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1. Introduction

In this paper we study the admissibility of some tests, multiple decision
procedures and classification procedures. In general, two methods are mainly
used in multivariate analysis to show the admissibility of various procedures.
One is to use Bayes procedures. The other is to use the structure of the
exponential family. The former method has been used in Kiefer and Schwartz
[16], Nishida [19], [20], [21], [22], [24]. The latter method has been seen
in Ghosh [13], Birnbaum [9], Stein [33], Schwartz [29], Anderson and
Takemura [5], etc. In this paper we use the former method. All the problems
are studied for 0-1 loss function.

In Section 3, we consider testing problems related to a given structure
of means (For testing a given structure of means, see, e.g., Rao [27], Mardia
et al. [18], Siotani et al. [31]). Nishida [24] obtained a class of admissible
tests for the combined problem of a given structure of means and £ =%,. In
this section two testing problems are considered. One is to test the combined
hypothesis of a given structure of means and the sphericity covariance
structure. The other is to test a given structure of means under the sphericity
covariance structure. The admissibility of the likelihood ratio test (LRT) is
shown for each problem.

Testing problems for covariance matrices are studied in Section 4. As
for testing independence of sets of variates, Kiefer and Schwartz [16] derived
a class of admissible tests. They also treated the problem of testing equality
of covariance matrices for k samples case. One sample case (that is, the
problem that ¥ = X,) was studied by Nishida [19]. Each work obtained a
class of admissible tests which contains the LRT. In this section we consider
one sided tests for one and two samples cases. Linear structure for the inverse
matrix of a covariance matrix is also considered. A class of admissible tests
is obtained for each problem.

In Section 5, the admissibility of multiple decision procedures for
covariance matrices is studied. Multiple decision problems or ranking
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problems on means of normal populations have been studied in many
literature. For example, see Bechhofer [6], Bechhofer et al. [7], Dunnett
[11], Paulson [26] and Seal [30]. The same problems for variances of normal
populations have been studied by Bechhofer and Sobel [8], Eaton [12], Hall
[14] and other authors. However, these problems are not sufficiently studied
for multivariate case. In this section, first we consider a multiple decision
problem for covariance matrices in two samples case. Secondly, the three
samples case is studied. Various types of problems are considered in the three
samples case. A theorem which gives a class of admissible procedures and
its corollaries are derived for each problem.

The classification problem with unequal covariance matrices is studied in
Section 6. Admissible classification rules were given by Kiefer and Schwartz
[16], Nishida [19], [21] and [22] under various situations. In this section
we derive three maximum likelihood (ML) classification rules for the unequal
covariance matrices case. The rules are extensions of the ones in Kanazawa
[15]. It is shown that two of them are admissible. Further, the limiting
distributions of the three rules are also studied. As a result, it becomes clear
that they have the same limiting distribution whose expectation is related to
the Kullback-Leibler information (cf. Theorem 6.4). A class of admissible
classification rules which have the same limiting distribution as stated above
is also given. Finally, numerical simulations are carried out to examine some

properties of the three rules.

2. Notations and preliminary lemmas

It is known (Kiefer and Schwartz [16]) that an admissible Bayes critical
region (for 0-1 loss function) is of the form

2.1 {Xﬁff(X;6’)“1(49)/ff(X;B)Hodﬁ)ZC},

for some positive constant ¢, where X is the matrix of total random sample,
0 is the vector of parameters, f(X; 6) is the p.d.f. of X given 6, and I, and
IT, are the probability measures over the null parameter space H, and the
alternative parameter space H,, respectively. Here, it is assumed that the
distribution of X is continuous type. We identify the hypothesis and the
corresponding parameter space. Since ¢ is arbitrary in (2.1) we only require
for TI, and II, to be finite instead of IT(Q2) =1, where IT =II, + IT, and
Q=H,+ H,. By the same reason, we often omit constant multiples in
calculating Bayes rules (see [16]). The density of variables is always described
by f, even if variables and /or parameters are changed. For example, we use
the notations f(X; 6), f(Y, Z; u, ) and so on.
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For a multiple decision problem with three or more decisions, it is easily
seen that the Bayes rule is given as follows: Let the total parameter space
Q be devided to a disjoint union of H,, H,,...,H, and II; denote a finite
measure over H; (i=1,2,...,k). Then the Bayes rule is given by

22)  choose H; if ¢ J f(X; 0)T1,(d6) = max c, J f(X; 0)(X; 0)T1,(d0),

where ¢;’s are any constants and maximum is taken for i=1,2,---k.

Next, we state a lemma which is given in [16] and is useful for obtaining
Bayes rules. Under H,, let X = (Y, U) be a random matrix whose columns
are independently distributed as N,(-, X). Also assume X is unknown and
EU = v(p x 1) (unknown). Let 8* be the parameter of Y and 6 that of X, i.e.,
6 = (6*,v). Let HF be the domain of 6* under H;, and consider the case
where the domain of v is E? and

2.3) H,=H¥ x E? (i=0,1).
Of course, (2.3) means that
(2.4) feH,; if and only if 0*e H¥.

Let H* be a subset of H¥ for which X can be written as X = (C, + D))",
where C, is a given positive definite matrix and D; is a positive semidefinite
matrix. Further, consider a finite measure IT¥ on H}* which assigns a whole
measure to H¥*. Then, the following lemma due to Kiefer and Schwartz

[16] holds:

LemMMA 1. There exist finite measures 11, and I1, over H, and H,,
respectively, which satisfy

2.5)
ff(X; 9)ﬂ1(d9)/ff(X; OI1,(d6) = Jf(Y; 0*) I} (d6*)/ ff(Y; O*)I1E(d 6%).

Using this lemma, we can treat the problem without U and hence v. Since
this lemma is proved by showing that it is possible to construct IT; from ITf
which satisfy (for some positive constant d;)

(2.6) ff(X; O)I1;(d6) = d; - etr {— CoUU'/2} - ff(Y; O IFdo) (i=1,2),

we can generalize the lemma for the procedure (2.2). So, it is possible to
eliminate U and v in such a case.

The following two lemmas which are useful for the integrability of prior
densities were also given in [16].
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LEMMA 2. Let n be a p x q matrix. Then
2.7 J [, +nn'| "2 dn <
EP4

if and only if h>p+q—1.

LeMMA 3. Letnbeap x qmatrix withq>p. If p—1<qg+t<h—p+1
and t> — 1, then

(2.8) J I’ |21, + ny'| ™" * dn < o0.
Epraq

The following lemma is also used for the integrability of densities,
especially in multiple decision problems. The result was given in [23], but
it is necessary to correct its proof. So, we give a complete proof.

LemMa 4. Let n=ny,....N), where n; is a p X q; matrix with q; > p
(i=1..,k. If

(2.9) p—l<q +t;<h(i=1L..k—=1),p—1<q+t,<h—p+1
and t;> —1 (i=1,...,k),

then
(2.10) f [TE o Unani 192 11, + X5 gm0 %) dy < o,
EPa

where q = z:‘zl q;.

Proor. The proof is given only for k =2, but it is easy to extend the
proof to the case k > 3.

Using the transformation n% = (I, 4+ n,7})
be calculated as follows.

~1/2y,, the integral in (2.10) can

Jlmnil“’zinzn’zl'z’zll,, + nany TR, + g+ gl T2 dy

(2.11) = fll,, +nyn | T BRI (L, + nyny) T | T
Sy nany |2 dn

= JII,, + oy | TR g g 202 dy

: JII;, + 0303 |72 ngnd |2 dn.
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Here, integrals are carried out over Euclidean spaces. The integrals in the
last line of (2.11) are integrable under the condition that

(2.12) p—1<q +t;<hi+h,—t,—q,—p+1,
p—1<gy+t,<hy—p+1, t;>—1and t,> -1

Since h, —t, — g, —p + 1 >0 from the second inequality, the first inequality
in (2.12) is valid when

(2.13) p—1<gq, +1t, <h.

In Lemma 4 with k =2, (2.10) holds if (2.12) is satisfied. However, (2.9)
is rather convenient for use, because the condition for g, + t; does not contain
g, and t,. The same argument holds for k > 3.

In calculating Bayes rules, integrations are usually carried out over
Euclidean spaces or the space of whole positive definite matrices, and it is
always neglected to state the spaces explicitly.

3. Admissibility of the LRT for a given structure of means
3.1. A given structure of means with the sphericity covariance structure

Let X, X,,...,Xy be a random sample from N,(u, ). Consider the two
problems of testing

(3.1 Hy: Hu= ¢, and T = ¢°%, against H,: not H,,
and
(3.2) Hy: Hu = ¢, against H,: not H,

under the assumption £ = ¢2X,. Here, H(q x p) and &y(q x 1) are prespecified
matrix and vector, respectively. It is assumed that rank (H) = g < p, Z,(p X p)
is a given positive definite matrix, and ¢* is an unknown positive number. It
is also assumed that p>2 and N — 1 > p.

These problems are regarded as the ones obtained by combining a given
structure problem with the sphericity problem. For the sphericity problem,
see, €.g., Anderson [3]. The problems considered in this section are slightly
different from the one which was treated in Nishida [24]. The problem dealt
there was

(3.3) H,: Hu=¢, and X =X, against H,: not H,,

and a class of admissible tests which include the LRT was obtained.
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Admissibility of the LRT’s is derived for (3.1) and (3.2) in the following
subsections.
Now, let us summarize the maximum likelihood estimators (MLE’s) under

— 1 — —

H, in (3.1) or (3.2). Letting X = N YY X;and S=Y N (X, - X)(X; - X,
then

N 1 N _ _
(34) logL(p, %)= — Elog |127Z| — EtrZ“S —3 trE NX — (X —w,
where L(u, X) is the likelihood function. Under H,, log L(y, Z) is maximized
by
(3.5) u* =X —TH'(HZH)"Y(HX — &,)

for any fixed Z (This is shown by the calculations similar to the ones in
p.106-107 of [18]). Hence

(3.6) f=X—ZoH (HEZ H) ' (HX — &)

is the MLE of u under H,, which coincides with the MLE under the hypothesis
Hu=¢, and Z =%,. Since

(3.7)
N
max log L(u,Z) = — 5<p -log 6% + log |27Z,|

ueHo
1 1 -1 Y / n—1 v
+ - Ntfzo S+ (HX — o) (HZoH')" "(HX — &o) ¢ )
g
the MLE of ¢? is given by
1 _ _
(3.8) 6% = —~ {tr=5'S + N(HX — &o) (HE H') "' (HX — &,)}.
P

3.2. Admissibility of the LRT for (3.1)

The problem (3.1) can be reduced to the following form: Let
Z,,Z,,...,Zy be a random sample from N,(v, ). Our problem is to test

(3.9) Hy: v,y =-+-=v,=0 and @ = ¢*I against H,: not H,
p 0

where V' = (vy,...,v,) and r =p —gq. Let
=1y _ _
(310) Z=_N“Zi=1zi=(zla--~szp)

and
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(3.11) A=YY (Z,-2)zZ, - ZY,
then the following theorem holds for (3.1).
THEOREM 3.1. If n= N — 1> p, a test with the critical region
(3.12) {trA+ NYP_ . ZHP2/|A1M? > ¢
is admissible Bayes for any c, and is the LRT.
Proor. Under H,, set

(3.13) (@) t=1+2 _
v, = 17;/(1 + 13 i=1,..,r),

and consider

oo angao= S0 (< Vo 2 1y )

(1+12)”N/2. 2 1 + 2

as a prior distribution on H,. By the reason stated in preliminaries, constant
multiples are usually omitted hereafter in calculating Bayes rules (except
Subsection 6.1). Denote the sample matrix by Z. Then

1 1 _
Jf(Z;v, di)dl'[(,:JW'etr(—zdi 1{A—kN(Z—v)(Z—v)})dl'I0

= f|r|"'1etr <— %(1 + 1) {4+ NZ-W(Z - v)’})

N 72
cexpl{ — =<1 — —— Y7 92 )dy,---dy,dt
p( 2{ 1+12}Zl_1v> P1ody

(3.15) . .
= etr{— E(A + NZ_Z_’)HMI"1 etr {— 5rz(A + NZZ’)}
N = Ty}
'e - '-‘_ _2 iZi+ :
Xp< 22'-1{ i 1+12}>
N 2 .
CXp(——E{l—m}ZFly?)d})ldy,d‘r
Since
2o (T oe( -3 - )
e ——<=2m,Z; + : e — {1 = ——— 592 |dy,
jXp( 2{ AT T )P T 1+ ) )%
(3.16)
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for any i, (3.15) reduces to

etr {— (A+NZZ)/2}I|I|” Yexp(—{tr A+ NY.?_ . Z}}1*/2)dt
3.17)
=etr{—%(A+NZ_Z} {trA+ N)Y"_ r+lZi2}_p/2'

Under H,, we transform Z =(Z,,...,Zy) by a suitable orthogonal matrix
T(N x N) so that V,,, =/NZ in ZT=V=¥,...,,, ;). Then, the
columns of V are independently distributed as N,(-, @) with EV, =0 for
i=1,...,n. Since the domain of EV,,, is E?, we apply Lemma 1 in Nishida
[20] for ¥,,, with vy =0 in calculating the Bayes rule. Set

(3.18) o= I,+nn with n(p x 1)
and
(3.19) dH;"/dn:II,,+nn’|“"/2.

Then we have

ff(Z; v, ®)dIl, = etr(— —NZZ) ff(V* D)dIT¥
(3.20) = etr(— %NZZ’) . Jetr {— E(I” + rm’)A}dn

1
—etr{ (A + NZZ)}- | 4|12,
v

where V* = (V,,..., V). Therefore, the procedure

Jf(Z; v, P)dIl,

(3.21) ={trA+NY?_ . Z}P2/|AI"* > ¢

Jf(Z; v, @)dIl,

is admissible Bayes. The prior density (3.19) is shown to be integrable by
Lemma 2. Further, it is easily seen that the procedure is the LRT.
We can write (3.12) in the terms of original variables as follows:
(322) {trZy'S+ N(HX — &) (HEZ H') Y (HX — &0)}7% /1251 S|V2 > c.
REMARK 3.1. In the special case g = p(r = 0), (3.1) becomes to

(3.23) Hy: u= o and X = ¢*1 against H,: not H,.
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This is considered as the combined problem of u = p, and the sphericity
structure.

3.3. Admissibility of the LRT for (3.2)

By the same notations as in the previous subsection, the testing problem
(3-2) can be reduced as follows: Let Z,, Z,,...,Zy be a random sample from
N,(v, 6®I). Then we want to test

(3.24) Hy:v,py =--=v,=0 against H,: not H,.

Since X = azlp under both H, and H,, this problem can be considered as
the one of testing a linear hypotesis in univariate linear model. Therefore
the admissibility of the LRT is already known. However, we give another
derivation based on Bayes approach.

THEOREM 3.2. If O<a <pn—p+ 1, a test with the critical region
(3.25) {trA+ NY?  ZHP/(tr A > ¢

is admissible Bayes for any c.

Proor. Under H,, we use the same prior distribution as used in the
proof of Theorem 3.1. Under H,, we consider the same transformation as

in the previous subsection and apply Lemma 1 in [20] for \/ﬁ Z with setting
vo = 0. Further, set

(3.26) (@)t =1+12,
(327) dITf /de = [<]*7 (1 + 72) 72,

This density is integrable. For this prior distribution, we have
1
jf(Z; v, 0%)dIl, = etr (— ENZZI> : Jf(V*; c?)dIT*
1 ==, 1 1 )
(3.28) =etr{ — 5(A + NZZ')y- | |t|*" "exp< — E(tr Ayt rdr
1 .
= etr {— 5(A + NZZ’)} < (tr A4)7%/2,

Combining this with (3.17), we obtain the Bayes critical region

(3.29) {tr A+ NYP_  Z2}P72/(tr A% > ¢,

i=r+1

which is equivalent to (3.25).
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If we set o = p in (3.25), the following corollary is obtained.

COROLLARY 3.2.1. For any c, a test with the critical region
(3.30) {trA+NY?_ . Z}/tr4)>c
is admissible Bayes, and is the LRT.

In the terms of original variables, (3.30) can be expressed as
(3.31) {tr2g'S + N(HX — &Y (HEQH) Y (HX — &)} /trZ51S > c.

REMARK 3.2. In the case q = p, (3.24) is considered as the problem of
testing 4 = po under X = ¢?1, that is

(3.32) Hy: p = p, against H,: not H, with the assumption X = ¢2I.
ReMARK 3.3. Relating to (3.23) and (3.32), we recollect the problem
(3.33) H,: X = 0% against H,: not H, with the assumption u = u,,

which is the sphericity problem in the known mean vector case. We note
that the admissibility of the LRT for (3.33) is easily obtained by the following

prior distribution.
Under H,, set

(3:34) () '=1+1* and dI,/dt =t/ '(1 + t?)~"V/2,
Under H,, set
(3.35) L t'=1,+nn and dIl,/dn=|I,+ ny'|”N?,

where 7 is a p x 1 vector. The admissibility of the LRT for the sphericity
problem with unknown mean vector was obtained in Kiefer and Schwartz [16].

4. Tests for covariance matrices
4.1. One sided test for one sample case

Suppose X(p x N) = (X4,...,Xy) be a random sample from N ,(u, £). We
consider the problem of testing

“4.1) Hy:X=3%, against H,:X <X,

Here, X, is a given positive definite matrix and £ < £, means that £, — Z is
a positive definite matrix.

For the problem with the two sided alternative X # X,, Nishida [19]
obtained a class of admissible tests which includes the LRT and the modified
LRT.
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Let
_ 1 _ _
4.2) X = NZfilXu S=Y" (X, - X)(X,— X).

Then we have the following theorem for (4.1).

THEOREM 4.1. If p—1<r<n—p+ 1 and B is a given positive definite
matrix which satisfies B> Xy, then a test with the critical region

4.3) etr {(B—Z51)S}-|SI <c

is admissible Bayes for any c. Here, B >X;' means that B — X" is positive
semidefinite.

Proor. At first, let us transfom X by an orthogonal matrix T(N X N)

such that XT = (Y;,...,Y,, ./NX). Here, n=N — 1 and the columns of X T
have the same covariance matrix X. Further, we have EY;=0 for
i=1,...,n. Putting the whole mass to ¥ in (4.4) as a prior distribution for

1
Y, we apply Lemma 1. It is taken (e.g) C, = 525 Lin (2.6).

Choose t and integer g such that g>p, t> —1 and r=q + ¢t Then
there exist such g and ¢t if p— 1 <r. Under H,, set

(4.4) 2 '=B+y,
where n(p x q) and
4.5) ATt} (n)/dn = [nn'|"?|B + nn'| "2,

By Lemma 3, this density is integrable under the conditions of the
theorem. We have

1
J|Z|_"’2etr {— EZ‘IS}dH‘{‘(n)

1 1
(4.6) = etr{— EBS} . jlrm’l”2 etr{— 51111’8} dn
1 —(t+q)/2 r(t/2 1 ’
=etr{ — 5BS -S| (t+q)/2 |’7*"l* It/ etr{ — 5,,,*,7* d’7*,

where #* = S'/25. Since the integral of the last line of (4.6) is constant, we
obtain the statistic

1
@4.7) etr{— EBS}-|S|“'+‘“/2.
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Consequently

Jf(X; 0)d1'I1(9)/ff(X; O)ari,\o)
(4.8) = jf(Y; 2)dII¥ (n)/etr {— %EE‘S}

1
= etr {— E(B - Eo‘l)s} S|t 2 5

is admissible Bayes critical region, which is identical to (4.3).

Setting B = (1 + u)25 *(u > 0) and « = u/r in the above theorem, we obtain
the following corollary.

COROLLARY 4.1.1. If n>2(p— 1) and a > 0, then a test with the critical
region
4.9) {etrZ5'S}|S| < ¢
is admissible Bayes for any c.

Anderson and Gupta [4] considered to test H, against the altenatives
defined by
(4.10) Hf:y,>1 and Y7 7 >p,
where y;’s (y; > --- > v,) are the characteristic roots of £5'X. The alternatives

mean that X is larger than X, in a sense. By using their result (p. 1063), it
can be shown that (4.9) is an acceptance region for their problem which has

monotonicity property.

REMARK 4.1. In the case that u is a known vector, it is easily shown
that the corresponding theorem and corollary hold. We have only to exchange
nand S by N and §* =) ,_ 1( w(X; — uy, respectively. For example, if
N >2(p—1) and « >0, then a test with the critical region

4.11) {etr 5 1S*}*|S*| < ¢
is admissible Bayes for any c.
4.2. One sided test for two samples case

Suppose that X(p x N;) = (X4,...,Xy,) and Y(p x N,) =(Y},..., Yy,) are
random samples from N,(u;, £;) and N,(u,, X,), respectively. We consider
the problem of testing

4.12) Hy: X, =%, against H,: X, <Z,.
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Define X and S, by

— 1 _
(4.13) X=X Si=Xl -0 -X).
1
Further, define Y and S, similarly for the second sample. Let n,= N; — 1 as
usual. Then we have the following theorem.

THEOREM 4.2. If p—l<r<n,4+n,—p+1, p—1<r;<n, and p—1
<r,<n;—p+1, then a test with the critical region

(4.14) [S; + S,I"" /IS = ¢
is admissible Bayes for any c.

Proor. After transforming X and Y by orthogonal matrices analogous
to the previous subsection, we use Lemma 1 for ./N,X and \/N,Y. Set

(4.15) Iit=2 =27 =1, +nn with n(pxq)
and
(4.16) dI13(n)/dn = |qn'|"?|1,, + nqy'| = *n2/2

under H,. Here, ¢t and integer q are chosen such that g >p, t > — 1 and
t+q=r. Then we have

J|2]_("‘+"2)/26tr {~ %Z_I(Sl + SZ)}dﬂg‘(n)
1 1
4.17) = etr {— E(Sl + Sz)} . jlrm/l‘/zetr {— 51711’(S1 + SZ)}dn

1
= etr{—i(sl + SZ)} IS1 + S2|-(I+q)/2.

Under H,, set

(4.18) ;' =1,+nmy with n,(p xqy),
(4.19) Zit=1,+nyny +nym5 with n,(p X g5)
and

(420)  dTT¥(n)/dn
= numi "2 namal ™ - 1y + nany + nana T2+ gy T

Here, t;’s and g;’s are chosen to satisfy ¢, > p, t;,> — 1 and t; + q; =r;. Then
we have
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1
flzll_”‘“lzzl‘"”zetr{— 5(2{151 + 25152)}dnf(ﬂ)

1
= etr{— 561+ Sz)} : flmnil"“lnznél’”2
(4.21) 1
-etr <_ 5{’71’71(S1 +8,) + ’72’7351}>d’71d’72

1
= etr {-— 5(Sl + SZ)} . |S1 + Szl‘(t1+q1)/2|sl|—(tz+qz)/2.
So, we obtain

ff(X, Y; 6)dIl,(6)

(4.22) =S, + S,|C""2)|8, %2,

ff(X, Y; 6)dIl,(6)

which implies the theorem. The integrability of the densities (4.16) and (4.20)
is assured by Lemmas 3 and 4.

COROLLARY 4.2.1. If ny>2(p— 1) and n, > p — 1, then a test with the
critical region

(4.23) ISy + S,1/1S;1 =11, + S{ 'S, > ¢
is admissible Bayes for any c.

ProOF. Set ry =r, =d and r = 2d where d is chosen as slightly larger
than p — 1, then we obtain (4.23). Further, these r,,r, and r satisfy the
integrability conditions.

Anderson and Gupta [4] also considered to test H, against the alternatives
(4.10), where y;’s (y, >--->1y,) are the chracteristic roots of £7'X,. They
obtained a class of tests which have the monotonicity property. Since
H, < H¥, the above thecrem and corollary hold for their problem (see Remark
5.1). It can be shown that the test (4.22) is contained in their class.

REMARK 4.2. Strictly speaking, we must determine how X is (or X’s are)
set in the prior distribution before applying Lemma 1, as we have done in
the previous subsection. However, in order to make the argument simple we
beforehand delete the variables (like /N, X and ./N,Y in this subsection)
hereafter, on the premise that X’s will be set later as ™! = C, + D; for some
C, and D;.
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REMARK 4.3. When the mean vectors u, and u, are known, we can
obtain the similar theorem and corollary by a slight modification of the above
argument. Let

424)  Sr=3" (Xi—p)(X;i—p) and SF=372 (Y- p)(Y— ),

then in the propositions corresponding to Theorem 4.2 and Corollary 4.2.1,
ny, n,, S;, S, should be exchanged by N,, N,, S¥, S¥, respectively. For
example, if min(N,, N,)>2(p— 1)

(4.25) IS¥ + S%|/ISFI =1, + St 'S¥|>¢

is an admissible Bayes critical region for any ¢. We can easily obtain similar
modifications for propositions appeard in the following sections, so, we do
not mention such modifications hereafter.

4.3. Linear structure of the inverse matrix of the covariance matrix

Let X(p x N)=(X,,...,Xy) be a random sample of size N from
N,(u, £). We consider the problem of testing

(4.26) Hy: 7' =032, + 061G, + --- + 6% G, against H,: not H,,

where X, is a given positive definite matrix and G,,..., G, are given positive
semidefinite matrices. The multiples o3, ¢2,...,02 are unknown constants.
This problem includes the sphericity problem and the intraclass correlation
model as a special case. It is also regarded as a generalization of the problem
which was considered in Kiefer and Schwartz [16].

The linear structure of the inverse matrix of the covariance matrix was
considered by Anderson [1], [2]. The linear structure for the covariance
matrix itself was considered in Bock and Bargmann [10], Srivastava [32] and
Anderson [1], [2]. Krishnaiah and Lee [17] studied an extension of the
problem. For a summary of these structures, see, e.g., Siotani et al. [31].

Let X, S and n be the ones defined as usual (like in Subsection 4.1). Then,
the following theorem holds.

THEOREM 4.3. If O <ro<nand p—1<r,<n—p+ 1, then a test with
the critical region

4.27) (tr {(aZo + b; Gy + -+ b, G)S})°/ISI" > ¢

is admissible Bayes for any c, where a is any positive number and b,,...,b, are
any nonnegative numbers.

ProoF. Let us transform X by an orthogonal matrix T such that
XT=(Z, /NX), where EZ = O(p x n), and eliminate VNX, i by Lemma 1
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with the following setting: Under H,, set

(4.28) T =(14an?)Zo + b;n*G, + - + byn?G,

and

(4.29) dIIg(n)/dn = [(1 + an®)Zo + bin* Gy + -+ + bn* G| =" |1,
where n is a scalar variable. Then we have

(4.30)
Jf(Z, Z)dﬂa‘(Z) = etr {_ %20-15}

1
N f|n|r°_1etr {‘— E(azo + bl Gl + e + kak)Srlz}dﬂ
1
= etr {— EEJ‘S} “(tr {(@Zg + by Gy + -+ + b, G)S}) "%

Under H,, set

(4.31) Il =%,+nn; with n,(p x q,)
and
(4.32) dIT¥(n)/dn = |Zo + nynil "2 |nyny 12,

where p <gq,, t; > —1 and q, +t, =r,. Then we have
1 1
(4.33) ff(Z; 2)dII*(Z) = etr {— EZO_IS} . f|’11’11|t'/2 etr {— 5nn’S}d7]1
1oy ~(t1+41)/2
= etr - EEO S * |S| (t1+q1)/ .

Therefore

ff(X; 6)dI1, (6) Jf(Z; 2)dITt(Z)

(4.34) =
ff(X ; 0)dI1,(6) ff(Z; Z)dII§(Z)

= (tr {(aZo + b; G, + -+ + b GYS})? /IS 2,

which implies the theorem.

If n>2(p—1), it is possible to set r, =r =d in the theorem, where d
is a number which satisfies p — 1 <d <n—p+ 1. Consequently, the following



Admissibility of some tests in multivariate analysis 381

corollary holds.
COROLLARY 4.3.1. If n>2(p — 1), then a test with the critical region
4.35) tr {(aZy + b,G, +---+ b, G)S}/IS| > ¢

is admissible Bayes for any positive constant c, where a is any positive number
and b,,...,b, are any nonnegative numbers.

5. Multiple decision problems for covariance matrices
5.1. Two samples case

Under the same situation (two normal populations and their random
samples) as in Subsection 4.2, we consider the multiple decision problem of
deciding whether of the following three hypotheses are true:

(5.1) Hy:%, =%, H,:X, <%, H,:I, >3,

Our interest is to obtain a class of admissible procedures. By using the
same notations as in Subsection 4.2, the following theorem holds.

THEOREM 5.1. Ifp—1l<r<n +n,—p+1l,p—1<r,<n,,p—1<r,
<n —p+lL,p—l<ry<n,—p+1landp—1<r, <ny, then the procedure
which selects H; when T, = min T; is admissible Bayes, where

J
(52) To=colS1+ S, Ty =c1lS; + S:" (8,17, T, = c,|S; + S,/ S,1"
and c;’s are any positive constants.

Proor. Consider the usual orthogonal transformations for X and Y, and
use Lemma 1 like the way as that in Subsection 4.2. Under H,, we use the
same prior distribution as (4.16). So, we obtain the statistic

1
(53) ff(x, Y; )dII3(6) = etr {— S8+ sz)} IS, + 8,02,
Under H,, we also use the same prior distrbution as (4.20), which yields

(5.4)

1
J f(X, Y; 6)dTTH(6) = etr {— S(8:+ sz)} Sy + S| T[S, |~ tez,

Since the hypothesis H, is obtained by exchanging the suffixes in H,, we use
the prior distribution for H, which is obtained by exchanging the suffixes in
that for H,. Then we have
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(5.5)
1
ff(X, Y; 6)dTI%(6) = etr {— S+ Sz)} (|S) 4 S|t aI2|S, Tt a2,

Therefore, the theorem follows from (2.2), by letting r =g+t and r, =q; + t;
i=1234).

For this problem, Roy and Gnanadeskian [28] proposed a procedure
based on the largest and smallest roots of S;'S;. However, their procedure
is not contained in the class of Theorem 5.1 unless p = 1.

CorROLLARY 5.1.1. If min (n,, n,) > 2(p — 1), then the procedure which
selects H; when U; = min U; is admissible Bayes, where
J

(5:6) Ug = colS; + 85" "™, Uj=¢;|S;"[Sy + S, (j=12
and c;’s are any positive constants.

PrROOF. Setting r=c(n; + ny), r;=ry=cn, and r,=r, =cn, in the
theorem, where c is slightly larger than (p — 1)/min (n,, n,), then we obtain
the corollary.

CoRrROLLARY 5.1.2. If min (n,, n,) >2(p — 1), then the procedure which
selects H; when V.= max V; is admissible Bayes, where
J

(5.7) Vo =c¢co, Vi =c¢118; +SZ|/'Sl]=c1|Ip+SZSI_1'7
' Vo=, 18; + S,l/IS: = e; |1, + 8,871
and c;’s are any positive constants.

ProoF. Set r;=d (i=1,2,3,4) and r = 2d in the theorem, where d is
slightly larger than p — 1. Then we obtain the rule which essentially coincides
with that of the corollary.

CoROLLARY 5.1.3. If min(n,, ny) > 2(p — 1), then the procedure which
selects H; when W, = min W, is admissible Bayes, where
J

(5.8) Wo=1co, Wi=ci|Si], W, =c,]S,]

and c;’s are any positive constants.

Proor. The corollary is obtained by letting r=r, =r, =d, and
r, =ry; = d, in the theorem, where d, and d, are chosen to be slightly larger

than p — 1.
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5.2. Three samples case

Suppose that X(p x N;)=(X,,....,Xy), Y(p x N,)=(Y,,...,Yy,) and
Z(p x N3)=(Z,,...,Zy,) are random samples from N ,(u,, Z;), N,(u,, X,) and
N,(u3, T3), respectively. Let X, Y, Z, S, S, and S, be the ones analogous to
(4.13). Further,let S=S,+S,+S;andn=n, +n,+n3 (n;=N,—1). We
consider the following three multiple decision problems:

Hy:S,=%,=%,, H:%,#%,=3,, Hy:S,#5, =23,,

(5.9)
Hy:Z;#Z, =%, and Hy: Z; #Z; (i #J).
5.10 Hy:3,=%,=%,, H:%,<%,=3,, Hy:%,<3%, =3,
' and Hy: 2, <%, =3,.
.10 Hy: 2, =%,=%,, H:%,>3%,=3%,, H;:%,>%, =3,

and H;: X, > X, =Z,.

At first, we transform samples by the usual orthogonal matrices and use
Lemma 1. So, we can treat these problems without X, Y, Z and p;’s.

THEOREM 5.2. Ifp—1<r<n—p+ 1, p—1<ry_;<m—p+1,p—1
<rg<n—m—p+1(i=1,23)and p—1<re,;<nj—p+1(j=1273),
then the procedure which selects H; when TV = min TV is admissible Bayes

J
for (5.9), where
5.12) TV = ¢o|SI, TV =c¢;|S;[2-1|S — S, (j=1,2173),
' T{Y = eyl Syl 18,1 18517,

and c;’s are any positive constants.

Proor. Under H,, set

(5.13) L, ===X=U,+ ny)~ ' with n(p x q)
and
(5.14) A1 (n)/dn = |1, + nqy'| ="+ m2 gy |12,

where ¢ and integer ¢ are chosen such that ¢ > p,t > — 1 and g +t=r. Then
we have

1
f|2|-"“+"2+"3>/2 etr {— SIS+ S+ s3)} dII3(n)

1
(5.15) =etr{—ES}-J|nn’|‘/2etr{—%nn’s}dn
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=etr {— 1S} | S|tz
2

Under H,, set

(5.16) L, =U,+mny)™" with n(p xq,),
(5.17) Z,=Zy=(,+n,m)"" with 5(p x q,)
and

(5.18)  dIX¥(n)/dn = I, + nyny| "™ |1, + nyny| =242 n 12 nan5)2,

where t;’s and r;’s are required to satisfy the restrictions ¢q; > p, t; > — 1 and
r;=t; + q; (these restrictions appeared several times before. We neglect
hereafter to mention such restrictions explicitly. However, t;’s and ¢;’s can
be choosen to satisfy these restrictions under the conditions in the

theorems). Then we have

1
(5.19) JIzlI_""zlzzl_"‘”"”/2 etr <— 7 Zr18 + 218, + S3)}> dITf (n)

1
= etr {_ 5 S} . 'Sll—(t1+ql)/2 ISz + S3|—-(12+q2)/2'

Under H, and H;, we consider prior distributions similar to the one under
H,. This gives the statistics

1
(520) etr{_is}. |Sj|—(tzj—1+llzj—x)/2ls__Sjl"'(tzj+112j)/2 (j=2, 3).

Under H,, set
(5.21) =, +nn)"" with n(p X gg+y)

for i=1,2,3 and
(5.22) ALt (n)/dn = [T3=1 (1, + manil =2 Ineni e+ 12).

Then we have
1
(5.23) fﬂ?ﬂ <|2i|_"i/2 etr {_ EE;’— 15:}) dI1%(n)
1 3 —(te+it4qe+i)/2
= etr _ES I N ).

These results imply the theorem.
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COROLLARY 5.2.1. If minn; > 2(p — 1), then the procedure which selects
J

H; when V") = min V") is admissible Bayes for (5.9), where
J

Ve = colSI", VIV =cjIS;IMIS = S;I"™  (j=1,2,3),

(5.24) 1
ViD= cg| Sy - |8, - 851",

and c;’s are any positive constants. This is the modified ML procedure.

Proor. The corollary is obtained by letting r =dn, r,;_; =dn;, ry =
dn—n) (i=1,2,3)and re.; =dn; (j =1, 2, 3), where d is slightly larger than
(p — 1)/min n,.

If n’s and n are exchanged by N;’s and N(N = N; + N, + N3) in the
above proof, we obtain the admissibility of the ML procedure. Such
modification can be done for the first corollary of each theorem in this
section. The above corollary can be regarded as the one corresponding to
Corollary 5.1.1. The propositions which correspond to Corollary 5.1.2 and
5.1.3 can be also proved for Theorem 5.2.

Now we treat the multiple decision problems which are slightly modified
from (5.9) as follows:

Hy:2,=%,=3%,, H;:3, #3,=%,, H;:5,#3%, =3,

(5.25)
and H;: 23 #Z, =%,
and
(526) H :Z #X,=%;, H,:%,#X =Z;, Hy:¥,#%, =%,

and Hy: X, #X; (i #J)-

Similar admissible procedures for these problems are immediately given from
the above theorem.

COROLLARY 5.2.2. If p—1l<r<n—p+1, p—1<ry_,<n—p+1
and p—1<ry<n—n—p+1 (i=1,2,3), then the procedure which selects
H; when TV = min T{V is admissible Bayes for (5.25), where TV is given by

J

(512) (j=0,1,2,3).
COROLLARY 5.2.3. If p—1<ry_y<m—p+L p—1<r,<n—n—p+1

(i=1,2,3)andp—1<reg,j<nj—p+1(j=1,2,3), then the procedure which
selects H; when T,") = min TV is admissible Bayes for (5.26), where T is
J

given by (5.12) (j =1, 2, 3, 4).
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These corollaries are easily proved by putting probability 0 to H, or to
H, in the proof of Theorem 5.2. The propositions which correspond to
Corollary 5.2.1 (etc) also hold. Thus, for a problem which is given by
eliminating a hypothesis (or hypotheses) from a multiple decision problem, an
admissible Bayes procedure can be immediately obtained from an admissible
Bayes procedure for the original problem.

THEOREM 5.3. If p—1l<r<n—p+1, p—1<ry_,<n-—n; p—1
<ry<m—p+1 (j=1,23), then the procedure which selects H; when

T,® = min T, is admissible Bayes for (5.10), where
J

(5.27) T3P =colSI, TP =cISI IS (j=1,2,3)
and c;’s are any positive constants.

Proor. Under H,, we use the same prior distribution as the one defined
by (5.13) and (5.14). So, we obtain the statistic

1
(5.28) etr {_ ES} S |S| Ttz

Under H,, set

(5.29) ;P =%3 =1, 40 with n,(p xq,),
(5.30) It =1,+nni +nyny with n,(p x q,)
and

dIT¥(n)/dn = |nyny "2 Inyn5l72

(531) ’ r1—n1/2 7| —(n2+n3)/2
M, +niny + nanzl T, + nynyd e,

The integrability of (5.31) is assured by Lemma 4. Then
1
jlzll‘"‘/2 |2, 72tz etr(— 5{21—131 + 2718, + Sa)}>dﬂ’f('l)
1 r(t1/2 1 t2/2
= etr —5(51+Sz+s3) “nani M5 nana

(5.32) 1
-etr<— —{mni(Sy + S, + S;3) + '72’1351}>d’71d'72

[\9]

= etr {_ 1 S} . |S|—(n+q1)/2 |Sl|—(tz+qz)/2_
2

Under H, and H;, considering the prior distributions similar to the one under
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H,, we obtain the theorem.

The following three corollaries are easily proved by the same technique
as in deriving Corollary 5.1.1, 5.1.2 and 5.1.3.

CorOLLARY 5.3.1. If minn; > 2(p — 1), then the procedure which selects
J

H; when U® =min U® is admissible Bayes for (5.10), where
J

(5.33) UP =colSI", UP =cIS;Im-IsI"™  (j=1,23),

and c;’s are any positive constants.

COROLLARY 5.3.2. If minn; > 2(p — 1), then the procedure which selects
J

H; when V/® =min V{? is admissible Bayes for (5.10), where
J

(534) I/0(2) = COISI9 Vj(Z) = leSj (] = 17 25 3)a

and c;’s are any positive constants.

COROLLARY 5.3.3. If minn; > 2(p — 1), then the procedure which selects
J

H; when W,® = min W® is admissible Bayes for (5.10), where
J

(5.39) WP =co, WP =clS  (j=123),
and c;’s are any positive constants.

Similarly we can derive a class of admissible procedures for (5.11), which
is given in the following theorem.

THEOREM 5.4. If p—1<r<n—p+1, p—1<ry,_;<n;, p—1<ry;
<n-—n;j—p+1 (j=1,2,3), then the procedure which selects H; when
T,® = min T* is admissible Bayes for (5.11), where

J
(5.36) T8 =¢8I, TP =c;|SI"51|S — S| (j=1,273)
and c;’s are any positive constants.

Proor. For this theorem, under H, we use the prior distribution which
is defined by (5.13) and (5.14). Under H,, set

(5.37) Ift= I, +niny with n,(p X q4),

(5.38) ;' =23 =1, 4+ nny +nymy with ny(p % q3)
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and
(539) dnf(i'])/dr] = ]nlqi|t1/2|n2nélt2/2

U, + 0y TR, 4 pyny A+ npny| T2,
Then

1
(5.40) flzll"“/zlzzl“"“””/z etr(— 3 Zrs +Z15, + Ss)}>dn’{‘('1)

1
= etr {_ ES} . 'SI-(ll+ql)/2 IS _ S1|-(tz+qz)/2.

By the obivious exchange of the suffixes, we obtain the similar statistics for
H, and H,, which lead the theorem.

The following corollaries are also proved by a slight modification of the
proofs of Corollary 5.1.1, 5.1.2 and 5.1.3.

CoOROLLARY 5.4.1. If minn; > 2(p — 1), then the procedure which selects
J

H; when U® =min U is admissible Bayes for (5.11), where
J
(5.41) UP =colSI", UP =¢ISI"-[S—=8;I"™ (j=12273),
and c;’s are any positive constants.
COROLLARY 5.4.2. If minn;> 2(p — 1), then the procedure which selects
J
H; when V/® = min V{® is admissible Bayes for (5.11), where
J
(542) Vi =colSl, V¥ =¢IS=8;1  (i=1,223),
and c;’s are any positive constants.
COROLLARY 5.4.3. If minn; > 2(p — 1), then the procedure which selects
J
H; when W,® = min W/ is admissible Bayes for (5.11), where
J
(5.43) W =co, WP=cIS—SI (j=1,23),

and c;’s are any positive constants.

There exist multiple decision problems which are more complicated
(sometimes, consist of much more hypotheses) than the ones treated in this
paper. From mathematical viewpoint, it is not difficult to derive admissible
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procedures for such problems by using similar prior distributions (e.g., see
(546) ~ (5.49)). Integrability of densities can be assured by Lemma 4 or its
generalizations. However, it is doubtful to use 0-1 loss function for such
problems with many hypotheses. It will be required to use a more general
loss function, such as in Eaton [12]. So, we treat only one more problem,
that is

Then the following theorem holds for (5.44).

THEOREM 5.5. If p—1<r;(1)<n, p—1<r;(2)<n;and p—1<r;(3)
<m—p+1 (,j,1=1,2,3;i#j#1+#1i), then the procedure which selects
H; ;. when T, = min T;; is admissible Bayes, where

(545) T = cinlSy + S5 + S5V |[S; + 8|t |, |rin)
and c;;’s are any positive constants.

ProOF. Let us use Lemma 1 at first, then we may consider the proof
after removing sample means and population means. By the symmetry of
hypotheses, we consider only the prior distribution for H,,;.

Under H,,3, set

(5.46) It =1, 4+ mnp with 7,(p x qy),

(5.47) Lyt =1, +mni +many with ny(p x ga)

(5:48) L3t =1, 4+ mni +nuny +n3ny with n3(p x qa)
and

(5.49) dITt,3(n)/dn

= [nni "2 [nama 2 nams 2 11, + nyny|~m/2
Ay + 1t + nana| T2 1, + i+ momy + nana| T

By Lemma 4, the density (5.49) is integrable under the conditions of Theorem
5.5. Further, we have

(5.50)

- -n -n 1 - - -
J"le "1/2|22| 2,/2|23| 312 etr (‘ 5{21 1S1 + X, 1Sz + 23 153}>dn’1k23(’1)
1
= etr{— 5(81 + 8, + Ss)} . Jlmnﬁl"” [n2m51"2/% |nan3 |2

1
- etr (‘ 3 {nin1(Sy + Sz + S3) + n,m5(S, + S3) + ’13’1'333}>d'1
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1
= etr {—ES}. ISl + Sz + SBI—(nHm/Z ISz + Ss|_('2+‘”)/2 |53|—(t3+q3)/2_

Therefore, by putting r,,3(i) = t; + q; we obtain the statistic T;,;, which leads
the theorem.

The following two corollaries can be easily derived as special cases of the
above theorem.

COROLLARY 5.5.1. If minn; > 2(p — 1), then the procedure which selects
H; .y when U, ;. = min Uy, is admissible Bayes, where

(5.51)
Ui = ciylS1 + 82 + S3MS; + ;™[ S, 1™ (Ll=1,2,3;i#j#1#1)

and c;;’s are any positive constants.

COROLLARY 5.5.2. If minn; > 2(p — 1), then the procedure which selects H; ;,
when W ;. = min W,; is admissible Bayes, where

(5.52) Wi = ciulS; + Sil - 1S, (bj, 1=1,2,3;i#j#1#1i)

L3

and c;;’s are any positive constants.

REMARK 5.1. It is possible to treat the multiple decision problems whose
hypotheses are described by the determinants of the covariance matrices
(generalized variances). All propositions in this section also hold even if the
covariance matrices are exchanged by their determinants in hypotheses. For
example, the results of Theorem 5.1 and its corollaries also hold for the
problem of deciding whether the following three hypotheses are true:

(5.53) HE: Z[ = [Z,], HY:|Zy| <|Z,l, HE:|Zy] > |2,

under same conditions. This can be easily shown by using the entirely same
prior distributins as the one of Theorem 5.1. Because H; = H}, it is possible
to consider the prior distribution on H} with the whole mass for H;. Here
H;’s are given by (5.1). Of course, this argument holds for testing problems
such as in Subsection 4.1 or 4.2.

6. Classification problem with unequal covariance matrices
6.1. Classification rules

Let us consider the classification problem with unequal covariance
matrices. The p-variates normal population N,(y;, Z) is denoted by
7[,-(i=1, 2’ 3) Suppose that X(pXN1)=(X1,,.,,XN1), Y(pXN2)=(Y1,--~a
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Yy,) and Z(p x N3)=(Z,,...,Zy,) are random samples from normal popula-
tions 7, m,, m3, respectively. It is assumed that u, # u, and £, # X,. Then
we consider the problem of testing

6.1) Hy:ps=p,, 3=, against H,:pu;=upu,, L3=3,.

This problem is equivalent to classify a sample from 7, as either =; or
n,. Kiefer and Schwartz [16] showed the admissibility of some procedure
for the case £, =2, =X;. Kanazawa [15] studied three classification rules
for the unequal covariance matrices case with N, =1, which are called
classification rule-W, -Z and -B. We will extend these three procedures to
the case N, > 1. First, some estimators are defined for describing the
classification procedures.
1 1 1 v v \/
—Z?=1Xi’ Sy = i'v=1(Xi_X)(Xi_X),
6.2) 1‘
Y=y Tt =32 - DE%-7y.

Under H,, we may regard that (X, Z) is a random sample of size N, + N,
from m,. So, we can define the estimators of u,, £, u, and X, under H, as

= 1
XO0= _—— (M X, +Y" Z},
N1 +N3 {Zz—l Zl—l l}
(6.3) SP =T (X = X)X, = XY + 32 (2, - XO) (2, - XYY,

Y= SP=s,.
Under H,, the estimators are also defined as

X®=X, sP=s,

- 1
6.4 YO =_ — (YN y §M 7z
(64) N, N, i1 Bt Xt Zd

SP =L (Y= Y)Y — YOy + 2, (Z, - Y2 - Y.

Classification rule-W 1If the parameters y;’s and X;’s are known (i = 1, 2),
the ML classification rule is given by using the ratio of f(Z; us, ;) in H,
and H,, i.e.

(6.5) A= {24 [Z,] 71} 2 etr (% ETHYE (2 - p) (2 - #1)’}>

1 N
-etr <— 522‘1{2;1 (Z; — 1) (Z; — .“2),}>'
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The rule may be also expressed by using
(6.6) —2log 4 = N3log|Zy| + tr 25 (¥ 2 (Z; — o) (Z; — )}
— Nslog |Z;| —tr 2! {vail (Zi — p)(Z; — )}

The classification rule-W is obtained by substituting the usual unbiased
estimators for u,, p,, X, and X, into (6.6). Here, only the samples X and Y
are used for the unbised estimators (i.e. (6.2) is used). Namely, the statistic

(6.7 DW
= N, 1og[S,/(N; — Dl + tr ({S,/(N, — D} (Y12, (Zi — V)(Z: — Y)'})
— N3 log|S,/(Ny = Dl = tr ({Sy/(N; — D} H{E2,(Zi — X)(Zi — X))

is used as the sample ML classification rule. According to the value of this

statistic, the rule is defined as

choose H, if DW >0, and
(6.8) _

choose H, if DW < 0.

We call this as classification rule-W. This is an extension of the sample ML
rule for the case Ny =1 in [15].

Classification rule-Z The (exact) ML rule is obtained by substituting (6.3)
under H,; and (6.4) under H, to the parameters in the likelihood ratio
function. Therefore, the ML rule is given by
(69) DZ= —2logi,=N,;log|S?/N,|+ (N, + Nj3)log|S?/(N, + N,)|

— (Ny + N3)log [S{V/(N, + N3)| — N, log |S$V/N,|,
where 1, is the likelihood ratio in this case. The rule is defined as
choose H, if DZ >0, and
(6.10) ]
choose H, if DZ <0,

which we call classification rule-Z.
In the special case N; = 1, we can express DZ as

(6.11) DZ

N2 - _ -
=(N, + 1)1 1+ Z——Y’SIZ—Y}+10 S
(N, )Og{ N2+1( ) S ( ) g|S,|

N, _ _
— (N 1)1 1 Z—XYS{YZ—-X);—logl|S
(N, + )Og{ +N1+1( Y Si( )} g8l

+(N;+1)plog(N,+1)+ N,plog N, — N,plog N, — (N, + 1)plog (N, + 1),
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(cf. Anderson [3]).

Classification rule-B This rule is obtained along the Bayesian approach.
Let 6 = (uy, 1, Z;, Z5), and consider a prior density I1(6) which is defined by

(6.12) I1(0) oc (|2, - |Z,]) "+ /2,

The prior density IT(0) is used in common for H; and H,, but the parameters

of n are different for H; and for H,. This prior distribution was adopted

in Mardia et al. [18], and is not a finite measure. For this prior distribution,

we calculate the improper Bayes procedure which we call classification rule-B.
We consider at first under H,.

Ji= Jf(X; s Z4) - f(Y5 s o) - f(Z5 g, Z4)dTI(6)
(6.13) = CJIZII_(Nl+N3)/2|22|_N2/2 etr(— %ZI‘{Z?':'I(X,- — 1) (X — )

1 - 2 ’
+ Zf’;l(zi —u)(Z; — py)} — 522 1{2?7:1 (Y; — o) (Y; — pp) }>
(1241 |Zz|)_(p+Wzdlhdﬂzdzldzz

— Cflzl|_(Nl+N3+p+1)/2|22I_(N2+p+l)/2

1 = _
etr (— SECHSE 4+ (N, 4 N (XD — ) (R — )}

1 - -
- 522—1 {85 + No(YD — pp) (Y — Hz)’}>dﬂ1dl‘2d):1d22’

where ¢ = {2} “PN1*N2*N/2 - The part concerning the integration of y; can
be carried out as

1 _ _
(6.14) fetr <— 521_1 {(N; + Nj)(XP — p) (XD — ﬂ1)'}>dﬂ1
= (2n)P2(Ny + N3) P2 IE, |12,
Analogously
1 _ -
(6.15) jetr (— EZ;‘{NZ(Y“’ — p) (Y — uz)’}>duz

= (2mPI2 N, PI2E, |2,

Substituting these results into J,, we have
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(6.16) J1 — b(Nl + Ns)-p/ZNz—p/ZJml|~(N1+N3+p)/2|zzl—(Nz+p)/2

1
etr <— SZIS0 4 zglsgn}) dz,dx,,

where b = {27} ~Wi*N2*N)/2+p - Tet us consider the integration with respect
to £,. Transform X, to ¥ =X !, then

(6.17) dZ, = |Z¥|~ UGz,

Hence

1
f|21|-<N1+N3+v>/2 etr {— Ezﬂsgl)}dzl

1
(6.18) = JlZﬂ“”‘*”rl)W—lW etr {— 22’{‘8‘1”} ax¥
— 2(N1+N3—1)p/2Is(ll)l—(N1+N3—1)/2 FP<N1 + ]2V3 - 1>’
where I', is the p-variates gamma function defined by
j— 1
(6.19) )= PP 14, Hf’=1f<t _ (i . ))
It also holds by analogous calculation,
1
(6.20) J|22|_(N2+p)/2 etr {— S S(z”}d22
- —(Nam N,—1
=N 1)p/2ls(21), (N2—1)/2 Fp< 5 >

Therefore

N, +N,—1
(621)  Jy=b-2M TN, 4 N3)-P/ZN;"/2rp<£z3v>

- I

p

<N2 - 1> lS(11)|_(N1+N3_1)/2IS(ZI)I_(NZ_I)/Z'
2

Similarly it can be seen that

(6.22) Ja= ff(X; 1y 20) S (Y5 py, Z5) - f(Z5 o, 25) dTI(0)
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= b 2NN NP2 N SRI2(N 4 N ) PI? FP<N1 - 1)
2
.rp(Mj.l). |S@)| =i = 1)/2| §@)| =2+ Na=1)/2
2
Now we define DB as DB = — 2log(J,/J;). Then
(6.23) DB =2logc, + (N, — 1)log|S{?| + (N, + N3 — 1)log |SP|
—2logc; — (Ny + N3 — 1) log [S{V] — (N, — 1) log | S5V,

where

o (1)
N; 2 2

for i =1,2. The improper Bayes procedure is given by

choose H, if DB >0, and

(6.25) )
choose H, if DB < 0.

For the special case N; =1,

(6.26) s =5, +{ Ny }(z X)(zZ - XY,
N, -1 N\ _ (Ny—»p N,
o ()= (M ()
and
N = = ,
(6.28) ISP~ ISP = I, + N, i 1S;I/Z(Z —X)(Z — Xys;\?
— 1
_1+N1 (Z - XYS;H(Z - X).

Of course, the equalities which are obtained by exchanging the suffixes 1 and
2 also hold. Consequently

(6.29) DB

=2logc2+log|S2|+Nzlog<1+ 2 1(Z—7)’S;‘(Z—?)>

2

N _ _
—2logc, —loglsll—N110g<1 +N -lkl(Z_X)/SI 1(Z—X)>

1
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for Ny =1. In this case, ¢; reduces to

o () ()

The expression (6.29) coincides with that of Kanazawa [15].

REMARK 6.1. To derive (6.29), Kanazawa used the function
(6.31) fHZIX, Y)= jf(Z; i Z) - fO1X, Y)dp,dp,dZ,dX,

which is the conditional likelihood of Z under H; given (X, Y), i=1,2. The
posterior density of 6 given (X, Y) is defined by

(X, Y; O)I1(6)

Jf(X, Y; OI(O)dp,dp,dZ,dZ,

(6.32) fOlX,Y)=

The Bayes classification procedure is determined by
(6.33) choose H, or H, according as f,(Z|X, Y)>or < f,(Z|X, Y).
Of course, this approach is equivalent to that of this paper.

REMARK 6.2. We can treat k-samples case similarly. That is, n,, 7,,...,
7, Mx+y are p-variates normal populations and consider the hypotheses

(6.34) Hitpry = i, Bevy = %; (i=1,...,k).

Then the rule-Z (for example) is described as follows, by using similar
notations. We can say that

H; is preferable than H; if and only if DZ(i, j) > 0,
where
(635)  DZ(i,j) = N;log|S?/Ni| + (N; + Ny )log [S?/(N; + Ny )|
— (N; + N+ 1)10g [SP/(N; + Nyyy)| — N;log IS}U/NJ'I'

Then we select H; when H; is preferable than any other H;. Rule-W and
rule-B can be described analogously. For simplicity, in the following
subsections we state admissibility or other results only for the case k =2,
however, the results hold quite similarly for the case k > 3.

6.2. Admissible classification rules

For the problem which is slightly general than that of the previous
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subsection, Nishida [19] obtained a class of admissible rules. For the problem
of this section, the theorem in [19] can be described as follows:

THEOREM 6.1. If p—1<ri<(N;+N3;—1)—p+1, p—1<r,<(N,—1)
—p+1, p—1<ry<(N;—1)—p+1 and p—1<r,<(N,+Ny;—1)—p+1,
then the classification rule:

choose H, or H, according as
(6.36) S S/ SO ISP > or <
is admissible Bayes for any c.

As a special case of this theorem, rule-Z is shown to be admissible if
min (N, — 1, N, — 1) > 2(p — 1). Further, using this theorem, we can also
derive that rule-B is a dmissible.

CoROLLARY 6.1.1. If min(N, — 1, N, — 1) >2(p — 1), then the classifi-
cation rule-B is admissible Bayes.

Proor. Choose a constant d as slightly larger than (p — 1)/min (N, — 1,
N, —1). Then d < 1. Setting

(6.37) ri=dN;+N3—1), r,=d(N,— 1), r;=d(N; — 1),
r4=d(N2+N3_1),
we obtain the corollary. The conditions for r;’s in the theorem are satisfied

if min (N; — 1, N, — 1) > 2(p — 1). This is shown by using the fact that the
length of the intervals for r;’s are longer than or equal to 1 and that d < 1.

REMARK 6.3. The condition min (N; — 1, N, — 1) > 2(p — 1) in the above
corollary is usually regarded as that for N,’s. However, the condition may
be regarded as that for p. That is, if N;’s are not large, then p should be
taken a small value for the validity of admissibility.

6.3. The limiting distribution of the classification rules

To study the limiting distributions of the classification statistics DW, DZ
and DB, we put

6.38)  dw(1)

= N, log|S;/(N, — )|+ ¥ (Z, — XY {S,/(N, — )} 1(Z, - X),
6.39)  dw(2)

= N;log|S,/(N; — )| + ¥V (Z, — YV {S,/(N, — 1)} 1(Z; - V),
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(6.40) dz(j)
= (N;+ N3)log|S¥/(N; + N3)| — N;log |S? /N
and
(6.41) db(j)
=2logc;+ (Nj+ N3 — 1)log S| — (N; — 1)log |S?* 77|
for j=1,2. Of course, it holds that

DW = dw(2) — dw(l),
(6.42) DZ = dz(2) — dz(1),
DB = db(2) — db(1).

If N, increases to o, X-pu; and S,/(N; —1)—>Z, in probability,
respectively. So, it follows that

(6.43) dw(l) — Ny log |2, + Y12 (Zi — w) 2T HZi — 1y)
in probability as N; - co. Let
(6.44) D(Z,j)=Y2,Zi— w5 Zi—n) (=12

Then it is well known that D(Z, j) is distributed as a chi-squre distribution
x; with f=pN; under H;. Similarly, it can be shown that

(6.45) dw(2) — N4 log |Z,| + D(Z, 2)
in probability as N, » co. Now
(6.46) dz(1)
= N3 log|S{"/(Ny + N3)| + N, {log [S{"/(N; + N3)| — log[S¥/N, |}
= N;log|S{"/(N; + N3)| + N (log |{S¥®} "' S®| + plog {N,/(N, + N3)}).

Since
(6.47)

SP=8P+YV (Z,~Z)(Z;—Z) + {N,N;/(N, + N;)}(Z - X)(Z - X)
and
(6.48) I, + A/n| =1+ tr(4/n) + O(n~?),

it follows that
(6.49) dz(1)

1 — _

= N;|S{"/(N; + Ny)| + N1<N— try 2 {SP/N,}"Z, - Z)(Z, - ZY

1
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+ Z—jtr {s§2>/N1}-I(Z‘—)?)(z‘—)?)’+0(N;2)>—pz\r1 log (1+N3/N,),
where Z = Niazx’lZi. Here, S{'/(N, + N;) > X, as N, — oo, not only under
H, but also under H,, because
(6.50) SM/(N{+N3)
= {SP/N,} - N,(N;+N3) ' +(N,+N) 1YY" (Z2,—2)(Z,— Z)
+ N;N;3(N, + N3) %(Z - X)(Z — X).
So, it holds that

(6.51) dz(l) — Njlog |Z,| + Zf’jl tr (X7 Z, - Z2)(Z, - Z)}
+ N3tr 27 1Z — ) (Z — i) — PN
= N;log|Z;| —pN; + D(Z, 1)
in probability as N; —» . Consequently, as N, — oo
(6.52) dz(1) — N;log |Z,| — pN3 + x}

under H,. Obviously, similar arguments hold for dz(2) by exchanging the
suffixes.

By the Stiring’s formula,
(6.53) I'(t+a)/I(t)~t
for large t, we have
(6.54) log¢; ~ — (pN3/2)log (N,/2)

for large N,. Hence

db(1) = 2logc, + N3log S| + (N, + Ny — 1) log |{S} 'S
=2logc, + pN3log N, + N5 log|S{?/N,|
+ (N, + N3y — Dlog|{S®}1S¥)
—— pN3log2 + Nylog|Z,| + D(Z, 1)

(6.55)

in probability as N; — o0, by a slight modification of the calculation for
dz(1). Of course, the corresponding result holds for db(2).
Summarizing the results, the following theorem holds.

THEOREM 6.2. When H; is true,
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dw(j) — N3 log |Z;| + x7
(6.56) dz(j) — — pN;3 + N3 log|Z;| + %}
db(j) — pN;3log2 + Nslog|Z;| + x7
in probability as N;— .
From this theorem, the limits of the expectations of the statistics under
H; are given as

E[dw(j)] — PN; + Njlog [Z)]
(6.57) E[dz(j)] — N;log|Z,|
E[db(j)] — pN;log2 + pN3 + Njlog |,

and the variances of them have the same limit 2 pN;.

By the above results, it is clear that the limit of the statistics dw(j), dz(j)
and db(j) are described as a sum of N, independent variables which are
identically distributed. Namely, for example,

(6.58) dw(j) — Y12, {log|Z| + (Z; — ) £ M(Zi — 1)}

Kanazawa [15] studied the distribution of a variable of the form which appears
in the brace of (6.58). Therefore, from [15] we have the following theorem:

THEOREM 6.3. When H,_; is true, it holds that

(6.59)
E[dw(j)] — N3{log|Z;| + trE7 2y + (uy — pua) T M1z — 1)},

E[dz(j)] — N3{108|2j| —p+ trzj_l Xy + (12 — .“1),2,'_1(#2 - ﬂl)},
E[db(j)] — N, {IOgIZj, + plog2 + tij"l Xy i+ (uy — .ul)/zj_l(ﬂz — u)}
as Nj— co. Further, the variances of them have the same limit
(6.60) V(j)=N; {2 tr(Zj’l z:3—,')2 + 4(uy — uy) zf1 ZS—ij_l (1 — #1)}-

Let I(j, 3 —j) be the Kullback-Leibler information (see, e.g., Zacks [34])
for classification in favour H; against Hy_; (j = 1,2). Then

I(j, 3 —j) = Ej(log{f(Z; nj, £)/ f(Z; p3-j» Z3-))})

= ff(ZQ > Z)log { f(Z; w;, £)/f(Z; H3—;» Iy-)1dz
(6.61) N
=2 (log {|1Z5_;/IZ;]} + tr {Zj(Z;_lj - z:j—l)}

2
+tr {23—1'(#2 — )y — #1)/})-
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The limiting distributions of DW, DZ and DB can be expressd in the
term of

(6.62) D(1,2)=D(Z,2)— D(Z, 1) + Ny log|Z, = 1]

THEOREM 6.4. When N,, N, » oo, DW, DZ and DB have the same limiting
distribution, which is given as the distribution of D(1,2). If H, is true, its
mean and variance are given by

21(1,2) and V(1, 2),

respectively. If H, is true, its mean and variance are given by
— 212, 1) and V(2, 1),

respectively. Here

(6.63) V0, 3—)) = Na@ur{(E52, — Z7 5,854 - 72

+ 4y — ) 2322250y — 1))

Now, it becomes clear that rule-Z and -B are admissible and that DW,
DZ and DB have the same limiting distribution. These results can be stated
in a combined form as follows.

Consider the statistic defined by

(6.64) D; = (N, + 9)log|S{’| + (N, + N; + d)log|S5”|
—(N; + N5+ 5)10g|S(11)| — (N, + 5)10gls(21)|
+ N3p(log Ny —logN,) + O{(N? + N3)~'/2},

where 6 > — min(N;, N,). Here, the part O(-) does not contain any sample
variables. Such a statistic is obtained from (6.36) by putting

(6.65) ri,=dN;+ N3+ 9), r,=d(N,+ ), ry=d(N, + 9),
ra=d(N, + N3+ 6).
THEOREM 6.5. If min(N,, N,) > 2(p — 1), then the procedure;
select H, or H, according as Ds > or <0
is admissible Bayes for 6 >p—1—min(N,, N,). The limiting distribution

of D; as N,, N, » oo is given as the distribution of D(1, 2) for any 6.

ProOF. Choose d as slightly larger than (p — 1)/{min(N,, N,) + ¢}, and
consider r;’s in (6.65). If d <1, these r;’s satisfy the conditions of Theorem
61. If 6>p—1—min(N,, N,), then there exists such d. The limiting
distribution of D; can be obtained by similar calculation as for DZ (e.g.) and
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coincides with that of the previous three statistics.

DZ and DB are obtained as (6.64) with 6 =0 and — 1, respectively. For
DW, it is clear that DW has a form of D; if the part O(-) is permitted to
contain the sample variables. That is, using

(6.66) ds(j) = (N; + N3 + 0)log|S¥| + (N, + ) log|SP 7|,
it holds that (after calculations like ones for dz (1))

(6.67) dw(j) = d,(j) + O(N; ).

and hence

(6.68) DW= D;+ O{(N} + N3)~1/%}

for any fixed 6. In this case, however, the part O(-) contains the sample
variables.

6.4. Numerical comparison of rule-W, -Z and -B

In this subsection we compare the three rules -W,-Z and -B by using
simulation. We consider 12 cases of populations 7n,, 7, and n;. For each
case we set N; (i=1,2) equal to 6, 10,30. The 12 cases are defined as
follows. These cases are chosen to examine how the change of experimental
conditions influence the characteristics of the three rules. It is assumed that
m, is always N,(0, I,).

CASE 1.
1 10
=3, Ny=1, p,=uP =11 ,Z,=XP =10
1 10
CASE 2.
p=3 N3y=3, p=us, L, =2
CASE 3.
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Il

&

Z
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|
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=
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CASE 4.
p=5 N3=3 u=u, L, =Z%.
CASE 5.
1 55
p=3, N3=1, ﬂ2=ﬂ(21), 22=2(23)= .5 1 .5
S 5 1
CASE 6.
p=3 N3=3, u,= ,u(zl), X, = 2(23)-
CASE 7.
1 55 5 5
51 .5 5 5
p=5 Ny=1, u=puP, Z,=SH = 5.5 1 .5 .5
5 55 1 5
S5 5 5 5 1
CASE 8.
P=5 Ny=3 u= ), I, =3¢
CASE 9.
5 1 2 8
p=3 Ny=1, pu,=ud = 1 |,%,=2=12 2 138
1.5 8 18 3
Case 10.
.5 1 2 8 5 4
1 2 2 18 8 5
p=5 Ny=1 p=pP=[15[,£,=3=| 8 1.8 3 9 5
1 5 9 4 4
1 4 5 4 5
CaskE 11.

p= 5’ N3 = 17 “2 = H(ZS) = [19 1, 2, 3, 1]/, 22 = 2(22).

403
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CASE 12.
p=5Ny=1,u,=p®=[1,1,1,3,3], £, =Z%.

The normal pseudorandom numbers were generated by the Box-Miller
method based uniform pseudorandom numbers (generated by personal
computors). For each case, 1000 observations are carried out under H, and
H,, respectively. For Cases 1~ 8, three tables are given. The first tables
record the rates of correct classifications of three rules among 1000 observations
which were carried out under H,. The second tables record the corresponding
ones under H,. The third tables record the rates among 2000 observations
which are obtained by averaging the first ones and the second ones. We call
the third type of tables the averaged tables. The rules -W, -Z and -B are
denoted by W, Z and B in tables. The values in the last row and the last
three columns of the tables present the averages of the rows and columns. For
each of Cases 9 ~ 12, only the averaged tables are given. In paticular, the
averaged tables which are restricted to N;, N, = 6, 10 are given for Cases 11
and 12. Each table number or its first number correspond to the case
number. For example, Table 1.2 is the second one for Case 1 and Table 9
is the one for Case 9.

Table 1.1.
N, 6 10 30 TOTAL
N, W zZ B |W Z B |W Z B |W Z B

6 .67 68 .68 |.58 .67 .61 |.55 .71 .58 | .600 .683 .623

10 76 .70 77 (.72 72 72 | .67 .75 .67 | .716 .722 .719

30 83 72 84 |.79 .75 81 |.81 .81 .81 | .809 .758 .818

TOTAL t753 .699 .763 | .696 .711 .710 | .675 .753 .686 | .708 .721 .719
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Table 1.2.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 69 .70 71 |76 72 .76 | .82 .72 85 | .756 .712 .770
10 60 68 63 |71 72 .7t [.79 .74 80 | .702 .712 .716
30 53 68 56 |70 77 .63 |.76 .76 .75 | .661 .734 .647
TOTAL | .606 .686 .631 |.723 .733 .702 | .790 .739 .801 || .706 .719 .711
Table 1.3.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 68 .69 .69 |.67 .69 .69 |.69 .71 .71 | .678 .698 .697
10 68 69 70 |.72 72 72 | .73 .75 .74 | .709 717 (717
30 .68 .70 .70 |.74 76 .72 |.78 .78 .78 | .735 .746 .732
TOTAL | .679 .693 .697 | .709 .722 .706 | .733 .746 .743 | .707 .720 .715
Table 2.1.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 J1 .76 .77 | .60 .76 .68 | .49 81 .67 | .598 .780 .707
10 .87 82 88 |.81 .83 83 |.74 .86 .80 | .806 .837 .836
30 96 85 95 |91 86 .90 |.89 .89 .89 | .922 .871 916
TOTAL | .847 815 .866 |.771 .818 .805 | .707 .856 .789 | .775 .829 .820
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Table 2.2.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 J4 77 77 |89 84 89 | .95 .87 95 | .859 .826 .870
10 63 78 .72 | .82 .83 .83 | .93 .86 .92 | .792 .826 .822
30 49 80 .68 |.75 .87 .82 |.92 92 .92 | .722 .861 .806
TOTAL | .620 .781 .723 | .820 .847 .847 | .933 .885 .928 | .791 .838 .833
Table 2.3.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 J277 077 |74 80 .79 [ .72 84 .81 |[.729 .803 .789
10 75 80 .80 | .81 .83 .83 |.83 .86 .86 | .799 .832 .829
30 73 .83 81 (.83 87 86 |91 91 91 | .822 .866 .861
TOTAL | .734 .798 .794 | .796 .833 .826 | .820 .870 .858 | .783 .834 .826
Table 3.1.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 .61 61 61 |.30 48 .38 |.24 .47 .31 | .382 .519 431
10 91 83 9 |.72 .72 72 |59 .75 .66 | .740 .766 .760
30 95 84 95 |87 .78 .86 |.83 .83 .83 | .883 .817 .881
TOTAL | .822 .761 .819 | .632 .658 .654 | .551 .683 .600 | .668 .701 .691
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Table 3.2.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 .60 .63 63 |90 81 .88 | .96 .85 96 | .819 .764 .824
10 34 51 42 |72 72 72 | .87 .78 .87 | .646 .669 .668
30 24 48 34 |63 78 .69 |.82 .82 .82 | .561 .694 .615
TOTAL | .394 .539 462 | .749 .772 .764 | .883 .816 .881 || .675 .709 .702
Table 3.3.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 61 62 62 | .60 .64 .63 | .60 .66 .64 | .601 .641 .628
10 .63 67 66 .72 .72 .72 |.73 .76 .76 | .693 .718 .714
30 59 66 .65 |75 78 .78 | .82 .82 .82 || .722 .756 .748
TOTAL | .608 .650 .641 | .690 .715 .709 | .717 .749 .740 || .672 .705 .697
Table 4.1.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 57 65 66 | .21 .50 .36 |.08 .52 .27 | .286 .556 .430
10 95 90 97 |.80 .83 83 |.55 .85 .75 | .764 .858 .847
30 1.0 93 99 |98 91 97 .96 95 .95 | .976 932 .969
TOTAL | .839 .829 .873 | .660 .745 .719 | .527 .772 .654 || .675 .782 .749
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Table 4.2.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B w Z B
6 62 69 70 |96 91 96 |10 .95 1.0 | .858 .848 .884
10 23 .52 37 |79 83 .84 | .98 91 96 | .668 .753 .724
30 A3 57 34 | .61 89 .78 | .95 96 .96 | .564 .807 .692
TOTAL | .327 .595 471 | .787 .875 .857 | .976 .937 .973 || .697 .802 .767
Table 4.3.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 59 67 68 |.59 .70 .66 |.54 .73 .63 | .572 .702 .657
10 59 .71 67 |79 83 .83 |.76 .88 .86 | .716 .805 .786
30 .56 .75 67 |79 90 .87 |.95 95 95 |.770 .869 .831
TOTAL | .583 .712 .672 | .723 .810 .788 | .751 .854 .814 | .686 .792 .758
Table 5.1.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B w Z B
6 .65 64 63 |.57 .63 .55 |.51 .67 .51 | .576 .647 .563
10 78 .70 .77 |70 70 .69 .66 .73 .65 | .713 .709 .704
30 84 71 85 |.79 .71 .78 |.78 .78 .78 |/ .803 .731 .803
TOTAL | .756 .681 .746 | .687 .678 .676 | .649 .727 .647 | .697 .695 .690
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Table 5.2.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 64 67 67 |.74 70 .76 |.82 .74 .85 | .735 .703 .761
10 .56 .65 60 |.67 68 .69 |.76 .73 .78 | .667 .685 .692
30 50 65 55 | .65 70 .66 |[.74 .74 .74 | .629 .697 .648
TOTAL | .569 .654 .607 | .688 .696 .703 |.774 .735 .792 | .677 .695 .701
Table 5.3.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 65 .65 65 |[.66 .67 .66 |.66 .71 .68 | .656 .675 .662
10 68 67 69 |.69 69 .69 |.71 .73 .72 | .690 .697 .698
30 67 68 70 |72 70 72 |76 .76 .76 | .716 .714 .725
TOTAL | .663 .668 .677 | .688 .687 .689 | .711 .731 .720 | .687 .695 .695
Table 6.1.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 70 74 74 |55 73 .63 | .40 .73 .55 | .552 .731 .638
10 .85 .78 83 |.76 .77 .76 |.72 86 .77 | .777 .802 .788
30 95 84 94 |91 83 91 |.89 .89 .89 | .916 .852 911
TOTAL | .833 .786 .836 | .743 .775 .765 | .669 .824 .736 | .748 .795 .779
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Table 6.2.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 69 73 75 | .88 .83 89 .95 .85 .96 | .840 .802 .865
10 59 75 69 |80 .83 83 | .91 .87 .92 | .767 813 .814
30 5179 66 |75 86 .81 (.89 .89 .89 | .716 .848 .788
TOTAL | .594 .756 .701 | .811 .840 .844 | 917 867 .923 || .774 .821 .823
Table 6.3.
N, 6 10 30 TOTAL
N, W Z B w Z B W Z B W Z B
6 70 74 74 |72 78 .76 | .68 .79 .75 | .696 .766 .752
10 72 .77 76 |.78 80 .80 |.82 .86 .85 | .772 .807 .801
30 73 81 80 [.83 .85 .86 |.89 .89 .89 | .816 .850 .850
TOTAL |.714 .771 .768 | .777 .807 .805 | .793 .846 .829 | .761 .808 .801
Table 7.1.
N, 6 10 30 TOTAL
N, w Z B W Z B W Z B W Z B
6 57 .56 .55 |27 39 27 |19 40 21 | .343 449 344
10 89 .77 .86 | .66 .63 .63 |.50 .65 .52 | .685 .682 .666
30 94 80 94 |8 .71 .85 |.82 .81 .80 | .869 .771 .862
TOTAL | .800 .707 .784 | .592 .576 .581 | .505 .619 .508 | .632 .634 .624
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Table 7.2.
N, 6 10 30 TOTAL
N, w Z B W Z B W Z B W Z B
6 .60 63 64 |94 89 95 |10 95 1.0 | .846 .823 .862
10 21 52 39 |.74 81 .82 [.96 .89 .96 | .638 .741 .725
30 10 51 29 | .58 .84 .74 |90 91 .92 | .527 .757 .650
TOTAL | .303 .555 .441 | .755 .847 .840 | .953 .918 .957 | .670 .774 .746
Table 7.3.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 58 60 60 |.61 .64 .61 |.60 .68 .60 | .594 .636 .603
10 55 64 63 |70 72 .72 |73 .77 .74 | .662 .712 .696
30 52 66 62 |71 .78 .80 | .86 .86 .86 | .698 .764 .756
TOTAL | .551 .631 .613 | .674 .712 .711 | .729 .769 .732 | .651 .704 .685
Table 8.1.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 61 63 63 |.16 39 24 |.07 42 .16 | .279 478 .339
10 96 85 94 .74 74 73 | .48 .78 .59 | .724 .790 .755
30 1.0 91 99 |97 85 95 |.89 .88 .88 | .952 .880 .938
TOTAL | .854 .797 .852 | .622 .658 .639 | .478 .694 .542 | .652 .716 .677
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Table 8.2.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 58 66 .68 |95 88 95 |.99 93 1.0 | .846 .823 .862
10 23 52 38 |76 .82 83 |.95 .88 .95 | .644 .741 .721
30 155 .33 | .58 86 .76 | .91 .92 .92 | .536 .775 .670
TOTAL | .307 .575 .441 | .762 .854 .846 | .951 909 .957 || .673 .779 .755
Table 8.3.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 .60 64 .65 |.56 .63 .60 |.53 .68 .58 | .560 .650 .607
10 59 69 66 |.75 78 .78 | .72 .83 .77 | .684 .766 .738
30 56 .73 66 |.78 86 .85 |.90 .90 .90 | .744 .828 .804
TOTAL | .581 .686 .658 | .692 .756 .742 | .715 .801 .749 || .663 .748 .716
Table 9.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B
6 63 .65 65 |.65 .67 .66 |.63 .68 .64 | .637 .665 .650
10 .65 66 68 |.69 .70 .70 | .72 .71 .72 | .688 .692 .699
30 67 68 .71 |.70 .70 .71 |.74 .74 .74 | .701 .707 .720
TOTAL | .649 .664 .679 | .682 .690 .690 | .695 .710 .700 | .675 .688 .690
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Table 10.
N, 6 10 30 TOTAL
N, W Z B W Z B W Z B W Z B

6 .58 .59 60 | .60 .62 .62 |.57 .63 .59 | .586 .613 .600

10 .62 65 66 |.70 .71 .71 |.70 .74 73 | .675 .701 .700

30 .60 .68 .69 |.78 .80 .81 |.81 .82 .82 |.729 .765 .773

TOTAL | .601 .640 .646 | .693 .707 .714 | .696 .732 .713 | .663 .693 .691

Table 11. Table 12.
N, 6 10 N, 6 10
N, W Z B|W Z B N, W Z B|W Z B
6 7274 741 .71 .79 77 6 72 .73 .73 | .70 .78 .75
10 .73 .80 .78 | .89 .90 .90 10 .73 .80 .80 | .89 .89 .89

Discussion At first, we investigate Case 1. When H, is true (the data
to be classified are taken from =z,), if N, = 30 and N, = 6, 10, then the rule-Z
is better than -W and -B. When N, =30 and N, =6, 10 in table 1.2 (H, is
true), rule-Z is also better than -W and -B. These facts seem to be caused
by the estimating method in rule-Z. Since DZ is obtained by using N; + N,
observations for estimatimation under H,, if N; is small, N, observations are
effective for estimation. If so, the tendancy should appear more notably for
N; =3 than for N; = 1. Hence, let us examine Case 2. The tendancy stated
above also appears in Tables 2.1 and 2.2, more clearly than Tables 1.1 and
1.2. The other hand, if N, =30 and N, =6, 10 under H, or N, = 30 and
N, =6, 10 under H,, the rule-Z is worse than -W and -B. However, the
inferiority of -Z from -Wand -B is almost same for N; = 1 and N; = 3. These
tendancy is seen not only for Cases 1 and 2 but also for Cases 3 and 4, etc.

As a criterion for the goodness of the three rules, it is reasonable to use
the averages of the values (last three values of the last rows) in the averaged
tables. Examining these values, rule-Z and -B are rather better than



414 Nobuo NISHIDA

-W. Regarding to -Z and -B, -Z is slightly better than -B. This tendancy
hold for almost all of Cases 1 ~ 10 and other cases which are not written in
this paper. Kanazawa [15] studied the property of the three rules. She
carried out numerical simulations in the case p=2 and N3 =1. From the
results there it is known that rule-Z and -B have nearly the same goodness
and both are better than rule-W. Our conclusion coincides with her
one. However, we give a further comparison between rule-Z and -B as well
as the case p=3 and N3 > 1.

We note that Case 3 is obtained from Case 1 by adding two
variables. From Tables 1.3 and 3.3, it becomes clear that the rates in Table
1.3 are better than the corresponding ones in Table 3.3 for the case N, and/or
N, equal to 6 (that is, small samples cases). Consequently, it seems useless
to add variables in this case. This property also find in Tables 2.3 and 4.3,
or in other cases. On the other hand, it is possible to give examples which
improve the rates of correct classification by adding some variables in small
samples cases. Those are Cases 11 and 12, in which the rates are improved
than the corresponding ones for p=3 (Tables 1.3 and 5.3). Thus, it is
important to examine the deviation of the two populations when we attempt
to add or delete variables.
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