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Abstract. In this paper, applications of the fractional calculus to the form

(z -a)(z- b)φ2 + (C + Dz)φ1 + Eφ = / {z Φ a, z Φ b)

and the partial differential equation

δ2 u du d2 u du

- £ ( z - a)(z - b) + (C + Dz)-f + δ μ(z, t) = A-$ + B-f (z Φ a, z Φ b)
dz2 dz dt2 dt

are discussed.

§ 0. Introduction

Fractional calculus is a very useful and simple means in obtaining

particular solutions to certain non-homogeneous linear differential equations.

The solutions of linear ordinary differential equations of the Fuchs type

[ l ] - [ 7 ] , Gauss type [8, 9] and Laguerre's type [10] obtained by K. Nishimoto,

S. L. Kalla, H. M. Srivastava, S. Owa, and S. T. Tu, are but a few important

discoveries stemming from these researches. Now, we begin with the statement

of the following definition of the fractional calculus (fractional integrals and

fractional derivatives) given by Nishimoto 1976.

DEFINITION. If f(z) is a regular function and it has no branch point

inside C and on C(C = {C_, C+}, C_ is an integral curve along the cut joining

two points z and — oo + i Im(z), and C+ is an integral curve along the cut

joining two points z and oo + i Im(z)), D = {D_,D + }, D_ is a domain

surrounded by C_, D+ is a domain surrounded by C+,

/• f ί \ Γ(v + 1) f f(ζ) Λr (Γ\ Gamma function
Jv = cJv(z) = T~> Jf xVTT " C I _/ 1 Λ

z π i J c (ζ — z) \ v Φ — 1, — 2 , . . .
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/_„ = lim/v ( n = l , 2 , . . .)

where ζ φ z, - π < arg(ζ - z) < π for C_ and 0 < arg(ζ - z) < 2π for C+,
then /v (v > 0) is the fractional derivative of order v and fv (v < 0) is the
fractional integral of order |v|, if |/v | < oo. (Consider the principal value for
many valued function /.)

We call the function / = /(z) such that |/v | < oo in D as fractional
differintegrable functions by arbitrary order v and denote the set of them with
notation #'. We use

| / v | < o o < = ^ / e j r (in D).

In order to discuss the solutions of ordinary and partial differential
equations, we need the following lemmas [1].

LEMMA 1 (Linearity). Let U(z) and V(z) be analytic and one valued
functions. If Uv and Vv exist, then

(i) (α[/)v = αl/v,
(ii) (aU + bV)v = aUv + bVv

where a and b are constants and zeC, veR.

LEMMA 2 (Index Law). Let f(z) be an analytic and one valued function. If
(/„)„ and (fv)μ exist, then

where zeC, μ, veR and

(/Λ = (A.
Γ(μ + v + 1)

Γ(μ + l)Γ(v + 1)
< oo.

LEMMA 3 (Nishimoto 1979). Let U(z) and V(z) be analytic and one valued
functions. If Uv and Vv exist, then

(uvχ=
Γ(y

where veR and

Ό Γ(v-n+ \)Γ(n

Γ(v + 1)
< oo.

Γ(v - n + ί)Γ(n + 1)

LEMMA 4 (Nishimoto 1979). // \Γ(v - a)/Γ(- a)\ < oo, then

. i i t v f ( v - α )
Z v " e Γ(-a) Z '

where v w α reα/ number and zeC.



Fractional calculus 65

LEMMA 5. (ea% = avea\ a φ 0, zeQ veR.

§ 1. Main Theorem

With the help of above Lemmas, we have the following main results of

this paper.

THEOREM 1. If fetF and / α _ i Φ 0, then the nonhomogeneous second order

differentil equations

(1.1) (z - a)(z - b)φ2 + (C + Dz)φ1 + Eφ = f (z Φ a, z Φ b)

has a particular solution of the form

(1.2)

φ - ((/-«_i[(z - β)(z - b)]- ( α + 2)(z - aYc+aD)/{a-b)(z - fe

. [(Z _ α ) ( z _ fo)]1 + α ( z - ayiC+aD)/{a-b)(z - bYc+bD^a-\

for a Φ b

and

(1.3) φ = ( ( / . . . ^ Z - fl)"(2« + *-I»β-(C + βD)/U--))-i . (Z _ Λ)2« + 2-D^C + αD)/(z-β))β

/or α = b.

Here a,b,C,D and E are constants, φ = φ(z)9 f = f(z) is known and

a = ( D - 3 ^ (

2

D - " 2 - 4 £

 With (D - If * AE.

PROOF. For a Φ b, we choose suitable α such that

(1.4) (α+ l ) ( Z ) - α - 2 ) = £

or

(1.5)
a

with (D - I) 2 > 4£, and let φ = Wa9 we have

(1.6) Φ.i = « ί + i , <P2 = Wa + 2-

Substituting (1.6) into (1.1), (1.1) becomes

(1.7) (z - a)(z - b)Wa + 2 + (C + Dz)Wα+1 + (« + 1)(D - * - 2)WΛ = f.

It follows from Lemma 3 that
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(1.8) (»i(z

= V Γ ( g + 2 ) Wa+2-k((z - a)(z - b))k

%Γ(ak + 2)Γ(k+l) *+2

= WΛ + 1{z - a)(z - b) + (α 4- l)(2z - a - b)Wa + 1 + α(α + l)Wί

= (2α + 2 - D)zWa+1 + (2α + 2 - Z))(α + l)Wi

and

(1.10) ([C + (α + ft)(α+ l)]WOβ + i = [C + (α + 6)(α+ l)]Wς + 1.

Therefore, with the aid of (1.8), (1.9) and (1.10), (1.7) gives

(1.11)

(Wi(z-α)(z-6) ) β + 1 - ( 2 α + 2-D)(W£)α + 1 + [C + (α + ί>)(α+ 1)]»J+ 1

= (z - α)(z - ί?)l̂ α + 2 + (C 4- Dz)Wa+ί + [α(α + 1) - (2α + 2 - D)(α + 1)]HJ

= /

That is, (»;(z - a)(z - b) - [(2α + 2 - D)z - (C + (a + &)(α + 1))] W)Λ+1 = / .
This is equivalent to

(z-β)(z-6) ι(z-β)(z-6)

Let

(1.13)

= _ Γ(
J

ί , C + αDΊ, , , Γ , C + bD~\t 1

(1 + α ) - — — — l o g ( z - β ) + ( l + α ) + — — log(z-6)j-.

Then (1.12) is equivalent to

(1.14) (W J*\ = / - ^ *

(1.15)

" - - '(z-β)(z-6)

Thus we have

1
i
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Therefore, a particular solution φ of (1.1) is given by

(1.16)

= ((/..-xCίz - β)(z - fc)]-(a+2)(z - α) ( C + ' l D ) / (

[(z - β)(z - *>)]"+1(z - α)-< c + o D ) / ( α- | ' )(z -

where α is given in (1.5). Conversely, if (1.16) holds true. From (1.13) and

(1.15) we have

= P ( z ) (2α + 2
e (z-a)(z-b)

and

= f , L + [ f
J-tt-X {z-a)(z-b)

(2α + 2 - D)z -{C + (a + b)(a + 1))

' (z - β)(z - t) "

Then, substituting (1.15) and (1.16) into the left hand side (L.H.S.) of (1.1),

we obtain

L.H.S. of (1.1) = (Wt(z - a)(z - b)).+1 - (2α + 2 - D)(Wz).+i

+ [C + (α + fe)(α+l)]^+1

= (WJ(z - α)(z - ft) - [{(2α + 2 - D)z

= 1 /-.-!+ I /-.-I *
(z-a){z-b)

• e-pω((2a + 2 - D)z - [C + (α + 6)(α + 1)])

- ((2α + 2 - Z))z - [C + (a + b)(a

cP(z)
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Next, we consider the case a = b. For a = ί>, (1.1) becomes

(1.17) (z-a)2φ2 + (C + Dz)φί + Eφ = f (z Φ a).

Define α and φ as in (1.4) and (1.6) respectively, and do the same way
as (1.7), (1.8), (1.9) and (1.10). Then (1.17) gives

(1.18) (»i(z - a)\+ί - (((2α + 2 - D)z - [C + 2α(α + l)])«Oβ +i = /

that is,

.. ._. τ x 7 (2α + 2 — D)z — [C + 2α(α + 1)] τT7 1
(1.19) Ŵ  W = / _ α _ i -j.

Letting

Λ / , f (2α + 2 — D)z — (C + 2α(α +
β(z) = - -2

J (z- a)2

= - (2α + 2 - D)log (z - a) -
z — α

we get

(1.20) eQiz) = (Z - fl)-(2« + 2-D)e-(C + αD)/(z-β

From (1.19), we have

(1.21) V eQ(z))i = / ^V e ) i / - α - i ^
(z - α)

Thus (1.21) has a solution of the form

(1.22) w
(z-a)2

Therefore, a solution φ of (1.17) is given by

(1.23)

1
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= ((/_,_ X(Z - fl)-(2« + *-B)β-(C + l»/(«-.))_1(z _ fl)W2-ί£(C

Conversely, if (1.23) holds true, from (1.20) and (1.22) we have

\e-<to\ = «-«*>(- ρ(z))!

= e - Q ( z ) (2« + 2 - D)z - (C + 2a(« + 1))

and ^~a?

_Q(,,(2α + 2 - D)z - (C + 2α(α + 1))

Substituting (1.23) into L.H.S. of (1.17), we obtain

L.H.S. of (1.17) = (z-α) 2 W α + 2 + (C + Dz)Wa+1 + EWa

+ [α(α + 1) - (2α + 2 - D)(α + 1)] W,

= (Wi(z - α)2 - ((lot + 2-D)z-C- 2α(α

• e- β ( z ) [(2α + 2 - D)z - (C + 2a(a + 1))]

- ((2α + 2 - D)z - C - 2α(α + 1))

1

 co
(z - a)2 /_ ! / α + 1

This completes the proof of Theorem 1.

THEOREM 2. The homogeneous second order linear ordinary differential
equation

(1.24) (z-a)(z-b)φ2 + (C + Dz)φί + Eφ = 0 (zφa,zφb)

has solutions of the form

(1.25) φ = M(((z - d)(z - b))ι+*(z - β ) H c + B>« -»(z - bfc+bD)n"-b

for aφb
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and

(1.26) φ = M((z - a)2a + 2-DeiC+aD)l{z-a\ for a = 6,

where α, b, C, D and E are constants, M is an arbitrary integral constant,

φ = φ(z),

a w ( α

with (D - I)2 > 4E.

PROOF. For a Φ b, define α and φ as in (1.4) and (1.6) respectively. Then

(1.24) becomes

(1.28)

(z - a)(z - b)Wa+2 + (C + Dz)Wa+1 + [α(α 4- 1) - (2α + 2 - D)(α + 1)] Wa = 0.

It follows from (1.8), (1.9) and (1.10) that

(Wx(z - a)(z - b))a + 1 - (2α + 2 - D)(Wz)a+1 + (C + (α + 6)(α + l ) )»ί + 1 = 0

that is

(1.29) (2« + 2 P ) * C ( q + fc)(g + l)

( z α ) ( z i )

A solution of the differential equation (1.29) is given by

(1.30) W= Me-p™

where P(z) is defined as (1.13) and M is an arbitrary integral constant.
Therefore,

(1.31) φ = Wa = (Me-p<%

= M(((Z- ά)(z - b))i+X • (Z - α )-(C + <.D)/<α-»)(z _

Conversely, substituting (1.31) into L.H.S. of (1.24), we have

L.H.S. of (1.24) = [W^z - a)(z - b))a+ι - (2« + 2 - D)(Wz)x+1

D) _ _

- [(2α + 2 - D)z - (C + (α + «.)(« + 1)]
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Finally, for a = b, the proof of (1.26) is similar to the proof of (1.25).

With the help of Theorem 1 and Theorem 2, we have

THEOREM 3. If fe& and f-a-x φO then the fractional differ integrated

functions

(1.32)

φ = ((/-«-!((* - a)(z - 6 ) Γ ( β + 2 ) ( * - a)(C+aD)l{

. ( ( z __ fl)(z _ ft))«+l(z _ α)-<C + αD)/(«-»(z _

+ M([(z - a)(z - b)Y+1(z - ay^aD^

satisfies (1.1) for aφb. And

(1.33)
φ = ( ( / - α - l ( z - fl)-(2α + 4 - D ) e - ( C + α D ) / ( Z - α ) ) i ( 2 _ a)2* + 2 - D JC + aD), (z - a)^

+ M((z - a)2a + 2-DeiC+aD)li2-aX

satisfies (1.17). Here φ = φ(z), a, br C, D and E are constants, α is defined as

(1.5), and M is an arbitrary integral constant.

If we take a= -b = k, C = 0, Z>=1 and £ = - P 2 in Theorem 1, then

(1.1) becomes Chebyshev's equation of order P and we have the following

corollary.

COROLLARY (Theorem 1 in [13]). If fz3F and / _ F / 0 , then the

generalized second-order nonhomogeneous Chebyshev's equation of order P

(1.34) (z2 - k2)φ2 + zΨl - P2φ = / (z ̂  fc, z ^ ~ /c)

Λίw α particular solution of the form

φ = ((/_P(Z2 - fcV*2"*1"2)-!^ - kψp-»l\-u

where P and k are constants and PeR.

PROOF. Take α = P - 1 in (1.2).

§ 2. Examples

EXAMPLE 1. The nonhomogeneous second order differential equation

(2.1) (z2 - z)φ2 - Izφ, + 2φ = (z - I) 3 (z # 0, z * 1)

has a particular solution of the form
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(2.2) φ = ^ ( z - l ) 3 .

If we set a = C = 0, b = l,..D = .-.2, £ = 2, and / = (z - I)3 in Theorem 1,
we obtain α = - 2 o r α = - 3 . Here we take α = — 2 then by (1.2), we have

Ψ = ( W - l ) ' 2 )- i ^ ) = (3(z - 1))_2 =
 X-{z - I)3.

EXAMPLE 2. The nonhomogeneous second order differential equation

(2.3)

^

has a particular solution of the form

(2.4) φ = (z-
3'2)1

Ifwesetα = 0, b = 2, C= - 2, D = 5/2, E = ΐ/2 a n d / = ( ( ^ ^ j z1'2

in Theorem 1, we obtain α = 0 or α = — 1/2. Here, we take α = — 1/2, then
by (1.2), we have

Indeed, φ = i * v v z^1 satisfies (2.3). Since

_2 Γ(l) _3

φ = 2 1 z
Γ(l)

= 21 z
3/2)

Γ(3/2) Ψ 2 Γ(3/2)

substituting into the left hand side (L.H.S.) of (2.3) we obtain

L.H.S. of (2.3) = iJ^L(2z~1 - 4z~2 - - z " 1 + 2z" 2 + -
Γ(3/2)\ 2 2

Γ(3/2)

and

1/2 Γ(3/2)'
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REMARK 1. Taking a = b = 0, C = 0, D = 2v - k, and E = v(v - 1 - k)

in Theorem 2, we obtain α = v — 1. And the result coincides with Theorem

1 by Nishimoto ([1, vol II, p. 28]).

REMARK 2. By taking a = 0, b = 1, C = y - 1, D = γ and £ = fc(y - k - 1)

in Theorem 1, the equation (1.1) becomes hypergeometric differential equation

and we obtain α = k — 1, this result coincides with Theorem 1 by Nishimoto

([1, vol II, p. 73]).

REMARK 3. By taking a = 1, b = - 1, C = 0, D = 2, and £ = - v(v + 1)

in Theorem 1, the equation (1.1) becomes Legendre equation of order v and

we obtain α = v, this result coincides with Theorem 1 by Nishimoto ([1, vol

II, p. 88] or [11]).

REMARK 4. Taking a = 1, b = - 1, C = - k, D = 2v and E = v(v - 1) in

Theorem 1, we obtain α = v — 1, this result coincides with Theorem 1 by

Nishimoto ([1, vol II, p. 99]).

REMARK 5. Taking a = 0, b = 1, C = - v - 1, D = 2v and E = v(v - 1)

in Theorem 1, and we obtain α = v — 1, this result coincides with Theorem

1 by Nishimoto ([5]).

REMARK 6. Taking α = 0, & = 1, C = - v + l, D = 2v and E = v(v - 1)

in Theorem 1, and we obtain α = v — 1, this result coincides with Theorem

1 by Nishimoto ([12]).

REMARK 7. Taking a = 0, b = v, C = - v2 + v, D = 2v and £ = v(v - 1)

in Theorem 1, and we obtain α = v — 2, this result coincides with Theorem

1 by Nishimoto ([1, vol II, p. 110]).

§3. Partial Differential Equation

THEOREM 4. A partial differential equation of the second order

(3.1) d-^(z - a)(z - b) + (C + D z ) ^ + δ μ(z, t) = A ^ + B^
dz2 : δz <3t2 δί

(z 7* a, z Φ b, a φ b)

has solutions of the form

(3.2)

μ(z, ί) = M(l(z - a)(z - b)Y+\z - fl)-<c+«D)/(--»(z _

•exp| ^ v 't\ for ABΦO;
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(3.3)

μ(z, t) = M(l(z - a)(z - fc)]α+1 (z - α)-<c+<"»/<*-» . ( z -

[ (δ - E\1/2 Ί
± ( t\ for AφO and β =

\ A 1 J
and

(3.4)

μ(z, t) = M(ί(z - a)(z - b)Y+1 (z - β)-(c+.W(.-»). (2 _

• exp ( ί I for A = 0 and B

where α, ft, C, D and δ are given constants, E = (α -f 1)(D — α — 2)

(D — I) 2 > 4£, and M is an arbitrary constant.

PROOF. Let μ(z, r) = φ(z)eλt {λ Φ 0) be a solution of (3.1). Since

— = φλeλt, — - = φλ2eλt,

dz2

(3.1) becomes

(3.5) φ2(z - a)(z - b) + φι{C + Dz) + φ(δ - Aλ2 -

Here we choose / as δ — Aλ2 — Bλ = E, that is,

(3.6)
2A

δ-E
(3.7) λ = for Λ = 0 and BφO

B

/δ — E\ί/2

(3.8) λ = ± ί J for A # 0 and B = 0.

Then (3.5) becomes

φ2(z — a)(z — b) 4- <Pi(C 4- Dz) + £<p = 0, (z φ a, z φ b, a φ b).

By Theorem 2, a solution is given by

φ = M([(z - α)(z - fc)]α + 1(z - a)-(c+«W(--« . ( z _ ^ ( c + ^ / ί α - ^

for α Φ b.
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Thus, for AB Φ 0, the partial differential equation (3.1) has a solution of the

form (3.2). Moreover, for B = 0 and A φ 0, a solution of (3.1) is given by

(3.3) and for B Φ 0 and A = 0, (3.1) has a solution (3.4).

Conversely, for AB Φ 0, we shall show that (3.2) satisfies (3.1). Let

M([(z - a)(z - b )] α + 1 (z - ay
iC+aD)l(a'b) (z - &)<c+*ι»/< -»)β = φ(z)

and

- B ± y g 2 + 4A(δ ~E)_
2/4

Then (3.2) becomes

μ(z, t) = <p(z)eΛr.

Since

δμ δ μ

dz δz2

dt ' 3ί2

the left hand side of (3.1) = eλt[φ2(z - a)(z - b) + (C + Dz)φί + <5<p]

= eλί(<5 - £)φ (by Theorem 2)

= ^V^Λ2 +

The proofs of (3.3) and (3.4) are obvious.

Similarly, we can easily deduce the following result.

THEOREM 5. A partial differential equation of the second order

d-^(z - a)2 + (C + Όz)% + δ μ(z9 ή - A ^ + B^ (z Φ a)
dz2 dz dt2 dt

has solutions of the form

) 2 * + 2 ~ D

 e'
c+aD^-\ exp^ B± y/B+ 4A(δ - E)μ(z9 t) = M((z - a)2*+2~D

 e'
c+aD^-\ exp^ B± y/B+ 4A(δ E)

for ABΦO;
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/ _ F \ 1 / 2

μfe t) = 2 + 2 B / + ^ Λ ί ί ̂  j
for A φO and B = 0;

and

μ(z, t) = M((z - a)2*+2~D

for A = 0 and Bφ 0,

where α, C, D and δ are given constants, £ = (α + 1)(D — α — 2) with

(D — I) 2 > 4E and M is an arbitrary constant.

REMARK 8. By taking a = - b = X, C = 0, D = 2, <5 = 1 and £ =

— α(α + 1) in Theorem 4 and Theorem 5, the equation (3.1) becomes Legendre's

differential equation of Fuchs type and the results coincide with the main

theorem by Nishimoto, Tu and Wu ([14]).

EXAMPLE 3 [14]. A solution of the partial differential equation of Fuchs

type

is given by

μ{z, i) = 4(3z 2

Letting a = 1, b = - 1, C = 0, D = 2, <5 = 1, α = 2, A = 2 and B=\ in

Theorem 4, by (3.2) we obtain the solution directly

μ(z, t) = M{{z2 - l)*
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