HIROSHIMA MATH. J. 23 (1993), 79–153

Continuity properties of potentials and Beppo-Levi-Deny functions

Dedicated to Professor M. Ohtsuka on the occasion of his seventieth birthday

Yoshihiro MIZUTA (Received November 11, 1991)

1. Introduction

In this paper we first study the behavior of Riesz potentials of functions near a given point, which may be assumed, without loss of generality, to be the origin. For $0 < \alpha < n$ and a nonnegative measurable function f on \mathbb{R}^n , we define $U_{\alpha}f$ by

$$U_{\alpha}f(x) = \int_{\mathbb{R}^n} |x - y|^{\alpha - n} f(y) \, dy.$$

It is easy to see that $U_{\alpha}f \neq \infty$ if and only if

(1.1)
$$\int_{\mathbb{R}^n} (1+|y|)^{\alpha-n} f(y) \, dy < \infty.$$

By Sobolev's imbedding theorem, we know that if f is a nonnegative function in $L^p(\mathbb{R}^n)$ satisfying (1.1), and if $\alpha p > n$, then $U_{\alpha}f$ is continuous at the origin (in fact, on \mathbb{R}^n); however, in case $\alpha p \le n$, $U_{\alpha}f$ may fail to be continuous at the origin. Thus, our main concern in this paper is the bordering case $p = n/\alpha$, and one of our aims is to find a condition on f, which is stronger than the condition that $f \in L^p(\mathbb{R}^n)$ with $p = n/\alpha$ but assures the continuity at 0 of $U_{\alpha}f$.

For this purpose, we assume that f satisfies a condition of the form:

(1.2)
$$\int_{\mathbb{R}^n} \Phi_p(f(y))\omega(|y|) \, dy < \infty.$$

Here $\Phi_p(r)$ and $\omega(r)$ are positive monotone functions on the interval $(0, \infty)$ with the following properties:

- (φ 1) $\Phi_p(r)$ is of the form $r^p \varphi(r)$, where $1 \le p < \infty$ and φ is a positive nondecreasing function on the interval $[0, \infty)$.
- $(\varphi 2)$ φ is of logarithmic type, that is, there exists $A_1 > 0$ such that

$$A_1^{-1}\varphi(r) \le \varphi(r^2) \le A_1\varphi(r)$$
 whenever $r > 0$.

(ω 1) ω satisfies the (Δ_2) condition; that is, there exists $A_2 > 0$ such that

$$A_2^{-1}\omega(r) \le \omega(2r) \le A_2\omega(r)$$
 whenever $r > 0$.

For example, $\varphi(r) = [\log(2+r)]^{\delta}$, $\delta \ge 0$, and $\omega(r) = r^{\beta}$ satisfy all the conditions. We know in [18] that if $\omega \equiv 1$, p > 1 and

(1.3)
$$\int_0^1 \left[\varphi(r^{-1})\right]^{-1/(p-1)} \frac{dr}{r} < \infty,$$

then $U_{\alpha}f$ is continuous on \mathbb{R}^n . Thus we aim to find a more general condition relating to both φ and ω , under which $U_{\alpha}f$ is continuous at the origin. Further, if $U_{\alpha}f$ is not continuous at 0, then we shall find a function κ for which $[\kappa(|x|)]^{-1}U_{\alpha}f(x)$ tends to zero as $x \to 0$, possibly avoiding an exceptional set. As an application of the existence of such fine limits, the radial limit theorems can be derived. Our results will give generalizations of those in [5] and [11], where $\varphi(r) \equiv 1$ and $\omega(r)$ is of the form r^{β} .

We also deal with the limit of q-th means of $U_{\alpha}f$ over the spheres $\partial B(0, r)$, where $\partial B(x, r)$ denotes the boundary of the open ball B(x, r) with center at x and radius r. In case p = 1, our results imply Gardiner's results in [4].

If α is a positive integer, then $U_{\alpha}f$ is a Beppo-Levi-Deny function on \mathbb{R}^n (cf. Mizuta [8]); for the definition of Beppo-Levi-Deny functions, we refer the reader to Deny-Lions [3] and Mizuta [8]. Conversely, Beppo-Levi-Deny functions are represented as Riesz type potentials in [8], [16] and [19], as an extension of a result by Wallin [26]. In this paper, we give another integral representation, as a generalization of the sobolev integral representation for infinitely differentiable functions with compact support.

Moreover, we are concerned with Beppo-Levi-Deny functions u on the half space $D = \{x = (x_1, ..., x_n) \in \mathbb{R}^n; x_n > 0\}$ satisfying

(1.4)
$$\sum_{|\lambda|=m} \int_{G} \Phi_{p}(|(\partial/\partial x)^{\lambda} u(x)|) \omega(x_{n}) dx < \infty$$

for any bounded open set $G \subset D$, and study the existence of limits along curves or sets tangential to the boundary ∂D , where $n \ge 2$ and $(\partial/\partial x)^{\lambda} =$ $(\partial/\partial x_1)^{\lambda_1} \cdots (\partial/\partial x_n)^{\lambda_n}$ for a point $x = (x_1, \dots, x_n)$ and a multi-index $\lambda = (\lambda_1, \dots, \lambda_n)$ with length $|\lambda| = \lambda_1 + \dots + \lambda_n$. If φ satisfies condition (1.3), then u is continuous on D as shown in [18]. We show that u has limits along the sets

$$T_{\psi}(\xi, a) = \{ x \in D; \psi(|x - \xi|) < a x_n \},\$$

where $\xi \in \partial D$, a > 0 and ψ is a positive nondecreasing function on the interval

 $(0, \infty)$. In case $\psi(r) = r$, such limits are called nontangential limits; in case $\psi(r) = r^{\beta}$, $\beta > 1$, they are called tangential limits. First we prepare some results concerning the existence of limits at points of ∂D for Riesz potentials $U_{\alpha}f$ with nonnegative measurable functions f satisfying (1.1) and

$$\int_{G} \Phi_{p}(f(y))\omega(|y_{n}|) dy < \infty \quad \text{for any bounded open set} \quad G \subset \mathbb{R}^{n},$$

and then apply the same discussions to the study of boundary limits of Beppo-Levi-Deny functions u on D satisfying condition (1.4), with the aid of the integral representations. Nagel, Rudin and Shapiro [20] proved the existence of (non) tangential limits of harmonic functions represented as Poisson integrals in D. Their results will correspond to ours in the case where $\alpha p > n$ or condition (1.3) holds. The size of the exceptional sets of ξ , at which $U_{\alpha}f$ or u fails to have a boundary limit under consideration, will be evaluated by Hausdorff measures and Bessel type capacities.

Our arguments are applicable to the study of boundary limits of Green potentials $G_{\alpha}f$ defined by

$$G_{\alpha}f(x) = \begin{cases} \int_{D} \{|x-y|^{\alpha-n} - |\bar{x}-y|^{\alpha-n}\}f(y)dy & \text{ in case } \alpha < n, \\ \int_{D} \log(|\bar{x}-y|/|x-y|)f(y)dy & \text{ in case } \alpha = n, \end{cases}$$

where $\bar{x} = (x_1, ..., x_{n-1}, -x_n)$ for $x = (x_1, ..., x_{n-1}, x_n)$ and f is a nonnegative measurable function on D satisfying

$$\int_{D'} \Phi_p(f(y)) \omega(y_n) \, dy < \infty \quad \text{for any bounded open set } D' \subset D.$$

We try to give generalizations of results in Aikawa [1], Mizuta [14], Rippon [23] and Wu [27].

In the last section, we investigate continuity properties for logarithmic potentials Lf in \mathbb{R}^n , which is defined by

$$Lf(x) = \int \log \frac{1}{|x-y|} f(y) \, dy;$$

here it is natural to assume

$$\int \log(2+|y|)|f(y)|\,dy<\infty.$$

We note that if $f \in L^p(\mathbb{R}^n)$ with p > 1, then Lf is continuous on \mathbb{R}^n . Thus we

deal mainly with functions f satisfying

$$\int \Phi_1(|f(y)|)\omega(|y|)\,dy < \infty,$$

and give extensions of the results in [15].

The author is grateful to Professor Fumi-Yuki Maeda for a number of useful suggestions and improvements.

2. Preliminary lemmas

First we give several properties which follow from conditions (φ 1) and (φ 2):

(φ 3) φ satisfies the (Δ_2) condition, that is, there exists $A_3 > 1$ such that

 $\varphi(2r) \le A_3 \varphi(r)$ whenever r > 0.

(φ 4) For any $\gamma > 0$, there exists $A(\gamma) > 1$ such that

$$A(\gamma)^{-1}\varphi(r) \le \varphi(r^{\gamma}) \le A(\gamma)\varphi(r)$$
 whenever $r > 0$.

 $(\varphi 5)$ If $\gamma > 0$, then

$$s^{\gamma} \varphi(s^{-1}) \le A_1 t^{\gamma} \varphi(t^{-1})$$
 whenever $0 < s < t < A_1^{-1/\gamma}$.

Throughout this paper, let $M, M_1, M_2, ...$, denote various constants independent of the variables in question.

For $x \in \mathbb{R}^n - \{0\}$, the Riesz potential $U_{\alpha}f$ of f satisfying (1.1) will be written as $U_1 + U_2 + U_3$, where

$$U_{1}(x) = \int_{\mathbb{R}^{n} - B(0, 2|x|)} |x - y|^{\alpha - n} f(y) \, dy,$$
$$U_{2}(x) = \int_{B(0, 2|x|) - B(x, |x|/2)} |x - y|^{\alpha - n} f(y) \, dy,$$
$$U_{3}(x) = \int_{B(x, |x|/2)} |x - y|^{\alpha - n} f(y) \, dy.$$

Then we can easily find a positive constant M such that

(2.1)
$$U_1(x) \le M \int_{\mathbb{R}^n - B(0, 2|x|)} |y|^{\alpha - n} f(y) \, dy$$

and

Continuity properties of potentials

(2.2)
$$U_2(x) \le M |x|^{\alpha - n} \int_{B(0, 2|x|)} f(y) \, dy.$$

LEMMA 2.1. Let p > 1, $0 < \delta < \beta \le n$ and f be a nonnegative measurable function on \mathbb{R}^n . If $0 \le 2r < a < 1$, then

$$\begin{split} \int_{R^n - B(0,r)} |y|^{\beta - n} f(y) \, dy &\leq \int_{R^n - B(0,a)} |y|^{\beta - n} f(y) \, dy + M a^{\beta - \delta} \\ &+ M \bigg(\int_r^a [t^{n - \beta p} \eta(t)]^{1/(1 - p)} t^{-1} \, dt \bigg)^{1 - 1/p} \bigg(\int_{B(0,a)} \Phi_p(f(y)) \omega(|y|) \, dy \bigg)^{1/p}, \end{split}$$

where $\eta(t) = \varphi(t^{-1})\omega(t)$ and M is a positive constant independent of x and a. **PROOF.** Let 0 < a < 1 and assume that f = 0 outside B(0, a). We write

$$\begin{split} \int_{R^n - B(0,r)} |y|^{\beta - n} f(y) \, dy &= \int_{\{y \in R^n - B(0,r); f(y) > |y|^{-\delta}\}} |y|^{\beta - n} f(y) \, dy \\ &+ \int_{\{y \in R^n - B(0,r); 0 < f(y) \le |y|^{-\delta}\}} |y|^{\beta - n} f(y) \, dy \\ &= U_{11}(x) + U_{12}(x). \end{split}$$

From Hölder's inequality, we obtain

$$\begin{split} U_{11}(x) &\leq \left(\int_{\{y \in R^n - B(0,r); \, f(y) > |y|^{-\delta}\}} f(y)^p \varphi(f(y)) \omega(|y|) \, dy \right)^{1/p} \\ &\times \left(\int_{\{y \in R^n - B(0,r); \, f(y) > |y|^{-\delta}\}} |y|^{\beta - n} [\varphi(f(y)) \omega(|y|)]^{-p'/p} \, dy \right)^{1/p'}, \end{split}$$

where 1/p + 1/p' = 1. By condition ($\varphi 4$), we see that

$$\varphi(f(y)) \ge \varphi(|y|^{-\delta}) \ge M_1 \varphi(|y|^{-1})$$

whenever $f(y) > |y|^{-\delta}$. Hence

$$U_{11}(x) \le M_2 \left(\int_r^a [t^{n-\beta p} \eta(t)]^{-p'/p} t^{-1} dt \right)^{1/p'} \left(\int_{\mathbb{R}^n - B(0,r)} \Phi_p(f(y)) \omega(|y|) dy \right)^{1/p}.$$

On the other hand,

$$U_{12}(x) \le M_3 \int_{B(0,a)-B(0,r)} |y|^{\beta-\delta-n} \, dy \le M_3 a^{\beta-\delta}.$$

Thus Lemma 2.1 is proved.

For
$$\eta(r) = \varphi(r^{-1})\omega(r)$$
, set

$$\kappa_1(r) = \begin{cases} \left(\int_r^1 \left[t^{n-\alpha p} \eta(t) \right]^{-p'/p} t^{-1} dt \right)^{1/p'}, & \text{ in case } p > 1, \\ \sup_{r \le t < 1} t^{\alpha - n} [\eta(t)]^{-1}, & \text{ in case } p = 1, \end{cases}$$

where $0 < r \le 1/2$; further, set $\kappa_1(r) = \kappa_1(1/2)$ when r > 1/2.

COROLLARY 2.1. Let $0 < \delta < \alpha$ and f be a nonnegative measurable function on \mathbb{R}^n . If 0 < 2|x| < a < 1, then

$$U_{1}(x) \leq \int_{R^{n} - B(0,a)} |x - y|^{\alpha - n} f(y) dy + M a^{\alpha - \delta} + M \kappa_{1}(|x|) \left(\int_{B(0,a)} \Phi_{p}(f(y)) \omega(|y|) dy \right)^{1/p},$$

where M is a positive constant independent of x and a.

The case p > 1 follows readily from (2.1) and Lemma 2.1 with $\beta = \alpha$ and r = |x|, and the case p = 1 is trivial.

By using (2.2) and the case $\beta = n$ in Lemma 2.1, we can establish the following result.

COROLLARY 2.2. If $0 < \delta < \alpha$, then there exists a positive constant M such that

$$U_{2}(x) \leq M\kappa_{2}(|x|) \left(\int_{B(0,2|x|)} \Phi_{p}(f(y))\omega(|y|) \, dy \right)^{1/p} + M|x|^{\alpha-\delta}$$

for any $x \in B(0, 1/2) - \{0\}$, where

$$\kappa_{2}(r) = \begin{cases} r^{\alpha - n} \left(\int_{0}^{r} [\eta(t)]^{-p'/p} t^{n-1} dt \right)^{1/p'}, & \text{ in case } p > 1, \\ r^{\alpha - n} \sup_{0 < t \le r} [\eta(t)]^{-1}, & \text{ in case } p = 1. \end{cases}$$

For a set $E \subset \mathbb{R}^n$ and an open set $G \subset \mathbb{R}^n$, we define

$$C_{\alpha, \Phi_p}(E; G) = \inf_g \int_G \Phi_p(g(y)) \, dy,$$

where the infinum is taken over all nonnegative measurable functions g on \mathbb{R}^n such that g vanishes outside G and $U_{\alpha}g(x) \ge 1$ for every $x \in E$.

The following results can be proved easily by the definition of C_{α, ϕ_p} (cf. [11, Lemmas 1 and 2]).

LEMMA 2.2. Let G and G' be bounded open sets in \mathbb{R}^n .

- (i) $C_{\alpha, \phi_n}(\cdot; G)$ is countably subadditive.
- (ii) If F is a compact subset of $G \cap G'$, then there exists M > 0 such that

$$C_{\alpha, \varphi_n}(E; G) \leq MC_{\alpha, \varphi_n}(E; G')$$
 for any $E \subset F$.

- (iii) If $C_{\alpha, \varphi_p}(E; G) = 0$, then $C_{\alpha, \varphi_p}(E \cap G'; G') = 0$.
- (iv) If $C_{\alpha, \Phi_n}(E; G) = 0$, $E \subset G$, then, for any positive nonincreasing function ω on $(0, \infty)$, there exists a nonnegative measurable function f on G such that $U_{\alpha}f \neq \infty$, $U_{\alpha}f = \infty$ on E and $\int_{C} \Phi_{p}(f(y))\omega(\rho(y)) dy$ $<\infty$, where $\rho(y)$ denotes the distance of y from the boundary ∂G .

For the reader's convenience, we give a proof for (iv). Let $\{a_i\}$ be a sequence of positive numbers. If we define $G_j = \{x \in G; \rho(x) > j^{-1}\}$ for each positive integer j, then $C_{\alpha, \sigma_p}(E \cap G_j; G_j) = 0$ by (iii). Hence, for each j, we can find a nonnegative measurable function f_j on G_j such that $U_{\alpha}f_j \ge 1$ on $E \cap G_j$ and $\int_{G} \Phi_p(f_j(y)) dy < a_j$. Consider the function $f = \sup_j 2^j f_j$. Then $U_{\alpha}f(x) \ge 2^{j}U_{\alpha}f_{i}(x) \ge 2^{j}$ for $x \in E \cap G_{i}$, so that

$$U_{\alpha}f(x) = \infty$$
 on E .

On the other hand, $M = \sup_{r>0} \Phi_p(2r)/\Phi_p(r) < \infty$ and hence

$$\begin{split} \int \Phi_p(f(y))\omega(\rho(y))\,dy &\leq \sum_j \int_{G_j} \Phi_p(2^j f_j(y))\omega(\rho(y))\,dy \\ &\leq \sum_j M^j \omega(j^{-1}) \int_{G_j} \Phi_p(f_j(y))\,dy \\ &\leq \sum_j M^j \omega(j^{-1})a_j. \end{split}$$

Now choose $\{a_i\}$ so that the last sum is convergent.

LEMMA 2.3. Let f be a nonnegative function satisfying condition (1.2), and χ be a positive function on (0, 1] for which there is a positive constant M such that $\chi(r) \leq M\chi(s)$ whenever $0 < r \leq s \leq 2r \leq 1$. Then there exists a set $E \subset \mathbb{R}^n$ such that

- (i) $\lim_{x \to 0, x \in \mathbb{R}^n E} [\chi(|x|)]^{-1} U_3(x) = 0;$ (ii) $\sum_{j=1}^{\infty} [K^*]^{-j} \omega(2^{-j}) C_{\alpha, \Phi_p}(E_j; B_j) < \infty,$

where

$$E_j = \{ x \in E; 2^{-j} \le |x| < 2^{-j+1} \},\$$

$$B_i = \{ x \in R^n; 2^{-j-1} < |x| < 2^{-j+2} \},\$$

$$K^* = \sup_{0 < r,s < 1/2} \frac{\Phi_p(s/\chi(r))}{\Phi_p(s/\chi(2r))}$$

PROOF. For a sequence $\{a_i\}$ of positive numbers, we set

 $E_j = \{ x \in \mathbb{R}^n; \, 2^{-j} \le |x| < 2^{-j+1}, \, U_3(x) \ge a_j^{-1} \chi(|x|) \}, \qquad j = 1, \, 2, \dots,$

and

$$E=\bigcup_{j=1}^{\infty}E_j.$$

Since $U_3(x) \leq \int_{B_j} |x - y|^{\alpha - n} f(y) dy$ if $x \in E_j$, we have by the definition of C_{α, φ_p} ,

$$C_{\alpha, \Phi_p}(E_j; B_j) \le \int_{B_j} \Phi_p(M_1 a_j [\chi(2^{-j})]^{-1} f(y)) \, dy$$

$$\le K^{*j} \int_{B_j} \Phi_p(M_1 a_j [\chi(1)]^{-1} f(y)) \, dy.$$

By condition (1.2) we can find a sequence $\{b_j\}$ of positive numbers such that $\lim_{j\to\infty} b_j = \infty$ but

$$\sum_{j=1}^{\infty}\int_{B_j}b_j\Phi_p(f(y))\omega(|y|)\,dy<\infty.$$

By $(\varphi 3)$ there exists $\varepsilon_0 > 1$ such that $\varphi(st)/\varphi(t) \le M_2 s^{\varepsilon_0}$ whenever s > 1 and t > 0. Now let $a_j^{p+\varepsilon_0} = b_j$. Then, since $\sum_{j=1}^{\infty} \int_{B_j} \Phi_p(a_j f(y)) \omega(|y|) dy < \infty$, it follows that

$$\sum_{j=1}^{\infty} [K^*]^{-j} \omega(2^{-j}) C_{\alpha, \varphi_p}(E_j; B_j) < \infty.$$

Since (i) follows readily, Lemma 2.3 is established.

REMARK 2.1. If $\Phi_p(r) = r^p$, $\omega(r) = r^\beta$ and $\chi(r) = r^{-(n-\alpha p + \beta)/p}$, then (ii) implies

$$\sum_{j=1}^{\infty} 2^{-j(n-\alpha p)} C_{\alpha,p}(E_j; B_j) < \infty,$$

where $C_{\alpha,p} = C_{\alpha, \Phi_p}$ is the usual (α, p) -capacity.

3. Fine limits

Our first aim is to establish the following result.

THEOREM 3.1. If f is a nonnegative measurable function on \mathbb{R}^n satisfying conditions (1.1) and (1.2), then there exists a set $E \subset \mathbb{R}^n$ such that

Continuity properties of potentials

$$\lim_{x \to 0, x \in \mathbb{R}^n - E} U_{\alpha} f(x) = U_{\alpha} f(0)$$

and

$$\sum_{j=1}^{\infty}\omega(2^{-j})C_{\alpha,\varPhi_p}(E_j;B_j)<\infty,$$

where E_i and B_i are as in Lemma 2.3.

PROOF. If $U_{\alpha}f(0) = \infty$, then, by the lower semicontinuity of $U_{\alpha}f$, we see that $\lim_{x\to 0} U_{\alpha}f(x) = \infty = U_{\alpha}f(0)$.

If $U_{\alpha}f(0) < \infty$, then Lebesgue's dominated convergence theorem implies

$$\lim_{x \to 0} \left[U_1(x) + U_2(x) \right] = U_{\alpha} f(0),$$

since $|x - y|^{\alpha - n} \le 3^{n - \alpha} |y|^{\alpha - n}$ for $y \in R^n - B(x, |x|/2)$. Thus Lemma 2.3 with $\chi \equiv 1$ yields the required assertion.

In case $U_{\alpha}f(0) = \infty$, we discuss the order of infinity at the origin.

THEOREM 3.2. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying conditions (1.1) and (1.2). Set $\kappa = \kappa_1 + \kappa_2$. If $\lim_{r \to 0} \kappa(r) = \infty$, then there exists a set $E \subset \mathbb{R}^n$ such that

$$\lim_{x \to 0, x \in \mathbb{R}^{n} - E} \left[\kappa(|x|) \right]^{-1} U_{\alpha} f(x) = 0$$

and

$$\sum_{j=1}^{\infty} K^{-j} \omega(2^{-j}) C_{\boldsymbol{\alpha}, \boldsymbol{\varphi}_{p}}(E_{j}; B_{j}) < \infty,$$

where E_i and B_j are as before, and

$$K = \sup_{0 < r,s < 1/2} \left[\Phi_p(s/\kappa(r)) \right] / \left[\Phi_p(s/\kappa(2r)) \right].$$

PROOF. By Corollary 2.1, we have

$$\limsup_{x \to 0} [\kappa(|x|)]^{-1} U_1(x) \le M \left(\int_{B(0,a)} \Phi_p(f(y)) \omega(|y|) \, dy \right)^{1/p}$$

for any a > 0, which implies that the left hand side is equal to zero. Further, from Corollary 2.2 it follows that

$$\lim_{x \to 0} \left[\kappa(|x|) \right]^{-1} U_2(x) = 0.$$

Thus, applying Lemma 2.3 with $\chi = \kappa$, we can complete the proof of Theorem 3.2.

EXAMPLE 3.1. In case $\eta(r) = r^{\beta}$, where $\alpha p - n \le \beta \le (p-1)n$, we see that

$$\kappa(r) \sim r^{-(n-\alpha p+\beta)/p} \times \begin{cases} 1 & \text{if } \alpha p - n < \beta < n(p-1) \\ \{\log(1/r)\}^{1-1/p} & \text{if } \beta = \alpha p - n \text{ or } \beta = n(p-1) \end{cases}$$

as $r \to 0$. In addition, if $\omega(r) = r^{\beta}$ (and hence $\varphi(r) \equiv 1$), then E in Theorem 3.2 satisfies

$$\sum_{j=1}^{\infty} 2^{-j(n-\alpha p)} C_{\alpha,p}(E_j; B_j) < \infty.$$

Therefore, by use of the inversion: $x \to x/|x|^2$, Theorem 3.2 gives a generalization of Theorem 4.5 in [5].

If
$$p > 1$$
 and

(3.1)
$$\int_0^1 \left[t^{n-\alpha p} \varphi(t^{-1}) \right]^{-p'/p} t^{-1} dt < \infty$$

then we consider the function

$$K(r) = \kappa(r) + [\omega(r)]^{-1/p} \varphi^*(r),$$

where

$$\varphi^*(r) = \left(\int_0^r [t^{n-\alpha p}\varphi(t^{-1})]^{-p'/p}t^{-1} dt\right)^{1/p'}$$

Here note that

(3.2)
$$\varphi^*(r) \ge M[r^{n-\alpha p}\varphi(r^{-1})]^{-1/p}$$

and

(3.3)
$$K(r) \ge M[r^{n-\alpha p}\eta(r)]^{-1/p}$$

for r > 0.

THEOREM 3.3. Let p > 1 and assume that (3.1) holds. If f is as in Theorem 3.2 and $\lim_{r\to 0} K(r) = \infty$, then

$$\lim_{x \to 0} \left[K(|x|) \right]^{-1} U_{\alpha} f(x) = 0.$$

If $K(\mathbf{r})$ is bounded, then $U_{\alpha}f(0)$ is finite and $U_{\alpha}f(x)$ tends to $U_{\alpha}f(0)$ as $x \to 0$.

COROLLARY 3.1 (cf. Theorem 1 in [18]). Let $p = n/\alpha > 1$ and $\varphi^*(1) < \infty$. If f is a nonnegative measurable function on \mathbb{R}^n satisfying (1.1) and $\int \Phi_p(f(y)) dy < \infty$, then $U_{\alpha}f$ is continuous on \mathbb{R}^n in the usual sense.

PROOF OF THEOREM 3.3. Let $0 < \delta < \alpha$. Since

$$U_3(x) = \int_{B(0,|x|/2)}^{\infty} |y|^{\alpha - n} f(x + y) \, dy,$$

we have by Lemma 2.1

Continuity properties of potentials

$$\begin{split} U_{3}(x) &\leq M_{1} \left(\int_{0}^{|x|/2} \left[r^{n-\alpha p} \varphi(r^{-1}) \right]^{-p'/p} r^{-1} dr \right)^{1/p'} \\ &\times \left(\int_{B(0,|x|/2)} \Phi_{p}(f(x+y)) dy \right)^{1/p} + M_{1} |x|^{\alpha-\delta} \\ &\leq M_{2} \varphi^{*}(|x|) \left[\omega(|x|) \right]^{-1/p} \left(\int_{B(x,|x|/2)} \Phi_{p}(f(y)) \omega(|y|) dy \right)^{1/p} + M_{1} |x|^{\alpha-\delta}. \end{split}$$

If $K(r) \to \infty$ as $r \to 0$, then it follows that

 $\lim_{x \to 0} \left[K(|x|) \right]^{-1} U_3(x) = 0.$

As in the proof of Theorem 3.2, we have

$$\lim_{x \to 0} \left[K(|x|) \right]^{-1} \{ U_1(x) + U_2(x) \} = 0,$$

and hence

$$\lim_{x \to 0} [K(|x|)]^{-1} U_{\alpha} f(x) = 0.$$

If K(r) is bounded, then $U_3(x) \rightarrow 0$ as $x \rightarrow 0$. Also, Corollary 2.1 implies

$$\limsup_{x\to 0} U_1(x) < \infty,$$

and Corollary 2.2 implies that $U_2(x)$ tends to zero as $x \to 0$. It follows that $U_a f(0) < \infty$ and

$$\lim_{x \to 0} U_{\alpha} f(x) = \lim_{x \to 0} \{ U_1(x) + U_2(x) \} = U_{\alpha} f(0)$$

as in the proof of Theorem 3.1. Thus we complete the proof of Theorem 3.3.

Here we discuss the best-possibility of Theorem 3.3 as to the order of infinity.

PROPOSITION 3.1. Let $\alpha p = n$, and suppose $\varphi^*(1) < \infty$,

 $\lim_{r \to 0} [\omega(r)]^{-1/p} \varphi^*(r) = \infty \quad and \quad \lim_{r \to 0} r^{n/p'} [\omega(r)]^{-1/p} \varphi^*(r) = 0.$

Then, for any positive nondecreasing function on a(r) on $(0, \infty)$ such that $\lim_{r\to 0} a(r) = \infty$, there exists a nonnegative measurable function f on \mathbb{R}^n satisfying (1.1) and (1.2) such that

$$\limsup_{x \to 0} a(|x|) [\omega(|x|)]^{1/p} [\varphi^*(|x|)]^{-1} U_{\alpha} f(x) = \infty.$$

PROOF. Let $\{j_i\}$ be a sequence of positive integers such that $j_i + 2 < j_{i+1}$ and $\sum_i a_i^{-1/p} < \infty$, where $a_i = a(r_i)$ and $r_i = 2^{-j_i}$. Setting $x^{(i)} = (r_i, 0, ..., 0) \in \mathbb{R}^n$, we define

$$f(y) = a_i^{-1/p} [\varphi^*(r_i)]^{-p'/p} [\omega(r_i)]^{-1/p} |x^{(i)} - y|^{-\alpha} [\varphi(|x^{(i)} - y|^{-1})]^{-p'/p}$$

if $y \in B(x^{(i)}, r_i/2)$ for i = 1, 2, ..., and f(y) = 0 on $\mathbb{R}^n - \bigcup_{i=1}^{\infty} B(x^{(i)}, r_i/2)$. Then we have

$$\int f(y) \, dy = \sum_{i} a_{i}^{-1/p} [\varphi^{*}(r_{i})]^{-p'/p} [\omega(r_{i})]^{-1/p} \\ \times \int_{B(x^{(i)}, r_{i}/2)} |x^{(i)} - y|^{-\alpha} [\varphi(|x^{(i)} - y|^{-1})]^{-p'/p} \, dy \\ \le M_{1} \sum_{i} a_{i}^{-1/p} [\varphi^{*}(r_{i})]^{-p'/p} [\omega(r_{i})]^{-1/p} r_{i}^{n/p'} \varphi^{*}(r_{i})^{p'} \\ = M_{1} \sum_{i} a_{i}^{-1/p} [r_{i}^{n/p'} \{\omega(r_{i})\}^{-1/p} \varphi^{*}(r_{i})] < \infty,$$

so that f satisfies (1.1) by our assumption. Note that $\{a_i^{-1/p}\}$ and $\{r_i^{n/p'}\omega(r_i)^{-1/p}\varphi^*(r_i)\}$ are bounded. Hence, using (3.2), we obtain

$$f(y) \le M_2 [\varphi^*(r_i)]^{-p'/p} [r_i^{n/p'} \varphi^*(r_i)]^{-1} |x^{(i)} - y|^{-\alpha} [\varphi(|x^{(i)} - y|^{-1})]^{-p'/p} \le M_3 |x^{(i)} - y|^{-n/p'-\alpha}$$

on $B(x^{(i)}, r_i/2)$. Hence, in view of $(\varphi 3)$ and $(\varphi 4)$,

$$\varphi(f(y)) \le M_4 \varphi(|x^{(i)} - y|^{-1})$$

there. Consequently, by condition $(\omega 1)$ we establish

$$\begin{split} \int & \varPhi_p(f(y))\omega(|y|) \, dy \le M_5 \sum_i a_i^{-1} \left[\varphi^*(r_i) \right]^{-p'} \\ & \times \int_{B(x^{(i)}, r_i)} |x^{(i)} - y|^{-\alpha p} \left[\varphi(|x^{(i)} - y|^{-1}) \right]^{-p'/p} \, dy \le M_6 \sum_i a_i^{-1} < \infty, \end{split}$$

which implies that f satisfies (1.2). Since

$$U_{\alpha}f(x^{(i)}) \ge a_{i}^{-1/p} [\varphi^{*}(r_{i})]^{-p'/p} [\omega(r_{i})]^{-1/p}$$

$$\times \int_{B(x^{(i)}, r_{i}/2)} |x^{(i)} - y|^{-n} [\varphi(|x^{(i)} - y|^{-1})]^{-p'/p} dy$$

$$\ge M_{7} a_{i}^{-1/p} [\omega(r_{i})]^{-1/p} \varphi^{*}(r_{i}),$$

we find

$$a(|x^{(i)}|) [\omega(|x^{(i)}|)]^{1/p} [\varphi^*(|x^{(i)}|)]^{-1} U_{\alpha} f(x^{(i)}) \ge M_7 [a(|x^{(i)}|)]^{1/p'} \longrightarrow \infty$$

as $i \to \infty$. Thus f has all the required properties.

REMARK 3.1. In Proposition 3.1, if $\phi^*(1) = \infty$, then we can find a nonnegative measurable function f on \mathbb{R}^n , which satisfies (1.1) and (1.2), and a set A, which is of the form $\bigcup_i [B(0, 2r_i) - B(0, r_i)]$ with some sequence $\{r_i\}$ of positive numbers tending to zero, such that

$$\lim_{x \to 0, x \in A} a(|x|) [\omega(|x|)]^{1/p} [\varphi^*(|x|)]^{-1} U_{\alpha} f(x) = \infty.$$

4. Radial limits

Before discussing the existence of radial limits of Riesz potentials, we prepare two lemmas concerning the capacity $C_{\alpha, \Phi_{\nu}}$.

A mapping $T: G \to G'$ is said to be bi-Lipschitzian if there exists A > 1 such that

 $A^{-1}|x-y| \le |Tx-Ty| \le A|x-y|$ for all $x, y \in G$.

The following result can be proved easily by the definition of C_{α, φ_p} (cf. [11, Lemma 3]).

LEMMA 4.1. Let T be a bi-Lipschitzian mapping from G onto TG. Then

$$C_{a, \phi_n}(TE; TG) \leq MC_{a, \phi_n}(E; G)$$
 for any $E \subset G$,

where M is a positive constant which may depend on A (the Lipschitz constant of T).

For a set $E \subset \mathbb{R}^n$, we denote by \tilde{E} the set of all $\xi \in \partial B(0, 1)$ such that $r\xi \in E$ for some r > 0. By using Lemma 4.1 and applying the methods in the proof of Lemma 5 in [11], we can prove the following lemma.

LEMMA 4.2. There exists a positive constant M such that

$$C_{\alpha, \boldsymbol{\varphi}_n}(\tilde{E}; B(0, 4)) \leq MC_{\alpha, \boldsymbol{\varphi}_n}(E; B(0, 4))$$

whenever $E \subset B(0, 2) - B(0, 1)$.

We consider the quantity

$$\tilde{K} = 2^{-\alpha p} \sup_{t>0} \frac{\varphi(2^{-\alpha}t)}{\varphi(t)} \qquad (\le 2^{-\alpha p} < 1).$$

LEMMA 4.3. If $\sum_{j=1}^{\infty} 2^{nj} \widetilde{K}^j C_{\alpha, \Phi_p}(E_j; B_j) < \infty$, then

$$C_{\alpha, \Phi_p}(E^*; B(0, 2)) = 0,$$

where $E^* = \bigcap_{k=1}^{\infty} (\bigcup_{j=k}^{\infty} \tilde{E}_j).$

PROOF. Let f be a nonnegative measurable function on \mathbb{R}^n such that f = 0 outside B_i and $U_{\alpha}f(x) \ge 1$ on E_i . If $x \in E_i$, then

$$1 \leq \int_{B_j} |x-y|^{\alpha-n} f(y) \, dy = 2^{-\alpha j} \int_{B_0} |2^j x - z|^{\alpha-n} f(2^{-j} z) \, dz.$$

Hence, by the definition of capacity C_{α, ϕ_n} , we obtain

$$C_{\alpha, \Phi_p}(2^j E_j; B_0) \le \int_{B_0} \Phi_p(2^{-\alpha j} f(2^{-j} z)) dz = 2^{jn} \int_{B_j} \Phi_p(2^{-\alpha j} f(y)) dy$$
$$\le 2^{jn} \tilde{K}^j \int_{B_j} \Phi_p(f(y)) dy,$$

which implies

$$C_{\alpha, \boldsymbol{\varphi}_p}(2^j E_j; \boldsymbol{B}_0) \leq 2^{jn} \tilde{K}^j C_{\alpha, \boldsymbol{\varphi}_p}(E_j; \boldsymbol{B}_j).$$

Therefore it follows from Lemma 4.2 that

$$C_{\alpha, \phi_p}(\tilde{E}_j; B(0, 4)) \le M_1 C_{\alpha, \phi_p}(2^j E_j; B(0, 4)) \le M_2 2^{jn} \tilde{K}^j C_{\alpha, \phi_p}(E_j; B_j)$$

with positive constants M_1 and M_2 independent of *j*. Thus, $C_{\alpha, \Phi_p}(E^*; B(0, 4)) = 0$, which together with Lemma 2.2 (iii) gives the required result.

Now we show radial limit theorems as generalizations of the results in [11].

By Lemma 4.3 and Theorem 3.1, we have

THEOREM 4.1. Let f be as in Theorem 3.1, and suppose

$$\sup_{i} [2^{nj} \tilde{K}^{j}] / \omega (2^{-j}) < \infty.$$

Then there exists a set $\tilde{E} \subset \partial B(0, 1)$ such that $C_{\alpha, \Phi_p}(\tilde{E}; B(0, 2)) = 0$ and

$$\lim_{r\to 0} U_{\alpha}f(r\xi) = U_{\alpha}f(0) \quad \text{for every } \xi \in \partial B(0, 1) - \tilde{E}.$$

By Lemma 4.3 and Theorem 3.2, we can prove

THEOREM 4.2. Let f, κ and K be as in Theorem 3.2, and suppose

$$\sup_{j}\frac{2^{nj}\widetilde{K}^{j}}{K^{-j}\omega(2^{-j})}<\infty.$$

If $\lim_{r\to 0} \kappa(r) = \infty$, then there exists a set $\tilde{E} \subset \partial B(0, 1)$ such that $C_{\alpha, \Phi_p}(\tilde{E}; B(0, 2)) = 0$ and

$$\lim_{r\to 0} [\kappa(r)]^{-1} U_{\alpha} f(r\xi) = 0 \quad \text{for every } \xi \in \partial B(0, 1) - \tilde{E}.$$

Theorems 4.1 and 4.2 give generalizations of Theorems 1 and 2 in [11].

5. q-th means of potentials

For q > 0 and a nonnegative Borel function u on R^n , define

Continuity properties of potentials

$$S_q(u, r) = \left(\frac{1}{c_n r^{n-1}} \int_{\partial B(0,r)} u(x)^q \, dS(x)\right)^{1/q},$$

where c_n denotes the area of the unit sphere $\partial B(0, 1)$. Set $R_{\alpha}(x, y) = |x - y|^{\alpha - n}, \ 0 < \alpha < n.$

LEMMA 5.1. Let
$$\beta = \delta q (n - \alpha)$$
 for $\delta > 0$. Then
 $S_{q}(R_{\alpha}(\cdot, y)^{\delta}, r) \leq M[I(|y|, r)]^{1/q}$,

$$S_q(K_{\alpha}(\cdot, y)^\circ, r) \leq M[I(|y|, r)]$$

where

$$I(t, r) = \begin{cases} t^{-\beta} & \text{in case } t \ge 2r, \\ r^{-\beta} & \text{in case } r/2 < t < 2r & \text{and} & n-1-\beta > 0, \\ r^{-\beta}(|t-r|/r)^{n-1-\beta} & \text{in case } r/2 < t < 2r & \text{and} & n-1-\beta < 0, \\ r^{-\beta}\log(2r/|t-r|) & \text{in case } r/2 < t < 2r & \text{and} & n-1-\beta < 0, \\ r^{-\beta} \log(2r/|t-r|) & \text{in case } r/2 < t < 2r & \text{and} & n-1-\beta = 0, \\ r^{-\beta} & \text{in case } t \le r/2, \end{cases}$$

and M is a positive constant independent of r, t and y.

PROOF. Let t = |y|. First we note

$$S_q(R_{\alpha}(\cdot, y)^{\delta}, r) \leq M_1 \left(\int_0^1 \theta^{n-2} \{ (t-r)^2 + tr \theta^2 \}^{-\beta/2} d\theta \right)^{1/q}.$$

If $t \ge 2r$, then $S_q(R_a(\cdot, y)^{\delta}, r) \le M_2 t^{-\beta/q}$. If $t \le r/2$, then $S_q(R_a(\cdot, y)^{\delta}, r)$ $\leq M_3 r^{-\beta/q}$. If r/2 < t < 2r, then

$$S_q(R_{\alpha}(\cdot, y)^{\delta}, r) \le M_4 \left(r^{-\beta} \int_0^1 \theta^{n-2} \{ [(t-r)/r]^2 + \theta^2 \}^{-\beta/2} \, d\theta \right)^{1/q}.$$

Hence we obtain the required inequalities.

For $0 < \beta < n$, we define an outer capacity by setting

$$C_{\beta}(E) = C_{\beta}^{(n)}(E) = \inf \mu(R^{n}), \qquad E \subset R^{n},$$

where the infimum is taken over all nonnegative measures μ on R^n such that

$$\int |x-y|^{\beta-n} d\mu(y) \ge 1 \quad \text{for every } x \in E.$$

For simplicity, let R_+ denote the open interval $(0, \infty)$.

LEMMA 5.2. Let $0 < \beta < 1$ and μ be a nonnegative measure on R_+ such that $\mu(R_+) < \infty$. Then there exists a set $E \subset R_+$ such that

$$\lim_{x \to 0, x \in R_+ - E} x^{\beta} \int_{R_+} |x - y|^{-\beta} d\mu(y) = 0$$

and

 $\sum_{j} 2^{j\beta} C_{1-\beta}(E_j) < \infty,$

where $C_{1-\beta} = C_{1-\beta}^{(1)}$ and $E_j = \{x \in E; 2^{-j} \le x < 2^{-j+1}\}.$

PROOF. For x > 0, we write $\int |x - y|^{-\beta} d\mu(y) = u_1(x) + u_2(x)$, where

$$u_1(x) = \int_{\{y; |x-y| < x/2\}} |x-y|^{-\beta} d\mu(y)$$

and

$$u_2(x) = \int_{\{y \in R_+ : |x-y| \ge x/2\}} |x-y|^{-\beta} d\mu(y).$$

If $|x - y| \ge x/2$, then $x^{\beta}|x - y|^{-\beta} \le 2^{\beta}$. Hence we can apply Lebesgue's dominated convergence theorem to obtain

$$\lim_{x \to 0} x^{\beta} u_2(x) = 0.$$

For each positive integer j, we define

$$E_{j} = \{x \, ; \, 2^{-j} \le x < 2^{-j+1}, \, 2^{-j\beta}u_{1}(x) > a_{j}^{-1}\},$$

where $\{a_j\}$ is a sequence of positive integers so chosen that

 $\lim_{j\to\infty}a_j=\infty$

and

$$\sum_{j} a_{j} \mu(D_{j}) < \infty$$
 with $D_{j} = (2^{-j-1}, 2^{-j+2})$

Then it follows from the dual definition of $C_{1-\beta}$ that

$$C_{1-\beta}(E_j) \le a_j 2^{-j\beta} \mu(D_j).$$

If we set $E = \bigcup_j E_j$, then we see easily that E has the required properties.

Let
$$I_j = [2^{-j}, 2^{-j+1})$$
. Then we have

$$\int_{I_j} |x - y|^{-\beta} dx \le 2 \int_0^{2^{-j/2}} |x|^{-\beta} dx = 2(1 - \beta)^{-1} (2^{-j-1})^{1-\beta} \equiv A_{\beta} 2^{j(\beta-1)}.$$
If $\int |x - y|^{-\beta} d\mu(y) \ge 1$ on I_j , then

Continuity properties of potentials

$$\int_{I_j} dx \leq \int_{I_j} \left(\int |x - y|^{-\beta} d\mu(y) \right) dx$$
$$= \int \left(\int_{I_j} |x - y|^{-\beta} dx \right) d\mu(y) \leq A_{\beta} 2^{j(\beta - 1)} \mu(R_+),$$

which implies $2^{\beta j}C_{1-\beta}(I_j) \ge A_{\beta}^{-1} > 0$. Thus $I_j - E_j \ne \emptyset$ for large *j*, so that Lemma 5.2 gives the following result.

COROLLARY 5.1. If μ and β are as in Lemma 5.2, then

$$\lim \inf_{x \to 0} x^{\beta} \int_{R_{+}} |x - y|^{-\beta} d\mu(y) = 0.$$

Now we study the behavior at 0 of spherical means of Riesz potentials.

THEOREM 5.1. Let $\alpha p > 1$, q > 0 and $(n - \alpha p)/p(n - 1) < 1/q$. If $\lim_{r\to 0} \kappa(r) = \infty$, and if f is a nonnegative measurable function on \mathbb{R}^n satisfying conditions (1.1) and (1.2), then

$$\lim_{r\to 0} \left[\kappa(r)\right]^{-1} S_q(U_{\alpha}f, r) = 0.$$

REMARK 5.1. In case p = 1, Theorem 5.1 implies a result by Gardiner [4].

PROOF OF THEOREM 5.1. For $x \in \mathbb{R}^n$, set E(x) = B(x, |x|/2). First we consider the case $q \ge p > 1$. Take δ such that

$$0 < \delta < 1$$
 and $\frac{n - \alpha p}{p(n - \alpha)} < \delta < \frac{n - 1}{q(n - \alpha)}$.

Since $(\alpha - n)(1 - \delta) + n/p' > 0$, by the computations as in the proof of Lemma 2.1 and using Hölder's inequality, we have

$$\begin{split} U_{3}(x) &\leq \left(\int_{E(x)} [R_{\alpha}(x, y)]^{(1-\delta)p'} [\varphi(|x-y|^{-\varepsilon})]^{-p'/p} dy\right)^{1/p'} \\ &\times \left(\int_{E(x)} [R_{\alpha}(x, y)]^{\delta p} \Phi_{p}(f(y)) dy\right)^{1/p} + \int_{E(x)} |x-y|^{\alpha-n-\varepsilon} dy \\ &\leq M_{1} |x|^{(\alpha-n)(1-\delta)+n/p'} [\varphi(|x|^{-\varepsilon})]^{-1/p} \\ &\times \left(\int_{E(x)} [R_{\alpha}(x, y)]^{\delta p} \Phi_{p}(f(y)) dy\right)^{1/p} + M_{1} |x|^{\alpha-\varepsilon}, \end{split}$$

where $0 < \varepsilon < \alpha$. Using Minkowski's inequality and ($\varphi 4$), we obtain

$$S_q(U_3, r)^p \le M_2 [r^{(\alpha - n)(1 - \delta) + n/p'}]^p [\varphi(r^{-1})\omega(r)]^{-1}$$

$$\times \int_{B(0,2r)} (S_q(R_{\alpha}(\cdot, y)^{\delta}, r))^p \Phi_p(f(y))\omega(|y|) dy + M_2 r^{(\alpha-\varepsilon)p}.$$

Here we note

(5.1)
$$\kappa_1(r) \ge \left(\int_r^{2r} [t^{n-\alpha p}\eta(t)]^{-p'/p} t^{-1} dt\right)^{1/p'} \ge M_3 [r^{n-\alpha p}\eta(r)]^{-1/p}.$$

Since $\delta q < (n-1)/(n-\alpha)$, by Lemma 5.1, we find

$$S_q(R_{\alpha}(\cdot, y)^{\delta}, r) \leq M_4 r^{\delta(\alpha - n)}$$

for $y \in B(0, 2r)$, so that

(5.2)
$$S_{q}(U_{3}, r)^{p} \leq M_{5}[\kappa(r)]^{p} \int_{B(0, 2r)} \Phi_{p}(f(y))\omega(|y|) \, dy + M_{2}r^{(\alpha-\varepsilon)p}.$$

This is true in case p = 1, too. Since $S_q(u, r)$ is nondecreasing with respect to q, (5.2) also holds for q smaller than p. Thus the required result holds for U_3 instead of $U_{\alpha}f$. The same fact is also valid for U_1 and U_2 , in view of Corollaries 2.1 and 2.2, and hence Theorem 5.1 is established.

THEOREM 5.2. Let q > 0 and $1/p - \alpha/(n-1) < 1/q$. If f is a nonnegative measurable function on \mathbb{R}^n as in Theorem 5.1, then

$$\lim \inf_{r \to 0} \kappa(r)^{-1} S_a(U_{\alpha}f, r) = 0.$$

PROOF. First we consider the case $q \ge p > 1$. Take δ such that

$$\frac{n-1}{q(n-\alpha)} < \delta < 1 \quad \text{and} \quad \frac{n-\alpha p}{p(n-\alpha)} < \delta < \frac{n-1}{q(n-\alpha)} + \frac{1}{p(n-\alpha)}$$

Then, as in the previous proof, we have

$$S_q(U_3, r)^p \le M_1 [r^{(\alpha-n)(1-\delta)+n/p'}]^p [\varphi(r^{-1})\omega(r)]^{-1}$$
$$\times \int_{B(0,2r)} (S_q(R_\alpha(\cdot, y)^{\delta}, r))^p \Phi_p(f(y))\omega(|y|) dy + M_1 r^{(\alpha-\varepsilon)p}.$$

Set $\beta = -p[n-1-\delta q (n-\alpha)]/q$. Then $0 < \beta < 1$. By Lemma 5.1, we obtain

$$S_q(U_3, r)^p \le M_2[\kappa(r)]^p \int_{B(0, 2r)} \left(\frac{||y| - r|}{r}\right)^{-\beta} \Phi_p(f(y))\omega(|y|) dy + M_1 r^{(\alpha - \varepsilon)p}.$$

If p = 1, $q \ge 1$ and $(n-1)/(n-\alpha) < q < (n-1)/(n-\alpha-1)$, then the above inequality also holds with $\beta = n - \alpha - (n-1)/q$. Now, applying Corollary 5.1, we see that the required result holds for U_3 instead of $U_{\alpha}f$, if $q \ge p$. Thus,

97

using the monotonicity of $S_q(u, r)$ with respect to q, Corollaries 2.1 and 2.2, we end the proof.

6. Global fine limits

Let D denote the half space $\{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; x_n > 0\}$. In this section we study the global fine limit at the boundary ∂D of the Riesz potential $U_{\alpha}f$, where f is a nonnegative measurable function on \mathbb{R}^n satisfying condition (1.1) and

(6.1)
$$\int_{G} \Phi_{p}(f(y))\omega(|y_{n}|) dy < \infty \quad \text{for any bounded open set } G \subset \mathbb{R}^{n};$$

recall that ω is a positive and monotone function on the interval $(0, \infty)$ satisfying the (\mathcal{A}_2) condition (see $(\omega 1)$). As an application, we shall study the fine boundary limits of Beppo-Levi-Deny functions u on D satisfying (1.4), and give a generalization of [17, Theorem 1] (see Section 10).

In what follows, let p > 1.

Our aim in this section is to establish

THEOREM 6.1. Assume that

($\omega 2$) $r^{\beta-1/p}\omega(r)^{-1/p}$ is nondecreasing on $(0, \infty)$ for some $\beta < 1$.

Let f be a nonnegative measurable function on \mathbb{R}^n satisfying (1.1) and (6.1). If

$$\lim_{r\to 0}\kappa_1(r)=\infty,$$

then there exists a set $E \subset D$ such that

$$\lim_{x_n \to 0, x \in D' - E} [\kappa_1(x_n)]^{-1} U_{\alpha} f(x) = 0$$

for any bounded open set $D' \subset D$ and

$$\sum_{i=1}^{\infty} K^{-j} \omega(2^{-j}) C_{\alpha, \Phi_p}(E_j \cap B(0, N); D_j \cap B(0, 2N)) < \infty$$

for any N > 0, where $K = K^*$ in Lemma 2.3 with $\chi = \kappa_1$, $E_j = \{x = (x', x_n) \in E; 2^{-j} \le x_n < 2^{-j+1}\}$ and $D_j = \{x = (x', x_n); 2^{-j-1} < x_n < 2^{-j+2}\}.$

REMARK 6.1. In case $\omega(r) = r^{\beta}$, ($\omega 2$) holds if and only if $\beta . In fact, if <math>\beta , then take <math>\beta_1 \in [(1 + \beta)/p, 1)$ and note that $r^{\beta_1 - 1/p} \omega(r)^{-1/p}$ is nondecreasing on $(0, \infty)$.

Before giving a proof of Theorem 6.1, we prepare the following result similar to Lemma 2.1.

LEMMA 6.1. Let $\gamma_1, \gamma_2 \ge 0$, $\delta > 0$ and assume that $r^{\beta - 1/p} \omega(r)^{-1/p}$ is

nondecreasing on $(0, \infty)$ for some $\beta < 1 + \gamma_2$. Let f be a nonnegative measurable function on \mathbb{R}^n . If $x = (x', x_n) \in D$ and $0 \le s \le x_n/2 < r/4$, then

$$\begin{split} &\int_{D\cap B(x,r)-B(x,s)} |x-y|^{\alpha-n} |\bar{x}-y|^{-\gamma_1} y_n^{\gamma_2} f(y) \, dy \\ &\leq MF(r) \left\{ \left(\int_{x_n}^r [t^{n-\alpha p+(\gamma_1-\gamma_2)p} \varphi(t^{-1}) \omega(t)]^{-p'/p} t^{-1} \, dt \right)^{1/p'} \\ &+ x_n^{-\gamma_1+\gamma_2} [\omega(x_n)]^{-1/p} \left(\int_s^{x_n} [t^{n-\alpha p} \varphi(t^{-1})]^{-p'/p} t^{-1} \, dt \right)^{1/p'} \right\} \\ &+ M \int_{D\cap B(x,r)-B(x,s)} |x-y|^{\alpha-n-\delta} |\bar{x}-y|^{-\gamma_1} y_n^{\gamma_2} \, dy, \end{split}$$

where $\bar{x} = (x', -x_n)$ and $F(r) = \left(\int_{D \cap B(x,r)} \Phi_p(f(y))\omega(y_n) dy\right)^{1/p}$.

PROOF. As in the proof of Lemma 2.1, we have by Hölder's inequality

$$\int_{D\cap B(x,r)-B(x,s)} |x-y|^{\alpha-n} |\bar{x}-y|^{-\gamma_1} y_n^{\gamma_2} f(y) \, dy$$

$$\leq F(r) J + \int_{D\cap B(x,r)-B(x,s)} |x-y|^{\alpha-n-\delta} |\bar{x}-y|^{-\gamma_1} y_n^{\gamma_2} \, dy,$$

where

$$J = \left(\int_{D \cap B(x,r) - B(x,s)} [|x - y|^{\alpha - n} |\bar{x} - y|^{-\gamma_1} \{\varphi(|x - y|^{-\delta}) \omega(y_n)\}^{-1/p} y_n^{\gamma_2}]^{p'} dy\right)^{1/p'}.$$

In order to evaluate J, we set

$$J_{j} = \left(\int_{E_{j}} \left[|x - y|^{\alpha - n} |\bar{x} - y|^{-\gamma_{1}} \{\varphi(|x - y|^{-\delta}) \omega(y_{n})\}^{-1/p} y_{n}^{\gamma_{2}}\right]^{p'} dy\right)^{1/p'},$$

where

$$E_1 = \{ y \in B(x, r) - B(x, s); y_n > x_n/2 \},\$$

$$E_2 = \{ y \in D \cap B(x, r) - B(x, s); y_n < x_n/2 \}.$$

Since $y_n \le x_n + |x - y|$, we see from condition ($\omega 2$) that

$$y_n^{\beta^{-1/p}} [\omega(y_n)]^{-1/p} \le (x_n + |x - y|)^{\beta^{-1/p}} [\omega(x_n + |x - y|)]^{-1/p}$$

for $y \in D$. Set t = |x - y| and $|x_n - y_n| = t \cos \theta$, and note

 $3y_n \ge |x_n - y_n| + x_n \ge (t + x_n)\cos\theta$ for any $y \in E_1$.

Since $p'(\gamma_2 - \beta + 1/p) > -1$, we see that

$$\int_0^{\pi/2} (\cos \theta)^{p'(\gamma_2 - \beta + 1/p)} d\theta < \infty.$$

If $\gamma_2 - \beta + 1/p < 0$, then, applying polar coordinates about x, we have

$$J_{1} \leq M_{1} \left(\int_{s}^{r} \left[t^{\alpha - n} \{ \varphi(t^{-1}) \omega(x_{n} + t) \}^{-1/p} (x_{n} + t)^{-\gamma_{1} + \beta - 1/p} \right]^{p'} \\ \times (x_{n} + t)^{p'(\gamma_{2} - \beta + 1/p)} t^{n-1} dt)^{1/p'} \\ \leq M_{2} \left(\int_{x_{n}}^{r} \left[t^{\alpha - n/p - \gamma_{1} + \gamma_{2}} \{ \varphi(t^{-1}) \omega(t) \}^{-1/p} \right]^{p'} t^{-1} dt \right)^{1/p'} \\ + M_{2} x_{n}^{-\gamma_{1} + \gamma_{2}} \left[\omega(x_{n}) \right]^{-1/p} \left(\int_{s}^{x_{n}} \left[t^{n-\alpha p} \varphi(t^{-1}) \right]^{-p'/p} t^{-1} dt \right)^{1/p'}$$

Similarly, if $\gamma_2 - \beta + 1/p \ge 0$, then, noting $y_n \le x_n + |x - y|$, we derive the same estimate of J_1 as above. Next, since $y_n \le |z - y|$ if $y \in E_2$, where z = (x', 0), by the condition on ω again, we have

$$[\omega(y_n)]^{-1/p} \le y_n^{-\beta+1/p} |z-y|^{\beta-1/p} [\omega(|z-y|)]^{-1/p}$$

for $y \in E_2$. Consequently, by using polar coordinates about z, we obtain

$$\begin{split} J_{2} &\leq M_{3} x_{n}^{\alpha-n-\gamma_{1}+\beta-1/p} \{\varphi(x_{n}^{-1})\omega(x_{n})\}^{-1/p} \bigg(\int_{D\cap B(z,x_{n}/2)} y_{n}^{p'(1/p-\beta+\gamma_{2})} dy \bigg)^{1/p'} \\ &+ M_{3} \bigg(\int_{x_{n}/2}^{r} [t^{\alpha-n/p-\gamma_{1}+\gamma_{2}} \{\varphi(t^{-1})\omega(t)\}^{-1/p}]^{p'} t^{-1} dt \bigg)^{1/p'} \\ &\leq M_{4} x_{n}^{\alpha-n/p-\gamma_{1}+\gamma_{2}} [\varphi(x_{n}^{-1})\omega(x_{n})]^{-1/p} \\ &+ M_{4} \bigg(\int_{x_{n}/2}^{r} [t^{\alpha-n/p-\gamma_{1}+\gamma_{2}} \{\varphi(t^{-1})\omega(t)\}^{-1/p}]^{p'} t^{-1} dt \bigg)^{1/p'} \\ &\leq M_{5} \bigg(\int_{x_{n}}^{r} [t^{\alpha-n/p-\gamma_{1}+\gamma_{2}} \{\varphi(t^{-1})\omega(t)\}^{-1/p}]^{p'} t^{-1} dt \bigg)^{1/p'}; \end{split}$$

the last inequality follows from the (Δ_2) conditions on φ and ω (see (5.1)). Now our lemma is proved.

REMARK 6.2. If $\alpha - \delta - \gamma_1 + \gamma_2 > 0$, then

$$\int_{D\cap B(x,r)-B(x,s)} |x-y|^{\alpha-n-\delta} |\bar{x}-y|^{-\gamma_1} y_n^{\gamma_2} dy \le M r^{\alpha-\delta-\gamma_1+\gamma_2}$$

REMARK 6.3. The above proof shows that if ω is as in Lemma 6.1, then

$$\begin{split} \left(\int_{B(x,r)-B(x,s)} [|x-y|^{\alpha-n} \{\varphi(|x-y|^{-1})\omega(|y_n|)\}^{-1/p} |y_n|^{\gamma_2}]^{p'} dy \right)^{1/p'} \\ &\leq M \bigg(\int_{x_n}^r [t^{\alpha-n/p+\gamma_2} \{\varphi(t^{-1})\omega(t)\}^{-1/p}]^{p'} t^{-1} dt \bigg)^{1/p'} \\ &+ M x_n^{\gamma_2} [\omega(x_n)]^{-1/p} \bigg(\int_s^{x_n} [t^{n-\alpha p} \varphi(t^{-1})]^{-p'/p} t^{-1} dt \bigg)^{1/p'}. \end{split}$$

In view of Remark 6.3, we obtain

LEMMA 6.2. Let $0 < \delta < \alpha$ and assume that ω satisfies ($\omega 2$). Let f be a nonnegative measurable function on \mathbb{R}^n . If $x = (x', x_n) \in D$ and $0 \le s \le 2^{-1}x_n < 4^{-1}r$, then

$$\begin{split} &\int_{B(x,r)-B(x,s)} |x-y|^{\alpha-n} f(y) \, dy \\ &\leq M \bigg(\int_{B(x,r)} \Phi_p(f(y)) \omega(|y_n|) \, dy \bigg)^{1/p} \bigg\{ \bigg(\int_{x_n}^r [t^{n-\alpha p} \varphi(t^{-1}) \omega(t)]^{-p'/p} t^{-1} \, dt \bigg)^{1/p'} \\ &+ [\omega(x_n)]^{-1/p} \bigg(\int_s^{x_n} [t^{n-\alpha p} \varphi(t^{-1})]^{-p'/p} t^{-1} \, dt \bigg)^{1/p'} \bigg\} + M r^{\alpha-\delta}. \end{split}$$

PROOF OF THEOREM 6.1. For $x = (x', x_n) \in D$, we write $U_{\alpha}f(x) = u_1(x) + u_2(x)$, where

$$u_1(x) = \int_{R^n - B(x, x_n/2)} |x - y|^{\alpha - n} f(y) \, dy,$$
$$u_2(x) = \int_{B(x, x_n/2)} |x - y|^{\alpha - n} f(y) \, dy.$$

For a > 1 and a bounded open set D' in D, let $D'(a) = \{x = (x', x_n) \in D'; 0 < x_n < a\}$. For $x \in D'(a)$, write

$$u_1(x) = \int_{\mathbb{R}^n - B(x, 2a)} |x - y|^{\alpha - n} f(y) \, dy + \int_{B(x, 2a) - B(x, x_n/2)} |x - y|^{\alpha - n} f(y) \, dy$$

= $u_{11}(x) + u_{12}(x).$

By condition (1.1), we see that u_{11} is bounded on D'(a), so that

$$\lim_{x_n \to 0, x \in D'} [\kappa_1(x_n)]^{-1} u_{11}(x) = 0.$$

For u_{12} , we obtain by Lemma 6.2,

Continuity properties of potentials

$$u_{12}(x) \le M_1 \kappa_1(x_n) \left(\int_{D''} \Phi_p(f(y)) \omega(|y_n|) \, dy \right)^{1/p} + M_1,$$

for any $x \in D'$, where $D'' = \bigcup_{x \in D'} B(x, 2a)$. Hence it follows that $[\kappa_1(x_n)]^{-1} u_{12}(x)$ tends to zero as $x_n \to 0$, $x \in D'$. To complete the proof, take a sequence $\{a_j\}$ of positive numbers such that

$$\sum_{j=1}^{\infty}\int_{B_j}\Phi_p(f(y))\omega(y_n)\,dy<\infty,$$

where $B_j = \{x = (x', x_n) \in D \cap B(0, 2j); 0 < x_n < a_j\}$. Further take a sequence $\{b_{j,\ell}\}$ of positive numbers such that

$$\lim_{\ell \to \infty} b_{j,\ell} = \infty$$

and

$$\sum_{j=1}^{\infty} \left(\sum_{\{\ell; 2^{-\ell} \leq a_j/2\}} \int_{\Delta_{j,\ell}} \Phi_p(b_{j,\ell}f(y)) \omega(y_n) \, dy \right) < \infty,$$

where $\Delta_{j,\ell} = B_j \cap D_\ell$ when $2^{-\ell} \le a_j/2$; cf. the proof of Lemma 2.3. As in the proof of Lemma 2.3, we consider the sets

$$E_{j,\ell} = \{ x \in D \cap B(0,j); \, 2^{-\ell} \le x_n < 2^{-\ell+1}, \, u_2(x) \ge b_{j,\ell}^{-1} \kappa_1(x_n) \}$$

for j and ℓ such that $2^{-\ell} \leq a_j/2$; we set $E_{j,\ell} = \emptyset$ for other (j, ℓ) . If $x \in E_{j,\ell} \cap B(0, a)$, then, since $B(x, x_n/2) \subset \Delta_{j,\ell} \cap B(0, 2a)$, we find

$$\begin{split} C_{a, \varPhi_{p}}(E_{j,\ell} \cap B(0, a); D_{\ell} \cap B(0, 2a)) &\leq M_{1} \int_{\Delta_{j,\ell}} \varPhi_{p}(b_{j,\ell}\kappa_{1}(2^{-\ell})^{-1}f(y)) \, dy \\ &\leq M_{4}K^{\ell} [\omega(2^{-\ell})]^{-1} \int_{\Delta_{j,\ell}} \varPhi_{p}(b_{j,\ell}f(y)) \omega(y_{n}) \, dy. \end{split}$$

Define $E = \bigcup_{j,\ell} E_{j,\ell}$. We see that $E_{\ell} \cap B(0, a) \subset \bigcup_{\{j; 2^{-\ell} \leq a_j/2\}} E_{j,\ell} \cap B(0, a)$, so that E has all the required properties. Hence the proof of Theorem 6.1 is completed.

REMARK 6.4. If κ_1 is bounded, then we can take K = 1 in Theorem 6.1. Hence, in view of the proof of Theorem 6.1, $U_{\alpha}f(x)$ tends to $U_{\alpha}f(\xi)$ as $x \to \xi$, $x \in D - E$, for any $\xi \in \partial D$, where

$$\sum_{j=1}^{\infty} \omega(2^{-j}) C_{\alpha, \boldsymbol{\varphi}_{p}}(E_{j} \cap B(0, N); D_{j} \cap B(0, 2N)) < \infty$$

for any N > 0.

7. T_{\star} -limits

Let ψ be a positive nondecreasing continuous function on the interval $(0, \infty)$ satisfying the (Δ_2) condition and the following:

 $(\psi 1)$ $r^{-1}\psi(r)$ is nondecreasing on the interval $(0, \infty)$.

For a > 0 and $\xi \in \partial D$, we set

$$T_{\psi}(\xi, a) = \{ x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; \psi(|x - \xi|) < a x_n \}.$$

We say that a function u has a T_{u} -limit ℓ at $\xi \in \partial D$ if

$$\lim_{x \to \xi, x \in T_{\psi}(\xi, a)} u(x) = \ell$$

for any a > 0; if $\psi(r) = r^{\gamma}$, then we say " T_{γ} -limit" instead of T_{ψ} -limit. We here discuss the existence of T_{ψ} -limits of Riesz potentials $U_{\alpha}f$ for functions f satisfying condition (6.1), when φ satisfies a condition similar to (1.3).

We consider the quantity

$$C_{\alpha, \boldsymbol{\varphi}_{p}, \omega}(E; G) = \inf \int_{G} \boldsymbol{\varphi}_{p}(g(y)) \omega(|y_{n}|) dy$$

for a set *E* and an open set *G*, where the infimum is taken over all nonnegative measurable functions *g* on *G* such that $\int_{G} |x - y|^{\alpha - n} g(y) dy \ge 1$ for every $x \in E$. For simplicity, we write

$$C_{\alpha, \varphi_{p}, \omega}(E) = 0$$

if $C_{\alpha, \Phi_p, \omega}(E \cap G; G) = 0$ for any bounded open set $G \subset \mathbb{R}^n$. In case $\omega(r) = r^{\beta}$, we write $C_{\alpha, \Phi_p, \beta}$ for $C_{\alpha, \Phi_p, \omega}$; with this notation, remark $C_{\alpha, \Phi_p, 0} = C_{\alpha, \Phi_p}$.

Let h be a positive nondecreasing function on $(0, \infty)$ satisfying the (Δ_2) condition. We denote by H_h the Hausdorff measure with the measure function h. Set

$$E_f = \left\{ \xi \in \partial D \, ; \, \int |\xi - y|^{\alpha - n} f(y) \, dy = \infty \right\}$$

and

$$F_{f,h} = \left\{ \xi \in \partial D ; \lim \sup_{r \to 0} \left[h(r) \right]^{-1} \int_{B(\xi,r)} \Phi_p(f(y)) \omega(|y_n|) \, dy > 0 \right\}$$

for a nonnegative measurable function f on \mathbb{R}^n .

By the definition of $C_{\alpha, \varphi_n, \omega}$, we have

LEMMA 7.1. If f is a nonnegative measurable function on \mathbb{R}^n satisfying (1.1) and (6.1), then

$$C_{\alpha, \boldsymbol{\varphi}_p, \omega}(E_f) = 0.$$

Applying a covering lemma ([25, Lemma 1.6, Chapter 1]), we prove

LEMMA 7.2. Let h be a positive nondecreasing function on $(0, \infty)$ satisfying the (Δ_2) condition. Let g be a nonnegative function in $L^1(\mathbb{R}^n)$ and set

$$F = \left\{ \xi \in \partial D; \lim \sup_{r \to 0} \left[h(r) \right]^{-1} \int_{B(\xi,r)} g(y) \, dy > 0 \right\}.$$

Then $H_h(F) = 0$.

PROOF. For $\varepsilon > 0$, consider the set

$$F(\varepsilon) = \left\{ \xi \in \partial D; \lim \sup_{r \to 0} \left[h(r) \right]^{-1} \int_{B(\xi,r)} g(y) \, dy > \varepsilon \right\}.$$

Let $\delta > 0$. By definition, for each $\xi \in F(\varepsilon)$, there exists a number $r(\xi)$ such that $0 < r(\xi) < \delta$ and

$$\int_{B(\xi,r(\xi))} g(y) \, dy \geq \varepsilon h(r(\xi)).$$

By using the covering lemma mentioned above, we can find a disjoint family $\{B(\xi_j, r_j)\}$ of balls such that $\xi_j \in F(\varepsilon)$, $r_j = r(\xi_j)$ and $\{B(\xi_j, 5r_j)\}$ covers $F(\varepsilon)$. Then note

$$\sum_{j} h(5r_{j}) \leq M_{1} \sum_{j} h(r_{j})$$

$$\leq M_{1} \varepsilon^{-1} \sum_{j} \int_{B(\xi_{j}, r_{j})} g(y) \, dy$$

$$\leq M_{1} \varepsilon^{-1} \int_{D(\delta)} g(y) \, dy,$$

where $D(\delta) = \bigcup_{\xi \in \partial D} B(\xi, \varepsilon)$. Letting $\delta \to 0$, we find

$$H_h(F(\varepsilon))=0,$$

which implies $H_h(F) = 0$.

COROLLARY 7.1. If f is a nonnegative measurable function on \mathbb{R}^n satisfying (1.1) and (6.1), then

$$H_h(F_{f,h}) = 0$$

for any measure function h.

REMARK 7.1. If h(0) > 0, then $F_{f,h}$ is empty.

LEMMA 7.3. Let ω be a monotone function on $(0, \infty)$ satisfying $(\omega 1)$, $(\omega 2)$ and

(ω 3) $r^{\beta}\omega(r)$ is nondecreasing on $(0, \infty)$ for some $\beta < 1$.

Then, for any a > 0, there exists M > 1 such that

$$M^{-1}[\kappa_{1,a}(r)]^{-p} \le C_{\alpha, \varphi_{p}, \omega}(B(0, r); B(0, a)) \le M[\kappa_{1,a}(r)]^{-p}$$

whenever 0 < r < a/2, where

$$\kappa_{1,a}(r) = \left(\int_{r}^{a} \left[t^{n-\alpha p}\eta(t)\right]^{-p'/p} \frac{dt}{t}\right)^{1/p'}$$

with $\eta(r) = \varphi(r^{-1})\omega(r)$.

PROOF. If suffices to prove the required inequality for a = 1, by considering a change of variables: $x \to ax$; in this case, $\kappa_{1,a} = \kappa_1$. Consider the function

$$f_{r}(y) = \begin{cases} |y|^{-\alpha} [|y|^{n-\alpha p} \eta(|y|)]^{-p'/p} & \text{if } y \in B(0, 1) - B(0, r), \\ 0 & \text{otherwise.} \end{cases}$$

If $x \in B(0, r)$, then $|x - y| \le 2|y|$ for $y \in B(0, 1) - B(0, r)$, so that

$$\begin{split} \int |x - y|^{\alpha - n} f_r(y) \, dy &\geq 2^{\alpha - n} \int_{B(0, 1) - B(0, r)} |y|^{-n} [|y|^{n - \alpha p} \eta(|y|)]^{-p'/p} \, dy \\ &\geq M_1 [\kappa_1(r)]^{p'}. \end{split}$$

Hence it follows that

$$C_{\alpha, \boldsymbol{\varphi}_{p}, \boldsymbol{\omega}}(B(0, r); B(0, 1)) \leq \int \boldsymbol{\varphi}_{p}\left(\frac{f_{r}(y)}{M_{1}[\kappa_{1}(r)]^{p'}}\right) \boldsymbol{\omega}(|y_{n}|) dy.$$

By ($\omega 2$), there exists $\beta_1 < 1$ such that $\omega(|y|)^{-1/p} \le M_2 |y|^{-\beta_1 + 1/p}$ for $y \in B(0, 1)$, so that

$$\frac{f_{\mathbf{r}}(y)}{[\kappa_1(r)]^{p'}} \le M_3 \frac{|y|^{-\beta}}{[\kappa_1(2^{-1})]^{p'}}$$

whenever $y \in B(0, 1)$, for $\beta = \alpha + (n - \alpha p)p'/p + (\beta_1 - 1/p)p'$. Thus we find

$$\Phi_p\left(\frac{f_r(y)}{M_1[\kappa_1(r)]^{p'}}\right) \le M_4\left(\frac{f_r(y)}{[\kappa_1(r)]^{p'}}\right)^p \varphi(|y|^{-\beta})$$

$$\leq M_{5}[\kappa_{1}(r)]^{-pp'}|y|^{-\alpha p}[|y|^{n-\alpha p}\eta(|y|)]^{-p'}\varphi(|y|^{-1}).$$

On the other hand, by $(\omega 3)$, $r^{\beta_2}\omega(r)$ is nondecreasing on $(0, \infty)$ for some $\beta_2 < 1$. Consequently we establish

$$C_{\alpha, \varphi_{p}, \omega}(B(0, r); B(0, 1))$$

$$\leq M_{5}[\kappa_{1}(r)]^{-pp'} \int_{B(0, 1) - B(0, r)} [|y|^{n - \alpha p} \eta(|y|)]^{-p'} |y|^{-\alpha p} \varphi(|y|^{-1}) \omega(|y_{n}|) dy$$

$$\leq M_{5}[\kappa_{1}(r)]^{-pp'} \int_{B(0, 1) - B(0, r)} [|y|^{n - \alpha p} \eta(|y|)]^{-p'} |y|^{-\alpha p} \eta(|y|) |y|^{\beta_{2}} |y_{n}|^{-\beta_{2}} dy$$

$$\leq M_{6}[\kappa_{1}(r)]^{-p}.$$

Conversely, take a nonnegative measurable function g on \mathbb{R}^n such that g = 0 outside B(0, 1) and $U_{\alpha}g \ge 1$ on B(0, r). Then we have

$$\int_{B(0,r)} dx \le \int_{B(0,r)} \left(\int |x - y|^{\alpha - n} g(y) \, dy \right) dx$$
$$= \int \left(\int_{B(0,r)} |x - y|^{\alpha - n} \, dx \right) g(y) \, dy$$
$$\le M_7 r^n \int (r + |y|)^{\alpha - n} g(y) \, dy.$$

Let $\varepsilon > 0$ and $0 < \delta < \alpha$. As in the proofs of Lemmas 2.1 and 6.1, Hölder's inequality gives

$$\begin{split} &\int (r+|y|)^{\alpha-n} g(y) \, dy \\ &= \int_{\{y;g(y) > \varepsilon | y|^{-\delta}\}} (r+|y|)^{\alpha-n} g(y) \, dy + \int_{\{y;0 < g(y) \le \varepsilon | y|^{-\delta}\}} (r+|y|)^{\alpha-n} g(y) \, dy \\ &\leq \left(\int_{B(0,1)} \left[(r+|y|)^{\alpha-n} \{ \varphi(\varepsilon | y|^{-\delta}) \omega(|y_n|) \}^{-1/p} \right]^{p'} \, dy \right)^{1/p'} \\ &\quad \times \left(\int \Phi_p(g(y)) \omega(|y_n|) \, dy \right)^{1/p} + \varepsilon \int_{B(0,1)} (r+|y|)^{\alpha-n} |y|^{-\delta} \, dy. \end{split}$$

By $(\varphi 3)$ and $(\varphi 4)$,

$$[\varphi(\varepsilon t^{-\delta})]^{-1/p} \le M(\varepsilon) [\varphi(t^{-\delta})]^{-1/p} \le M(\varepsilon) M_8 [\varphi(t^{-1})]^{-1/p}$$

for any t > 0. By condition ($\omega 2$),

$$\omega(|y_n|)^{-1/p} \le |y_n|^{1/p - \beta_1} r^{\beta_1 - 1/p} \omega(r)^{-1/p}$$

for $y \in B(0, r)$, where $\beta_1 < 1$. Hence,

$$\begin{split} &\left(\int_{B(0,r)} \left[(r+|y|)^{\alpha-n} \{\varphi(\varepsilon|y|^{-\delta})\omega(|y_n|)\}^{-1/p}\right]^{p'} dy\right)^{1/p'} \\ &\leq M(\varepsilon) M_8 r^{\alpha-n+\beta_1-1/p} [\eta(r)]^{-1/p} \left(\int_{B(0,r)} |y_n|^{p'(1/p-\beta_1)} dy\right)^{1/p'} \\ &\leq M(\varepsilon) M_9 [r^{n-\alpha p} \eta(r)]^{-1/p} \leq M(\varepsilon) M_{10} \kappa_1(r) \end{split}$$

by (5.1). Similarly,

$$\begin{split} & \left(\int_{B(0,1)-B(0,r)} \left[(r+|y|)^{\alpha-n} \{ \varphi(\varepsilon|y|^{-\delta}) \omega(|y_n|) \}^{-1/p} \right]^{p'} dy \right)^{1/p'} \\ & \leq M(\varepsilon) M_8 \int_{B(0,1)-B(0,r)} t^{p'(\alpha-n)} [\eta(t) t^{p\beta_1-1}]^{-p'/p} |y_n|^{p'(1/p-\beta_1)} dy \right)^{1/p'}, \qquad t = |y|, \\ & \leq M(\varepsilon) M_{11} \bigg(\int_r^1 \left[t^{n-\alpha p} \eta(t) \right]^{-p'/p} t^{-1} dt \bigg)^{1/p'}. \end{split}$$

Thus we derive

$$\int (r+|y|)^{\alpha-n}g(y)\,dy \leq M(\varepsilon)M_{12}\kappa_1(r)\bigg(\int \Phi_p(g(y))\omega(|y_n|)\,dy\bigg)^{1/p} + M_{12}\varepsilon,$$

so that

 $1 \leq M(\varepsilon) M_{13} \kappa_1(r) \left[C_{\alpha, \boldsymbol{\varphi}_p, \omega}(B(0, r); B(0, 1)) \right]^{1/p} + M_{13} \varepsilon.$

If $M_{13}\varepsilon = 1/2$, then we establish

$$M_{14}[\kappa_1(r)]^{-p} \le C_{\alpha, \varphi_p, \omega}(B(0, r); B(0, 1)).$$

By using a covering lemma (cf. [25, Lemma 1.6, Chapter 1]), we have

COROLLARY 7.2. Let ω be as in Lemma 7.3. If G and G' are bounded open sets in \mathbb{R}^n such that $\overline{G}' \subset G$, then there exists M > 0, depending on the distance between $\partial G'$ and ∂G , such that

$$C_{\alpha, \Phi_{p}, \omega}(E; G) \leq M H_{h}(E)$$

for any set $E \subset \partial D \cap G'$, where $h(r) = [\kappa_1(r)]^{-p}$.

In view of Theorem 12.2 given later, we have

COROLLARY 7.3. Let $-1 < \beta < p-1$, and assume $C_{\alpha, \Phi_p, \beta}(E) = 0$. If $E \subset \partial D$, then E has Hausdorff dimension at most $n - \alpha p + \beta$; if $E \subset D$, then E has Hausdorff dimension at most $n - \alpha p$.

COROLLARY 7.4. Let ω be as in Lemma 7.3. Then, for $x_0 \in \partial D$,

 $C_{\mathfrak{a}, \Phi_p, \omega}(\{x_0\}) = 0 \quad if and only if \kappa_1(0) = \infty.$

For $x_0 \in D$,

$$C_{\alpha, \Phi_p}(\{x_0\}) = 0$$
 if and only if $\int_0^1 [t^{n-\alpha p} \varphi(t^{-1})]^{-1/(p-1)} t^{-1} dt = \infty.$

THEOREM 7.1. Assume that $(\omega 2)$ holds and $\varphi^*(1) < \infty$, that is,

(7.1)
$$\int_0^1 \left[r^{n-\alpha p} \varphi(r^{-1}) \right]^{-p'/p} r^{-1} dr < \infty$$

Let ψ be as above, and set

$$\begin{aligned} \tau_1(r) &= \left[\kappa_1(r)\right]^{-p}, \\ \tau_2(r) &= \inf_{r \le t \le 1} \omega(t) \left[\varphi^*(t)\right]^{-p}, \\ \tau(r) &= \min\left\{\tau_1(r), \tau_2(r)\right\}, \\ h(r) &= \tau(\psi(r)) \end{aligned}$$

for 0 < r < 1. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying (1.1) and (6.1). Then there exist $E_1, E_2 \subset \partial D$ such that

$$C_{\alpha, \varphi_{p}, \omega}(E_1) = 0, \qquad H_h(E_2) = 0$$

and $U_{\alpha}f(x)$ has a finite T_{ψ} -limit $U_{\alpha}f(\xi)$ at $\xi \in \partial D - (E_1 \cup E_2)$. If in addition $\tau(0) > 0$, then $U_{\alpha}f(x)$ has a limit $U_{\alpha}f(\xi)$ at any $\xi \in \partial D$; in this case, $E_1 \cup E_2 = \emptyset$.

PROOF. For $x \in D$, we write $U_{\alpha}f(x) = u_1(x) + u_2(x)$, where

$$u_1(x) = \int_{R^n - B(\xi, 2|x-\xi|)} |x - y|^{\alpha - n} f(y) \, dy$$

and

$$u_{2}(x) = \int_{B(\xi, 2|x-\xi|)} |x-y|^{\alpha-n} f(y) \, dy.$$

Since $y \in \mathbb{R}^n - B(\xi, 2|\xi - x|)$ implies $|\xi - y| \le 2|x - y|$, we can apply Lebesgue's dominated convergence theorem to obtain

$$u_1(x) \longrightarrow U_{\alpha}f(\xi)$$
 as $x \longrightarrow \xi$.

If $\xi \in \partial D - E_f$, then $U_f(\xi) < \infty$. By Lemma 7.1, $C_{\alpha, \Phi_p, \omega}(E_f) = 0$. On the other hand, in view of Lemma 6.2 with $r = 3|x - \xi|$, s = 0 and f replaced by the restriction of f to the ball $B(\xi, 2|x - \xi|)$, we can establish

$$u_{2}(x) \leq M_{1} \left(\left[\tau(x_{n}) \right]^{-1} \int_{B(\xi, 2|x-\xi|)} \Phi_{p}(f(y)) \omega(|y_{n}|) \, dy \right)^{1/p} + M_{1}|x-\xi|^{\alpha-\delta},$$

where $0 < \delta < \alpha$. If $\xi \in \partial D - F_{f,h}$, then, noting that $[\tau(x_n)]^{-1} \le M(a)[h(|x-\xi|)]^{-1}$ for $x \in T_{\psi}(\xi, a)$, we see that $u_2(x)$ tends to zero as $x \to \xi$ along $T_{\psi}(\xi, a)$. In case $\tau(0) > 0$, $\tau(x_n)^{-1}$ is bounded for $0 < x_n < 1$, so that $u_2(x)$ tends to zero as $x \to \xi$, $x \in D$. Since $H_h(F_{f,h}) = 0$ by Corollary 7.1, the proof of Theorem 7.1 is completed.

By using Theorem 7.1 and Corollary 7.2, we have

THEOREM 7.2. Assume that $(\omega 2)$ and (7.1) hold. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying (1.1) and (6.1). If $\tau_1(r) \leq M\tau_2(r)$ for 0 < r < 1, then there exists a set $E \subset \partial D$ such that $C_{\alpha, \Phi_p, \omega}(E) = 0$ and $U_{\alpha}f(x)$ has a nontangential limit at any $\xi \in \partial D - E$; that is, $U_{\alpha}f(x)$ has a finite T_1 -limit at any $\xi \in \partial D - E$.

COROLLARY 7.5. Let $0 < \alpha p - n \le \beta < p - 1$. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying (1.1) and

(7.2)
$$\int_{G} \Phi_{p}(|f(y)|)|y_{n}|^{\beta} dy < \infty \quad \text{for any bounded open set} \quad G \subset \mathbb{R}^{n}.$$

Then there exists a set $E \subset \partial D$ such that $C_{\alpha, \Phi_p, \beta}(E) = 0$ and $U_{\alpha}f(x)$ has a nontangential limit at any $\xi \in \partial D - E$.

In fact, in case $\alpha p > n$, $\varphi^*(1) < \infty$ and, moreover, we find

$$\tau_2(r) \sim r^{n-\alpha p+\beta} \varphi(r^{-1}) \quad \text{as} \quad r \longrightarrow 0,$$

so that $\tau_1(r) \le M_1 \tau_2(r)$ for 0 < r < 1. Now Corollary 7.5 is a direct consequence of Theorem 7.2.

THEOREM 7.3. Assume that (7.1) is satisfied, and let $-1 < \beta < p - 1$. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying (1.1) and (7.2).

(i) If $n - \alpha p + \beta > 0$, then for $\gamma > 1$, there exists a set $E_{\gamma} \subset \partial D$ such that $H_h(E_{\gamma}) = 0$, where $h(r) = \tau_2(r^{\gamma})$ with

,

$$\tau_2(r) = \inf_{\tau \le t \le 1} t^{\beta} \left(\int_0^t \left[s^{n-\alpha p} \varphi(s^{-1}) \right]^{-1/(p-1)} ds/s \right)^{-p+1}$$

and $U_{\alpha}f$ has a finite T_{γ} -limit at any $\xi \in \partial D - E_{\gamma}$.

- (ii) If $\beta = \alpha p n > 0$, then there exists a set $E \subset \partial D$ such that $C_{\alpha, \Phi_p, \beta}(E) = 0$ and $U_{\alpha}f$ has a finite T_{γ} -limit at any $\xi \in \partial D E$ for any $\gamma \ge 1$.
- (iii) If $\beta = \alpha p n = 0$ or $n \alpha p + \beta < 0$, then $U_{\alpha}f$ has a finite limit at

any $\xi \in \partial D$.

PROOF. First note by (7.1) that $\alpha p \ge n$. Hence, if $n - \alpha p + \beta > 0$, then $\beta > 0$ and

$$\tau_1(r) \ge M_1 r^{n-\alpha p+\beta} \varphi(r^{-1}) \ge M_2 \tau_2(r)$$

for 0 < r < 1, according to the notation in Theorem 7.1. Now we apply Theorem 7.1, together with Corollary 7.3, in order to prove (i).

If $\beta = \alpha p - n > 0$, then

$$\tau_2(r) \ge M_3 r^{n-\alpha p+\beta} \varphi(r^{-1}),$$

so that $\tau_2(0) > 0$. Further, in this case, $\tau_1(r^{\gamma}) \sim [\kappa_1(r)]^{-p}$ for any $\gamma > 1$. Hence, if we set $h_{\gamma}(r) = \tau(r^{\gamma})$ with τ in Theorem 7.1, then $h_{\gamma}(r) \sim [\kappa_1(r)]^{-p}$ for any $\gamma > 1$. It follows from Corollary 7.2 that $C_{\alpha, \Phi_p, \beta}(F_{f, h_{\gamma}}) = 0$. Now (ii) is a consequence of Theorem 7.1.

If $\beta \leq 0$, then

$$\kappa_1(0) \le \varphi^*(1) < \infty,$$

on account of (7.1). Further, in this case, $\tau_2(0) > 0$. If $0 < \beta < \alpha p - n$, then $\kappa_1(0) < \infty$, so that $\tau_1(0) > 0$, and further $\tau_2(0) > 0$, as seen above. In the case of (iii), it follows that $\tau(0) > 0$. Thus (iii) also follows from Theorem 7.1.

REMARK 7.2. Theorem 7.2, together with Theorem 7.3, (ii), is best possible as to the size of the exceptional sets; that is, if $E \subset \partial D$ and $C_{\alpha, \Phi_{p,\omega}}(E) = 0$, then we can find a nonnegative measurable function f on \mathbb{R}^n such that $U_{\alpha}f \neq \infty$, $U_{\alpha}f = \infty$ on E and

$$\int \Phi_p(f(y))\omega(|y_n|)\,dy < \infty$$

(cf. the proof of Lemma 2.2, (iv)). Clearly, $U_{\alpha}f$ does not have a finite T_{ψ} -limit at any $\xi \in E$, by the lower semicontinuity of $U_{\alpha}f$.

REMARK 7.3. In Theorem 7.2, if (7.1) does not hold, then we can not generally expect the existence of limits of u along $T_{\psi}(\xi, a)$.

In fact, by Corollary 7.4, $C_{\alpha, \Phi_p}(F) = 0$ for any countable set $F \subset D$. Hence we can find a nonnegative measurable function f on D such that $U_{\alpha}f \neq \infty$, $U_{\alpha}f = \infty$ on F and

(7.3)
$$\int_{D} \Phi_{p}(f(y))\omega(y_{n}) \, dy < \infty$$

(see Lemma 2.2, (iv)). If in addition F is everywhere dense in D, then we see easily that $U_{\alpha}f$ does not have a finite T_{ψ} -limit at any boundary point of D.

8. Curvilinear limits

Let ψ be a positive nondecreasing continuous function on $[0, \infty)$ satisfying conditions (Δ_2) and $(\psi 1)$, as before. Take continuous functions ψ_j , j = 2, 3, ..., n-1, on $[0, \infty)$ such that $\psi_j(0) = 0$ and

$$|\psi_i(t) - \psi_i(s)| \le M|t-s|$$
 for any $s, t \ge 0$.

For convenience, let $\psi_1(r) = r$, $\psi_n(r) = \psi(r)$ and $\Psi(r) = (\psi_1(r), \dots, \psi_n(r))$. For $\xi \in \partial D$, we define

$$\xi(r) = \xi + \Psi(r)$$
 and $L_{\Psi}(\xi) = \{\xi(r); 0 < r < 1\}.$

THEOREM 8.1. Let ω be a positive nondecreasing function on $(0, \infty)$ satisfying both $(\omega 1)$ and $(\omega 2)$. Assume further that there exists a positive nondecreasing function ω^* on $(0, \infty)$ satisfying the following conditions:

(i)
$$\omega^{*}(2r) \leq M\omega^{*}(r) \text{ on } (0, \infty);$$

(ii) $\int_{0}^{r} \omega^{*}(s)^{1/p} s^{-1} ds \leq M\omega(r)^{1/p}$ for any $r > 0$,

where M is a positive constant. Let τ_1 be as in Theorem 7.1,

$$\tau_2^*(r) = \inf_{r \le t \le 1} t^{n - \alpha p} \omega^*(t) \varphi(t^{-1})$$

and

$$h^{*}(r) = \min \{ \tau_{1}(\psi(r)), \tau_{2}^{*}(\psi(r)) \}$$

for 0 < r < 1. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying conditions (1.1) and (6.1). Then there exist two sets E_1 and E_2 such that $C_{\alpha, \Phi_p, \omega}(E_1) = 0$, $H_{h^*}(E_2) = 0$ and

$$\lim_{r\to 0} U_{\alpha}f(\xi(r)) = U_{\alpha}f(\xi) \quad \text{for any } \xi \in \partial D - (E_1 \cup E_2).$$

PROOF. Letting $a = 10^{-1}$ and $\xi \in \partial D$, we write $U_{\alpha}f(x) = u_1(x) + u_2(x) + u_3(x)$, where

$$u_{1}(x) = \int_{R^{n} - B(\xi, 2|x - \xi|)} |x - y|^{\alpha - n} f(y) dy,$$
$$u_{2}(x) = \int_{B(\xi, 2|x - \xi|) - B(x, ax_{n})} |x - y|^{\alpha - n} f(y) dy,$$
$$u_{3}(x) = \int_{B(x, ax_{n})} |x - y|^{\alpha - n} f(y) dy.$$

If $\xi \in \partial D - E_f$, then, as in the proof of Theorem 7.1, $u_1(x)$ has the finite limit $U_{\alpha}f(\xi)$ at ξ . Further Lemma 6.2 yields

Continuity properties of potentials

$$|u_{2}(x)| \leq M_{1}\kappa_{1}(x_{n}) \left(\int_{B(\xi, 2|x-\xi|)} \Phi_{p}(f(y))\omega(|y_{n}|) \, dy \right)^{1/p} + M_{1}|x-\xi|^{\alpha-\delta}$$

for $x \in D \cap B(\xi, 1)$, where $0 < \delta < \alpha$. If we set

$$E' = \left\{ \xi \in \partial D; \lim \sup_{r \to 0} \left[\tau_1(\psi(r)) \right]^{-1} \int_{B(\xi,r)} \Phi_p(f(y)) \omega(|y_n|) \, dy > 0 \right\},$$

then Lemma 7.2 implies $H_{h^*}(E') = 0$. Moreover, if b > 0 and $x \in T_{\psi}(\xi, b)$, then we have

$$\kappa_1(x_n) \le M(b) [\tau_1(\psi(|x-\xi|))]^{-1/p}$$

for some positive constant M(b). Hence we see that u_2 has T_{ψ} -limit zero when $\xi \in \partial D - E'$. If $x = \xi(r) \in L_{\Psi}(\xi)$, r > 0, then

$$|x - \xi| = |\Psi(r)| = (\sum_{j=1}^{n} |\psi_j(r)|^2)^{1/2} \le M_2 r,$$

so that

$$\psi(|x-\xi|) \le \psi(M_2 r) \le M_3 \psi(r) = M_3 x_n.$$

Consequently, $L_{\Psi}(\xi) \subset T_{\psi}(\xi, M_3)$, and it follows that $u_2(x)$ tends to zero as $x \to \xi$ along the curve $L_{\Psi}(\xi)$ when $\xi \in \partial D - E'$. Thus it suffices to prove that $u_3(x)$ tends to zero as $x \to \xi$ along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D$ except those in a set E'' such that $H_{h^*}(E'') = 0$. For this purpose, we may assume that f = 0 outside $D \cap B(0, N)$ for some N > 1, so that f satisfies (7.3). Set

$$X_{j} = \{x \in D; 2^{-j} \le x_{n} < 2^{-j+1}, u_{3}(x) > a_{j}^{-1}\},\$$

where $\{a_i\}$ is a sequence of positive numbers such that

(8.1)
$$\lim_{i \to \infty} a_i = \infty, \qquad \lim_{i \to \infty} j^{-1} a_i = 0$$

and

$$\sum_{j} a_{j}^{p} \int_{D_{j}} \Phi_{p}(f(y)) \omega(y_{n}) \, dy < \infty$$

with $D_j = \{x \in D; 2^{-j-1} < x_n < 2^{-j+2}\}$. For a set $X \subset D$, we denote by \tilde{X} the set of all $\xi \in \partial D$ such that $\xi(r) \in X$ for some r with 0 < r < 1. We consider the set

$$E'' = \bigcap_k (\bigcup_{j > k} \widetilde{X}_j).$$

Then it is easy to see that $u_3(\xi(r))$ tends to zero as $r \to 0$ whenever $\xi \in \partial D - E''$. What remains is to prove that $H_{h^*}(E'') = 0$. If $x \in X_j$, then

$$a_j^{-1} < \int_{B(x,ax_n)} |x - y|^{\alpha - n} f(y) \, dy$$

= $(n - \alpha) \int_0^{ax_n} F_1(x, r) r^{\alpha - n - 1} \, dr + (ax_n)^{\alpha - n} F_1(x, ax_n),$

where $F_1(x, r) = \int_{B(x,r)} f(y) dy$. By Lemma 2.1, we have

(8.2)
$$F_1(x,r) \le M_4 [r^{n-\varepsilon} + r^{n/p'} \{\varphi(r^{-1})\}^{-1/p} \{F_{\varphi_p}(x,r)\}^{1/p}],$$

where $0 < \varepsilon < \min\{1, \alpha\}$ and $F_{\phi_p}(x, r) = \int_{B(x,r)} \Phi_p(f(y)) dy$. Let $x \in X_j$ and assume that

(8.3)
$$F_{\boldsymbol{\varphi}_p}(x, r) < \tilde{M} a_j^{-p} \omega(x_n)^{-1} \tau_2^*(r)$$

for any r with $0 < r \le ax_n$. Then it follows from (8.2) that

$$\begin{split} &1 \leq M_4(n-\alpha) \bigg(a_j \int_0^{ax_n} r^{\alpha-\varepsilon-1} dr \\ &+ \tilde{M}^{1/p} \{ \omega(x_n) \}^{-1/p} \int_0^{ax_n} \{ \tau_2^*(r) r^{\alpha p-n} \varphi(r^{-1})^{-1} \}^{1/p} r^{-1} dr \bigg) \\ &+ M_4(a_j(ax_n)^{\alpha-\varepsilon} + \tilde{M}^{1/p} (ax_n)^{\alpha-n/p} \{ \varphi((ax_n)^{-1}) \omega(ax_n) \}^{-1/p} \{ \tau_2^*(ax_n) \}^{1/p}). \end{split}$$

Since $\tau_2^*(r) \le \omega^*(r) [r^{n-\alpha p} \varphi(r^{-1})]$, in view of conditions (i) and (ii) for ω^* , we see that

$$1 \leq M_{5} \bigg(a_{j} (ax_{n})^{\alpha-\varepsilon} + \tilde{M}^{1/p} \{ \omega(x_{n}) \}^{-1/p} \int_{0}^{ax_{n}} \{ \omega^{*}(r) \}^{1/p} r^{-1} dr \bigg)$$

+ $M_{4} \tilde{M}^{1/p} \{ \omega(ax_{n}) \}^{-1/p} \{ \omega^{*}(ax_{n}) \}^{1/p} \leq M_{6} a_{j} 2^{-j(\alpha-\varepsilon)} + M_{6} \tilde{M}^{1/p},$

where M_6 does not depend on j nor \tilde{M} . In view of (8.1), there is j_0 such that $M_6 a_j 2^{-j(\alpha-\varepsilon)} < 2^{-1}$ for any $j \ge j_0$. Thus, if $x \in X_j$, $j \ge j_0$, and (8.3) holds for all $r \in (0, ax_n]$, then \tilde{M} must satisfy

$$M_6 \tilde{M}^{1/p} \ge 2^{-1}.$$

Now, if we take \tilde{M} so small that $M_6 \tilde{M}^{1/p} < 2^{-1}$, then, for any $x \in X_j$, $j \ge j_0$, we can find r(x), $0 < r(x) \le ax_n$, such that

$$F_{\boldsymbol{\phi}_p}(x, r(x)) \geq \tilde{M} a_j^{-p} \{ \omega(x_n) \}^{-1} \tau_2^*(r(x)).$$

Since $\{B(x, r(x)); x \in X_j\}$ covers X_j , there exists a mutually disjoint (finite or) countable family $\{B(x_{j,k}, r_{j,k})\}$, $r_{j,k} = r(x_{j,k})$, such that $x_{j,k} \in X_j$ for all k and $\{B(x_{j,k}, 5r_{j,k})\}$ covers X_j . Then

(8.4)
$$\sum_{k} \tau_{2}^{*}(r_{j,k}) \leq M_{7} a_{j}^{p} \int_{D_{j}} \Phi_{p}(f(y)) \omega(y_{n}) dy.$$

Now we are ready to show

 $H_{h^*}(E'') = 0.$

Let $\xi_{j,k}$ be the point on ∂D such that $x_{j,k} = \xi_{j,k}(s_{j,k})$ for some $s_{j,k} > 0$. Since $\psi(r)$ is strictly increasing on account of condition (ψ 1), for any r > 0 we can find only one r^* satisfying $\psi(r^*) = r$. If $\xi \in \partial D$, $\zeta \in \partial D$, $x = \xi(t)$, $y = \zeta(s)$ and $y \in B(x, r)$ with $r < ax_n < 1$, then condition (ψ 1) gives

$$\psi(|s-t|) \le |\psi(s) - \psi(t)| = |x_n - y_n| \le |x - y| < r = \psi(r^*),$$

so that $|s - t| < r^*$. Also, if 0 < r < 1, then $r^* = \psi^{-1}(r) < \psi^{-1}(1)$, which together with $(\psi 1)$ yields

$$\frac{\psi(r^*)}{r^*} \le \frac{1}{\psi^{-1}(1)} \quad \text{or} \quad r < \frac{r^*}{\psi^{-1}(1)}.$$

Hence

 $\begin{aligned} |\xi - \zeta| &\le |x - y| + \sum_{i=1}^{n-1} |\psi_i(s) - \psi_i(t)| \le r + |s - t| + (n-2)M|s - t| \le M_8 r^*. \end{aligned}$ This implies $\bigcup_{j \ge \ell} (\bigcup_k \{B(\xi_{j,k}, M_8(5r_{j,k})^*)\}) \supset E''$ for any $\ell \ge j_0$, so that

$$H_{h^{*}}^{(\delta^{*})}(E'') \leq \sum_{j \geq \ell} \left(\sum_{k} h^{*}(M_{8}(5r_{j,k})^{*}) \right)$$
$$\leq M_{9} \sum_{j \geq \ell} \left(\sum_{k} \tau_{2}^{*}(r_{j,k}) \right)$$
$$\leq M_{10} \sum_{j \geq \ell} a_{j}^{p} \int_{D_{j}} \Phi_{p}(f(y)) \omega(y_{n}) dy$$

by (8.4), where $\delta_{\ell}^* = \sup_{j \ge \ell} \{ \sup_k M_8(5r_{j,k})^* \}$. Here note

$$\psi(\delta_{\ell}^{*}) = \sup_{j \geq \ell} \{ \sup_{k} \psi(M_{8}(5r_{j,k})^{*}) \} \leq M_{11} 2^{-\ell+1},$$

so that $\lim_{\ell \to \infty} \delta_{\ell}^* = 0$. Thus it follows that $H_{h^*}(E'') = 0$, and the proof of Theorem 8.1 is completed.

COROLLARY 8.1. Let $\alpha p - n \leq \beta . Let <math>\psi(r) = r^{\gamma}$ for $\gamma \geq 1$; in this case, $\Psi(r) = (r, \psi_2(r), \dots, \psi_{n-1}(r), r^{\gamma})$. Further, let f be as in Theorem 7.3.

- (i) If $\beta > 0$, $n \alpha p + \beta > 0$ and $\gamma > 1$, then there exists a set $E \subset \partial D$ such that $H_h(E) = 0$ with $h(r) = \inf_{r \le t \le 1} t^{\gamma(n-\alpha p+\beta)} \varphi(t^{-1})$ and $U_{\alpha}f$ has a finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D - E$.
- (ii) If $\beta > 0$, $n \alpha p + \beta > 0$ and $\gamma = 1$, then there exists a set $E \subset \partial D$ such that $C_{\alpha, \Phi_p, \beta}(E) = 0$ and $U_{\alpha}f$ has a finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D - E$.

(iii) If $\beta \leq 0$ and $\gamma > 1$, then there exists a set $E \subset \partial D$ such that $H_{\gamma(n-\alpha p+\delta)}(E) = 0$ for any $\delta > 0$, that is, E has Hausdorff dimension at most $\gamma(n-\alpha p)$, and $U_{\alpha}f$ has a finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D - E$.

PROOF. If $\beta > 0$, then we can take

$$\omega^*(r) = \omega(r) = r^{\beta}$$
 and $\tau_2^*(r) = \inf_{r \le t \le 1} t^{n-\alpha p+\beta} \varphi(t^{-1})$

in Theorem 8.1 If in addition $n - \alpha p + \beta > 0$, then $h^* = h$. In case $\gamma > 1$, $C_{\alpha, \varphi_p, \beta}(F) = 0$ implies $H_{h^*}(F) = 0$ by Corollary 7.3. Thus (i) follows from Theorem 8.1. In case $\gamma = 1$, $\tau_1(r) \le M \tau_2^*(r)$ by (5.1) and $h^*(r) \sim [\kappa_1(r)]^{-p}$. In view of Corollary 7.2, $H_h(F) = 0$ implies $C_{\alpha, \varphi_p, \beta}(F) = 0$. Hence (ii) also follows from Theorem 8.1.

If $\beta \leq 0$, then, for $\delta > 0$, consider

$$\omega_{\delta}(r) = \omega_{\delta}^{*}(r) = r^{\delta}.$$

Since $n - \alpha p + \delta > n - \alpha p + \beta \ge 0$, we can apply (i) with $\beta = \delta$ to establish (iii).

Here we give radial limit results as generalizations of [12, Theorems 3 and 4].

THEOREM 8.2. Let $-1 < \beta < p - 1$ and f be as in Theorem 7.3. Then there exists a set $E \subset \partial D$ satisfying

- (i) $C_{\alpha, \varphi_p, \beta}(E) = 0;$
- (ii) to each $\xi \in \partial D E$, there corresponds a set E_{ξ} such that $C_{\alpha, \Phi_p}(E_{\xi}) = 0$ and

 $\lim_{r\to 0} U_{\alpha} f(\xi + r\zeta) = U_{\alpha} f(\xi) \qquad \text{for any} \quad \zeta \in D \cap \partial B(0, 1) - E_{\xi}.$

This fact can be proved by [14, Theorem 2'] and the contractive property of the capacity C_{α, Φ_p} , which is derived in the same manner as that of $C_{\alpha, p}$ (see [11, Lemma 5]). More precisely, to complete the proof, apply the proofs of [12, Theorem 4] and [14, Theorem 4].

THEOREM 8.3. Let ω be a nonnegative nondecreasing function on $[0, \infty)$ satisfying (ω 1) and (ω 2). Let $\zeta \in D$ be fixed. If f is a nonnegative measurable function on \mathbb{R}^n satisfying (1.1) and (6.1), then there exists a set $E \subset \partial D$ such that $C_{\alpha, \Phi_n, \omega}(E) = 0$ and

$$\lim_{t \to 0} U_{\alpha} f(\xi + t\zeta) = U_{\alpha} f(\xi) \quad at \ any \quad \xi \in \partial D - E.$$

PROOF. Define

Continuity properties of potentials

$$u_1(x) = \int_{R^n - B(x, x_n/2)} |x - y|^{\alpha - n} f(y) \, dy,$$
$$u_2(x) = \int_{B(x, x_n/2)} |x - y|^{\alpha - n} f(y) \, dy$$

for $x \in D$. If $x = \xi + t\zeta$, $\xi \in \partial D$, t > 0 and $y \in R^n - B(x, x_n/2)$, then

$$|y - \xi| \le |y - x| + t|\xi| \le [1 + 2(|\xi|/\zeta_n)]|x - y|,$$

so that

$$\lim_{t \perp 0} u_1(\xi + t\zeta) = U_{\alpha}f(\xi)$$

for every $\xi \in \partial D$. In fact, if $U_{\alpha}f(\xi) = \infty$, then it follows readily from Fatou's lemma; if $U_{\alpha}f(\xi) < \infty$, then apply Lebesgue's dominated convergence theorem. As in the proof of Theorem 6.1, we can find a set $E \subset D$ such that

 $\lim_{x_n \to 0, x \in D \cap A(q) - E} u_2(x) = 0$

and

$$\sum_{j=1}^{\infty} \omega(2^{-j}) C_{\alpha, \boldsymbol{\varphi}_p}(E_j \cap A(a); D_j \cap A(2a)) < \infty$$

for any a > 0, where $A(a) = \{x = (x_1, ..., x_n); |x_j| < a \text{ for any } j\}$. Define

 $E_j^* = \{(x', 0); (x', t) \in E_j \text{ for some } t > 0\},\$

 $E_j = \{ (x', 0); (x', 0) + t\zeta \in E_j \text{ for some } t > 0 \}.$

Letting $D'_j = \{(x', x_n); |x_n| < 2^{-j+2}\}$, we have by the contractive property of C_{α, Φ_p} (cf. [10, Lemma 1]),

$$C_{\alpha, \boldsymbol{\varphi}_{p}}(E_{j}^{*} \cap A(a); D_{j}^{\prime} \cap A(2a)) \leq C_{\alpha, \boldsymbol{\varphi}_{p}}(E_{j} \cap A(a); D_{j}^{\prime} \cap A(2a)),$$

so that

$$C_{\alpha, \boldsymbol{\varphi}_{p}, \omega}(E_{j}^{*} \cap A(a); A(2a)) \leq C_{\alpha, \boldsymbol{\varphi}_{p}, \omega}(E_{j}^{*} \cap A(a); D_{j}^{\prime} \cap A(2a))$$
$$\leq \omega(2^{-j+2})C_{\alpha, \boldsymbol{\varphi}_{p}}(E_{j}^{*} \cap A(a); D_{j}^{\prime} \cap A(2a))$$
$$\leq M_{1}\omega(2^{-j})C_{\alpha, \boldsymbol{\varphi}_{p}}(E_{j} \cap A(a); D_{j} \cap A(2a))$$

On the other hand,

$$C_{\alpha, \boldsymbol{\varphi}_{p}, \omega}(\tilde{E}_{j} \cap A(a); A(2a)) \leq M_{2}C_{\alpha, \boldsymbol{\varphi}_{p}, \omega}(E_{j}^{*} \cap A(a); A(2a))$$

(cf. [11, Lemma 3]). Hence if we set $\tilde{E} = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} \tilde{E}_j$, then $C_{\alpha, \Phi_p, \omega}(\tilde{E}) = 0$ and

$$\lim_{t \to 0} u_2(\xi + t\zeta) = 0 \quad \text{whenever} \quad \xi \in \partial D - E.$$

Thus Theorem 8.3 is obtained.

REMARK 8.1. In case $\varphi \equiv 1$, these results are considered in Wu [27] and Mizuta [14].

Finally we study the best-possibility of our theorems, as far as the exceptional sets are concerned.

THEOREM 8.4. Let n = 2. Let ω and ψ be positive nondecreasing continuous functions on $(0, \infty)$ satisfying the (Δ_2) condition, together with the following:

- (i) ψ satisfies (ψ 1).
- (ii) ω satisfies both (ω 2) and (ω 3).

Suppose there exists $c > 2\psi(1)$ such that $2\kappa_1(cr) < \kappa_1(\psi(r))$ for 0 < r < 1, and set $h(r) = [\kappa_1(\psi(r))]^{-p}$. If $E \subset \partial D$ and $H_h(E) = 0$, then there exists a nonnegative measurable function f on D such that $U_{\alpha}f \neq \infty$, $\int_D \Phi_p(f(y))\omega(y_2) dy < \infty$ and

$$\limsup_{r\to 0} U_{\alpha}f(\xi + (r, \psi(r))) = \infty \quad for \ any \quad \xi \in E.$$

PROOF. For each positive integer *i*, we can find a family $\{B_{i,j}\}$ of discs such that $B_{i,j} = B(x_{i,j}, r_{i,j})$, $\sum_j h(r_{i,j}) < 2^{-i}$ and $E \subset \bigcup_j B_{i,j}$. Here we may assume further that $x_{i,j} \in \partial D$ and $r_{i,j} < 1$. Let $z_{i,j,\ell} = x_{i,j} + (\ell r_{i,j}, 0)$ and $C_{i,j,\ell} = B(z_{i,j,\ell}, cr_{i,j}) - B(z_{i,j,\ell}, 2^{-1}\psi(r_{i,j}))$ for $\ell = 0, 1$. For simplicity, set $\tilde{\eta}(r) = r^{2-\alpha p} \varphi(r^{-1}) \omega(r)$, and define

$$f_{i,j,\ell}(y) = i [h(r_{i,j})]^{p'/p} |y - z_{i,j,\ell}|^{-\alpha} [\tilde{\eta}(|y - z_{i,j,\ell}|)]^{-p'/p}$$

for $y \in D \cap C_{i,j,\ell}$; and define $f_{i,j,\ell}(y) = 0$ otherwise. Consider the function $f = \sup_{i,j,\ell} f_{i,j,\ell}$. Since, by $(\omega 2)$, $r^{\beta_1 - 1/p} \omega(r)^{-1/p}$ is nondecreasing on $(0, \infty)$ for some $\beta_1 < 1$, we note

$$f_{i,j,\ell}(y) \le M_1 |y - z_{i,j,\ell}|^{-\beta}$$

for $\beta > \alpha + (2 - \alpha p)p'/p + (\beta_1 - 1/p)p'$. Hence we have

$$\begin{split} &\int_{D} \boldsymbol{\Phi}_{p}(f_{i,j,\ell}(y))\omega(y_{2})\,dy \\ &\leq M_{2}i^{p}[h(r_{i,j})]^{p'}\int_{D\cap C_{i,j,\ell}} |y-z_{i,j,\ell}|^{-\alpha p} [\widetilde{\eta}(|y-z_{i,j,\ell}|)]^{-p'}\varphi(|y-z_{i,j,\ell}|^{-1})\omega(y_{2})\,dy \\ &\leq M_{3}i^{p}[h(r_{i,j})]^{p'}\int_{C_{i,j,\ell}} |y-z_{i,j,\ell}|^{-2} [\widetilde{\eta}(|y-z_{i,j,\ell}|)]^{-p'+1}\,dy \end{split}$$

$$\leq M_{4} i^{p} [h(r_{i,j})]^{p'} \int_{2^{-1} \psi(r_{i,j})}^{cr_{i,j}} [\tilde{\eta}(r)]^{-p'/p} r^{-1} dr$$

$$\leq M_{5} i^{p} h(r_{i,j}),$$

so that

$$\int_{D} \Phi_{p}(f(y))\omega(y_{2}) dy \leq \sum_{i,j,\ell} \int_{D} \Phi_{p}(f_{i,j,\ell}(y))\omega(y_{2}) dy \leq 2M_{5} \sum_{i} i^{p} 2^{-i} < \infty.$$

Next we see that for $x \in D \cap B(z_{i,j,\ell}, \psi(r_{i,j}))$,

$$\begin{split} \int |x-y|^{\alpha-2} f(y) \, dy &\geq M_6 i [h(r_{i,j})]^{p'/p} \int_{C_{i,j,\ell}} |y-z_{i,j,\ell}|^{-2} [\tilde{\eta}(|y-z_{i,j,\ell}|)]^{-p'/p} \, dy \\ &= M_7 i [h(r_{i,j})]^{p'/p} \int_{2^{-1} \psi(r_{i,j})}^{cr_{i,j}} [\tilde{\eta}(r)]^{-p'/p} r^{-1} \, dr \geq M_8 i. \end{split}$$

Let $\xi \in E$. For each *i*, there is *j* such that $\xi \in B_{i,j}$. Further observe that the curve $L_{\Psi}(\xi)$ intersects at least one of two half balls $D \cap B(z_{i,j,\ell}, \psi(r_{i,j}))$, $\ell = 0, 1$. Consequently,

$$\limsup_{r\to 0} U_{\alpha}f(\xi + (r, \psi(r))) \ge \limsup_{i\to\infty} M_8i = \infty.$$

REMARK 8.2. Let $\omega(r) = r^{\beta}$. If $-1 < \beta < p - 1$, then ω satisfies both $(\omega 2)$ and $(\omega 3)$. If in addition $2 - \alpha p + \beta > 0$, then one can take c so large that

 $2\kappa_1(cr) < \kappa_1(\psi(r))$ for any 0 < r < 1;

in this case, $h(r) \sim r^{2-\alpha p+\beta} \varphi(r^{-1})$ as $r \to 0$, in Theorem 8.4. Moreover, if α is a positive integer *m*, then, as will be shown later (see Lemma 12.1),

$$\int_{G} \Phi_{p}(|\nabla_{m} U_{m} f(x)|) |x_{n}|^{\beta} dx < \infty \quad \text{for any bounded open set} \quad G \subset \mathbb{R}^{n}.$$

9. Beppo-Levi-Deny functions

For an open set $G \subset \mathbb{R}^n$, we denote by $BL_m(L^p(G))$ the space of all functions $u \in L^p_{loc}(G)$ such that $D^{\lambda} u \in L^p(G)$ for any λ with $|\lambda| = m$, where $D^{\lambda} = (\partial/\partial x)^{\lambda} = (\partial/\partial x_1)^{\lambda_1} \cdots (\partial/\partial x_n)^{\lambda_n}$; if the restriction of u to any relatively compact open subset G' of G belongs to $BL_m(L^p(G'))$, then we write $u \in BL_m(L^p_{loc}(G))$ (see [3]).

In order to study the boundary behavior of Beppo-Levi-Deny functions on D, we have to prepare an integral representation for functions in $BL_m(L^p(\mathbb{R}^n))$. The following sobolev integral representation for infinitely differentiable functions with compact support is fundamental (cf. Reshetnyak [22]). LEMMA 9.1. If $\psi \in C_0^{\infty}(\mathbb{R}^n)$, then

$$\psi(x) = \sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^n} D^{\lambda} \psi(y) \, dy,$$

where $\{a_{\lambda}\}$ are constants; $a_{\lambda} = m/(c_n \lambda!)$.

Our first aim in this section is to show the following result.

THEOREM 9.1. If u is a function in $BL_m(L_{loc}^p(\mathbb{R}^n))$ such that

(9.1)
$$\int (1+|y|)^{m-n} |D^{\lambda}u(y)| dy < \infty$$

for any λ with length m, then there exists a polynomial P of degree at most m-1 such that

$$u(x) = \sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^n} D^{\lambda} u(y) dy + P(x)$$

holds for almost every x in \mathbb{R}^n .

REMARK 9.1. In [8, Theorem 3.1], this representation is given under the assumption of the existence of $\{\varphi_j\} \subset C_0^{\infty}(\mathbb{R}^n)$ such that

$$\lim_{j\to\infty}\sum_{|\lambda|=m}\|D^{\lambda}(\varphi_j-u)\|_p=0.$$

PROOF OF THEOREM 9.1. Let $\psi \in C_0^{\infty}(\mathbb{R}^n)$ and $|\mu| = m$. By condition (9.1), we can apply Fubini's lemma and Lemma 9.1 to obtain

$$\begin{split} &\int \left(\sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda} u(y) \, dy \right) D^{\mu} \psi(x) \, dx \\ &= \sum_{|\lambda|=m} a_{\lambda} \int \left(\int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\mu} \psi(x) \, dx \right) D^{\lambda} u(y) \, dy \\ &= \sum_{|\lambda|=m} a_{\lambda} \int \left(\int \frac{z^{\lambda}}{|z|^{n}} D^{\mu} \psi(z+y) \, dz \right) D^{\lambda} u(y) \, dy \\ &= \sum_{|\lambda|=m} a_{\lambda} \int \frac{z^{\lambda}}{|z|^{n}} \left(\int D^{\mu} \psi(z+y) D^{\lambda} u(y) \, dy \right) \, dz \\ &= \sum_{|\lambda|=m} a_{\lambda} \int \frac{z^{\lambda}}{|z|^{n}} \left(\int D^{\lambda} \psi(z+y) D^{\mu} u(y) \, dy \right) \, dz \\ &= \int \left(\sum_{|\lambda|=m} a_{\lambda} \int \frac{z^{\lambda}}{|z|^{n}} D^{\lambda} \psi(z+y) \, dz \right) D^{\mu} u(y) \, dy \end{split}$$

$$= (-1)^m \int \psi(y) D^{\mu} u(y) dy$$
$$= \int u(y) D^{\mu} \psi(y) dy.$$

Hence it follows that $u(x) - \sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^n} D^{\lambda} u(y) dy$ is equal a.e. to a polynomial of degree at most m-1.

COROLLARY 9.1. If u is a function in $BL_n(L_{loc}^1(\mathbb{R}^n))$, then there exists a continuous function on \mathbb{R}^n which is equal to u a.e. on \mathbb{R}^n .

PROOF. For any $\psi \in C_0^{\infty}(G)$, ψu can be seen as a function in $BL_n(L^1(\mathbb{R}^n))$, and hence by Theorem 9.1 there exists a polynomial P such that

(9.2)
$$(\psi u)(x) = \sum_{|\lambda|=n} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^{n}} D^{\lambda}(\psi u)(y) dy + P(x)$$

for almost every $x \in \mathbb{R}^n$. It is easy to see that the right hand side of (9.2) is continuous on \mathbb{R}^n . Hence the required assertion follows.

Here we relax condition (9.1). To do this, we introduce the kernel functions:

$$k_{\lambda}(x) = x^{\lambda} |x|^{-n}$$

$$k_{\lambda,\ell}(x, y) = \begin{cases} k_{\lambda}(x-y), & \text{if } |y| < 1, \\ k_{\lambda}(x-y) - \sum_{|\mu| \le \ell} \frac{x^{\mu}}{u!} (D^{\mu}k_{\lambda})(-y), & \text{if } |y| \ge 1 \end{cases}$$

(see [16], [19]). We now show an extension of Theorem 9.1, in the same manner as [16, Theorem 1] and [19, Theorems 1 and 1'].

THEOREM 9.2. Let $u \in BL_m(L^p(\mathbb{R}^n))$. Then there exists a polynomial P of degree at most m - 1 such that

$$u(x) = \sum_{|\lambda|=m} a_{\lambda} \int k_{\lambda,\ell}(x, y) D^{\lambda} u(y) \, dy + P(x)$$

holds for almost every x in \mathbb{R}^n , where ℓ is the integer such that $\ell \leq m - n/p < \ell + 1$.

REMARK 9.2. In view of [16] and [19], the function u is also represented as

$$u(x) = \sum_{|\lambda|=m} b_{\lambda} \int k_{\lambda,\ell}^*(x, y) D^{\lambda} u(y) \, dy + P(x),$$

where $k_{\lambda,\ell}^*$ is defined as above with k_{λ} replaced by $k_{\lambda}^* = D^{\lambda}R_{2m}$, R_{2m} denoting the Riesz kernel of order 2m, $\{b_{\lambda}\}$ are constants, ℓ is the integer given in Theorem 9.2 and P is a polynomial. More precisely, $\{b_{\lambda}\}$ is chosen so that $\Delta^m = c \sum_{|\lambda| = m} b_{\lambda} D^{2\lambda}$

with some constant c. In the latter representation of u, the logarithmic term may appear, and hence Corollary 9.1 may not follow from this representation.

PROOF OF THEOREM 9.2. Set

$$U(x) = \sum_{|\lambda|=m} a_{\lambda} \int k_{\lambda,\ell}(x, y) D^{\lambda} u(y) \, dy.$$

By the mean value theorem, we see that

$$|k_{\lambda,\ell}(x, y)| \le M_1 |x|^{\ell+1} |y|^{m-n-\ell-1}$$

whenever $|y| \ge 1$ and $|y| \ge 2|x|$ (cf. Lemma 2 in [19]). Hence, if $x \in B(0, a)$, a > 1, then Hölder's inequality gives

$$\begin{split} & \int_{R^n - B(0, 2a)} |k_{\lambda, \ell}(x, y)| |D^{\lambda} u(y)| \, dy \\ & \leq M_1 a^{\ell + 1} \int_{R^n - B(0, 2a)} |y|^{m - n - \ell - 1} |D^{\lambda} u(y)| \, dy < \infty \end{split}$$

for any λ with length *m*. Since

$$\int_{B(0,2a)} k_{\lambda,\ell}(x, y) D^{\lambda} u(y) dy = \int_{B(0,2a)} k_{\lambda}(x-y) D^{\lambda} u(y) dy + a \text{ polynomial},$$

U is defined almost everywhere and $U \in L^1_{loc}(\mathbb{R}^n)$. Note that $\int x^{\sigma} D^{\lambda} \psi(x) dx = 0$ whenever $|\sigma| < |\lambda|$ and $\psi \in C_0^{\infty}(\mathbb{R}^n)$. Hence, as in the proof of Theorem 9.1, we have for $\psi \in C_0^{\infty}(\mathbb{R}^n)$, $|\mu| = m$ and $|\nu| = m$,

$$\int U(x)D^{\mu+\nu}\psi(x)\,dx = \sum_{|\lambda|=m} a_{\lambda} \int \left(\int k_{\lambda,\ell}(x, y)D^{\mu+\nu}\psi(x)\,dx\right)D^{\lambda}u(y)\,dy$$
$$= \sum_{|\lambda|=m} a_{\lambda} \int \left(\int k_{\lambda}(x-y)D^{\mu+\nu}\psi(x)\,dx\right)D^{\lambda}u(y)\,dy.$$

For a positive integer j, set $k_{\lambda}^{(j)} = x^{\lambda} \{ |x|^2 + (1/j)^2 \}^{-n/2}$. Then, in view of Lemma 3.3 in [8], we see that

$$\int k_{\lambda}^{(j)}(x-y)D^{\mu+\nu}\psi(x)\,dx \longrightarrow \int k_{\lambda}(x-y)D^{\mu+\nu}\psi(x)\,dx$$

as $j \to \infty$ in $L^q(\mathbb{R}^n)$ for any number q > 1. Hence we apply Fubini's lemma again to establish

$$\begin{split} & \iint \left(\int k_{\lambda}(x-y)D^{\mu+\nu}\psi(x)\,dx \right) D^{\lambda}u(y)\,dy \\ &= \lim_{j \to \infty} \iint \left(\int k_{\lambda}^{(j)}(x-y)D^{\mu+\nu}\psi(x)\,dx \right) D^{\lambda}u(y)\,dy \\ &= (-1)^{m}\lim_{j \to \infty} \iint \left(\int D^{\mu}k_{\lambda}^{(j)}(x-y)D^{\nu}\psi(x)\,dx \right) D^{\lambda}u(y)\,dy \\ &= (-1)^{m}\lim_{j \to \infty} \iint D^{\mu}k_{\lambda}^{(j)}(z) \left(\int D^{\nu}\psi(z+y)D^{\lambda}u(y)\,dy \right) dz \\ &= (-1)^{m}\lim_{j \to \infty} \iint D^{\mu}k_{\lambda}^{(j)}(z) \left(\int D^{\lambda}\psi(z+y)D^{\nu}u(y)\,dy \right) dz \\ &= \iint \left(\iint k_{\lambda}(x-y)D^{\mu+\lambda}\psi(x)\,dx \right) D^{\nu}u(y)\,dy. \end{split}$$

Therefore, as in the proof of Theorem 9.1, we find

$$\int U(x)D^{\mu+\nu}\psi(x)\,dx = \int u(x)D^{\mu+\nu}\psi(x)\,dx.$$

Thus $P(x) \equiv u(x) - U(x)$ is equal a.e. to a polynomial of degree at most 2m - 1. By the above considerations, we see also that if $|\mu| = m$, then

$$\left| \int U(x) D^{\mu} \psi(x) dx \right| \leq \left| \sum_{|\lambda|=m} a_{\lambda} \int \left(\int k_{\lambda} (x-y) D^{\mu} \psi(x) dx \right) D^{\lambda} u(y) dy \right|$$
$$\leq M \|\psi\|_{p'} \left(\sum_{|\lambda|=m} \|D^{\lambda} u\|_{p} \right),$$

on account of Lemma 3.3 in [8]. This implies $D^{\mu}P \in L^{p}(\mathbb{R}^{n})$ for $|\mu| = m$, so that the degree of the polynomial P is at most m - 1.

THEOREM 9.3. Let $u \in BL_m(L^p(G))$ satisfy

$$\sum_{|\lambda|=m}\int_{G}\Phi_{p}(|D^{\lambda}u(x)|)\,dx<\infty.$$

If $\varphi^*(1) < \infty$, that is, $\int_0^1 [r^{n-mp}\varphi(r^{-1})]^{1/(1-p)}r^{-1} dr < \infty$, then there exists a continuous function u^* on G such that $u = u^*$ a.e. on G.

PROOF. For any $\psi \in C_0^{\infty}(G)$, ψu can be seen as a function in $BL_m(L^p(\mathbb{R}^n))$ by [24, Chap. 9, Théorème XV (Kryloff)], and hence by Theorem 9.1 there

exists a polynomial P such that

(9.3)
$$(\psi u)(x) = \sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^n} D^{\lambda}(\psi u)(y) \, dy + P(x)$$

for almost every $x \in \mathbb{R}^n$. In view of the proof of Theorem 3.3, note that if G' is a bounded open set in \mathbb{R}^n and $\int_{G'} \Phi_p(|f(y)|) dy < \infty$, then the function

$$\int_{G'} \frac{(x-y)^{\lambda}}{|x-y|^n} f(y) \, dy$$

is continuous on G' when $|\lambda| = m$; in case mp > n, the continuity is well known as a part of Sobolev's imbedding theorem. Hence, if in addition $\psi = 1$ on a neighborhood of a point $x_0 \in G$, say, $\psi = 1$ on $B(x_0, r_0)$, then

$$\int_{\mathbb{R}^n - B(x_0, r_0)} \frac{(x - y)^{\lambda}}{|x - y|^n} D^{\lambda}(\psi u)(y) \, dy$$

is continuous on $B(x_0, r_0)$ and

$$\int_{B(x_0,r_0)} \frac{(x-y)^{\lambda}}{|x-y|^n} D^{\lambda}(\psi u)(y) \, dy = \int_{B(x_0,r_0)} \frac{(x-y)^{\lambda}}{|x-y|^n} D^{\lambda}u(y) \, dy$$

is continuous at x_0 , by the above consideration. Thus we can find a continuous function u^* on G which is equal to u a.e. on G.

REMARK 9.3. In case mp > n, $\varphi^*(1) < \infty$. Hence Theorem 9.3 gives an extension of Sobolev's imbedding theorem, concerning the continuity of Beppo-Levi-Deny functions.

10. Boundary limits of Beppo-Levi-Deny functions

In this section we study the boundary limits of Beppo-Levi-Deny functions u on the half space $D = \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; x_n > 0\}$ satisfying (1.4).

We say that a function u on an open set $G \subset \mathbb{R}^n$ is (m, Φ_p) -quasicontinuous on G if for any $\varepsilon > 0$ and any bounded open set $G' \subset G$, there exists an open set $G'' \subset G'$ such that $C_{m,\Phi_p}(G''; G') < \varepsilon$ and the restriction of u to G' - G''is continuous. As in Lemma 2.3 in [8], if u is a function in $BL_m(L_{loc}^p(D))$ satisfying (1.4), then we can find a function u^* such that $u^* = u$ a.e. on Dand u^* is (m, Φ_p) -quasicontinuous on D. In case $mp > n, u^*$ may be taken as a continuous function on D (cf. Remark 9.3).

THEOREM 10.1. Let u be a function in $BL_m(L_{loc}^p(D))$ satisfying (1.4). If

Continuity properties of potentials

(10.1)
$$\int_{0}^{1} \left[\varphi(t^{-1}) \omega(t) \right]^{-p'/p} dt < \infty,$$

then there exists a function $u^* \in BL_m(L^1_{loc}(\mathbb{R}^n))$ such that $u^* = u$ a.e. on D and u^* is (m, Φ_p) -quasicontinuous on D.

PROOF. Let a > 1. As in the proof of Lemma 2.1, using Hölder's inequality, we have

$$\begin{split} &\int_{D\cap B(0,a)} |D^{\lambda}u(x)| \, dx \leq \left(\int_{D\cap B(0,a)} \Phi_{p}(|D^{\lambda}u(x)|) \omega(x_{n}) \, dx \right)^{1/p} \\ & \times \left(\int_{D\cap B(0,a)} [\varphi(x_{n}^{-\delta}) \omega(x_{n})]^{-p'/p} \, dx \right)^{1/p'} + \int_{D\cap B(0,a)} x_{n}^{-\delta} \, dx \\ & \leq M_{1} \bigg(\int_{D\cap B(0,a)} \Phi_{p}(|D^{\lambda}u(x)|) \omega(x_{n}) \, dx \bigg)^{1/p} \bigg(\int_{0}^{a} [\varphi(t^{-1}) \omega(t)]^{-p'/p} \, dt \bigg)^{1/p'} \\ & + M_{1} a^{n-\delta} \end{split}$$

for any λ with length *m*, where $0 < \delta < 1$. This implies that the restriction of *u* to the set $D \cap B(0, a)$ belongs to $BL_m(L^1(D \cap B(0, a)))$. Hence, in view of the extension theorem in Stein's book [25, Chap. 6], we can find a function \tilde{u} in $BL_m(L_{loc}^1(\mathbb{R}^n))$ such that $\tilde{u} = u$ a.e. on *D*. For this \tilde{u} we have only to take an (m, Φ_p) -quasicontinuous representation on *D*.

REMARK 10.1. Condition (ω 2) implies (10.1).

As applications of the results in Sections 6–8 concerning Riesz potentials, we can study the existence of boundary limits of Beppo-Levi-Deny functions, generalizing the results in the case m = 1; see Wallin [26] and Mizuta [9], [12], [17].

For this purpose, let

$$\kappa_{1}(r) = \left(\int_{r}^{1} \left[t^{n-mp}\eta(t)\right]^{-p'/p}t^{-1} dt\right)^{1/p'},$$

$$\varphi^{*}(r) = \left(\int_{0}^{r} \left[t^{n-mp}\varphi(t^{-1})\right]^{-p'/p}t^{-1} dt\right)^{1/p'},$$

$$\tau_{1}(r) = \left[\kappa_{1}(r)\right]^{-p},$$

$$\tau_{2}(r) = \inf_{r \le t \le 1}\omega(t)\left[\varphi^{*}(t)\right]^{-p}$$

for $0 < r \le 2^{-1}$.

THEOREM 10.2. Let ω be as in Theorem 6.1, and let u be an (m, Φ_p) -quasicontinuous function on D satisfying condition (1.4). If $\kappa_1(0) = \infty$,

then there exists a set $E \subset D$ such that

$$\lim_{x_n \to 0, x \in G - E} [\kappa_1(x_n)]^{-1} u(x) = 0$$

for any bounded open set $G \subset D$ and

(10.2)
$$\sum_{j=1}^{\infty} K^{-j} \omega(2^{-j}) C_{m, \varphi_p}(E_j \cap B(0, a); D_j \cap B(0, 2a)) < \infty$$

for any a > 0, where K, E_j and D_j are defined as in Theorem 6.1.

PROOF. It follows from condition $(\omega 2)$ that (10.1) holds. Hence, by Theorem 10.1, there exists a function $u^* \in BL_m(L^1_{loc}(\mathbb{R}^n))$ which is equal to uon D. For a > 1, take $\zeta \in C_0^{\infty}(\mathbb{R}^n)$ such that $\zeta = 1$ on B(0, 2a). Then it follows from Theorem 9.1 that

(10.3)
$$(\zeta u^*)(x) = \sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^n} D^{\lambda}(\zeta u^*)(y) \, dy + P(x)$$

holds for almost every $x \in \mathbb{R}^n$, where P is a polynomial. Since u is (m, Φ_p) -quasicontinuous on D, (10.2) holds for every $x \in D$ except those in a set E' with $C_{m,\Phi_p}(E') = 0$. But, since E' satisfies (10.2) clearly, we may assume that (10.3) holds for every $x \in D$. Set $f_a(y) = \sum_{|\lambda| = m} |(\partial/\partial y)^{\lambda} (\zeta u^*)(y)|$. Then it satisfies

$$\int_{B(0,2a)} \Phi_p(f_a(y)) \omega(|y_n|) \, dy < \infty.$$

In view of Theorem 6.1, we can find $E_a \subset D \cap B(0, a)$ such that

$$\sum_{j=1}^{\infty} K^{-j} \omega(2^{-j}) C_{m, \boldsymbol{\varphi}_{p}}(E_{a,j}; \mathbf{D}_{j} \cap B(0, 2a)) < \infty,$$

where $E_{a,j} = \{x \in E_a; 2^{-j} \le x_n < 2^{-j+1}\}$, and

$$\lim_{x_n \to 0, x \in D \cap B(0,a) - E_a} [\kappa_1(x_n)]^{-1} u(x) = 0.$$

Now, as in the proof of Theorem 6.1, we can find a sequence $\{j_a\}$ of positive integers such that $E = \bigcup_{a=1}^{\infty} (\bigcup_{j \ge j_a} E_{a,j})$ has all the required properties.

Similarly, by Theorems 7.2 and 7.3, we obtain the following results.

THEOREM 10.3. Assume that $(\omega 2)$ holds and $\varphi^*(1) < \infty$. Let u be a continuous function on D satisfying condition (1.4). If $\tau_1(r) \leq M\tau_2(r)$ for 0 < r < 1, then there exists a set $E \subset \partial D$ such that $C_{m, \varphi_p, \omega}(E) = 0$ and u has a nontangential limit at any $\xi \in \partial D - E$.

COROLLARY 10.1. Assume that $0 < mp - n \le \beta < p - 1$ and u is a continuous function on D satisfying

(10.4)
$$\sum_{|\lambda|=m} \int_{G} \Phi_{p}(|D^{\lambda}u(x)|) x_{n}^{\beta} dx < \infty$$

for any bounded open set $G \subset D$. Then there exists a set $E \subset \partial D$ such that $C_{m, \Phi_n, \ell}(E) = 0$ and u has a nontangential limit at any $\xi \in \partial D - E$.

THEOREM 10.4. Let $-1 < \beta < p - 1$, $\varphi^*(1) < \infty$ and u be as in Corollary 10.1.

- (i) If $n mp + \beta > 0$, then for $\gamma > 1$, there exists a set $E_{\gamma} \subset \partial D$ such that $H_h(E_{\gamma}) = 0$ with $h(r) = \tau_2(r^{\gamma})$ and u has a finite T_{γ} -limit at any $\xi \in \partial D E_{\gamma}$.
- (ii) If $\beta = mp n > 0$, then there exists a set $E \subset \partial D$ such that $C_{m, \Phi_p, \beta}(E) = 0$ and u has a finite T_{γ} limit at any $\xi \in \partial D E$ for any $\gamma \ge 1$.
- (iii) If $\beta = mp n = 0$ or $n mp + \beta < 0$, then u has a finite limit at any $\xi \in \partial D$.

In the above theorem,

$$\tau_2(r) = \inf_{r \le t \le 1} t^{\beta} \left(\int_0^t [s^{n-mp} \varphi(s^{-1})]^{-p'/p} s^{-1} ds \right)^{-p/p'}$$

THEOREM 10.5. Let ω and ω^* be as in Theorem 8.1, and set

$$\tau_{2}^{*}(r) = \inf_{r \le t \le 1} t^{n-mp} \omega^{*}(t) \varphi(t^{-1}),$$

$$\tau^{*}(r) = \min \{ \tau_{1}(r), \tau_{2}^{*}(r) \},$$

$$h^{*}(r) = \tau^{*}(\psi(r))$$

for 0 < r < 1. If u is an (m, Φ_p) -quasicontinuous function satisfying (1.4), then there exist E_1 and E_2 such that $C_{\alpha, \Phi_p, \omega}(E_1) = 0$, $H_{h^*}(E_2) = 0$ and u has a finite limit along $L_{\Psi}(\xi)$, for any $\xi \in \partial D - (E_1 \cup E_2)$.

PROOF. For simplicity we assume that u vanishes outside some bounded set. In this case,

$$u(x) = \sum_{|\lambda|=m} a_{\lambda} \int k_{\lambda}(x-y) D^{\lambda} u(y) \, dy + P(x)$$

holds for every $x \in D - E'$, where P is a polynomial and E' is a subset of D with $C_{m, \Phi_p}(E') = 0$. Denote by u^* the function defined by the above summation about λ . Since $C_{m, \Phi_p}(E') = 0$, we can find a nonnegative measurable function f on D such that $U_m f \neq \infty$, $U_m f = \infty$ on E' and (7.3) holds. Then, in view of Theorem 8.1, there exist E'_1 and E'_2 such that $C_{m, \Phi_p, \omega}(E'_1) = 0$, $H_{h^*}(E'_2) = 0$ and $U_m f$ has a finite limit at $\xi \in \partial D - (E'_1 \cup E'_2)$. This implies that if $\xi \in \partial D - (E'_1 \cup E'_2)$, then $u = u^* + P$ on $L_{\Psi}(\xi) \cap B(\xi, r_{\xi})$ for some $r_{\xi} > 0$. Now we apply the same discussions as in Theorem 8.1 to the function u^* , and complete the proof. Noting Corollary 8.1, we have

COROLLARY 10.2. Let $mp - n \le \beta , <math>\gamma \ge 1$ and Ψ be of the form $(r, \psi_2(r), \dots, \psi_{n-1}(r), r^{\gamma})$ as in Corollary 8.1. Further, let u be an (m, Φ_p) -quasicontinuous function on D satisfying (10.4). Then:

- (i) If $\beta > 0$, $n mp + \beta > 0$ and $\gamma > 1$, then there exists a set $E \subset \partial D$ such that $H_h(E) = 0$ with $h(r) = \inf_{r \le t \le 1} t^{\gamma(n-mp+\beta)} \varphi(t^{-1})$ and u has a finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D - E$.
- (ii) If $\beta > 0$, $n mp + \beta > 0$ and $\gamma = 1$, then there exists a set $E \subset \partial D$ such that $C_{m, \Phi_{p}, \beta}(E) = 0$ and u has a finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D - E$.
- (iii) If $\beta \leq 0$ and $\gamma > 1$, then there exists a set $E \subset \partial D$ such that E has Hausdorff dimension at most $\gamma(n - mp)$ and u has a finite limit along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D - E$.

By Theorems 8.2 and 8.3 we derive radial limit results for Beppo-Levi-Deny functions on D.

THEOREM 10.6. Let $-1 < \beta < p-1$ and let u be an (m, Φ_p) -quasicontinuous function on D satisfying (10.4). Then there exists a set $E \subset \partial D$ such that $C_{m,\Phi_p,\beta}(E) = 0$ and if $\xi \in \partial D - E$, then $u(\xi + r\zeta)$ has a finite limit as $r \to 0$ for every $\zeta \in D \cap \partial B$ (0, 1) except those in a set E_{ξ} with $C_{m,\Phi_p}(E_{\xi}) = 0$.

THEOREM 10.7. Let ω be a nonnegative nondecreasing function on $([0, \infty)$ satisfying $(\omega 1)$ and $(\omega 2)$. Let $\zeta \in D$ be fixed. If u is an (m, Φ_p) -quasicontinuous function on D satisfying (1.4), then there exists a set $E \subset \partial D$ such that $C_{m,\Phi_p,\omega}(E) = 0$ and $u(\xi + t\zeta)$ has a finite limit as $t \downarrow 0$ at any $\xi \in \partial D - E$.

11. Green potentials

In the half space D, we consider the function

$$G_{\alpha}(x, y) = \begin{cases} |x - y|^{\alpha - n} - |\bar{x} - y|^{\alpha - n} & \text{in case } \alpha < n, \\ \log(|\bar{x} - y|/|x - y|) & \text{in case } \alpha = n, \end{cases}$$

where $\bar{x} = (x_1, ..., x_{n-1}, -x_n)$ for $x = (x_1, ..., x_{n-1}, x_n)$, and define

$$G_{\alpha}f(x) = \int_{D} G_{\alpha}(x, y)f(y) \, dy$$

for a nonnegative locally integrable function f on D.

The following lemma can be proved by elementary calculations (cf. [14, Lemma 9]):

LEMMA 11.1. If $\alpha < n$, then there exist positive constants M_1 and M_2 such that

$$M_1 \frac{x_n y_n}{|x-y|^{n-\alpha} |\bar{x}-y|^2} \le G_{\alpha}(x, y) \le M_2 \frac{x_n y_n}{|x-y|^{n-\alpha} |\bar{x}-y|^2};$$

if $\alpha = n$, then for any ε , $0 < \varepsilon < 1$, there exist positive constants M_3 and $M(\varepsilon)$ such that

$$M_3 \frac{x_n y_n}{|\bar{x} - y|^2} \le G_n(x, y) \le M(\varepsilon) \frac{x_n y_n}{|x - y|^{\varepsilon} |\bar{x} - y|^{2-\varepsilon}}$$

COROLLARY 11.1. For any nonnegative measurable function f on D, $G_{\alpha}f \neq \infty$ if and only if

(11.1)
$$\int_{D} (1+|y|)^{\alpha-n-2} y_n f(y) \, dy < \infty.$$

In this section we are concerned only with the case $\alpha < n$. We can derive the following result from the Corollary 3.1.

THEOREM 11.1. Let f be a nonnegative measurable function on D satisfying (11.1) such that

$$\int_{D'} \Phi_p(f(y)) \, dy < \infty \qquad \text{for any bounded open set } D' \text{ with closure in } D.$$

If (7.3) is fulfilled, then $G_{\alpha}f$ is continuous on D.

THEOREM 11.2. Let ω be a positive monotone function on the interval $(0, \infty)$ satisfying $(\omega 1)$ and

(ω 4) $r^{\beta-1/p}\omega(r)^{-1/p}$ is nondecreasing on $(0, \infty)$ for some $\beta < 2$. Define

$$\kappa_{3}(r) = r \left(\int_{r}^{1} \left[t^{n-\alpha p+p} \eta(t) \right]^{-p'/p} t^{-1} dt \right)^{1/p}$$

for $0 < r \le 2^{-1}$, where $\eta(t) = \varphi(t^{-1})\omega(t)$ as before. Let f be a nonnegative measurable function on D satisfying (11.1) and

(11.2)
$$\int_{D'} \Phi_p(f(y))\omega(y_n) \, dy < \infty \quad \text{for any bounded open set } D' \subset D.$$

Then there exists a set $E \subset D$ such that

$$\lim_{x_n\to 0, x\in D'-E} [\kappa_3(x_n)]^{-1} G_{\alpha} f(x) = 0 \qquad if \quad \lim_{r\to 0} \kappa_3(r) = \infty,$$

Yoshihiro MIZUTA

 $\lim_{x_n \to 0, x \in D' - E} G_{\alpha} f(x) = 0$

if $\kappa_3(r)$ is bounded on $(0, 2^{-1})$

for any bounded open set D' and

$$\sum_{j=1}^{\infty} K^{-j} \omega(2^{-j}) C_{\alpha, \boldsymbol{\varphi}_{p}}(E_{j} \cap B(0, a); D_{j} \cap B(0, 2a)) < \infty$$

for any a > 0, where $K = K^*$ in Lemma 2.3 with $\chi = \max\{1, \kappa_3\}$.

PROOF. First, from condition (11.1), we can apply Lebesgue's dominated convergence theorem to see that, if $D' \subset D \cap B(0, N)$, N > 1, then

$$\lim_{x_n\to 0,\,x\in D'}\int_{D-B(0,\,2N)}G_{\alpha}(x,\,y)f(y)\,dy=0.$$

For $x = (x', x_n) \in D$, 0 < a < 1 and N > 1, we write

$$G_N f(x) = \int_{D \cap B(0, 2N) - B(x, x_n/2)} G_\alpha(x, y) f(y) \, dy,$$

$$G_{1,a,N} f(x) = \int_{\{y \in D \cap B(0, 2N) - B(x, x_n/2); y_n \ge a\}} G_\alpha(x, y) f(y) \, dy,$$

$$G_{2,a,N} f(x) = \int_{\{y \in D \cap B(0, 2N) - B(x, x_n/2); y_n \le a\}} G_\alpha(x, y) f(y) \, dy.$$

Then we see easily that $G_{1,a,N}f(x)$ tends to zero as $x_n \to 0$, $x \in D$. Further we have by Lemma 11.1,

$$G_{2,a,N}f(x) \le M_1 x_n \int_{\{y \in D \cap B(0,2N) - B(x,x_n/2); y_n < a\}} |x - y|^{\alpha - n} |\bar{x} - y|^{-2} y_n f(y) \, dy.$$

By ($\omega 4$) we can apply Lemma 6.1 with $\delta > 0$ such that $\alpha - 1 < \delta < \alpha$, and obtain

$$G_{2,a,N}f(x) \le M_2\kappa_3(x_n) \left(\int_{\{y \in D \cap B(0,2N); y_n < a\}} \Phi_p(f(y))\omega(y_n) \, dy \right)^{1/p} + M_2$$

for $0 < x_n < 2^{-1}$. Thus, if $\lim_{r \to 0} \kappa_3(r) = \infty$, then we find

$$\limsup_{x_n \to 0, x \in D} \left[\kappa_3(x_n) \right]^{-1} G_N f(x) \le M_2 \left(\int_{\{y \in D \cap B(0, 2N); y_n \le a\}} \Phi_p(f(y)) \omega(y_n) \, dy \right)^{1/p}$$

Letting $a \rightarrow 0$, we establish

$$\lim_{x_n \to 0, x \in D} [\kappa_3(x_n)]^{-1} G_N f(x) = 0.$$

By Lemma 11.1, note

$$\int_{B(x,x_n/2)} G_{\alpha}(x, y) f(y) \, dy \leq \int_{B(x,x_n/2)} |x - y|^{\alpha - n} f(y) \, dy.$$

The right hand side is just equal to $u_2(x)$ in Theorem 6.1. Hence, considering $E_{j,\ell}$ as in the proof of Theorem 6.1, with κ_1 replaced by κ_3 , and noting Remark 6.4, we complete the proof.

Next we discuss the existence of tangential limits of Green potentials $G_{\alpha}f$ for f satisfying conditions (11.1) and (11.2).

THEOREM 11.3. Assume that (7.1) and (ω 4) hold. Let ψ be a positive nondecreasing function on $(0, \infty)$ satisfying conditions (Δ_2) and (ψ 1), and define

$$\begin{aligned} \tau_3(r) &= \inf_{\tau \le t < 1} \left[\kappa_3(r) \right]^{-p}, \\ \tau_0 &= \min \left\{ \tau_2(r), \, \tau_3(r) \right\}, \\ h_0(r) &= \tau_0(\psi(r)) \end{aligned}$$

for 0 < r < 1, where τ_2 is as in Theorem 7.1. If f is as in Theorem 11.2, then there exists a set $E \subset \partial D$ such that $H_{h_0}(E) = 0$ and

$$\lim_{x \to \xi, x \in T_{\mathcal{Y}}(\xi, a)} G_{\alpha} f(x) = 0$$

for any a > 0 and any $\xi \in \partial D - E$. If in addition $\tau_0(0) > 0$, then

$$\lim_{x \to \xi, x \in D} G_{\alpha} f(x) = 0$$

for any $\xi \in \partial D$.

Before proving this theorem, we note the following lemma (cf. [13, Lemma 3]).

LEMMA 11.2. For
$$\xi \in \partial D$$
, set $g_{\xi}(x) = \int_{D-B(\xi, 2|x-\xi|)} G_{\alpha}(x, y) f(y) dy$. Then

 $\lim_{x\to\xi,x\in D}g_{\xi}(x)=0 \quad if \ and \ only \ if \ \lim_{r\to 0}r^{\alpha-n-1}\int_{D\cap B(\xi,r)}y_nf(y)\,dy=0.$

PROOF OF THEOREM 11.3. For $\xi \in \partial D$, we write $G_{\alpha}f = v_1 + v_2 + g_{\xi}$, where

$$v_{1}(x) = \int_{D \cap B(\xi, 2|x-\xi|) - B(x, ax_{n})} G_{\alpha}(x, y) f(y) dy,$$
$$v_{2}(x) = \int_{B(x, ax_{n})} G_{\alpha}(x, y) f(y) dy.$$

Define

Yoshihiro Mizuta

$$E = \left\{ \xi \in \partial D; \lim \sup_{r \to 0} h_0(r)^{-1} \int_{D \cap B(\xi, r)} \Phi_p(f(y)) \omega(y_n) \, dy > 0 \right\}.$$

Then, by Lemma 7.2, we see that $H_{h_0}(E) = 0$. By ($\omega 4$),

$$\int_{D\cap B(\xi,r)} \left[\omega(y_n)^{-1/p} y_n \right]^{p'} dy \le \left[r^{\beta - 1/p} \omega(r)^{-1/p} \right]^{p'} \int_{D\cap B(\xi,r)} y_n^{p'(-\beta + (1/p) + 1)} dy$$
$$= M_1 r^{n+p'} \left[\omega(r) \right]^{-p'/p}.$$

Hence, as in the proof of Lemma 2.1, we have for δ , $0 < \delta < \alpha$,

$$\begin{aligned} r^{\alpha-n-1} \int_{D\cap B(\xi,r)} y_n f(y) \, dy &= r^{\alpha-n-1} \int_{\{y \in D\cap B(\xi,r); f(y) > r^{-\delta}\}} y_n f(y) \, dy \\ &+ r^{\alpha-n-1} \int_{\{y \in D\cap B(\xi,r); f(y) \le r^{-\delta}\}} y_n f(y) \, dy \\ &\leq r^{\alpha-n-1} \bigg(\int_{D\cap B(\xi,r)} \Phi_p(f(y)) \omega(y_n) \, dy \bigg)^{1/p} \\ &\quad \times \bigg(\int_{\{y \in D\cap B(\xi,r); f(y) > r^{-\delta}\}} [\varphi(f(y)) \omega(y_n)]^{-p'/p} y_n^{p'} \, dy \bigg)^{1/p'} \\ &+ r^{\alpha-n-1-\delta} \int_{D\cap B(\xi,r)} y_n \, dy \\ &\leq M_2 [r^{n-\alpha p} \eta(r)]^{-1/p} \bigg(\int_{D\cap B(\xi,r)} \Phi_p(f(y)) \omega(y_n) \, dy \bigg)^{1/p} + M_1 r^{\alpha-\delta} \end{aligned}$$

Here note

$$\kappa_3(r) \ge M_3[r^{n-\alpha p}\eta(r)]^{-1/p}$$

and

$$h_0(r) \le \tau_0(\psi(1)r) \le M_4[\kappa_3(r)]^{-p}$$

for 0 < r < 1. Therefore, if $\xi \in \partial D - E$, then it follows that

$$\lim_{r\to 0} r^{\alpha-n-1} \int_{D\cap B(\xi,r)} y_n f(y) \, dy = 0.$$

Lemma 11.2 implies that $g_{\xi}(x)$ tends to zero as $x \to \xi$, $x \in D$. By Lemmas 6.1 and 11.1, we find

$$v_1(x) \le M_2 \kappa_3(x_n) \left(\int_{D \cap B(\xi, 2|x-\xi|)} \Phi_p(f(y)) \omega(y_n) \, dy \right)^{1/p} + M_2 |x-\xi|^{\alpha-\delta}$$

for any $x \in D \cap B(\xi, 1)$. Thus, since $\kappa_3(x_n) \le M_3[h_0(|x-\xi|)]^{-1/p}$ for $x \in T_{\psi}(\xi, a)$, if $\xi \in \partial D - E$, then $v_1(x)$ tends to zero as $x \to \xi$, $x \in T_{\psi}(\xi, a)$. Finally, Lemma 6.1 yields

$$v_2(x) \le M_4 [\tau_2(x_n)]^{-1/p} \left(\int_{B(x,x_n/2)} \Phi_p(f(y)) \omega(y_n) \, dy \right)^{1/p} + M_4 x_n^{\alpha-\delta}.$$

Hence it follows that $v_2(x)$ tends to zero as $x \to \xi$, $x \in T_{\psi}(\xi, a)$, if $\xi \in \partial D - E$. In case $\tau_0(0) > 0$, $\lim_{x \to \xi, x \in D} G_{\alpha} f(x) = 0$ for any $\xi \in \partial D$. Now Theorem 11.3 is proved.

In the same way as Theorem 7.3, we can derive the following result.

COROLLARY 11.2. Assume that (7.1) holds. Let $-1 < \beta < 2p - 1$ and let f be a nonnegative measurable function on D satisfying (11.1) and

$$\int_{D'} \Phi_p(f(y)) y_n^{\beta} dy < \infty \quad \text{for any bounded open set} \quad D' \subset D.$$

(i) If $n - \alpha p + \beta > 0$, then, for each $\gamma \ge 1$, there exists $E_{\gamma} \subset \partial D$ such that $H_{h_{\gamma}}(E_{\gamma}) = 0$, where $h_{\gamma}(r) = \tau_2(r^{\gamma})$ with

$$\tau_2(r) = \inf_{r \le t \le 1} t^{\beta} \left(\int_0^t [s^{n-\alpha p} \varphi(s^{-1})]^{-p'/p} s^{-1} ds \right)^{-p/p'},$$

and $G_{\alpha}f(x)$ has T_{γ} -limit zero at any $\xi \in \partial D - E_{\gamma}$. (ii) If $n - \alpha p + \beta \leq 0$, then $G_{\alpha}f(x)$ has limit zero at any $\xi \in \partial D$.

In fact, if $\beta < 2p - 1$, then $\omega(r) = r^{\beta}$ satisfies condition ($\omega 4$). If in addition $n - \alpha p + p + \beta > 0$, then the corresponding τ_2 and τ_3 in Theorem 11.3 satisfy

$$\tau_3(r) \ge M_1 r^{n-\alpha p+\beta} \varphi(r^{-1}) \ge M_2 \tau_2(r),$$

so that (i) follows from Theorem 11.3. On the other hand, in case $-p < n - \alpha p + \beta \le 0$, the above facts also imply $\tau_3(0) > 0$; in case $n - \alpha p + p + \beta \le 0$,

$$\kappa_3(r) \leq \left(\int_0^1 \left[\varphi(t^{-1})\right]^{-p'/p} t^{p'-1} dt\right)^{1/p'} < \infty,$$

so that $\tau_3(0) > 0$. Thus, if $n - \alpha p + \beta \le 0$, then

 $\tau_3(0) > 0.$

Further, in case $0 < \beta \leq \alpha p - n$,

$$\tau_2(r) \geq M_2 r^{n-\alpha p+\beta} \varphi(r^{-1}),$$

so that $\tau_2(0) > 0$. In case $\beta \le 0$, $\tau_2(0) > 0$, too. Thus, if $n - \alpha p + \beta \le 0$, then $\tau_2(0) > 0$. Now, if $n - \alpha p + \beta \le 0$, then $\tau_0(0) > 0$ and the proof of Theorem 11.3 yields the required conclusion of (ii).

In case $\beta \ge 2p - 1$, $\omega(r) = r^{\beta}$ does not satisfy condition ($\omega 4$). We can, however, give some results concerning nontangential limits.

PROPOSITION 11.1. Let
$$\beta \ge 2p - 1$$
. For τ_2 in Corollary 11.2, (i), define

$$h(r) = \min \{r^{n-\alpha+1}, \tau_2(r)\} \quad for \quad r > 0.$$

If f is as in Corollary 11.2, then there exists a set $E \subset \partial D$ such that $H_h(E) = 0$ and $G_{\alpha}f$ has nontangential limit zero at any $\xi \in \partial D - E$.

PROOF. Consider the set

$$A = \left\{ \xi \in \partial D; \lim \sup_{r \to 0} r^{\alpha - n - 1} \int_{D \cap B(\xi, r)} y_n f(y) \, dy > 0 \right\}.$$

Lemma 7.2 together with (11.1) implies $H_h(A) = 0$. It follows from Lemma 11.2 that g_{ξ} has limit zero at any $\xi \in \partial D - A$. Further, in the proof of Theorem 11.3,

$$v_1(x) \le M_1 x_n^{\alpha - n - 1} \int_{D \cap B(\xi, 2|x - \xi|)} y_n f(y) \, dy,$$

which implies that v_1 has nontangential limit zero at any $\xi \in \partial D - A$. Since v_2 can be evaluated in the same manner as in the proof of Theorem 11.3, the required result now follows.

PROPOSITION 11.2. Let f be a nonnegative measurable function on D satisfying (11.1) and

$$\int_{G} \Phi_{p}(f(y)) y_{n}^{2p-1} dy < \infty$$

for any bounded open set $G \subset D$. Suppose $\int_0^1 [\varphi(t^{-1})]^{-p'/p} t^{-1} dt < \infty$, and define

$$h(r) = \inf_{r \le t \le 1} t^{n-1-p(\alpha-2)} \left(\int_0^t [\varphi(s^{-1})]^{-p'/p} s^{-1} ds \right)^{-p/p'}.$$

If $\alpha p \ge n$, then there exists a set $E \subset \partial D$ such that $H_h(E) = 0$ and $G_{\alpha}f$ has nontangential limit zero at any $\xi \in \partial D - E$.

PROOF. As in the proof of Theorem 11.3, we have

$$\begin{split} r^{\alpha-n-1} & \int_{D\cap B(\xi,r)} y_n f(y) \, dy \leq r^{\alpha-n-1} \bigg(\int_{D\cap B(\xi,r)} \Phi_p(f(y)) y_n^{2p-1} \, dy \bigg)^{1/p} \\ & \times \bigg(\int_{D\cap B(\xi,r)} y_n^{-1} [\varphi(y_n^{-\delta})]^{-p'/p} \, dy \bigg)^{1/p'} + r^{\alpha-n-1} \int_{D\cap B(\xi,r)} y_n^{1-\delta} \, dy \\ & \leq M_1 r^{\alpha-2-(n-1)/p} \bigg(\int_0^r [\varphi(t^{-1})]^{-p'/p} t^{-1} \, dt \bigg)^{1/p'} \bigg(\int_{D\cap B(\xi,r)} \Phi_p(f(y)) y_n^{2p-1} \, dy \bigg)^{1/p} \\ & + M_1 r^{\alpha-\delta} \\ & \leq M_1 \bigg([h(r)]^{-1} \int_{D\cap B(\xi,r)} \Phi_p(f(y)) y_n^{2p-1} \, dy \bigg)^{1/p} + M_1 r^{\alpha-\delta}, \end{split}$$

where $0 < \delta < \min\{2, \alpha\}$. Hence $H_h(A) = 0$ by Lemma 7.2, for the set A in the proof of Proposition 11.1. On the other hand, if $\omega(r) = r^{2p-1}$, then τ_2 in Theorem 11.3 satisfies

$$\tau_2(r) \ge \inf_{r \le t \le 1} t^{2p-1} \times t^{n-\alpha p} \left(\int_0^t \left[\varphi(s^{-1}) \right]^{-p'/p} s^{-1} \, ds \right)^{-p/p'} = h(r).$$

Thus, as in the proof of Proposition 11.1, we see that $G_{\alpha}f$ has nontangential limit zero at any $\xi \in \partial D - E$, where $H_h(E) = 0$.

By the proofs of Theorems 8.1 and 11.3, we can derive the following result.

THEOREM 11.4. Let τ_2^* be as in Theorem 8.1 and τ_3 , ψ be as in Theorem 11.3. Define

$$h_0^*(r) = \min \{ \tau_2^*(\psi(r)), \tau_3(\psi(r)) \}$$

for $0 < r \le 1$; define $h_0^*(r) = h_0^*(1)$ for r > 1. If f is as in Theorem 11.2, then there exists a set $E \subset \partial D$ such that $H_{h_0^*}(E) = 0$ and

$$\lim_{r\to 0} G_{\alpha}f(\xi(r)) = 0 \quad for \ any \quad \xi \in \partial D - E,$$

where $\xi(r) = \xi + \Psi(r)$ with $\Psi(r) = (r, \psi_2(r), \dots, \psi_{n-1}(r), \psi(r))$ is as in Section 8.

COROLLARY 11.3. Let $-1 < \beta < 2p - 1$ and $\Psi(r) = (r, \psi_2(r), \dots, \psi_{n-2}(r), r^{\gamma}), \gamma \ge 1$, as in Corollary 8.1. Further let f be as in Corollary 11.2.

(i) If $\beta > 0$ and $n - \alpha p + \beta > 0$, then there exists a set $E \subset \partial D$ such that $H_h(E) = 0$ and $G_{\alpha}f$ has limit zero along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D - E$, where $h(r) = \tau_2(r^{\gamma})$ with $\tau_2(r) = \inf_{r \le t \le 1} t^{\beta} \left(\int_0^t [s^{n-\alpha p} \varphi(s^{-1})]^{-p'/p} ds/s \right)^{-p/p'}$.

(ii) If $\beta \leq 0$ and $n - \alpha p \geq 0$, then there exists a set $E \subset \partial D$ such that E

Yoshihiro MIZUTA

has Hausdorff dimension at most $\gamma(n - \alpha p)$ and $G_{\alpha}f$ has limit zero along the curve $L_{\Psi}(\xi)$, for any $\xi \in \partial D - E$.

REMARK 11.1. Our results give generalizations of the results in Rippon [23], Wu [27], Aikawa [1] and Mizuta [14].

12. Singular integrals

In view of Theorem 9.2, if $u \in BL_m(L^p(\mathbb{R}^n))$, then

$$u(x) = \sum_{|\lambda|=m} a_{\lambda} \int k_{\lambda,\ell}(x, y) D^{\lambda} u(y) \, dy + P(x)$$

for almost every $x \in \mathbb{R}^n$, where $\ell < m$ and P is a polynomial of degree at most m-1. Conversely, it is known (cf. [16, Lemma 3]) that each integral in the above equality belongs to $BL_m(L^p(\mathbb{R}^n))$.

Let us begin with the following result, concerning the Φ_p estimate for the derivatives of potentials.

LEMMA 12.1 (cf. [9, Lemma 6], [18]). Let $-1 < \beta < p-1$ and f be a nonnegative measurable function on \mathbb{R}^n such that

$$\int_{\mathbb{R}^n} (1+|y|)^{m-n} f(y) \, dy < \infty \quad and \quad \int_{\mathbb{R}^n} \Phi_p(f(y)|y_n|^{\beta/p}) \, dy < \infty.$$

Set

$$u(x) = \int_{\mathbb{R}^n} k_{\lambda}(x-y) f(y) \, dy,$$

where $k_{\lambda}(x) = x^{\lambda}/|x|^{n}$ and $|\lambda| = m$. Then u is a function in $BL_{m}(L_{loc}^{q}(\mathbb{R}^{n}))$ for q such that $1 < q < \min\{p, p/(\beta + 1)\}$. Further, u is (m, Φ_{p}) -quasicontinuous on D and satisfies

$$\int \Phi_p(|\nabla_m u(x)| |x_n|^{\beta/p}) dx \le M \int \Phi_p(f(y)|y_n|^{\beta/p}) dy$$

with a positive constant M independent of f, where $|\nabla_m u(x)| = (\sum_{|\lambda|=m} |D^{\lambda}u(x)|^2)^{1/2}$.

PROOF. First of all, if we note $\int_{G} \Phi_{p}(f(y)) dy < \infty$ for any relatively compact open set G in D, then u is (m, p)-quasicontinuous on D in the sense of [8]. If the required inequality of the present lemma is obtained, then we see that u is (m, Φ_{p}) -quasicontinuous on D. If $1 < q < \min\{p, p/(\beta + 1)\}$, then we have by Hölder's inequality

Continuity properties of potentials

$$\int_G f(y)^q \, dy \le \left(\int_G f(y)^p |y_n|^\beta \, dy\right)^{q/p} \left(\int_G |y_n|^{-\beta q/(p-q)} \, dy\right)^{1-q/p} < \infty$$

for any bounded open set $G \subset \mathbb{R}^n$. Consequently it follows from [8, Lemma 3.3] that $u \in BL_m(L^q_{loc}(\mathbb{R}^n))$. For $\varepsilon > 0$, set $k_{\lambda}^{(\varepsilon)}(x) = x^{\lambda}(|x|^2 + \varepsilon^2)^{-n/2}$, and consider the function

$$u_{\varepsilon}(x) = \int k_{\lambda}^{(\varepsilon)}(x-y)f(y)\,dy.$$

In view of [8, Lemma 3.3], we see that $(\partial/\partial x)^{\nu}u_{\varepsilon}(x)$ tends to $(\partial/\partial x)^{\nu}u(x)$ in $L^{q}_{loc}(\mathbb{R}^{n})$ as $\varepsilon \to 0$ for any ν with length m. First we show

(12.1)
$$\int |(\partial/\partial x)^{\nu} u_{\varepsilon}(x)|^{p} |x_{n}|^{\beta} dx \leq M_{1} \int f(y)^{p} |y_{n}|^{\beta} dy,$$

where |v| = m and M_1 is a positive constant independent of ε and f. For this, note

$$(\partial/\partial x)^{\nu}u_{\varepsilon}(x) = \int (\partial/\partial x)^{\nu}k_{\lambda}^{(\varepsilon)}(x-y)f(y)\,dy.$$

Setting $v_{\varepsilon}(x) = \int (\partial/\partial x)^{\nu} k_{\lambda}^{(\varepsilon)}(x-y)g(y) dy$ with $g(y) = f(y)|y_n|^{\beta/p}$, we have

(12.2)
$$\int |\nabla_m v_{\varepsilon}(x)|^p \, dx \le M_2 \int g(y)^p \, dy,$$

in view of the proof of [8, Lemma 3.2] (see also Stein [25, Theorem 2, Section 3.2, Chapter 2]). Further, we obtain

$$\begin{aligned} ||x_{n}|^{\beta/p} (\partial/\partial x)^{\nu} u_{\varepsilon}(x) - (\partial/\partial x)^{\nu} v_{\varepsilon}(x)| &\leq M_{3} \int \frac{|1 - [|x_{n}|/|y_{n}|]^{\beta/p}|}{|x - y|^{n}} g(y) \, dy \\ &= M_{3} \int \frac{|1 - [|x_{n}|/|y_{n}|]^{\beta/p}|}{|x_{n} - y_{n}|} \, G(x', \, x_{n}, \, y_{n}) \, dy_{n}. \end{aligned}$$

where $G(x', x_n, y_n) = \int_{\mathbb{R}^{n-1}} \frac{|x_n - y_n|}{(|x' - y'|^2 + |x_n - y_n|^2)^{n/2}} g(y', y_n) dy'$. As in the proof of Lemma 6 in [9], using Minkowski's inequality (see [25, Appendix

A. 1]) and the property of Poisson integral in the half space, we find

$$\| \|x_n\|^{\beta/p} (\partial/\partial x)^{\nu} u_{\varepsilon}(\cdot, x_n) - (\partial/\partial x)^{\nu} v_{\varepsilon}(\cdot, x_n) \|_{L^p(\mathbb{R}^{n-1})}$$

$$\leq M_3 \int \frac{|1 - [|x_n|/|y_n|]^{\beta/p}|}{|x_n - y_n|} \| G(\cdot, x_n, y_n) \|_p dy_n$$

Yoshihiro MIZUTA

$$\leq M_4 \int \frac{|1-[|x_n|/|y_n|]^{\beta/p}|}{|x_n-y_n|} \|g(\cdot, y_n)\|_p \, dy_n.$$

Moreover, by [25, Appendix A.3], the L^p -norm in R^1 of the right hand side is dominated by $M_5 ||g||_p$ as long as

$$\int_0^\infty |1-r^{-\beta/p}| |1-r|^{-1}r^{-1/p}\,dr < \infty,$$

which is true because $-1 < \beta < p - 1$. Thus (12.1) is obtained with the aid of (12.2). Letting $\varepsilon \rightarrow 0$, we establish

(12.3)
$$\int |(\partial/\partial x)^{\nu} u(x)|^{p} |x_{n}|^{\beta} dx \leq M_{6} \int f(y)^{p} |y_{n}|^{\beta} dy,$$

which proves the case $\varphi \equiv 1$. Now we apply the usual interpolation methods (cf. [28], [25, Appendix B]) and prove

$$\int \Phi_p(|(\partial/\partial x)^{\nu}u(x)| |x_n|^{\beta/p}) dx \le M \int \Phi_p(f(y)|y_n|^{\beta/p}) dy.$$

For this purpose, let $\gamma = \beta/p$ and note from (12.3)

(12.4)
$$\int \left[\left| \left(\partial/\partial x \right)^{\nu} u(x) \right| |x_n|^{\nu} \right]^q dx \le M_q \int \left[f(y) |y_n|^{\nu} \right]^q dy$$

for any q such that q > 1 and $-1 < \gamma q < q - 1$. Since $-1/p < \gamma < 1/p'$, we can take q_1, q_2 such that

$$1 < q_1 < p < q_2$$
 and $-\frac{1}{q_2} < \gamma < \frac{1}{q_1'};$

recall that p' and q'_1 are the exponents conjugate to p and q_1 , respectively. For a > 0, decompose f as $f_{a,1} + f_{a,2}$, where

$$f_{a,1}(y) = \begin{cases} f(y) & \text{if } g(y) \ge a, \\ 0 & \text{otherwise,} \end{cases} \qquad g(y) = f(y)|y_n|^{y},$$

and write $u_{a,1}$ and $u_{a,2}$ for u with $f = f_{a,1}$ and $f_{a,2}$, respectively. Applying (12.4), we have

$$\int \left[\left| \left(\partial/\partial x \right)^{\nu} u_{a,i}(x) \right| |x_n|^{\gamma} \right]^{q_i} dx \le M_7 \int \left[f_{a,i}(y) |y_n|^{\gamma} \right]^{q_i} dy$$

for i = 1, 2. Here remark that M_7 does not depend on a. Since $u = u_{a,1} + u_{a,2}$,

$$\begin{split} m_{n}(\{x; |(\partial/\partial x)^{\nu}u(x)| |x_{n}|^{\nu} > 2a\}) \\ &\leq \int \left[\left(\frac{|(\partial/\partial x)^{\nu}u_{a,1}(x)| |x_{n}|^{\nu}}{a} \right)^{q_{1}} + \left(\frac{|(\partial/\partial x)^{\nu}u_{a,2}(x)| |x_{n}|^{\nu}}{a} \right)^{q_{2}} \right] dx \\ &\leq M_{7}a^{-q_{1}} \int [f_{a,1}(y)|y_{n}|^{\nu}]^{q_{1}} dy + M_{7}a^{-q_{2}} \int [f_{a,2}(y)|y_{n}|^{\nu}]^{q_{2}} dy, \end{split}$$

where m_n denotes the *n*-dimensional Lebesgue measure. Hence,

$$\begin{split} \int \Phi_{p}(|(\partial/\partial x)^{\nu}u(x)| \, |x_{n}|^{\nu}) \, dx &= \int m_{n}(\{x; \, |(\partial/\partial x)^{\nu}u(x)| \, |x_{n}|^{\nu} > 2a\}) \, d\Phi_{p}(2a) \\ &\leq M_{7} \int g(y)^{q_{1}} \bigg(\int_{0}^{g(y)} a^{-q_{1}} \, d\Phi_{p}(2a) \bigg) \, dy \\ &+ M_{7} \int g(y)^{q_{2}} \bigg(\int_{g(y)}^{\infty} a^{-q_{2}} \, d\Phi_{p}(2a) \bigg) \, dy. \end{split}$$

By $(\varphi 1)$ and $(\varphi 5)$,

 $s^{-q_1-\delta}\Phi_p(2s) \le M_8 t^{-q_1-\delta}\Phi_p(2t)$ and $s^{-q_2+\delta}\Phi_p(2s) \ge M_8 t^{-q_2+\delta}\Phi_p(2t)$

whenever 0 < s < t, where $\delta > 0$ is chosen so that $q_1 + \delta . Hence it follows that$

$$\begin{split} \int_{0}^{g(y)} a^{-q_{1}} d\Phi_{p}(2a) &= \int_{0}^{g(y)} \Phi_{p}(2a) d(-a^{-q_{1}}) + [g(y)]^{-q_{1}} \Phi_{p}(2g(y)) \\ &\leq q_{1} M_{8} \Phi_{p}(2g(y)) [g(y)]^{-q_{1}-\delta} \int_{0}^{g(y)} a^{\delta-1} da + [g(y)]^{-q_{1}} \Phi_{p}(2g(y)) \\ &\leq M_{9} \Phi_{p}(g(y)) [g(y)]^{-q_{1}}. \end{split}$$

Similarly,

$$\int_{g(y)}^{\infty} a^{-q_2} d\Phi_p(2a) \le M_{10} \Phi_p(g(y)) g(y)^{-q_2}.$$

Now we find

$$\int \Phi_p(|(\partial/\partial x)^{\nu}u(x)||x_n|^{\gamma})\,dx \leq M_{11}\int \Phi_p(g(y))\,dy = M_{11}\int \Phi_p(f(y)|y_n|^{\gamma})\,dy,$$

which yields the required inequality. Thus the proof of Lemma 12.1 is completed.

REMARK 12.1. If we replace k_{λ} by R_m or $k_{\lambda}^* = D^{\lambda}R_{2m}$, then the same conclusions as in Lemma 12.1 still hold.

Yoshihiro MIZUTA

LEMMA 12.2. Let $-1 < \beta < p - 1$. For a nonnegative measurable function f on \mathbb{R}^n ,

$$\int_{G} \Phi_{p}(f(y)|y_{n}|^{\beta/p}) dy < \infty \quad \text{for any bounded open set } G \subset \mathbb{R}^{n}$$

if and only if

.

$$\int_{G} \Phi_{p}(f(y)) |y_{n}|^{\beta} dy < \infty \qquad \text{for any bounded open set } G \subset \mathbb{R}^{n}$$

PROOF. Let $\varepsilon > 0$ and $\beta(1 + \varepsilon^{-1}) > -1$. Then, for a bounded open set $G \subset \mathbb{R}^n$, we have

$$\begin{split} &\int_{G} \boldsymbol{\Phi}_{p}(f(y)|y_{n}|^{\beta/p}) \, dy \\ &\leq \int_{\{y \in G; f(y)^{\varepsilon} \geq |y_{n}|^{\beta/p}\}} \boldsymbol{\Phi}_{p}(f(y)|y_{n}|^{\beta/p}) \, dy + \int_{\{y \in G; f(y)^{\varepsilon} < |y_{n}|^{\beta/p}\}} \boldsymbol{\Phi}_{p}(f(y)|y_{n}|^{\beta/p}) \, dy \\ &\leq \int_{G} [f(y)|y_{n}|^{\beta/p}]^{p} \varphi(f(y)^{1+\varepsilon}) \, dy + \int_{G} \boldsymbol{\Phi}(|y_{n}|^{(1+\varepsilon^{-1})\beta/p}) \, dy \\ &\leq M(\varepsilon) \left\{ \int_{G} \boldsymbol{\Phi}_{p}(f(y))|y_{n}|^{\beta} \, dy + \int_{G} |y_{n}|^{(1+\varepsilon^{-1})\beta} \varphi(|y_{n}|^{\beta}) \, dy \right\}. \end{split}$$

Since $\beta(1 + \varepsilon^{-1}) > -1$, the last integral is convergent. Thus the "if" part follows. The "only if" part can be proved similarly.

THEOREM 12.1. Let $-1 < \beta < p-1$ and f be a nonnegative measurable function on \mathbb{R}^n such that

(12.5)
$$\int_{\mathbb{R}^n} \Phi_p(f(y)) |y_n|^\beta \, dy < \infty.$$

If $\ell \le m - n/p - \beta/p < \ell + 1$, then the function

$$u(x) = \int k_{\lambda,\ell}(x, y) f(y) \, dy$$

satisfies

(12.6)
$$\int_{G} \Phi_{p}(|\nabla_{m}u(x)|)|x_{n}|^{\beta} dx < \infty \quad for any bounded open set \quad G \subset \mathbb{R}^{n}.$$

PROOF. Since $f \in L^q(\mathbb{R}^n)$, $1 < q < \min\{p, p/(1 + \beta)\}$, by the proof of Lemma 12.1, we see that $u \in BL_m(L^q_{loc}(\mathbb{R}^n))$ by [19, Lemma 5]. For a > 0, set

Continuity properties of potentials

$$u'_{a}(x) = \int_{B(0, 2a)} k_{\lambda,\ell}(x, y) f(y) \, dy,$$
$$u''_{a}(x) = \int_{R^{n} - B(0, 2a)} k_{\lambda,\ell}(x, y) f(y) \, dy$$

Since u_a'' is infinitely differentiable on B(0, 2a), it satisfies

$$\int_{B(0,a)} \Phi_p(|\nabla_m u_a''(x)|) |x_n|^\beta \, dx < \infty.$$

On the other hand, $u'_a(x)$ is of the form $v_a(x) = \int_{B(0,2a)} k_\lambda(x-y)f(y) dy + w_a(x)$, where w_a is a polynomial. Lemma 12.1 implies

$$\int_{\mathbb{R}^n} \Phi_p(|\nabla_m v_a(x)| |x_n|^{\beta/p}) dx \le M \int_{B(0,2a)} \Phi_p(f(y)|y_n|^{\beta/p}) dy < \infty.$$

Hence, if we note Lemma 12.2, then we have

$$\int_{B(0,a)} \Phi_p(|\nabla_m u'_a(x)|) |x_n|^\beta \, dx < \infty.$$

Therefore,

$$\int_{B(0,a)} \Phi_p(|\nabla_m u(x)|) |x_n|^\beta \, dx < \infty.$$

Since a is arbitrary, Theorem 12.1 is obtained.

LEMMA 12.3. Let ω be a positive monotone function on $(0, \infty)$ satisfying $(\omega 1)$ and $(\omega 2)$. If $C_{\alpha, \varphi_p, \omega}(E) = 0$, then there exists a nonnegative measurable function f on \mathbb{R}^n such that

$$\int (1+|y|)^{\alpha-n} f(y) < \infty,$$
$$\int \Phi_p(f(y)) \omega(|y_n|) \, dy < \infty$$

and

$$U_{\alpha}f(x) = \infty$$
 for any $x \in E$.

PROOF. For any a > 0, $C_{\alpha, \varphi_p, \omega}(E \cap B(0, a); B(0, a)) = 0$ by our assumption. Hence we can find a nonnegative measurable function f_a such that $f_a = 0$

outside B(0, a), $U_{\alpha}f_a = \infty$ on $E \cap B(0, a)$ and $\int_{B(0,a)} \Phi_p(f_a(y))\omega(|y_n|) dy < \infty$. As in the proof of Lemma 6.1, we establish

$$\int (1+|y|)^{\alpha-n} f_a(y) \, dy \le M(a) \int_{B(0,a)} \Phi_p(f_a(y)) \omega(|y_n|) \, dy$$

for some constant M(a) > 0. For a sequence $\{\varepsilon_j\}$ of positive numbers, consider the function $f = \sup_j \varepsilon_j f_j$. Then

$$U_{\alpha}f(x) \ge \varepsilon_j U_{\alpha}f_j = \infty$$
 for any $x \in E \cap B(0, j)$,

which shows that

$$U_{\alpha}f(x) = \infty$$
 for any $x \in E$.

On the other hand,

$$\int \Phi_p(f(y))\omega(|y_n|)\,dy \leq \sum_j \int_{B(0,j)} \Phi_p(\varepsilon_j f_j(y))\omega(|y_n|)\,dy$$

and

$$\int (1+|y|)^{\alpha-n}f(y)\,dy \leq \sum_j \varepsilon_j M(j) \int_{B(0,j)} \Phi_p(f_j(y))\omega(|y_n|)\,dy.$$

Now choose $\{\varepsilon_i\}$ so small that the last two sums are convergent.

LEMMA 12.4. Let $-1 < \beta < p-1$ and let f be a nonnegative measurable function on \mathbb{R}^n satisfying (12.5). If we define

$$E = \left\{ \xi \in \partial D; \int_{B(\xi,1)} |\xi - y|^{m-n} f(y) \, dy = \infty \right\},$$

then $C_{m-\beta/p, \Phi_p}(E) = 0.$

PROOF. For a > 0, consider the function

$$u_a(x) = \int_{B(0,a)} |x - y|^{m-n} f(y) \, dy.$$

Then Lemma 12.2 yields

$$\int_{B(0,a)} \Phi_p(f(y)|y_n|^{\beta/p}) \, dy < \infty.$$

Hence, in view of Lemma 12.1 and Remark 12.1, we see that

$$\int \Phi_p(|\nabla_m u_a(x)| |x_n|^{\beta/p}) \, dx < \infty.$$

Define

$$E' = \left\{ \xi \in \partial D; \int_{B(\xi,1)} |\xi - y|^{m-\beta/p-n} [|\nabla_m u_a(y)| |y_n|^{\beta/p}] dy = \infty \right\}$$

Then it follows from the definition of $C_{m-\beta/p, \Phi_p}$ that $C_{m-\beta/p, \Phi_p}(E') = 0$. If we show $E \cap B(0, a) \subset E'$, then we obtain $C_{m-\beta/p, \Phi_p}(E \cap B(0, a)) = 0$, so that $C_{m-\beta/p, \Phi_p}(E) = 0$. If $\xi \in \partial D \cap B(0, a) - E'$, then $\int_{B(\xi, 1) \cap T_1(\xi, 1)} |\xi - y|^{m-n} |\nabla_m u_a(y)| dy$ $< \infty$, which together with [12, Lemma 3] implies

$$\int_{B(\xi,1)\cap T_1(\xi,1)} |\xi - y|^{1-n} |\nabla_1 u_a(y)| \, dy < \infty.$$

By using polar coordinates, we deduce that $u(\xi + r\eta)$ is absolutely continuous on [0, 1] for almost every $\eta \in \partial B(0, 1) \cap T_1(0, 1)$, and hence it follows that $u(\xi) < \infty$. Thus, $\xi \notin E$, so that $E \cap B(0, a) \subset E'$. Now the proof is completed.

THEOREM 12.2. Let $-1 < \beta < p - 1$. For $E \subset \partial D$, $C_{m, \Phi_p, \beta}(E) = 0$ if and only if $C_{m-\beta/p, \Phi_p}(E) = 0$.

PROOF. The "only if" part follows from Lemmas 12.3 and 12.4. We show the "if" part. For this purpose, assume $C_{m-\beta/p, \Phi_p}(E) = 0$. Then, by Lemma 12.3, there exists a nonnegative measurable function f on \mathbb{R}^n such that

$$\int (1+|y|)^{\alpha-n} f(y) \, dy < \infty,$$
$$\int \Phi_p(f(y)) \, dy < \infty$$

and

$$U_{\alpha}f(x) = \infty$$
 for any $x \in E$,

where $\alpha = m - \beta/p$. Consider the Bessel potential

$$F(x') = g_{\alpha} * f(x', 0) = \int g_{\alpha}((x', 0) - y) f(y) \, dy$$

and the Poisson integral

$$u(x', x_n) = P_{x_n} * F(x');$$

see Stein's book [25] for the definitions of Bessel kernel g_{α} and Poisson kernel P_t . First we treat the case when f is bounded and has compact support. Thus $f \in L^q(\mathbb{R}^n)$ for any q > 1. Then F belongs to the Lipschitz

space $\Lambda_{\alpha-1/q}^{q,q}(\mathbb{R}^{n-1})$ and

$$\|F\|_{A^{q,q}_{a^{-1}/q}(\mathbb{R}^{n-1})} \le M(q) \|f\|_{q}$$

as long as $\alpha > 1/q$, on account of [25, §4.3 of Chapter 6]. In view of [25, (62') and (63) in p. 152],

$$\left(\int_{D} \left\{x_{n}^{k-(\alpha-1/q)} |\nabla_{k} u(x)|\right\}^{q} x_{n}^{-1} dx\right)^{1/q} \leq M(q, k) \|F\|_{A_{\alpha}^{q, q}(R^{n-1})}$$

for any integer k greater than $\alpha - 1/p$. If we set $k = m > (1 + \beta)/q$, then

$$\int_{D} \left[|\mathcal{V}_{m}u(x)| x_{n}^{\beta/p} \right]^{q} dx \leq M(q)^{\prime} \int f(y)^{q} dy.$$

As in the proof of Lemma 12.1, we find

$$\int_D \Phi_p(|\nabla_m u(x)| x_n^{\beta/p}) dx \le M \int \Phi_p(f(y)) dy.$$

Since the constant M does not depend on f, this inequality holds for general f, so that

$$\int_D \Phi_p(|\nabla_m u(x)|x_n^{\beta/p})\,dx < \infty.$$

By the property of Poisson integral,

$$\lim_{x \to \xi, x \in D} u(x) = \infty \quad \text{for any } \xi \in E.$$

As in the proof of Lemma 12.4, set

$$E' = \left\{ \xi \in \partial D; \int_{B(\xi,1)} |\xi - y|^{m-n} |\nabla_m u(y)| \, dy = \infty \right\}.$$

Then it follows that $C_{m, \Phi_p, \beta}(E') = 0$ and $u(\xi + r\zeta)$ has a finite limit as $r \to 0$ for almost every $\zeta \in \partial B(0, 1) \cap D$ whenever $\xi \in \partial D - E'$. Therefore $E \subset E'$ and hence $C_{m, \Phi_p, \beta}(E) = 0$, as required.

By Theorem 12.2, we can rewrite our theorems by replacing the condition $C_{\alpha, \Phi_p, \beta}(E) = 0$ by the condition $C_{\alpha-\beta/p, \Phi_p}(E) = 0$. Among them, we give the following results.

THEOREM 12.3 (cf. Corollary 10.1). Let $0 < mp - n \le \beta < p - 1$. If u is a continuous function on D satisfying (10.4), then there exists a set $E \subset \partial D$ such that $C_{m-\beta/p, \Phi_n}(E) = 0$ and u has a nontangential limit at any $\xi \in \partial D - E$.

THEOREM 12.4 (cf. Theorem 10.4, (ii)). Let 0 < mp - n < p - 1. If u is

a continuous function on D satisfying

$$\int_{G} \Phi_{p}(|\nabla_{m}u(x)|)|x_{n}|^{mp-n} dx < \infty \quad \text{for any bounded open set} \quad G \subset D,$$

then there exists a set $E \subset \partial D$ such that $C_{n/p, \Phi_p}(E) = 0$ and u has a finite T_{γ} -limit at any $\xi \in \partial D - E$ for any $\gamma \ge 1$.

THEOREM 12.5 (cf. Theorem 10.6). Let $-1 < \beta < p-1$ and let u be an (m, Φ_p) -quasicontinuous function on D satisfying (10.4). Then there exists a set $E \subset \partial D$ such that $C_{m-\beta/p,\Phi_p}(E) = 0$ and if $\xi \in \partial D - E$, then $u(\xi + r\zeta)$ has a finite limit as $r \to 0$ for every $\zeta \in \partial D \cap B(0, 1)$ except those in a set E_{ξ} with $C_{m,\Phi_p}(E_{\xi}) = 0$.

THEOREM 12.6 (cf. Theorem 10.7). Let $0 \le \beta < p-1$ and $\zeta \in D$. If u is an (m, Φ_p) -quasicontinuous function on D satisfying (10.4), then there exists a set $E \subset \partial D$ such that $C_{m-\beta/p,\Phi_p}(E) = 0$ and $u(\xi + r\zeta)$ has a finite limit as $r \to 0$ at every $\xi \in \partial D - E$.

We now give an integral representation for Beppo-Levi-Deny functions in the half space D.

THEOREM 12.7. Let $-1 < \beta < p-1$ and let u be a function in $BL_m(L^p_{loc}(D))$ such that

(12.7)
$$\int_{D} \Phi_{p}(|\nabla_{m}u(x)|x_{n}^{\beta/p}) dx < \infty.$$

If ℓ is the integer such that $\ell \leq m - n/p - \beta/p < \ell + 1$, then

$$u(x) = \sum_{|\lambda|=m} b_{\lambda} \int_{D} k^{*}_{\lambda,\ell}(x, y) D^{\lambda} u(y) \, dy + h(x)$$

for almost every $x \in D$, where h is a function which is polyharmonic of order m in D satisfying (12.7); see Remark 9.2 for b_{λ} and $k_{\lambda,\ell}^*$.

This is a Riesz-type decomposition of Beppo-Levi-Deny functions as the sum of potentials and polyharmonic functions.

PROOF OF THEOREM 12.7. For $\chi \in C_0^{\infty}(D)$, we have by Fubini's theorem and [16, (3)]

$$\begin{split} &\int \left(\sum_{|\lambda|=m} b_{\lambda} \int_{D} k_{\lambda,\ell}^{*}(x, y) D^{\lambda} u(y) \, dy \right) \Delta^{m} \chi(x) \, dx \\ &= \sum_{|\lambda|=m} b_{\lambda} \int_{D} \left(\int k_{\lambda,\ell}^{*}(x, y) \Delta^{m} \chi(x) \, dx \right) D^{\lambda} u(y) \, dy \end{split}$$

$$= c^* \sum_{|\lambda|=m} b_{\lambda} \int_{D} D^{\lambda} \chi(y) D^{\lambda} u(y) dy$$
$$= \int_{D} \chi(y) \Delta^{m} u(y) dy$$

where $c^* = (-1)^m c$ with c in Remark 9.2. Thus Lemma 12.1 establishes the required assertion.

THEOREM 12.8. Let $-1 < \beta < p-1$ and ℓ be the integer such that $\ell \leq m - n/p - \beta/p < \ell + 1$. If u is a function in $BL_m(L_{loc}^p(D))$ satisfying (12.7), then there exist a function $u^* \in BL_m(L_{loc}^1(R^n))$ satisfying

(12.8)
$$\int_{\mathbb{R}^n} \Phi_p(|\nabla_m u^*(x)| |x_n|^{\beta/p}) dx < \infty$$

and a polynomial P of degree at most m-1 such that

$$u(x) = \sum_{|\lambda|=m} b_{\lambda} \int_{\mathbb{R}^n} k^*_{\lambda,c}(x, y) D^{\lambda} u^*(y) \, dy + P(x)$$

for almost every $x \in D$.

To show this theorem, by the extension theorem in Stein's book [25, Chapter 6], we can find a function u^* satisfying (12.8) such that $u^* = u$ a.e. on *D*. In view of the proof of Theorem 12.8,

$$u^*(x) = \sum_{|\lambda|=m} b_{\lambda} \int_D k^*_{\lambda,\ell}(x, y) D^{\lambda} u^*(y) \, dy + h(x)$$

for almost every $x \in D$, where h is a function which is polyharmonic of order m in \mathbb{R}^n satisfying (12.8). As in the proof of [8, Lemma 4.1], we see that h is a polynomial of degree at most m - 1.

In the same way we can prove

THEOREM 12.9. If β , ℓ and u are as above, then there exist a function $u^* \in BL_m(L^1_{loc}(\mathbb{R}^n))$ satisfying (12.8) and a polynomial P of degree at most m-1 such that

$$u(x) = \sum_{|\lambda|=m} a_{\lambda} \int_{\mathbb{R}^n} k_{\lambda,\ell}(x, y) D^{\lambda} u^*(y) \, dy + P(x)$$

for almost every $x \in D$.

13. Logarithmic potentials

For a nonnegative measurable function f on \mathbb{R}^n , we define

$$Lf(x) = \int \log \frac{1}{|x-y|} f(y) \, dy,$$

where we always assume that

(13.1)
$$\int f(y)\log(2+|y|)\,dy < \infty.$$

In this case $Lf(x) > -\infty$ for all $x \in \mathbb{R}^n$ and $|Lf| \neq \infty$.

In what follows, we investigate the behavior of logarithmic potentials Lf at the origin, where f satisfies (13.1) and

(13.2)
$$\int \Phi_1(f(y))\omega(|y|)\,dy < \infty.$$

For $x \in \mathbb{R}^n - \{0\}$, we write $Lf(x) = L_1(x) + L_2(x) + L_3(x)$, where

$$L_{1}(x) = \int_{\mathbb{R}^{n} - B(0, 2|x|)} \log(1/|x - y|) f(y) \, dy,$$
$$L_{2}(x) = \int_{B(0, 2|x|) - B(x, |x|/2)} \log(1/|x - y|) f(y) \, dy,$$
$$L_{3}(x) = \int_{B(x, |x|/2)} \log(1/|x - y|) f(y) \, dy.$$

Then we can easily find

$$L_1(x) \le \int_{R^n - B(0, 2|x|)} \log(2/|y|) f(y) \, dy$$

and

$$L_2(x) \le \log(2/|x|) \int_{B(0,2|x|)} f(y) \, dy.$$

For nonnegative functions φ and ω as before, we set

$$\kappa'_{1}(r) = \sup_{r \le t \le 1} [\log(1/t)] [\eta(t)]^{-1}$$
 with $\eta(r) = \varphi(r^{-1})\omega(r)$

for $0 < r \le 1/2$ and $\kappa'_1(r) = \kappa'_1(1/2)$ for r > 1/2.

The following results can be proved in the same manner as the lemmas in Section 2.

LEMMA 13.1. Let $0 < \delta < n$. If 0 < 2|x| < a < 1, then

$$L_{1}(x) \leq \int_{R^{n} - B(0,a)} \log(2/|y|) f(y) \, dy + M a^{n-\delta} \log(2/a) + M \kappa_{1}'(|x|) \bigg(\int_{B(0,a)} \Phi_{1}(f(y)) \omega(|y|) \, dy \bigg),$$

where M is a positive constant independent of x and a.

LEMMA 13.2. If $0 < \delta < n$, then there exists a positive constant M such that

$$L_{2}(x) \leq M\kappa_{2}'(|x|) \left(\int_{B(0,2|x|)} \Phi_{1}(f(y))\omega(|y|) \, dy \right) + M|x|^{n-\delta} \log(1/|x|)$$

for any $x \in B(0, 1/2) - \{0\}$, where

$$\kappa_2'(r) = \left(\log\frac{2}{r}\right) \sup_{0 < t \le r} \left[\eta(t)\right]^{-1}$$

for $0 < r \le 1/2$ and $\kappa'_2(r) = \kappa'_2(1/2)$ for r > 1/2.

For an open set $G \subset \mathbb{R}^n$, we define

$$C_{n, \boldsymbol{\varPhi}_1}(E; G) = \inf_g \int_G \boldsymbol{\varPhi}_1(g(y)) \, dy,$$

where the infimum is taken over all nonnegative measurable functions g on \mathbb{R}^n such that g vanishes outside G and

$$L^+g(x) = \int \max\left\{0, \log\frac{1}{|x-y|}\right\}g(y)\,dy \ge 1 \quad \text{for every } x \in E.$$

LEMMA 13.3. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying condition (13.2), and χ be a positive function on $(0, \infty)$ for which there are positive constants M and r_0 such that $\chi(r) \leq M\chi(s)$ whenever $0 < r \leq s \leq 2r < r_0$. Then there exists a set $E \subset \mathbb{R}^n$ such that

(i)
$$\lim_{x\to 0, x\in \mathbb{R}^n-E} [\chi(|x|)]^{-1} L_3(x) = 0;$$

(ii) $\sum_{j=1}^{\infty} [K^*]^{-j} \omega(2^{-j}) C_{n, \varphi_1}(E_j; B_j) < \infty,$

where

$$E_{j} = \{x \in E; 2^{-j} \le |x| < 2^{-j+1}\},\$$

$$B_{j} = \{x \in R^{n}; 2^{-j-1} < |x| < 2^{-j+2}\},\$$

$$K^{*} = \sup_{0 < r, s \le r_{0}/2} \frac{\Phi_{1}(s/\chi(r))}{\Phi_{1}(s/\chi(2r))}.$$

Using these lemmas, we obtain the following theorems on the existence of fine limits for logarithmic potentials.

THEOREM 13.1 (cf. Theorem 3.1). If f is a nonnegative measurable function on \mathbb{R}^n satisfying conditions (13.1) and (13.2), then there exists a set $E \subset \mathbb{R}^n$ such that

$$\lim_{x \to 0, x \in \mathbb{R}^n - E} Lf(x) = Lf(0)$$

and

$$\sum_{j=1}^{\infty} \omega(2^{-j}) C_{n, \Phi_1}(E_j; B_j) < \infty.$$

In case $Lf(0) = \infty$, we are concerned with the order of infinity at the origin.

THEOREM 13.2 (cf. Theorem 3.2). Let f be a nonnegative measurable function on \mathbb{R}^n satisfying conditions (13.1) and (13.2), and set $\kappa' = \kappa'_1 + \kappa'_2$. If $\lim_{r\to 0} \kappa'(r) = \infty$, then there exists a set $E \subset \mathbb{R}^n$ such that

$$\lim_{x \to 0, x \in \mathbb{R}^{n} - E} [\kappa'(|x|)]^{-1} Lf(x) = 0$$

and

$$\sum_{j=1}^{\infty} K^{-j} \omega(2^{-j}) C_{n, \boldsymbol{\varphi}_1}(E_j; B_j) < \infty,$$

where E_j and B_j are as before, and

$$K = \sup_{0 \le r, s \le 1/2} [\Phi_1(s/\kappa'(r))] / [\Phi_1(s/\kappa'(2r))].$$

THEOREM 13.3 (cf. Theorem 5.1). Under the same assumptions as in Theorem 13.2,

$$\lim_{r \to 0} [\kappa'(r)]^{-1} S_a(Lf, r) = 0$$

for q > 0.

For this, it suffices to treat only L_3 . In case $q \ge 1$, setting A(r) = B(0, 3r/2) - B(0, r/2), $0 < r < 2^{-1}$, we have

$$\begin{split} S_q(L_3, r) &\leq \int_{\mathcal{A}(r)} \left[S_q(\log|\cdot - y|, r) \right] f(y) \, dy \\ &\leq M_1 \log(1/r) \int_{\mathcal{A}(r)} f(y) \, dy \\ &\leq M_1 \left[\log(1/r) \right] \left[\varphi(r^{-1}) \right]^{-1} \int_{\mathcal{A}(r)} \Phi_1(f(y)) \, dy + M_1 \left[\log(1/r) \right] r^{-1} \int_{\mathcal{A}(r)} dy \end{split}$$

Yoshihiro Mizuta

$$\leq M_2 \kappa_1'(r) \int_{A(r)} \Phi_1(f(y)) \omega(|y|) \, dy + M_2 [\log(1/r)] r^{n-1},$$

so that

$$\lim_{r \to 0} [\kappa'(r)]^{-1} S_q(L_3, r) = 0.$$

THEOREM 13.4 (cf. Theorem 3.3). Let f be as above. Set

$$K(r) = \kappa'(r) + [\omega(r)]^{-1} \sup_{0 < t < r} [\log(1/t)] [\varphi(t^{-1})]^{-1},$$

and assume $K(r) < \infty$ for r > 0. If $\lim_{r \to 0} K(r) = \infty$, then

$$\lim_{x \to 0} [K(|x|)]^{-1} Lf(x) = 0.$$

If K(r) is bounded, then Lf(0) is finite and Lf(x) tends to Lf(0) as $x \to 0$.

COROLLARY 13.1 (cf. Corollary 3.1). Let f be a nonnegative measurable function on \mathbb{R}^n satisfying (13.1) and

(13.3)
$$\int f(y)\log(2+f(y))\,dy < \infty,$$

then Lf is continuous on \mathbb{R}^n .

REMARK 13.1. If f is a nonnegative function in $L^p(\mathbb{R}^n)$, p > 1, satisfying condition (13.1), then Lf is continuous as a consequence of Corollary 13.1. In this case, in view of Lemma 4.3 in [8], we find $\int_{\mathbb{R}^n} |\nabla_n(Lf)(x)|^p dx < \infty$.

REMARK 13.2. If f is a nonnegative measurable function on \mathbb{R}^n satisfying condition (13.1), then there exists a set E, which is thin at the origin, such that

$$\lim_{x \to 0, x \in \mathbb{R}^n - E} Lf(x) = Lf(0)$$

and

$$\lim_{x \to 0, x \in \mathbb{R}^n - E} \left[\log(1/|x|) \right]^{-1} Lf(x) = 0.$$

These facts follow readily from Theorems 13.1 and 13.2. For other generalizations of these facts, see Mizuta [15].

Next we consider the boundary limits of Green potentials of order *n*. We recall (see Corollary 11.1) that, for a nonnegative measurable function f on D, $G_n f \neq \infty$ if and only if

(13.4)
$$\int_{D} (1+|y|)^{-2} y_n f(y) \, dy < \infty.$$

From Corollary 13.1, we have

THEOREM 13.5. If f is a nonnegative measurable function on D satisfying (13.4) such that

(13.5)
$$\int_{D'} f(y) \log(2 + f(y)) \, dy < \infty$$

for any bounded open set D' with closure in D, then $G_n f$ is continuous on D.

LEMMA 13.4. Let ω be a positive monotone function on $(0, \infty)$ satisfying $(\omega 1)$ and

(ω 5) $r^{\beta-1}[\omega(r)]^{-1}$ is nondecreasing on $(0, \infty)$ for some $\beta < 2$.

Set $\kappa'_3(r) = \sup_{r \le t \le 1} [\eta(t)]^{-1}$ for $0 < r \le 2^{-1}$ and $\kappa'_3(r) = \kappa'_3(2^{-1})$ for $r > 2^{-1}$. Then

$$G_n(x, y) [\eta(y_n)]^{-1} \le M \kappa'_3(x_n)$$
 whenever $0 < y_n < 1$ and $0 < x_n < 2|x - y|$.

PROOF. If $y_n \ge x_n > 0$ and $|x - y| \ge x_n/2$, then Lemma 11.1 implies

$$G_n(x, y) [\eta(y_n)]^{-1} \le M_1 [\eta(y_n)]^{-1} \le M_1 \kappa'_3(x_n).$$

If $0 < y_n < x_n \le 2|x - y|$, then Lemma 11.1 implies

$$G_{n}(x, y) [\eta(y_{n})]^{-1} \leq M_{2} x_{n}^{-1} y_{n} [\eta(y_{n})]^{-1}$$

= $M_{2} x_{n}^{-1} \cdot y_{n}^{2-\beta} [\varphi(y_{n}^{-1})]^{-1} \cdot y_{n}^{\beta-1} [\omega(y_{n})]^{-1}$
 $\leq M_{3} [\eta(x_{n})]^{-1} \leq M_{3} \kappa_{3}'(x_{n}).$

Thus the present lemma is proved.

By Lemma 13.4 and the proof of Theorem 11.2, we have

THEOREM 13.6. Let ω be as in Lemma 13.4. If $\lim_{r\to 0} \kappa'_3(r) = \infty$ and f is a nonnegative measurable function on D satisfying (13.4) and

(13.6)
$$\int_{D'} \Phi_1(f(y))\omega(y_n) \, dy < \infty \quad \text{for any bounded open set } D' \subset D,$$

then there exists a set $E \subset D$ such that

 $\lim_{x_n \to 0, x \in D' - E} [\kappa'_3(x_n)]^{-1} G_n f(x) = 0$

for any bounded open set $D' \subset D$ and

$$\sum_{j=1}^{\infty} K^{-j} \omega(2^{-j}) C_{n, \varphi_1}(E_j \cap B(0, a); D_j \cap B(0, 2a)) < \infty$$

for any a > 0, where $K = K^*$ in Lemma 13.3 with $\chi = \kappa'_3$.

THEOREM 13.7. Assume

(13.7) $\varphi(r^{-1}) \ge M \log(2t/r) \quad \text{whenever} \quad 0 < r < t$

for a positive constant M and

(
$$\omega$$
6) $r[\omega(r)]^{-1}$ is nondecreasing on $(0, \infty)$.

Let ψ be a positive nondecreasing continuous function on $(0, \infty)$ satisfying conditions (Δ_2) and $(\psi 1)$, and set

$$h'(r) = \tau'_{2}(\psi(r)) \quad with \quad \tau'_{2}(r) = \inf_{r \le t \le 1} \left\{ \omega(t) \inf_{0 < s < t} \left[\log(2t/s) \right]^{-1} \varphi(s^{-1}) \right\}$$

for 0 < r < 1. If f is a nonnegative measurable function on D satisfying (13.4) and (13.6), then there exists a set $E \subset \partial D$ such that $H_{h'}(E) = 0$ and

$$\lim_{x \to \xi, x \in T_{\psi}(\xi, a)} G_n f(x) = 0$$

for any $\xi \in \partial D - E$ and a > 0.

PROOF. For $\xi \in \partial D$, as in the proof of Theorem 11.3, we write $G_n f = v_1 + v_2 + g_{\xi}$, and consider the set

$$E = \left\{ \xi \in \partial D; \lim \sup_{r \to 0} \left[h'(r) \right]^{-1} \int_{D \cap B(\xi, r)} \Phi_1(f(y)) \omega(y_n) \, dy > 0 \right\}.$$

Then, by (13.6) and Lemma 7.2, we see that $H_{h'}(E) = 0$. Using (ω 6), we have for δ , $0 < \delta < 2$,

$$\begin{aligned} r^{-1} \int_{D \cap B(\xi,r)} y_n f(y) \, dy &\leq M_1 [\varphi(r^{-1})\omega(r)]^{-1} \int_{D \cap B(\xi,r)} \Phi_1(f(y))\omega(y_n) \, dy + M_1 r^{n-\delta} \\ &\leq M_2 [\tau_2'(r)]^{-1} \int_{D \cap B(\xi,r)} \Phi_1(f(y))\omega(y_n) \, dy + M_1 r^{n-\delta}. \end{aligned}$$

Hence, if $\xi \in \partial D - E$, then

$$\lim_{r\to 0} r^{-1} \int_{D\cap B(\xi,r)} y_n f(y) \, dy = 0.$$

Since Lemma 11.2 is still true in the present case $(\alpha = n)$, $g_{\xi}(x)$ tends to zero as $x \to \xi$, $x \in D$. By Lemmas 11.1 and 13.4, we find

$$v_{1}(x) \leq \int_{D \cap B(\xi, 2|x-\xi|)-B(x, x_{n}/2)} G_{n}(x, y) [\varphi(y_{n}^{-\delta})]^{-1} \Phi_{1}(f(y)) dy$$
$$+ \int_{D \cap B(\xi, 2|x-\xi|)} G_{n}(x, y) y_{n}^{-\delta} dy$$

Continuity properties of potentials

$$\leq M_{3}[\tau_{2}'(x_{n})]^{-1} \int_{D\cap B(\xi,2|x-\xi|)} \Phi_{1}(f(y))\omega(y_{n})dy + M_{3}|x-\xi|^{n-\delta}$$

and

$$v_{2}(x) \leq M_{4} \int_{B(x,x_{n}/2)} \log(3x_{n}/|x-y|) f(y) dy$$

$$\leq M_{5} [\omega(x_{n})]^{-1} \{ \sup_{0 < r < x_{n}/2} [\log(3x_{n}/r)] [\varphi(r^{-1})]^{-1} \} \int_{B(x,x_{n}/2)} \Phi_{1}(f(y)) \omega(y_{n}) dy$$

$$+ M_{5} x_{n}^{n-\delta}$$

$$\leq M_6[\tau'_2(x_n)]^{-1} \int_{B(x,x_n/2)} \Phi_1(f(y))\omega(y_n) \, dy + M_5 x_n^{n-\delta}.$$

Hence it follows that

 $\lim_{x \to \xi, x \in T_{\psi}(\xi, a)} [v_1(x) + v_2(x)] = 0$

for any $\xi \in \partial D - E$ and any a > 0. Now Theorem 13.7 is proved.

The case p > 1 is quite similar to Theorem 11.3. In fact we can prove

THEOREM 13.8. Assume that p > 1 and $(\omega 4)$ holds. Let ψ be a positive nondecreasing continuous function on $(0, \infty)$ satisfying $(\psi 1)$, and set

$$\begin{aligned} \kappa'_{4}(r) &= r \left(\int_{r}^{1} \left[t^{n-np+p} \eta(t) \right]^{-p'/p} t^{-1} dt \right)^{1/p'}, \\ \tau'_{4}(r) &= \inf_{r \le t \le 1} \left[\kappa'_{4}(t) \right]^{-p}, \\ h''(r) &= \tau'_{4}(\psi(r)) \end{aligned}$$

for $0 < r < 2^{-1}$. If f is a nonnegative measurable function on D satisfying (13.4) and (11.2), then there exists a set $E \subset \partial D$ such that $H_{h''}(E) = 0$ and

$$\lim_{x \to \xi, x \in T_{\psi}(\xi, a)} G_n f(x) = 0$$

for any $\xi \in \partial D - E$ and a > 0. If in addition $\tau'_4(0) > 0$, then

$$\lim_{x \to \xi, x \in D} G_n f(x) = 0$$

for any $\xi \in \partial D$.

REMARK 13.3. If $\omega(r) = r^{\beta}$ and $\beta > n(p-1)$, then

$$\tau'_4(r) \sim r^{n-np+\beta}\varphi(r^{-1}) \quad \text{as} \quad r \longrightarrow 0.$$

Here we may assume $n - np + \beta \le n - 1$, when we evaluate the size of the exceptional sets in the boundary ∂D . In the bordering case $\beta = np - 1$, ω

does not satisfy ($\omega 4$). In this case, however, by (13.4),

$$\lim_{r\to 0} r^{-1} \int_{D\cap B(\xi,r)} y_n f(y) \, dy = 0$$

for every $\xi \in \partial D - E$, where $H_1(E) = 0$. Hence the proofs of Theorems 13.7 and 11.3 show that $G_n f$ has nontangential limit zero at almost every boundary point of D.

Corresponding to Theorems 8.1 and 11.4, we also l

THEOREM 13.9. Let ω and ω^* be positive nondecreasing functions on the interval $(0, \infty)$ satisfying $(\omega 1)$, $(\omega 6)$ and, further,

$$\int_{0}^{r} \omega^{*}(s) s^{-1} ds \leq \omega(r) \quad for \ any \quad r > 0$$

Let ψ be as in Theorem 13.8, and define

$$h^{*}(r) = \tau_{2}^{*}(\psi(r)) \quad with \quad \tau_{2}^{*}(r) = \inf_{r \le t \le 1} \left\{ \omega^{*}(t) \inf_{0 < s < t} \left[\log(2t/s) \right]^{-1} \varphi(s^{-1}) \right\}$$

for 0 < r < 1. If f is a nonnegative measurable function on D satisfying conditions (13.4) and (13.6), then there exists a set E such that $H_{h^*}(E) = 0$ and

$$\lim_{r \to 0} G_n f(\xi(r)) = 0 \quad for \ any \quad \xi \in \partial D - E,$$

where $\xi(r) = \xi + \Psi(r)$ with $\Psi(r) = (r, \psi_2(r), ..., \psi_{n-1}(r), \psi(r))$.

References

- H. Aikawa, Tangential behavior of Green potentials and contractive properties of L^p-potentials, Tokyo J. Math. 12 (1986), 221-245.
- [2] M. Brelot, Élément de la théorie classique du potentiel, 4^e édition, Centre de documentation Universitaire, Paris, 1969.
- [3] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1955), 305-370.
- [4] S. J. Gardiner, Local growth properties of superharmonic functions, Arch. Math. 54 (1990), 52-60.
- [5] T. Kurokawa and Y. Mizuta, On the order at infinity of Riesz potentials, Hiroshima Math. J. 9 (1979), 533-545.
- [6] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255–292.
- [7] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
- [8] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
- [9] Y. Mizuta, On the existence of boundary values of Beppo Levi functions defined in the upper half space of \mathbb{R}^n , Hiroshima Math. J. 6 (1976), 61-72.

- [10] Y. Mizuta, On the limits of p-precise functions along lines parallel to the coordinate axes of Rⁿ, Hiroshima Math. J. 6 (1976), 353-357.
- [11] Y. Mizuta, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J. 8 (1978), 415-437.
- [12] Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J. 9 (1979), 717-745.
- [13] Y. Mizuta, Boundary limits of Green potentials of order α, Hiroshima Math. J. 11 (1981), 111-123.
- [14] Y. Mizuta, On the behavior of potentials near a hyperplane, Hiroshima Math. J. 13 (1983), 529-542.
- [15] Y. Mizuta, Study of the behavior of logarithmic potentials by means of logarithmically thin sets, Hiroshima Math. J. 14 (1984), 227-246.
- [16] Y. Mizuta, On the existence of limits along lines of Beppo Levi functions, Hiroshima Math. J. 16 (1986), 387-404.
- [17] Y. Mizuta, Boundary behavior of p-precise functions on a half space of Rⁿ, Hiroshima Math. J. 18 (1988), 73-94.
- [18] Y. Mizuta, Continuity properties of Riesz potentials and boundary limits of Beppo Levi functions, Math. Scand. 63 (1988), 238-260.
- [19] Y. Mizuta, Integral representations of Beppo Levi functions and the existence of limits at infinity, Hiroshima Math. J. 19 (1989), 259-279.
- [20] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. 116 (1982), 331-360.
- [21] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima University, 1973.
- [22] Yu. G. Reshetnyak, The concept of capacity in the theory of functions with generalized derivatives, Siberian Math. J. 10 (1969), 818-842.
- [23] P. J. Rippon, On the boundary behaviour of Green potentials, Proc. London Math. Soc. 38 (1979), 461–480.
- [24] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
- [25] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
- [26] H. Wallin, Continuous functions and potential theory, Ark. Mat. 5 (1963), 55-84.
- [27] J.-M. G. Wu, L^p-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J. 28 (1979), 895-911.
- [28] A. Zygmund, On a theorem of Marcinkiewiez concerning interpolation of operators, J. Math. Pures Appl. 35 (1956), 223-248.

Department of Mathematics Faculty of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 724, Japan