left\{\omega^{*}(t) \inf _{0<s<t}[\log (2 t / s)]^{-1} \varphi\left(s^{-1}\right)\right\}
$$

for $0<r<1$. If $f$ is a nonnegative measurable function on $D$ satisfying conditions (13.4) and (13.6), then there exists a set E such that $H_{h^{*}}(E)=0$ and

$$
\lim _{r \rightarrow 0} G_{n} f(\xi(r))=0 \quad \text { for any } \quad \xi \in \partial D-E,
$$

where $\xi(r)=\xi+\Psi(r)$ with $\Psi(r)=\left(r, \psi_{2}(r), \ldots, \psi_{n-1}(r), \psi(r)\right)$.

## References

[1] H. Aikawa, Tangential behavior of Green potentials and contractive properties of $L^{p}$-potentials, Tokyo J. Math. 12 (1986), 221-245.
[2] M. Brelot, Élément de la théorie classique du potentiel, $4^{e}$ édition, Centre de documentation Universitaire, Paris, 1969.
[3] J. Deny and J. L. Lions, Lés espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1955), 305-370.
[4] S. J. Gardiner, Local growth properties of superharmonic functions, Arch. Math. 54 (1990), 52-60.
[5] T. Kurokawa and Y. Mizuta, On the order at infinity of Riesz potentials, Hiroshima Math. J. 9 (1979), 533-545.
[6] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255-292.
[7] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
[8] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
[9] Y. Mizuta, On the existence of boundary values of Beppo Levi functions defined in the upper half space of $R^{n}$, Hiroshima Math. J. 6 (1976), 61-72.
[10] Y. Mizuta, On the limits of $p$-precise functions along lines parallel to the coordinate axes of $R^{n}$, Hiroshima Math. J. 6 (1976), 353-357.
[11] Y. Mizuta, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J. 8 (1978), 415-437.
[12] Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J. 9 (1979), 717-745.
[13] Y. Mizuta, Boundary limits of Green potentials of order $\alpha$, Hiroshima Math. J. 11 (1981), 111-123.
[14] Y. Mizuta, On the behavior of potentials near a hyperplane, Hiroshima Math. J. 13 (1983), 529-542.
[15] Y. Mizuta, Study of the behavior of logarithmic potentials by means of logarithmically thin sets, Hiroshima Math. J. 14 (1984), 227-246.
[16] Y. Mizuta, On the existence of limits along lines of Beppo Levi functions, Hiroshima Math. J. 16 (1986), 387-404.
[17] Y. Mizuta, Boundary behavior of $p$-precise functions on a half space of $R^{n}$, Hiroshima Math. J. 18 (1988), 73-94.
[18] Y. Mizuta, Continuity properties of Riesz potentials and boundary limits of Beppo Levi functions, Math. Scand. 63 (1988), 238-260.
[19] Y. Mizuta, Integral representations of Beppo Levi functions and the existence of limits at infinity, Hiroshima Math. J. 19 (1989), 259-279.
[20] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. 116 (1982), 331-360.
[21] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima University, 1973.
[22] Yu. G. Reshetnyak, The concept of capacity in the theory of functions with generalized derivatives, Siberian Math. J. 10 (1969), 818-842.
[23] P. J. Rippon, On the boundary behaviour of Green potentials, Proc. London Math. Soc. 38 (1979), 461-480.
[24] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
[25] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
[26] H. Wallin, Continuous functions and potential theory, Ark. Mat. 5 (1963), 55-84.
[27] J.-M. G. Wu, $L^{p}$-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J. 28 (1979), 895-911.
[28] A. Zygmund, On a theorem of Marcinkiewiez concerning interpolation of operators, J. Math. Pures Appl. 35 (1956), 223-248.

Department of Mathematics<br>Faculty of Integrated Arts and Sciences<br>Hiroshima University<br>Higashi-Hiroshima 724, Japan

