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1. Introduction

In this paper we study the admissibility of some tests, multiple decision
procedures and classification procedures. In general, two methods are mainly
used in multivariate analysis to show the admissibility of various procedures.
One is to use Bayes procedures. The other is to use the structure of the
exponential family. The former method has been used in Kiefer and Schwartz
[16], Nishida [19], [20], [21], [22], [24]. The latter method has been seen
in Ghosh [13], Birnbaum [9], Stein [33], Schwartz [29], Anderson and
Takemura [5], etc. In this paper we use the former method. All the problems
are studied for 0-1 loss function.

In Section 3, we consider testing problems related to a given structure
of means (For testing a given structure of means, see, e.g., Rao [27], Mardia
et al. [18], Siotani et al. [31]). Nishida [24] obtained a class of admissible
tests for the combined problem of a given structure of means and Σ = Σ0. In
this section two testing problems are considered. One is to test the combined
hypothesis of a given structure of means and the sphericity covariance
structure. The other is to test a given structure of means under the sphericity
covariance structure. The admissibility of the likelihood ratio test (LRT) is
shown for each problem.

Testing problems for covariance matrices are studied in Section 4. As
for testing independence of sets of variates, Kiefer and Schwartz [16] derived
a class of admissible tests. They also treated the problem of testing equality
of covariance matrices for k samples case. One sample case (that is, the
problem that Σ = Σ0) was studied by Nishida [19]. Each work obtained a
class of admissible tests which contains the LRT. In this section we consider
one sided tests for one and two samples cases. Linear structure for the inverse
matrix of a covariance matrix is also considered. A class of admissible tests
is obtained for each problem.

In Section 5, the admissibility of multiple decision procedures for
covariance matrices is studied. Multiple decision problems or ranking
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problems on means of normal populations have been studied in many

literature. For example, see Bechhofer [6], Bechhofer et al. [7], Dunnett

[11], Paulson [26] and Seal [30]. The same problems for variances of normal

populations have been studied by Bechhofer and Sobel [8], Eaton [12], Hall
[14] and other authors. However, these problems are not sufficiently studied

for multivariate case. In this section, first we consider a multiple decision

problem for covariance matrices in two samples case. Secondly, the three

samples case is studied. Various types of problems are considered in the three

samples case. A theorem which gives a class of admissible procedures and

its corollaries are derived for each problem.
The classification problem with unequal covariance matrices is studied in

Section 6. Admissible classification rules were given by Kiefer and Schwartz

[16], Nishida [19], [21] and [22] under various situations. In this section

we derive three maximum likelihood (ML) classification rules for the unequal

covariance matrices case. The rules are extensions of the ones in Kanazawa

[15]. It is shown that two of them are admissible. Further, the limiting

distributions of the three rules are also studied. As a result, it becomes clear

that they have the same limiting distribution whose expectation is related to

the Kullback-Leibler information (cf. Theorem 6.4). A class of admissible

classification rules which have the same limiting distribution as stated above

is also given. Finally, numerical simulations are carried out to examine some

properties of the three rules.

2. Notations and preliminary lemmas

It is known (Kiefer and Schwartz [16]) that an admissible Bayes critical
region (for 0-1 loss function) is of the form

(2.1) \X: (f(X\ θ)U,(dθ)/ !f(X; θ)Π0dθ) > cj,
(. J J )

for some positive constant c, where X is the matrix of total random sample,

θ is the vector of parameters, f(X\ θ) is the p.d.f. of X given 0, and Π0 and

Π t are the probability measures over the null parameter space H0 and the

alternative parameter space Hί9 respectively. Here, it is assumed that the

distribution of X is continuous type. We identify the hypothesis and the

corresponding parameter space. Since c is arbitrary in (2.1) we only require
for Π0 and Π1 to be finite instead of Π(Ω) = 1, where 11 = 110 + 11! and

Ω = H0 + H1. By the same reason, we often omit constant multiples in

calculating Bayes rules (see [16]). The density of variables is always described

by /, even if variables and/or parameters are changed. For example, we use
the notations f(X\ θ), f ( Y , Z; μ,Σ) and so on.



Admissibility of some tests in multivariate analysis 367

For a multiple decision problem with three or more decisions, it is easily
seen that the Bayes rule is given as follows: Let the total parameter space
Q be devided to a disjoint union of H1,H2,...,Hk and Πt denote a finite
measure over Ht (i = 1, 2,...,/c). Then the Bayes rule is given by

Γ Γ
(2.2) choose Hj if Cj f(X θ) Uβθ) = max Ci f(X θ)f(X

J J

where ct 's are any constants and maximum is taken for i = 1, 2, fc.
Next, we state a lemma which is given in [16] and is useful for obtaining

Bayes rules. Under H l 5 let X = (Y9 U) be a random matrix whose columns
are independently distributed as Np( - , Σ). Also assume Σ is unknown and

EU = v(p x 1) (unknown). Let θ* be the parameter of Y and θ that of X, i.e.,
θ = (θ*, v). Let Hf be the domain of #* under Hi9 and consider the case

where the domain of v is Ep and

(2.3) HI = Hf x E* (i = 0, 1).

Of course, (2.3) means that

(2.4) 0eHf if and only if 0*eHj".

Let Hf* be a subset of Hf for which Σ can be written as Σ = (C0 + D,)"1,
where C0 is a given positive definite matrix and D{ is a positive semidefinite

matrix. Further, consider a finite measure Πf on Hf which assigns a whole
measure to Hf*. Then, the following lemma due to Kiefer and Schwartz

[16] holds:

LEMMA 1. There exist finite measures Π0 and Π1 over H0 and H1?

respectively, which satisfy

(2.5)

Γ Γ Γ Γ
\f(X; θ ) n i ( d θ ) / \ f ( X ; θ)U0(dθ) = \f(Y; 6>*)Π*(rf/9*)/ \f(Y; θ*)Πξ(dθ*).

J J J J

Using this lemma, we can treat the problem without U and hence v. Since
this lemma is proved by showing that it is possible to construct Πf from Πf

which satisfy (for some positive constant df)

(2.6) [/(*; θ}Πt(dθ) = dt etr {- C0UV'/2} ίf(Y; θ*)Πf(dθ) (i = 1, 2),
J J

we can generalize the lemma for the procedure (2.2). So, it is possible to
eliminate U and v in such a case.

The following two lemmas which are useful for the integrability of prior

densities were also given in [16].
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LEMMA 2. Let η be a p x q matrix. Then

Γ
(2.7) \Ip + ηη'\~hl2dη«X)

if and only if h > p 4- q — 1.

LEMMA 3. Let η be a p x q matrix with q > p. Ifp—l<q + t<h — p+l

and f > — 1, then

(2.8)

The following lemma is also used for the integrability of densities,

especially in multiple decision problems. The result was given in [23], but

it is necessary to correct its proof. So, we give a complete proof.

LEMMA 4. Let η — (f/i,...,^), where ηt is a p x qt matrix with qt>p

(2.9) p - 1 < ql + if < ht(i = l , . . .,/c - 1), p - 1 < qk + ίk < hk ~ p + 1

(2.10) 00,

PROOF. The proof is given only for k = 2, but it is easy to extend the

proof to the case k > 3.

Using the transformation η\ — (Ip -f ηίη'1)~ll2η2, the integral in (2.10) can
be calculated as follows.

Ί + η2η'2 ~h2/2 dη

(in)
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Here, integrals are carried out over Euclidean spaces. The integrals in the
last line of (2.11) are integrable under the condition that

(2.12) p - 1 < ql + tl < h, + Λ2 - t2 - q2 - p + 1,

p — 1 < q2 + t2 < h2 — p + 1, ίi > — 1 and ί2 > ~ l

Since /ι2 — £2 ~~ #2 ~ P + 1 > 0 fr°m the second inequality, the first inequality
in (2.12) is valid when

(2.13) P - l <f l ι +*ι < Λ ι

In Lemma 4 with fc = 2, (2.10) holds if (2.12) is satisfied. However, (2.9)
is rather convenient for use, because the condition for q1 + tί does not contain
q2 and ί2 The same argument holds for k > 3.

In calculating Bayes rules, integrations are usually carried out over
Euclidean spaces or the space of whole positive definite matrices, and it is
always neglected to state the spaces explicitly.

3. Admissibility of the LRT for a given structure of means

3.1. A given structure of means with the sphericity covariance structure

Let Xl9 X2,...,XN t>e a random sample from Np(μ, Σ). Consider the two
problems of testing

(3.1) H0: Hμ = ξ0 and Σ = σ2Σ0 against H1: not H0,

and

(3.2) H0: Hμ = ξ0 against HT, : not H0

under the assumption Σ = σ2Σ0. Here, H(q x p) and ξ0(q x 1) are prespecified
matrix and vector, respectively. It is assumed that rank (H) = q < p, Σ0 (p x p)
is a given positive definite matrix, and σ2 is an unknown positive number. It
is also assumed that p > 2 and N — 1 > p.

These problems are regarded as the ones obtained by combining a given
structure problem with the sphericity problem. For the sphericity problem,
see, e.g., Anderson [3]. The problems considered in this section are slightly
different from the one which was treated in Nishida [24]. The problem dealt

there was

(3.3) H0: Hμ = ξ0 and Σ = Σ0 against Hί: not H0,

and a class of admissible tests which include the LRT was obtained.
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Admissibility of the LRT's is derived for (3.1) and (3.2) in the following

subsections.
Now, let us summarize the maximum likelihood estimators (MLE's) under

HO in (3.1) or (3.2). Letting * = I £?,,*, and S = £f=1 (Xt - X ) ( X t - X}' ,

then

(3.4) log L(μ, Σ) = - log |2πΣ| - trΣ^S - ir^^X - μ)(X - μ)',

where L(μ, Σ) is the likelihood function. Under H0 , log L(μ, Σ) is maximized

by

(3.5) μ* = X - ΣH'(HΣHTl(HX " fo)

for any fixed Σ (This is shown by the calculations similar to the ones in

p. 106-107 of [18]). Hence

(3.6) μ = X~ ΣoH^HΣoHT^HX - ξ0)

is the MLE of μ under H0, which coincides with the MLE under the hypothesis

Hμ = ξ0 and Σ = Σ0. Since

(3.7)
N (

max log L(μ,Σ) = -- [ p - log σ2 + log |2πΣ0 |
μetfo 2 \

+ 1 jl tr Σί1 S + (Hί - ξ^HΣoH'Γ^HX - ξ0)

the MLE of σ2 is given by

(3.8) σ2 = 4τ {tr Σί J S + JV(HX - ξ0Y(HΣ0HT1(HX ~ ξ0)}.
pN

3.2. Admissibility of the LRT for (3.1)

The problem (3.1) can be reduced to the following form: Let

Z1 ? Z 2 ,...,Zjv be a random sample from Np(v9 Φ). Our problem is to test

(3.9) H0: vr+ 1= = Vp = 0 and Φ = σ2! against Hί : not #0,

where v' = (v!,...^^) and r = p — q. Let

(3.10)

and
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then the following theorem holds for (3.1).

THEOREM 3.1. If n = N — 1 > p, a test with the critical region

(3.12) {tr A + NΣί=r+ιZ?}p / 2/|Λ| 1 / 2 > c

is admissible Bayes for any c, and is the LRT.

PROOF. Under H0, set

(313) (σV = l + τ >
v j = τy£/(l + τ2) (i = l,...,r),

and consider

\ r \ p - 1

(3.14) dΠ0/dθ= ' '
1 ' 0/

as a prior distribution on H0. By the reason stated in preliminaries, constant
multiples are usually omitted hereafter in calculating Bayes rules (except

Subsection 6.1). Denote the sample matrix by Z. Then

= f Iτl"- 1 etr (- 1(1 + τ2){A + N(Z - v)(Z - v)'

(3.15)

= etr I - -(A + NZZ') i Iτ l "" 1 etr | - Iτ2(/l + NZZ')

τ2 v?7'

Since

(3.16)

Γ / N Γ τ 2 v 2

Jexp(_ »{_ 2tΛZ, + ̂
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for any ί, (3.15) reduces to

etr{-(A + NZZ')/2] \τ\p~l exp(-{try4 + W£f = r + 1 Z2}τ2/2)dτ

(3.17) ^

= etr^--(/l 4- NZZ')
I s\ \ '

Under Hί9 we transform Z = (Z1?...,ZN) by a suitable orthogonal matrix

T(N x N) so that P^^^/AΓZ in ZT= V = ( V ί 9 . . . 9 V Λ 9 Vn + ί ) . Then, the
columns of F are independently distributed as Np( ,Φ) with E P f = 0 for

i = !,...,«. Since the domain of EP£+ 1 is Ep, we apply Lemma 1 in Nishida
[20] for Vn + 1 with v0 = 0 in calculating the Bayes rule. Set

(3.18) Φ'1 = Ip + ηη' with η(p x 1)

and

(3.19)

Then we have

/(Z; v, Φ)dΠ1 =et r { --[
(3.20) = etr ί- 1 NZZ'} (etr j- i(/„ +

= etr - -μ + ΛΓZZ')

where K* = (^,...,^). Therefore, the procedure

\ f ( Z ' 9 v 9 Φ ) d Π 1

(3.21) ^ = {tr A + ΛΓΣf=r + ι Z?}p/2/\A\112 > c

/(Z;v,Φ)dΠ 0

is admissible Bayes. The prior density (3.19) is shown to be integrable by
Lemma 2. Further, it is easily seen that the procedure is the LRT.

We can write (3.12) in the terms of original variables as follows:

(3.22) {tr Σ0-
XS + N(HX - ξ0)'(HΣ0HTl(HX - ξ0)}p/2/\Σ^S\1/2 > c.

REMARK 3.1. In the special case q = p(r = 0), (3.1) becomes to

(3.23) HQ\ μ = μ0 and Σ = σ 2/ against H^: not H0.
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This is considered as the combined problem of μ = μ0 and the sphericity

structure.

3.3. Admissibility of the LRT for (3.2)

By the same notations as in the previous subsection, the testing problem
(3.2) can be reduced as follows: Let Z l 5 Z2,...,ZJV be a random sample from

Np(v9 σ2/). Then we want to test

(3.24) H0: vr+1 = ••• = vp = 0 against Hl: not H0.

Since Σ = σ2Ip under both H0 and Hl9 this problem can be considered as
the one of testing a linear hypotesis in univariate linear model. Therefore

the admissibility of the LRT is already known. However, we give another
derivation based on Bayes approach.

THEOREM 3.2. If 0 < a < pn — p - f l , a test with the critical region

(3.25) [IT A + N^r+1Z
2Y/(trAY > c

is admissible Bayes for any c.

PROOF. Under H0.9 we use the same prior distribution as used in the
proof of Theorem 3.1. Under Hί9 we consider the same transformation as

in the previous subsection and apply Lemma 1 in [20] for ^/NZ with setting
v0 = 0. Further, set

(3.26) (σ'Γ^l+τ 2,

(3.27) dΠ*/dτ = \ τ \ * ~ l ( l + τ2)~pnl2.

This density is integrable. For this prior distribution, we have

ί
J

/(Z; v, σ^dU, = etr -

')[ hτl^^xp j - -(tr A)τ2\(3.28) = e t r - - μ + JVZZ') τl^^xp - -(tr A)τ2dτ

= etr J - -(A + JVZZ'U (tr A)-*12.

Combining this with (3.17), we obtain the Bayes critical region

(3.29) {tr A + N^p

ί=r+^Z2γi2/(irAγi2 > c,

which is equivalent to (3.25).
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If we set α = p in (3.25), the following corollary is obtained.

COROLLARY 3.2.1. For any c, a test with the critical region

(3.30) {tr A + JV£f= r + 1Z?}/(tr A) > c

is admissible Bayes, and is the LRT.

In the terms of original variables, (3.30) can be expressed as

(3.31) {trio 1 S + N(HX - ξ0)'(HΣ0Hr '(HX - ξ0)}/tτΣ^S > c.

REMARK 3.2. In the case q = p, (3.24) is considered as the problem of

testing μ = μ0 under Σ = σ2/, that is

(3.32) H0: μ = μ0 against H1 : not H0 with the assumption Σ = σ2/.

REMARK 3.3. Relating to (3.23) and (3.32), we recollect the problem

(3.33) H0:Σ = σ2! against H^ : not H0 with the assumption μ = μ0,

which is the sphericity problem in the known mean vector case. We note

that the admissibility of the LRT for (3.33) is easily obtained by the following
prior distribution.

Under //0, set

(3.34) (σ2)'1 = 1 + τ2 and dΠ0/dτ = M^^l + τ2)'^/2.

Under Hί9 set

(3.35) ΐ-ι=Ip + ηη' and dUJdη = \lp + ηη'Γ"12,

where η is a p x 1 vector. The admissibility of the LRT for the sphericity
problem with unknown mean vector was obtained in Kiefer and Schwartz [16].

4. Tests for covariance matrices

4.1. One sided test for one sample case

Suppose X(p x N) = (Xί9...,XN) be a random sample from Np(μ, Σ). We
consider the problem of testing

(4.1) H0:Σ = Σ0 against H1 : Σ < Σ0.

Here, Σ0 is a given positive definite matrix and Σ < Σ0 means that Σ0 — Σ is
a positive definite matrix.

For the problem with the two sided alternative Σ φ Σ0, Nishida [19]
obtained a class of admissible tests which includes the LRT and the modified
LRT.
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Let

(4.2) * = ^ΣΓ-ι*<. s = Σ?=ι(*<-*)(*<-*X

Then we have the following theorem for (4.1).

THEOREM 4.1. I f p — \<r<n — p+\ and B is a given positive definite
matrix which satisfies B > ΣQ 1 , then a test with the critical region

(4.3) e t rUB-Σo^Sj I S r ^ c

is admissible Bayes for any c. Here, B > ΣQ 1 means that B — Σ^1 is positive
semidefinite.

PROOF. At first, let us transfom X by an orthogonal matrix T(N x N)

such that XT= (Yl9...9 Yn, ^/NX). Here, n = N-l and the columns of XT
have the same covariance matrix Σ. Further, we have E Ύ{ = 0 for
i= l,...,n. Putting the whole mass to Σ in (4.4) as a prior distribution for

Σ, we apply Lemma 1. It is taken (e.g.) C0 = -Σφ 1 in (2.6).

Choose t and integer q such that q > p, t > — 1 and r = q + ί. Then

there exist such q and t if p — 1 < r. Under H l 9 set

(4.4) Σ"1 = B + ηη',

where η(p x q) and

(4.5) d

By Lemma 3, this density is integrable under the conditions of the
theorem. We have

(4.6) = etrί- l-BS\ ί|W'|I/2etr|- ^ηη'S\dη

= etrj- -BS\ |S|-(t+?)/2 f h*^*'|'/2etr| --η*η*' \dη*,

where η* = Sl/2η. Since the integral of the last line of (4.6) is constant, we

obtain the statistic

(4.7) etr j-iβsl |SΓ(t+ί)/2.
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Consequently

(4.8)
J

= etr j - -(B - ΣQ^si \S\~(t+q)/2 > c'

is admissible Bayes critical region, which is identical to (4.3).

Setting B = (1 + w)Σ^"1(w > 0) and α = u/r in the above theorem, we obtain
the following corollary.

COROLLARY 4.1.1. If n > 2(p — 1) and α > 0, then a test with the critical
region

is admissible Bayes for any c.

Anderson and Gupta [4] considered to test HQ against the altenatives

defined by

(4.10) H*: yp > 1 and £f= l γt > p,

where y f's (γί > ••• > γp) are the characteristic roots of ΣQ *Σ. The alternatives
mean that Σ is larger than Σ0 in a sense. By using their result (p. 1063), it
can be shown that (4.9) is an acceptance region for their problem which has
monotonicity property.

REMARK 4.1. In the case that μ is a known vector, it is easily shown
that the corresponding theorem and corollary hold. We have only to exchange

n and S by N and S* = £f= 1CXΊ — μ)(Xi — μ)', respectively. For example, if
N > 2(p — 1) and α > 0, then a test with the critical region

(4.11)

is admissible Bayes for any c.

4.2. One sided test for two samples case

Suppose that X(p x N,) = (Xl9...,XNί) and Y(p x ΛΓ2) = ( Y l 9 . . . 9 YN2) are
random samples from Np(μl9Σ1) and Np(μ2,Σ2), respectively. We consider
the problem of testing

(4.12) H0:Σ1= Σ2 against Hί:Σί<Σ2.
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Define X and S1 by

(4.13) * = τ Σ ? = ι * < > S^Σΐl^Xi

Further, define Ϋ and S2 similarly for the second sample. Let n{ = Nt — 1 as
usual. Then we have the following theorem.

THEOREM 4.2. If p—\ <r <n± + n2 — p + 1, p— I < r 1 < n 2 and p — 1
< r2 < nγ — p + 1, then a test with the critical region

(4.14) | S i + S 2 r r i / | S i l r 2 > c

is admissible Bayes for any c.

PROOF. After transforming X and Y by orthogonal matrices analogous

to the previous subsection, we use Lemma 1 for ^/N\X and JN2Y. Set

(4.15) Σ Γ 1 = Σ 2 1 = Σ - 1 = / p + w/ with η(p x q)

and

(4.16) dΠξ(η)/dη = \ η η ' \ t / 2 \ I p + W'Γ("1 + II2)/2

under /f0. Here, t and integer q are chosen such that q > p, t > — 1 and
t + q = r. Then we have

(4.17) = etr - + S2) |W'| t/2etr - '(S, + S2)dη

Under H l 5 set

(4.18) Σ^1 =Ip + ηiη( with ηι(p x qj,.

(4.19) Σ^1 = /p + ί / ι f / 1 + J/2*/2 with *h(P x ^2)

and

(4.20) dΠί(ιy)/dιj

== I ^ l ^ / l l 1^72^/21 ' l *p ' tfltfl ' ^/2^/2ι l *p ' ^ l ^ / l l

Here, ίt 's and ^'s are chosen to satisfy gt > p, ί, > — 1 and t{ + q. = rt. Then
we have
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= e t r - (

(4.21)
/ I

< e t r ( -^i^i + ̂ 2) + >?2>/2Sι} dη1dη2

= etr<--(Sl +52)1-15! + S2\-(tί+qι)/2\Sί

So, we obtain

tf(X9 Y ; θ ) d Π 1 ( θ )

(4.22) - = (Si + S '̂-

/(*, r;

which implies the theorem. The integrability of the densities (4.16) and (4.20)
is assured by Lemmas 3 and 4.

COROLLARY 4.2.1. If n1 > 2(p — 1) and n2 > p - 1, then a test with the
critical region

(4.23) |S 1+S 2 |/ |S 1 | = |/J, + SΓ 1 S 2 | ^c

is admissible Bayes for any c.

PROOF. Set r1 = r2 = d and r = 2d where d is chosen as slightly larger
than p — 1, then we obtain (4.23). Further, these r 1 ? r 2 and r satisfy the
integrability conditions.

Anderson and Gupta [4] also considered to test HQ against the alternatives

(4.10), where y t 's (y! >•••>?,,) are the chracteristic roots of Σ1~
1Σ2. They

obtained a class of tests which have the monotonicity property. Since

HI c Hf , the above theorem and corollary hold for their problem (see Remark

5.1). It can be shown that the test (4.22) is contained in their class.

REMARK 4.2. Strictly speaking, we must determine how Σ is (or Σ's are)
set in the prior distribution before applying Lemma 1, as we have done in

the previous subsection. However, in order to make the argument simple we

beforehand delete the variables (like ^J~N\X and y/ΪV^Ϋ in this subsection)

hereafter, on the premise that Σ's will be set later as Σ"1 = C0 + Dt for some

C0 and Dt.



Admissibility of some tests in multivariate analysis 379

REMARK 4.3. When the mean vectors μx and μ2 are known, we can

obtain the similar theorem and corollary by a slight modification of the above

argument. Let

(4.24) S f=Σ£ 1 (A t-/ ί l)(*(-μ1)' and S2* = Σf^M - μ2)(^ - μj,

then in the propositions corresponding to Theorem 4.2 and Corollary 4.2.1,

nί,n2,S1,S2 should be exchanged by Nί9 N2, Sf , S* , respectively. For
example, if min(N l 5 ΛΓ2) > 2(p — 1)

(4.25) |Sf •+ Sf I/IS? I - |/p + SΓ %Ί > c

is an admissible Bayes critical region for any c. We can easily obtain similar

modifications for propositions appeard in the following sections, so, we do

not mention such modifications hereafter.

4.3. Linear structure of the inverse matrix of the covariance matrix

Let X(p x N) = (Xί9...9XN) be a random sample of size N from
Np(μ, Σ). We consider the problem of testing

(4.26) H0: Σ'1 = σ^Σ0 + σ2

lGl + ••• + σ%Gk against H1 : not H0,

where Σ0 is a given positive definite matrix and G !,..., Gk are given positive

semidefinite matrices. The multiples σ^9σ\9...9σl are unknown constants.
This problem includes the sphericity problem and the intraclass correlation

model as a special case. It is also regarded as a generalization of the problem
which was considered in Kiefer and Schwartz [16].

The linear structure of the inverse matrix of the covariance matrix was

considered by Anderson [1], [2]. The linear structure for the covariance

matrix itself was considered in Bock and Bargmann [10], Srivastava [32] and

Anderson [1], [2]. Krishnaiah and Lee [17] studied an extension of the

problem. For a summary of these structures, see, e.g., Siotani et al. [31].

Let X, S and n be the ones defined as usual (like in Subsection 4.1). Then,
the following theorem holds.

THEOREM 4.3. If 0 < r0 < n and p — 1 <rl < n — p + 19 then a test with

the critical region

(4.27) (tr {(αΣ0 + b.G, + - + bkGJS}Y'/\SΓ > c

is admissible Bayes for any c, where a is any positive number and b l 5 . . . ,b f c are

any nonnegative numbers.

PROOF. Let us transform X by an orthogonal matrix T such that

XT = (Z, ^/NX], where EZ = O(p x n), and eliminate ^NX9 μ by Lemma 1
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with the following setting: Under H0, set

(4.28) I"1 = (1 + aη2)Σ0 + b^2G, + - + bkη
2Gk

and

(4.29) dΏξ(η)/dη = |(1 + aη2)Σ0 + b1η
2G1 + - + M2G tΓ"

where η is a scalar variable. Then we have

(4.30)

(4.33) f/(Z; Σ)rfΠ*(Σ) = etr ί- ̂ o^SJ JlMil"'2 etr j- I

= etr - ΣO- 'S (tr {(αΣ0 + b1G1 + - + bkGk)S}Γro/2.

Under Hlt set

(4.31) Σ"1 =Σ0 + ηίη{ with η^p x qj

and

(4.32) dΠί(η)/dη = |Σ0 + η^Γ"12^^'2 ,

where p < q^, t1 > — 1 and q1 + tί = rί. Then we have

etr - w'

= etr -

Therefore

ί f ( X ; θ ) d Π 1 ( θ ) ί/(Z;Σ)dΠ*(Σ)
(4.34) ίl _ = » _

ί f ( X ; θ ) d Π 0 ( θ ) f/(Z; Σ)dΠS(Σ)
J J

= (tr {(αΣ0 + b,G, + - + bkGk)S}γ°'2/\SΓ'2,

which implies the theorem.

If n > 2(p — 1), it is possible to set r0 = r = d in the theorem, where d
is a number which satisfies p — l<d<n — p+l. Consequently, the following
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corollary holds.

COROLLARY 4.3.1. If n > 2(p — 1), then a test with the critical region

(4.35) tr {(αΣ0 + b.G, + ••• + bkGk)S}/\S\ > c

is admissible Bayes for any positive constant c, where a is any positive number
and h !,..., fcfc are any nonnegative numbers.

5. Multiple decision problems for covariance matrices

5.1. Two samples case

Under the same situation (two normal populations and their random
samples) as in Subsection 4.2, we consider the multiple decision problem of
deciding whether of the following three hypotheses are true :

(5.1) H0:Σl=Σ2, H1:Σl<Σ29 H 2 : Σ 1 > Σ 2 .

Our interest is to obtain a class of admissible procedures. By using the
same notations as in Subsection 4.2, the following theorem holds.

THEOREM 5. 1. If p — 1 < r < n1 + n2 - p + 1, p - 1 < r t < n2, p - 1 < r2

<n1 — p + 1 , p — 1 <r3 < n2 — p + 1 and p — 1 < r4 < n l 5 then the procedure

which selects H , when Tt — min 7} is admissible Bayes, where

(5.2) T0

and Cj's are any positive constants.

PROOF. Consider the usual orthogonal transformations for X and Y, and
use Lemma 1 like the way as that in Subsection 4.2. Under H0, we use the
same prior distribution as (4.16). So, we obtain the statistic

(5.3) f ( X , Y; θ)dΠ%(θ) = etr j - - (St + S2)\ \S, + S2Γ«+«)/2.

Under H1, we also use the same prior distrbution as (4.20), which yields

(5.4)

\f(x, Y;P
Since the hypothesis H2 is obtained by exchanging the suffixes in Hl9 we use
the prior distribution for H2 which is obtained by exchanging the suffixes in
that for H1. Then we have



382 Nobuo NISHIDA

(5.5)

f ( X 9 Y\ θ)dΠ*(θ) = etr j- 1 (Sl + S

Therefore, the theorem follows from (2.2), by letting r = q + t and rt = qt + ίt

(i = I 2, 3, 4).

For this problem, Roy and Gnanadeskian [28] proposed a procedure
based on the largest and smallest roots of S2~

1S1. However, their procedure
is not contained in the class of Theorem 5.1 unless p = 1.

COROLLARY 5.1.1. If min(n 1 ? n2) > 2(p — 1), then the procedure which

selects //t when L/f = min l/. is admissible Bayes, where
j

(5.6) t/o = c0|Sι + S2Γ
+I», Uj = C IS ΠSi + S2 "*-' (j = 1, 2)

α«ί/ c .̂' s1 are α«7 positive constants.

PROOF. Setting r = c^ -I- n2), r j — r3 = cn2 and r2 = r4 = c/tx in the
theorem, where c is slightly larger than (p — l)/min(n l 9 n2), then we obtain
the corollary.

COROLLARY 5.1.2. If min(n l 9 n2) > 2(p — 1), ί//e« /Λe procedure which

selects HI when Vt = max Vj is admissible Bayes, where

FO = c0, K = Cl |S! + S j l /IS i l = C l |/p + SzSf1!,

(5'7 tζ = c2 |Si + S2|/|S2| = c2 \Ip + S.S^l

and Cj's are any positive constants.

PROOF. Set η = d (ί = 1, 2, 3, 4) and r = 2d in the theorem, where d is
slightly larger than p — 1. Then we obtain the rule which essentially coincides
with that of the corollary.

COROLLARY 5.1.3. If min^, n2) > 2(p — 1), then the procedure which

selects Hi when W{ = min Wj is admissible Bayes, where

(5.8) W0 = c0, W,=Cl\S,l ^2 = c2 |S2 |

and Cj's are any positive constants.

PROOF. The corollary is obtained by letting r = r1 = r4 = dv and
r2 = r3 = d2 in the theorem, where d^ and d2 are chosen to be slightly larger

than p — 1.
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5.2. Three samples case

Suppose that X(p x NJ = (Xl9...,XNl), Y(p x N2) = (Y 1 ? . . . , YN2) and

Z(p x N3) = (Z l 9... ,ZN3) are random samples from Np(μί9 ΣJ, Np(μ2, Σ2) and

Np(μ3, Σ3), respectively. Let J?, Ϋ, Z, Sl9 S2 and S3 be the ones analogous to

(4.13). Further, let S = Sλ + S2 + 53 and n = n± + n2 + w3 fa = Nf - 1). We

consider the following three multiple decision problems:

^o : Σ! = Σ2 = Σ3, /f j : Σ1 / Σ2 = Σ3, //2 : Σ2 / Σ t = Σ3,

H3: Σ3 ^ Σ! = Σ2 and H4: Σ, / Σ,. (i ^ j).

^o : Σ! = Σ2 = Σ3, H1:Σί <Σ2 = Σ3, //2

 : Σ2 < Σx = Σ3

and H 3 :Σ 3 < Σl =Σ 2 .

^o : Σ! = Σ2 = Σ3, H1:Σi >Σ2 = Σ3, H2 ' Σ2 > Σ t = Σ3

and H3: Σ3 > Σ t = Σ2.

At first, we transform samples by the usual orthogonal matrices and use

Lemma 1. So, we can treat these problems without X, Ϋ, Z and μ^s.

THEOREM 5.2. If p — 1 <r < n — p + I, p — 1 <r2i_ι < nt — p + I, p — I

< ?2i < n - ni - P + 1 0' = 1» 2

?

 3) β«^ p - 1 < r6+j < HJ - p + 1 ( j = 1, 2, 3),

then the procedure which selects Ht when 7^(1) = min 7}(1) w admissible Bayes

for (5.9), w/zere

T0<
1> = c 0 |SΓ, T/1> = cJ.|S/^-1|S-S/« (7 = 1,2,3),

and Cj's are any positive constants.

PROOF. Under H0, set

(5.13) Σ 1 = Σ 2 = Σ3 = Σ = (/P + W

/)~1 with η(p x q)

and

(5.i4) dπtw/dη = \ιp + w

/ r ( π ι + Π 2 + Π 3 ) / 2 iw / r / 2

ί

where t and integer ςι are chosen such that q > p, t > — 1 and q + ί = r. Then

we have

etr _ Σ-i(Sι + s2 + S3)

(5.15) = etr j- M J \ηη'\tl2 etr |- i ηη'S\dη
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Under Hl9 set

(5.16) Σ! = (Ip + ηrfίΓ1 with η(p x q,),

(5.17) Σ 2 -Σ 3 -(/ p + f/2^)-1 with η(pxq2)

and

(5.18) dΠί(ι/)/dι; = \IP + Mi Γ"1'2 |/, + η2η'2\-(n>+"^2 - \ηιη(\tί/2 \η2η'2\
t2/2,

where ί£'s and r, 's are required to satisfy the restrictions qt > p, ίf > — 1 and
ri — ti + ^i (these restrictions appeared several times before. We neglect
hereafter to mention such restrictions explicitly. However, ί/s and gt 's can
be choosen to satisfy these restrictions under the conditions in the
theorems). Then we have

(5.19) f|ΣJ-"''2|Σ2Γ<»^^

= etr - S \S1 1-<"+">/2 |S2 4- S3\~(t2+q2)/2.

Under H2 and H3, we consider prior distributions similar to the one under
Hί. This gives the statistics

(5.20) etr j - -si \Sj\-(t2^ί+q^-ί)/2\S - Sj\'(t^+q2^2 (j = 2, 3).

Under H4, set

(5.21) Σi = (/P + ̂ /)"1 with η(pxq6 + i)

for / = 1, 2, 3 and

(5.22) dπt(η)/dη = ΓL-id', + ̂ ;r" i /2k^ii i6+</2).
Then we have

(5.23) fπf-i (|Σ;Γ" i/2 etr {- 1 ΣΓ1^!) dΠί(η)
J \ >• •* '

These results imply the theorem.
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COROLLARY 5.2.1. If minn, > 2(p — 1), then the procedure which selects

Hi when J^(1) = min FJ (1) is admissible Bayes for (5.9), where

CjISjrΊS-SjΓ" ( 7 = 1 , 2 , 3 ) ,
(5.24)

ι/(i) _ r i c ιwι . I c ι«2 . I e ins
K4 — ^ l^ i l | Λ 2 | 1^31 >

are fl«y positive constants. This is the modified ML procedure.

PROOF. The corollary is obtained by letting r = dn, r2i_1=dni, r2i =
d(n — nt) (i = 1, 2, 3) and r6+j = dn j (j = 1, 2, 3), where d is slightly larger than

(p —

If w f 's and n are exchanged by N£'s and N(N = Ni+N2 + N3) in the
above proof, we obtain the admissibility of the ML procedure. Such
modification can be done for the first corollary of each theorem in this

section. The above corollary can be regarded as the one corresponding to
Corollary 5.1.1. The propositions which correspond to Corollary 5.1.2 and
5.1.3 can be also proved for Theorem 5.2.

Now we treat the multiple decision problems which are slightly modified
from (5.9) as follows:

H0 : Σ! = Σ2 = Σ3, H1 : Σ1 Φ Σ2 = Σ3, H2 : Σ2 ^Σί = Σ3

and #3: Σ3 / Σ1 = Σ2,

and

(526) H 1 : Σ 1 * Σ 2 = Σ3, H 2 :Σ 2 ^Σ^Σ 3 , H,:Σ^Σ^Σ2

and H4:Σ t. /Σ 7 (i^j).

Similar admissible procedures for these problems are immediately given from
the above theorem.

COROLLARY 5.2.2. Ifp-\<r<n — p+\, p — 1 < r 2 ί _ i < nt - p + 1
and p — 1 < r2ί < n — n{ — p + 1 (i = 1, 2, 3), then the procedure which selects

Hi when Tί

(1) = min 7}(1) is admissible Bayes for (5.25), where 7}(1) 'is given by

(5.12) (7 = 0,1,2,3).

COROLLARY 5.2.3. If p— 1 < r2i-ι <nt — p+ 1, p— 1 <r2ί < n — n f — p+ 1
(i = 1, 2, 3) and p — 1 < r6+j < π7 — p + 1 (7 = 1, 2, 3), //*£« /Λ^ procedure which

selects Ht when 7](1) = min 7}(1) w admissible Bayes for (5.26), where 7}(1) is

given by (5.12) (7 - 1, 2, 3, 4).
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These corollaries are easily proved by putting probability 0 to H4 or to
HQ in the proof of Theorem 5.2. The propositions which correspond to
Corollary 5.2.1 (etc.) also hold. Thus, for a problem which is given by
eliminating a hypothesis (or hypotheses) from a multiple decision problem, an
admissible Bayes procedure can be immediately obtained from an admissible
Bayes procedure for the original problem.

THEOREM 5.3. If p— l<r<n — p + l9 p — 1 < r2j- ί < n — nj9 p — 1

< r2j < nj ~ P + 1 (7 = 1> 2, 3), then the procedure which selects Hi when

7](2) = min 7}(2) is admissible Bayes for (5.10), where

(5.27) r0

(2> = c0|SΓ, T/2> = Cj|Sr«-|S/*> ( = 1, 2, 3)

and cfs are any positive constants.

PROOF. Under H0, we use the same prior distribution as the one defined
by (5.13) and (5.14). So, we obtain the statistic

(5.28) etr j--SJ |SΓ(ί+«)/2.

Under Hί9 set

(5.29) ΣJ 1 = Σ^1 = Ip + ηιη( with η,(p x qj,

(5.30) Σ f 1 =Ip + η1η'ί + η2η'2 with η2(p x q2)

and

• \ι,
The integrability of (5.31) is assured by Lemma 4. Then

= etr - ($! + S2 + S3) i i i |"/2 |»/ 2fί 2 | t ϊ / 2

+ S2 + S3)

= etr - - sl |SΓ(I1+ί")/2 |Si -»>+«>/2.

Under H2 and ίί3, considering the prior distributions similar to the one under
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Hl9 we obtain the theorem.

The following three corollaries are easily proved by the same technique

as in deriving Corollary 5.1.1, 5.1.2 and 5.1.3.

COROLLARY 5.3.1. If min n7 > 2(p — 1), then the procedure which selects

Hi when U\2} = min 1/J2) is admissible Bayes for (5.10), where

(5.33) ί/{,2) = Co|S|", ί/j2> = cy|S/' |Sr"' ϋ = 1, 2, 3),

and Cj's are any positive constants.

COROLLARY 5.3.2. If minrij > 2(p — 1), then the procedure which selects

Hi when J^ (2) = min Vj(2) is admissible Bayes for (5.10), where

(5.34) j/0<
2) = c0|S|, Vj™ = Cj\Sj\ (7=1,2,3),

and cfs are any positive constants.

COROLLARY 5.3.3. If minw,- > 2(p — 1), then the procedure which selects

Hi when W^} = min Wj(2} is admissible Bayes for (5.10), where

(5.35) W^ = Co> W(2> = Cj\Sj\ (j = 1, 2, 3),

and Cj's are any positive constants.

Similarly we can derive a class of admissible procedures for (5.11), which

is given in the following theorem.

THEOREM 5.4. I f p — l<r<n — p + l, p - 1 < r2j- ι<nj9 p — 1 < r2j

< n — nj — p + 1 (j = 1, 2, 3), then the procedure which selects Ht when

7](3) = min 7}(3) is admissible Bayes for (5.11), where

(5.36) Γ0

(3) = c0 |SΓ, T^ = Cj\S\^^\S-Sj\^ (j = 1, 2, 3)

positive constants.

PROOF. For this theorem, under H0 we use the prior distribution which

is defined by (5.13) and (5.14). Under Hl9 set

(5.37) ΣΓ 1 =IP + η,η( with η,(p x qj,

(5.38) Σϊ1 -Σ3-1 =/ p + ι?ι iy i +^2^2 with η2(p x q2)



388 Nobuo NISHIDA

and

(5.39) d

Then

(5.40) |ΣJ-"1 / 2 |Σ2Γ<"*+"3>>2rt^

= etr j- -S\ \S\-(tl+qι)/2 \S - Si

By the obivious exchange of the suffixes, we obtain the similar statistics for

H2 and H3, which lead the theorem.

The following corollaries are also proved by a slight modification of the

proofs of Corollary 5.1.1, 5.1.2 and 5.1.3.

COROLLARY 5.4.1. If min^ > 2(p — 1), then the procedure which selects

Hi when L/P} = min £7J3) is admissible Bayes for (5.11), where

(5.41) t/S3) = c0|S|", U^ = Cj\S\n^\S-Sj\n-^ (j = 1, 2, 3),

and Cj's are any positive constants.

COROLLARY 5.4.2. If min «,- > 2(p — 1), then the procedure which selects

HI when ί̂  (3) = min t^ (3) is admissible Bayes for (5.11), where

(5.42) F0<
3> = c0|S|, F/3' = c,.|S-S,.| (7 = 1,2,3),

and cfs are any positive constants.

COROLLARY 5.4.3. If min nj > 2(p — 1), then the procedure which selects

Hi when W^ = min Wj(3) is admissible Bayes for (5.11), where

(5.43) Wo(3> = c0, Wf> = Cj\S-Sj\ (7 = 1,2,3),

and Cj's are any positive constants.

There exist multiple decision problems which are more complicated

(sometimes, consist of much more hypotheses) than the ones treated in this

paper. From mathematical viewpoint, it is not difficult to derive admissible
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procedures for such problems by using similar prior distributions (e.g., see

(5.46) ~ (5.49)). Integrability of densities can be assured by Lemma 4 or its

generalizations. However, it is doubtful to use 0-1 loss function for such

problems with many hypotheses. It will be required to use a more general

loss function, such as in Eaton [12]. So, we treat only one more problem,

that is

(5.44) Hiβ: Σ, > Σ, > Σ, ( i , j , / = 1, 2, 3; i *j Φ I Φ ί).

Then the following theorem holds for (5.44).

THEOREM 5.5. If p - 1 < ry/(l) < nh p - 1 < rul(2) < n, and p - 1 < riβ(3)

< nt — p + 1 (ι, 7, / = 1, 2, 3 ί φj Φ I + i), then the procedure which selects

Hi jΊ when Tf/r = min Tijt is admissible Bayes, where

(5.45) Tiβ = cijl\S1 + S2 + S3p'(1) \Sj + SI|
Γi 'l(2) |Szp

(3)

and Ciβ's are any positive constants.

PROOF. Let us use Lemma 1 at first, then we may consider the proof

after removing sample means and population means. By the symmetry of

hypotheses, we consider only the prior distribution for H123.

Under #123, set

(5.46) Σf 1 = Ip + η^η'i with η±(p x q^,

(5.47) Σ2

 x = Ip + i/^i + η2η'2 with η2(p x q2)

(5.48) Σ^"1 = Ip + ηίη{ + η2η'2 + η3η'3 with η3(p x q3)

and

(5.49)

n2/2 \IP

By Lemma 4, the density (5.49) is integrable under the conditions of Theorem
5.5. Further, we have

(5.50)

Γ / I \
I |Σ1Γ"> / 2 |Σ2Γ'1 2 / 2 |Σ3Γ"3/2 etr ί - -{ΣΓ1^ + Σ2-

1S2 + Σ^S,}\dΠ*23(η)

= etr - (S1 + S2 + S3)

• etr - - {η.η^S, + S2 + S3) + η2η'2(S2 + S3)
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- etr j- -S\ \Sl + S2 + S3 |"
( ί l +« l ) / 2 |S2 + S3Γ

( f2+«)/2 |S3Γ
('3+«3)/2.

Therefore, by putting r123(ί) = ti + qi we obtain the statistic Γ123, which leads
the theorem.

The following two corollaries can be easily derived as special cases of the
above theorem.

COROLLARY 5.5.1. If min/^ > 2(p — 1), then the procedure which selects
HiΊΊ, when UiΊΎ = min Uijt is admissible Bayes, where

(5.51)

Uiji = cy^ + S2 + S 3 \ " \ S j + SiHS/Γ (U, / = 1, 2, 3; i*./ * / * i)

and ciβ's are any positive constants.

COROLLARY 5.5.2. If min nf > 2(p — 1), then the procedure which selects HiΊ>v

when WiΊΊ> = min Wijt is admissible Bayes, where

(5.52) Wiβ = ciβ\Sj + 5,| - ISJ (/,;, / =. 1, 2, 3; i Φjφlφ ϊ]

and Cm's are any positive constants.

REMARK 5.1. It is possible to treat the multiple decision problems whose
hypotheses are described by the determinants of the covariance matrices
(generalized variances). All propositions in this section also hold even if the
covariance matrices are exchanged by their determinants in hypotheses. For
example, the results of Theorem 5.1 and its corollaries also hold for the
problem of deciding whether the following three hypotheses are true:

(5.53) H* : \Σ,\ = |Σ2 |, Hf : \Σ,\ < |Σ2 |, H*: |ΣJ > |Σ2 |.

under same conditions. This can be easily shown by using the entirely same
prior distributins as the one of Theorem 5.1. Because Ht c= Hf, it is possible
to consider the prior distribution on Hf with the whole mass for Ht. Here
Jff's are given by (5.1). Of course, this argument holds for testing problems
such as in Subsection 4.1 or 4.2.

6. Classification problem with unequal covariance matrices

6.1. Classification rules

Let us consider the classification problem with unequal covariance
matrices. The p-variates normal population Np(μh Σt) is denoted by

7^=1,2,3). Suppose that X(p x NJ = (Xl9...,XNί)9 Y(p x N2) = (Y,9...9
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YN2) and Z(p x N3) = (Zί9...9ZN3) are random samples from normal popula-
tions π1 ? π2, τr3, respectively. It is assumed that μ: / μ2 and Σx ^ Σ2. Then
we consider the problem of testing

(6.1) H1:μ3=μl9 Σ3 = Σ1 against H2:μ3=μ2, Σ3 = Σ2.

This problem is equivalent to classify a sample from π3 as either π x or
π2. Kiefer and Schwartz [16] showed the admissibility of some procedure
for the case Σl = Σ2 = Σ3. Kanazawa [15] studied three classification rules

for the unequal co variance matrices case with JV3 = 1, which are called

classification rule-PK -Z and -B. We will extend these three procedures to
the case N3 > 1. First, some estimators are defined for describing the

classification procedures.

χ = ~Σ^ιXi, s^Σ i^X
™ i

(6.2)

r = — ΣΓ= 2ι^> S2 = Σΐ=ι(Yi

Under Hl9 we may regard that (X, Z) is a random sample of size Λ/\ + AΓ3

from πί. So, we can define the estimators of μ l 5 Σ1 ? μ2 and Σ2 under H1 as

yd) — ry^i v i v^3 z \
" + = '

(6.3)

Under H2, the estimators are also defined as

N2 Y +YNl 7\ί=1 ί + λί=1 i j'

Σf=3ι '(zt -
Classification rule-W If the parameters μ^'s and Σ/s are known (i = 1, 2),

the ML classification rule is given by using the ratio of /(Z;μ3,Σ3) in H1

and H2, i.e.

(6.5) ^ = {|Σ1 |. |Σ2rr3 / 2e
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The rule may be also expressed by using

(6.6) - 2 log λ = N, log Σ2 | + tr I,'1 {£fj 1 (Z, - μ2)(Zί - μ2)'}

The classification rule-W is obtained by substituting the usual unbiased

estimators for μί9 μ2,Σί and Σ2 into (6.6). Here, only the samples X and Y
are used for the unbised estimators (i.e. (6.2) is used). Namely, the statistic

(6.7) DW

= N 3 log|S 2 /(JV 2 - 1)| +tτ({S 2 /(ΛΓ 2 - W-MΣΓ-VZ,

- N3 log i V(^ι - 1)1 - travel - i)}-1 {Σ?=ι(
is used as the sample ML classification rule. According to the value of this
statistic, the rule is defined as

choose HI if DW>0, and
(6.8)

choose H2 if DW<0.

We call this as classification rule-W This is an extension of the sample ML
rule for the case N3 = 1 in [15].

Classification rule-Z The (exact) ML rule is obtained by substituting (6.3)

under H1 and (6.4) under H2 to the parameters in the likelihood ratio
function. Therefore, the ML rule is given by

(6.9) DZ = - 2 log λx = N, log {S^/N^ \ + (N2 + ΛΓ3) log \S?/(N2 + ΛΓ3)|

- (N, + JV 3)log IS^/ίNi + N3)| - ΛΓ2 log |S^/ΛΓ2 |,

where λz is the likelihood ratio in this case. The rule is defined as

choose HΛ if DZ > 0, and
(6.10)

choose H0 if DZ < 0,

which we call classification rule-Z.
In the special case ΛΓ3 = 1, we can express DZ as

(6.11) DZ

= (N2 + i)iog ίi + ττ^-τ(z - yys2-
1(z - F) j + log ιs2 |I N2 + 1 J

- (N, + 1) log jl + τ^— (Z - XYS^(Z - X)\ - log \S,\
( Nί + 1 J

+ (N1 + 1) p log (ΛΓ! + 1) + N2p log N2-N,p log J V X - (ΛΓ2 + l)p log (N2 + 1),
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(cf. Anderson [3]).

Classification rule-B This rule is obtained along the Bayesian approach.

Let θ = (μ l5 μ2, Σ l 5 Σ2), and consider a prior density Π(#) which is defined by

(6.12) ΠίflcMIΣiHΣ,!)-^1 ' '2.

The prior density TL(Θ) is used in common for Hί and H2, but the parameters

of π3 are different for Hl and for H2. This prior distribution was adopted

in Mardia et al. [18], and is not a finite measure. For this prior distribution,

we calculate the improper Bayes procedure which we call classification rule-5.

We consider at first under Hί.

J, = (f(X 9 μl9 Σ x) -/(y; μ29 Σ2) -/(Z; μl9 ZJdUtf)

(6.13) =cJ|ΣJ-<^™^

= C IΣ |

• etr - ΣΓ1 {̂  + (N, + J

S(2} + ΛΓ 2(Ϋ ( 1 ) - μ2)(F(1) - μ2)
f}dμ1dμ2dΣ1dΣ2ί

where c = {2π}~p(Nl+N2+N3)/2. The part concerning the integration of μ x can

be carried out as

(6.14)

Analogously

(6.15) etr -Je

= (2π)"/2N2-
p/2 |Σ2 |

1/2.

Substituting these results into J l 5 we have
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(6.16)

where b= {2π}~(Nl+N2 + N3)/2+p. Let us consider the integration with respect

to Σ!. Transform Σ1 to Σf = ΣJ~ 1 , then

(6.17)

Hence

Jll.1

(6.18) = ί|Σ*r'+JV3-1'-"-1'/2etr|-iΣtS(

1

1)jdΣf

/ jV + N — ί\
_ 2 ( J V i + J V 3 - l ) p / 2 | £ ( l ) | - ( i V 1 + J V 3 - l ) / 2 p I 1 τ "" 3 \

1 p\ 2 J'

where Γp is the p-variates gamma function denned by

(6.19) Γί,(ί) = πp(ί>-1)/4 Πf=1rίί-

It also holds by analogous calculation,

(6.20)

Therefore

(6.21) J1 =

Similarly it can be seen that

(6.22) J2 = (f(X μ,, ΣO /ίy; μ2, Σ2) /(Z; μ2,
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M 2

Now we define DB as DB = - 21og(J2/J1). Then

(6.23) I>B = 2 log c2 + (Ni - l)log |S<2)| + (JV2 + N3 - 1) log |S2

2)|

- 21ogCl - (N, +N3- I) log IS'1'! - (JV2 - IJ loglS

where

Nt ) ( μ\ 2 )' "\ 2

for i = 1,2. The improper Bayes procedure is given by

choose Hi if DB > 0, and
(6.25)

choose H2 if DB < 0.

For the special case N3 = 1,

(6.26)

(6.27) Γ
P\ 2

and

(6.28)

Of course, the equalities which are obtained by exchanging the suffixes 1 and
2 also hold. Consequently

(6.29) DB

= 2iog c2 + log ιs2 | + N2 log i +
\ N2

- 21og Cl - log |St I - Nt log 1 + - - (Z -
N! + 1
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for N3 = 1. In this case, ct reduces to

'
The expression (6.29) coincides with that of Kanazawa [15].

REMARK 6.1. To derive (6.29), Kanazawa used the function

(6.31) ft(Z\X, Y) = \ f ( Z ; μh Σt ) f(θ\X, Y)dμ1dμ2dΣ1dΣ2

which is the conditional likelihood of Z under Ht given (X, 7), i = 1, 2. The

posterior density of θ given (X, Y) is defined by

(6.32) mx, Y) ,

, Y; θ)Π(θ)dμ1dμ2dΣ1dΣ2

The Bayes classification procedure is determined by

(6.33) choose H1 or H2 according as f±(Z\X, Y) > or </2(Z|JT, Y).

Of course, this approach is equivalent to that of this paper.

REMARK 6.2. We can treat /c-samples case similarly. That is, π 1 ? π2,...,

πk,πk+ί are p-variates normal populations and consider the hypotheses

(6.34) H i:^ + 1 = / / ί , Σ Λ + 1 = Σ ί ( i = l , . . . , f c ) .

Then the rule-Z (for example) is described as follows, by using similar

notations. We can say that

Ht is preferable than Hj if and only if DZ(i,j) > 0,

where

(6.35) DZ(ίJ) = Nt\og ISP/ΛM + (Nj + ΛΓk

Then we select HI when /f t is preferable than any other Hj. Rule-W and

τule-B can be described analogously. For simplicity, in the following

subsections we state admissibility or other results only for the case k = 2,

however, the results hold quite similarly for the case k > 3.

6.2. Admissible classification rules

For the problem which is slightly general than that of the previous
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subsection, Nishida [19] obtained a class of admissible rules. For the problem
of this section, the theorem in [19] can be described as follows:

THEOREM 6. 1. // p - 1 < rί < (Nί + JV3 - 1) - p + 1, p-l<r2<(N2-ί)
— p+1, p-l<r3<(N1-l)-p + l and p - 1 < r4 <(N2 + N3 - l)-p + 1,
then the classification rule:

choose H1 or H2 according as

(6.36) |S(!2)r3 IS^ΓVIS^Γ IS^Γ > or < c

is admissible Bayes for any c.

As a special case of this theorem, rule-Z is shown to be admissible if
min (A/\ — 1, N2 — 1) > 2(p — 1). Further, using this theorem, we can also
derive that rule-β is a dmissible.

COROLLARY 6.1.1. If min^ - 1, N2 — 1) > 2(p — 1), then the classifi-
cation rule-B is admissible Bayes.

PROOF. Choose a constant d as slightly larger than (p — l)/min (N1 — 1,
ΛΓ2 - 1). Then d < 1. Setting

(6.37) r, = d(N, + N3 - 1), r2 = d(N2 - 1), r3 = d(Nl - 1),

r4 = d(N2 + ΛΓ3 - 1),

we obtain the corollary. The conditions for r t 's in the theorem are satisfied
if min (N1 — 1, N2 — 1) > 2(p — 1). This is shown by using the fact that the
length of the intervals for η's are longer than or equal to 1 and that d < 1.

REMARK 6.3. The condition min (N1 — 1, N2 — 1) > 2(p — 1) in the above
corollary is usually regarded as that for Nf's. However, the condition may
be regarded as that for p. That is, if N f's are not large, then p should be
taken a small value for the validity of admissibility.

6.3. The limiting distribution of the classification rules

To study the limiting distributions of the classification statistics DW, DZ

and DB, we put

(6.38) dw(l)

= N3 loglSi/ίNi - 1)| + Σf=3ι (̂  - *)'{Sι/(Λfι - l)}'1^ - X ) ,

(6.39) dw(2)

= N3log |S2/(JV2 - 1)| + Σf=3ι(z; - Ϋy{S2/(N2 ~ l)}"1!^ - F),
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(6.40) dz(j)

= (Nj + N3)log\Sy>/(Nj + N3)\- Njlog \S?-»/Nj\

and

(6.41) db(j)

= 2 log Cj + (Nj + N3- l)log |Sf| - (N; - l)log \S(3~Λ\

for 7 = 1, 2. Of course, it holds that

DW = dw(2) - dw(l),

(6.42) DZ = <fe(2) - dz(l),

DB = db(2) - db(\).

If N! increases to oo, X -> /^ and S1/(Nί — l)-*^ in probability,
respectively. So, it follows that

(6.43) Av(l) — > ΛΓ3 log |Σ: | + £ , (Z, - /iJΣΓ ̂ Z, - μj

in probability as N1-^ ao. Let

(6.44) D(Z, /) = Σt= i (Z, - μ/Σ/ l (Zt - μj) (j = 1, 2).

Then it is well known that D(Z,j) is distributed as a chi-squre distribution
Xf with / = pN3 under //,. Similarly, it can be shown that

(6.45) dw(2) - > 7V3 log |Σ2 | + D(Z, 2)

in probability as N2 -> oo. Now

(6.46) dz(l)

= N3 log I^Vί^Vi + ΛΓ3)| + N^log \S^/(Nl + JV3)| - logl^V^il}

= 7V3 log ISi^/ίJVj + JV3)| + N, (log I {Si^}-1^ | + p log {Nl

Since

(6.47)

and

(6.48) |/p + A/n\ = 1 + tτ(A/n) + O(n-2),

it follows that

(6.49) dz(l)

£ - Z)'
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where Z = — £?=

3

 1 Z;. Here, S[1)/(N1 + N3) -» Σ, as Nt -+ oo, not only under

//! but also under //2, because

(6.50)

+ NίN3(N1 + N3Γ
2(Z - X)(Z - X)'.

So, it holds that

(6.51) dz(l) — » JV3 log |ΣJ + Σ f j j tr {Σf^Z, - Z)(Z, - Z)'}

+ N3 tr ΣΓ 1 (Z - μι) (Z - /ij - p

in probability as N1 -» oo. Consequently, as Λ f t -> oo

(6.52) dz(l) - ̂ J V a l o g l Σ ^ - p Λ f a + χ}

under Hj. Obviously, similar arguments hold for dz(2) by exchanging the
suffixes.

By the Stiring's formula,

(6.53) Γ(t + «)/Γ(ί) ~ ί"

for large t, we have

(6.54) log ̂ -

for large J V j . Hence

dft(l) = 21ogCl + JV3 log |S<2)| + (N, + N3-l) log | {Si2'} -1 Si

= 2 log Cί + pN3 log N! + N3 log | S(2}/N1

- > PN3 log 2 + N3 log |Σ t I + D(Z, 1)

in probability as NΊ -> oo, by a slight modification of the calculation for
dz(ί). Of course, the corresponding result holds for db(2).

Summarizing the results, the following theorem holds.

THEOREM 6.2. When Hj is true,
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dw(j)— »ΛΓ 3log|Σ,. |+^

(6.56) dz(j) —+-pN3 + N3 log |Σ, | + χ}

db(j) - > PN3 log 2 + N3 log |Σ,.| + χ?

/« probability as N} -» oo.

From this theorem, the limits of the expectations of the statistics under
Hj are given as

(6.57)

E [dft(y)] — > pΛΓ3 log 2 + PN3 + N3 log \Σj\,

and the variances of them have the same limit 2pN3.
By the above results, it is clear that the limit of the statistics dw(j), dz(j)

and db(j) are described as a sum of N3 independent variables which are
identically distributed. Namely, for example,

(6.58) dw(j) — Σfl1! (loglΣ l + (Z, - μjfΣj^Zt - μ7 )}

Kanazawa [15] studied the distribution of a variable of the form which appears
in the brace of (6.58). Therefore, from [15] we have the following theorem:

THEOREM 6.3. When H3_j is true, it holds that

(6.59)

EΓtfMt/)] — > JV3{log|Σ,| + trZr%_,. + (μ2 - μι)'Σ^(μ2 - μ,)},

E [dz(j)] — -> ΛΓ3{log|Σ;| - p + tiΣ^Σ^j + (μ2 - μl)'ΣJ1(μ2 - μj},

Eίdb(m — » Λr3{log|Σ,| + plog2 + trΣ^Σ^j + (μ2 - /iJΣ/1^ - μj}

as Nj -» oo. Further, the variances of them have the same limit

(6.60) V(j) = Λr3{2tr(Σ7 1Σ3_/ + 4(μ2 - μ^ΣJ^.jΣJ1^ - μ,)}.

Let I(j, 3 — j ) be the Kullback-Leibler information (see, e.g., Zacks [34])
for classification in favour H} against H3,j (j = 1, 2). Then

I(j, 3 -j) = E,.(log{/(Z; μj, Σj)/f(Z; μ

= ί/(Z; μ; , Σy)log{/(Z; ̂ , Σ;

(6.61)

= - (log { |Σ3 .jl/IΣ,! } + tr {Σ^
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The limiting distributions of DW, DZ and DB can be expressd in the

term of

(6.62) D(l, 2) - D(Z, 2) - D(Z, 1) +

THEOREM 6.4. When Nί9 N2 -> oo, DWζ DZ αwrf DB λαt e fλe .same limiting
distribution, which is given as the distribution of D(l, 2). If H1 is true, its
mean and variance are given by

21(1 2) and V(l, 2),

respectively. If H2 is true, its mean and variance are given by

- 21(2, 1) and V(2, 1),

respectively. Here

(6.63) V(j, 3 -j) = N,(2tτ{(Σ^j - Σ^Σfclj - Σ^)Σj}

+ 4(μ2 - μJΣϊljΣjΣϊljfa - μj).

Now, it becomes clear that rule-Z and -B are admissible and that DW,
DZ and DB have the same limiting distribution. These results can be stated

in a combined form as follows.
Consider the statistic defined by

(6.64) DΛ = (N, + 5) log IS™ I + (N2 + N, + <5)log|S2

2) |

- (Nl + JV3 + δJloglSH - (N2

+ N3p(log N! - logJV2)

where δ > — min(AΓ1, JV2). Here, the part O( ) does not contain any sample
variables. Such a statistic is obtained from (6.36) by putting

(6.65) r t = d(N, + N3 4- (5), r2 - d(JV2 + (5), r3 - d(Nl + (5),

r4 = d(N2 + N3 + 5).

THEOREM 6.5. //* min(JV l 5 Af2) > 2(p — 1), then the procedure',

select H^ or H2 according as Dδ> or < 0

is admissible Bayes for δ > p — 1 — min(N l 5 N2). The limiting distribution
of Dδ as Nl9 N2 —> oo is given as the distribution of D(l, 2) for any δ.

PROOF. Choose d as slightly larger than (p — l)/{min(JV l 5 N2) + δ}9 and
consider r/s in (6.65). If d < 1, these r/s satisfy the conditions of Theorem
6.1. If δ > p — I — min(N1, N2), then there exists such d. The limiting

distribution of Dδ can be obtained by similar calculation as for DZ (e.g.) and
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coincides with that of the previous three statistics.

DZ and DB are obtained as (6.64) with δ = 0 and — 1, respectively. For
DW, it is clear that DW has a form of Dδ if the part 0( ) is permitted to
contain the sample variables. That is, using

(6.66) dδ(j) = (Nj + N3 + δ) log I SW> | + (Nj + δ) log | Sj3 ~j)

it holds that (after calculations like ones for dz(l))

(6.67) dw(j)

and hence

(6.68) DW= Dδ

for any fixed δ. In this case, however, the part 0( ) contains the sample
variables.

6.4. Numerical comparison of rule-ff, -Z and -B

In this subsection we compare the three rules -W, -Z and -B by using
simulation. We consider 12 cases of populations π l 5 π2 and π3. For each
case we set Nt (i = 1, 2) equal to 6, 10, 30. The 12 cases are defined as
follows. These cases are chosen to examine how the change of experimental
conditions influence the characteristics of the three rules. It is assumed that
π1 is always ΛΓp(0, Ip).

CASE 1.

p = 3, N3 = 1, μ2 = μ(

2

υ =

CASE 2.

CASE 3.

1

1

1

1

1 J

1 0 1

0 1 0

1 0 2

Γ 1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

_ 1 0 0 0 2



CASE 4.

CASE 5.
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p = 5, N3 = 3, μ2 = tf\ Σ2 = Σ<2

2>.

403

, _ α /V — 1 ii — i/1) T — Y<3>
' — 3> •* * 3 — l j A*2 — A^2 » ^2 — ^"2

" 1 .5 .5

.5 1 .5

_.5 .5 1

CASE 6.

CASE 7.

• = 3, N3 = 3, μ2 =

• = 5, N3 = 1, μ2 = μ(

2

2), Σ2

Σ2 = Σ2

3>.

1 .5 .5 .5 .5

.5 1 .5 .5 .5

.5 .5 1 .5 .5

.5 .5 .5 1 .5

.5 .5 .5 .5 1

CASE 8.

CASE 9.

p = 5, N3 = 3, μ2 = /42), Σ2 = Σ2

4>.

p = 3, N3 = 1, μ2 = /43> =

CASE 10.

p = 5, N3 = 1, μ2 =

" .5"

1

.1.5 _

Σ - Σ(5) -, ±2 — ̂ 2 —

' 1 .2 .8"

.2 2 1.8

_.8 1.8 3 _

- .5 -

1

1.5

1

_ 1 _

, Σ2 = Σ(

2

6) =

1 .2 .8 .5 .4

.2 2 1.8 .8 .5

.8 1.8 3 .9 .5

.5 .8 .9 4 .4

L .4 .5 .5 .4 5

CASE 11.

p = 5,N3 = l,μ2= μ^ = [1, 1, 2, 3, 1]', Σ2 = Σ(

2

2).
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CASE 12.

p = 5, N3 = 1, μ2 = /46) = [1, 1, 1, 3, 3]', Σ2 = Σ<2

4).

The normal pseudorandom numbers were generated by the Box-Muller
method based uniform pseudorandom numbers (generated by personal
computors). For each case, 1000 observations are carried out under H± and
f/2, respectively. For Cases 1 ~ 8, three tables are given. The first tables
record the rates of correct classifications of three rules among 1000 observations
which were carried out under Hί. The second tables record the corresponding
ones under H2. The third tables record the rates among 2000 observations
which are obtained by averaging the first ones and the second ones. We call
the third type of tables the averaged tables. The rules -W, -Z and -B are
denoted by W, Z and B in tables. The values in the last row and the last
three columns of the tables present the averages of the rows and columns. For
each of Cases 9 ~ 12, only the averaged tables are given. In paticular, the
averaged tables which are restricted to Nί9 N2 = 6, 10 are given for Cases 11
and 12. Each table number or its first number correspond to the case
number. For example, Table 1.2 is the second one for Case 1 and Table 9
is the one for Case 9.

Table .1.1.

X^
2

Nl
 \
6

10

30

TOTAL

6

W Z B

67 68 68

76 70 77

83 72 84

.753 .699 .763

10

W Z B

58 67 61

72 72 72

79 75 81

.696 .711 .710

30

W Z B

55 71 58

67 75 67

81 81 81

.675 .753 .686

TOTAL

W Z B

600 683 623

716 722 719

809 758 818

.708 .721 .719
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Table 1.2.

405

\ N
2

Nί
 \

6

10

30

TOTAL

6

W Z B

69 70 71

.60 .68 .63

.53 .68 .56

.606 .686 .631

10

W Z B

76 72 76

71 72 71

70 77 63

.723 733 702

30

W Z B

82 72 85

79 74 80

76 76 75

790 739 801

TOTAL

W Z B

756 712 770

702 712 716

661 734 647

706 719 711

Table 1.3.

\ N2

Nί \

6

10

30

TOTAL

6

W Z B

68 .69 69

68 .69 .70

68 .70 .70

679 .693 697

10

W Z B

.67 .69 .69

.72 .72 .72

.74 .76 .72

.709 722 .706

30

W Z B

.69 .71 .71

.73 .75 .74

.78 .78 .78

.733 .746 .743

TOTAL

W Z B

.678 .698 .697

.709 .717 .717

.735 .746 .732

.707 .720 .715

Table 2.1.

\ N
2

Nl
 \

6

10

30

TOTAL

6

W Z B

71 .76 77

87 82 88

96 .85 95

847 815 866

10

W Z B

60 76 68

81 83 83

.91 86 .90

771 818 805

30

W Z B

49 81 67

74 86 80

89 89 89

707 856 789

TOTAL

W Z B

598 .780 .707

806 .837 .836

922 .871 .916

775 .829 .820
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Table 2.2.

\
 N
*

N, \

6

10

30

TOTAL

6

W Z B

.74 77 .77

.63 .78 .72

.49 .80 .68

.620 .781 723

10

W Z B

89 84 89

82 83 83

75 87 .82

820 847 847

30

W Z B

95 87 95

93 86 92

.92 92 .92

933 885 928

TOTAL

W Z B

859 826 870

792 826 822

.722 861 .806

791 838 833

Table 2.3.

\ Λ^2

Nί
 \

6

10

30

TOTAL

6

W Z B

72 .77 77

.75 .80 .80

.73 .83 81

.734 .798 794

10

W Z B

74 80 79

81 83 83

83 87 86

796 833 826

30

W Z B

72 84 81

83 86 86

91 91 91

820 870 858

TOTAL

W Z B

729 803 789

799 832 829

822 866 861

783 834 826

Table 3.1.

\^
2

Nl
 \
6

10

30

TOTAL

6

W Z B

61 61 61

.91 83 90

.95 84 .95

822 761 819

10

W Z B

30 48 38

72 72 72

87 78 86

632 658 654

30

W Z B

24 47 31

59 75 66

83 83 83

551 683 600

TOTAL

W Z B

382 519 431

740 766 760

883 817 881

668 701 691
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Table 3.2.

\ ^2

NI \
6

10

30

TOTAL

6

W Z B

.60 .63 .63

.34 .51 .42

.24 .48 .34

.394 .539 .462

10

W Z B

.90 .81 .88

.72 .72 .72

.63 .78 .69

.749 .772 .764

30

W Z B

.96 .85 .96

.87 .78 .87

.82 .82 .82

.883 .816 .881

TOTAL

W Z B

.819 .764 .824

.646 .669 .668

.561 .694 .615

.675 .709 .702

Table 3.3.

\ N
2

Nί
 \

6

10

30

TOTAL

6

W Z B

61 62 62

63 .67 66

59 66 65

608 650 641

10

W Z B

60 64 63

72 72 72

75 78 78

690 715 709

30

W Z B

60 66 64

73 76 76

82 82 82

717 749 740

TOTAL

W Z B

601 641 628

693 718 714

722 756 748

672 705 697

Table 4.1.

\ N2

Nί \

6

10

30

TOTAL

6

W Z B

.57 .65 .66

.95 .90 .97

1.0 .93 .99

.839 .829 .873

10

W Z B

.21 .50 .36

.80 .83 .83

.98 .91 .97

.660 .745 .719

30

W Z B

.08 .52 .27

.55 .85 .75

.96 .95 .95

.527 .772 .654

TOTAL

W Z B

286 556 430

.764 858 847

.976 932 969

.675 782 749
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Table 4.2.

\ N2

Nί \

6

10

30

TOTAL

6

W Z B

.62 .69 .70

.23 .52 .37

.13 .57 .34

.327 .595 .471

10

W Z B

.96 .91 .96

.79 .83 .84

.61 .89 .78

.787 .875 .857

30

W Z B

1.0 .95 1.0

.98 .91 .96

.95 .96 .96

.976 .937 .973

TOTAL

W Z B

.858 .848 .884

.668 .753 .724

.564 .807 .692

.697 .802 .767

Table 4.3.

\ ^2

Nί \

6

10

30

TOTAL

6

W Z B

.59 .67 .68

.59 .71 .67

.56 .75 .67

.583 .712 .672

10

W Z B

.59 .70 .66

.79 .83 .83

.79 .90 .87

.723 .810 .788

30

W Z B

.54 .73 63

.76 .88 .86

.95 .95 .95

.751 .854 .814

TOTAL

W Z B

.572 702 .657

.716 .805 .786

.770 .869 .831

.686 .792 .758

Table 5.1.

\*
2

Nl
 \
6

10

30

TOTAL

6

W Z B

.65 64 63

.78 70 77

.84 71 85

.756 681 746

10

W Z B

57 63 55

70 70 69

79 71 78

687 678 676

30

W Z B

51 67 51

66 73 65

78 .78 78

649 727 647

TOTAL

W Z B

576 647 563

713 709 704

803 731 803

697 695 690
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Table 5.2.

\ N2

Nl \

6

10

30

TOTAL

6

W Z B

64 67 67

56 65 60

50 65 55

569 654 607

10

W Z B

74 70 76

67 68 69

65 70 66

688 696 703

30

W Z B

82 74 85

76 73 78

74 74 74

774 735 792

TOTAL

W Z B

735 703 761

667 685 692

629 697 648

677 695 701

Table 5.3.

\ N*
NI \

6

10

30

TOTAL

6

W Z B

65 65 65

.68 67 .69

.67 68 .70

663 668 .677

10

W Z B

66 67 66

69 .69 69

72 .70 72

688 .687 689

30

W Z B

66 71 68

71 73 72

76 76 76

711 731 720

TOTAL

W Z B

656 675 662

.690 697 698

716 714 725

687 695 695

Table 6.1.

\ N2

Nl \

6

10

30

TOTAL

6

W Z B

70 74 74

85 78 83

95 84 94

833 786 836

10

W Z B

55 73 63

76 77 76

91 .83 91

743 775 765

30

W Z B

40 73 55

72 86 77

89 89 89

669 824 736

TOTAL

W Z B

552 731 638

777 802 788

916 852 911

748 795 779
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Table 6.2.

\ N
2

Nl
 \

6

10

30

TOTAL

6

W Z B

69 73 75

59 75 69

51 79 66

594 756 701

10

W Z B

88 83 89

80 83 83

75 86 81

811 840 844

30

W Z B

95 85 96

91 87 92

89 89 89

917 867 923

TOTAL

W Z B

840 802 865

767 813 814

716 848 788

774 821 823

Table 6.3.

\ Λ^2

Nί
 \
6

10

30

TOTAL

6

W Z B

.70 .74 .74

72 77 76

73 81 80

.714 .771 .768

10

W Z B

.72 .78 .76

78 80 80

83 85 86

.777 .807 .805

30

W Z B

.68 .79 .75

82 86 85

89 89 89

.793 .846 .829

TOTAL

W Z B

.696 .766 .752

772 807 801

816 850 850

.761 .808 .801

Table 7.1.

\ N2

Nl \

6

10

30

TOTAL

6

W Z B

.57 .56 .55

.89 .77 .86

94 80 94

.800 .707 .784

10

W Z B

.27 .39 .27

.66 .63 .63

85 71 85

.592 .576 .581

30

W Z B

.19 .40 .21

.50 .65 .52

82 81 80

.505 .619 .508

TOTAL

W Z B

.343 .449 .344

.685 .682 .666

869 771 862

.632 .634 .624
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Table 7.2.

\ N*
NI \

6

10

30

TOTAL

6

W Z B

.60 .63 .64

21 52 39

.10 .51 .29

.303 .555 .441

10

W Z B

.94 .89 .95

74 81 82

58 84 74

.755 .847 840

30

W Z B

1.0 .95 1.0

96 89 96

90 91 92

953 918 957

TOTAL

W Z B

.846 .823 .862

638 741 725

527 757 650

670 774 746

Table 7.3.

\ N2

NI \
6

10

30

TOTAL

6

W Z B

.58 .60 .60

.55 .64 .63

.52 .66 .62

.551 .631 .613

10

W Z B

.61 .64 61

.70 .72 .72

.71 .78 .80

.674 .712 .711

30

W Z B

60 68 60

.73 .77 .74

.86 .86 .86

.729 .769 .732

TOTAL

W Z B

594 636 603

.662 .712 696

.698 .764 .756

.651 .704 .685

Table 8.1.

\ N2

Nl \

6

10

30

TOTAL

6

W Z B

.61 .63 .63

96 85 94

1 0 .91 .99

854 .797 .852

10

W Z B

.16 .39 .24

74 74 73

.97 .85 95

.622 .658 639

30

W Z B

.07 .42 .16

48 78 59

89 88 88

478 694 542

TOTAL

W Z B

.279 .478 .339

724 790 755

952 880 938

652 716 .677
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Table 8.2.

\
 NI

Nί
 \
6

10

30

TOTAL

6

W Z B

.58 66 68

.23 52 38

.11 .55 .33

.307 .575 441

10

W Z B

.95 88 95

.76 82 83

.58 .86 76

.762 854 846

30

W Z B

99 93 10

95 88 95

91 92 92

951 909 957

TOTAL

W Z B

846 823 862

644 741 721

536 775 670

673 779 755

Table 8.3.

\ ^2

NI \
6

10

30

TOTAL

6

W Z B

.60 .64 .65

.59 .69 .66

.56 .73 .66

.581 .686 .658

10

W Z B

.56 .63 .60

.75 .78 .78

.78 .86 .85

.692 .756 .742

30

W Z B

53 .68 58

72 .83 77

.90 .90 .90

.715 .801 .749

TOTAL

W Z B

560 650 607

684 .766 .738

.744 .828 .804

.663 .748 .716

Table 9.

\
 NI

Nl
 \
6

10

30

TOTAL

6

W Z B

.63 .65 .65

.65 .66 .68

67 68 71

649 664 679

10

W Z B

.65 .67 .66

.69 .70 .70

70 70 71

682 690 690

30

W Z B

63 .68 .64

72 .71 .72

74 74 74

695 710 700

TOTAL

W Z B

637 .665 .650

.688 .692 .699

701 707 720

675 688 690
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Table 10.

\ N
2

Nί
 \

6

10

30

TOTAL

6

W Z B

58 59 60

62 65 66

60 68 69

601 640 646

10

W Z B

60 62 62

70 71 71

78 80 81

693 707 714

30

W Z B

57 63 59

70 74 73

81 82 82

696 .732 .713

TOTAL

W Z B

586 613 600

675 701 700

729 765 773

663 693 .691

Table 11. Table 12.

\ ^2

NI \
6

10

6

W Z B

.72 .74 .74

.73 .80 .78

10

W Z B

.71 .79 .77

.89 .90 .90

\ N*

Nl \

6

10

6

W Z B

.72 .73 .73

.73 .80 .80

10

W Z B

.70 .78 .75

.89 .89 .89

Discussion At first, we investigate Case 1. When H^ is true (the data
to be classified are taken from πj, if N2 = 30 and N1 = 6, 10, then the rule-Z
is better than -W and -B. When Nί = 30 and N2 = 6, 10 in table 1.2 (H2 is

true), rule-Z is also better than -W and -B. These facts seem to be caused
by the estimating method in rule-Z. Since DZ is obtained by using Nt + N3

observations for estimatimation under Hi9 if Nt is small, AΓ3 observations are
effective for estimation. If so, the tendancy should appear more notably for
ΛΓ3 = 3 than for ΛΓ3 = 1. Hence, let us examine Case 2. The tendancy stated

above also appears in Tables 2.1 and 2.2, more clearly than Tables 1.1 and
1.2. The other hand, if Nl = 30 and N2 = 6, 10 under H1 or N2 = 30 and
N1 =6, 10 under H2, the rule-Z is worse than -W and -B. However, the
inferiority of -Z from -t^and -B is almost same for ΛΓ3 = 1 and JV3 = 3. These
tendancy is seen not only for Cases 1 and 2 but also for Cases 3 and 4, etc.

As a criterion for the goodness of the three rules, it is reasonable to use
the averages of the values (last three values of the last rows) in the averaged
tables. Examining these values, rule-Z and -B are rather better than
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-W. Regarding to -Z and -B, -Z is slightly better than -B. This tendancy
hold for almost all of Cases 1 — 10 and other cases which are not written in
this paper. Kanazawa [15] studied the property of the three rules. She
carried out numerical simulations in the case p = 2 and N3 = I . From the
results there it is known that rule-Z and -B have nearly the same goodness
and both are better than rule-FK Our conclusion coincides with her
one. However, we give a further comparison between rule-Z and -B as well
as the case p = 3 and N3 > 1.

We note that Case 3 is obtained from Case 1 by adding two
variables. From Tables 1.3 and 3.3, it becomes clear that the rates in Table
1.3 are better than the corresponding ones in Table 3.3 for the case N1 and/or
N2 equal to 6 (that is, small samples cases). Consequently, it seems useless
to add variables in this case. This property also find in Tables 2.3 and 4.3,
or in other cases. On the other hand, it is possible to give examples which
improve the rates of correct classification by adding some variables in small
samples cases. Those are Cases 11 and 12, in which the rates are improved
than the corresponding ones for p = 3 (Tables 1.3 and 5.3). Thus, it is
important to examine the deviation of the two populations when we attempt
to add or delete variables.

Acknowledgment

I wish to thank Prof. Yasunori Fujikoshi, Hiroshima University for his
encouragement and for his careful reading which led to the improved form
of the manuscript.

References

[ 1 ] T. W. Anderson, Statistical inference for covariance matrices with linear structure.
Multivariate Analysis II (P. R. Krishnaiah, ed), Academic Press, New York (1969), 55-66.

[ 2 ] T. W. Anderson, Estimation of covariance matrices which are linear combinations or whose
inverse are linear combinations of given matrices, Essays Prob. Statist. (R. C. Bose and
Others, eds), Univ. North Carolina Press, Chapel Hill (1970), 1-24.

[ 3 ] T. W. Anderson, An Introduction to Multivariate Statistical Amalysis (2nd Ed.), John
Wiley & Sons, New York, 1984.

[ 4 ] T. W. Anderson and S. Das Gupta, A monotonicity property of the power functions of
some tests of the equality of two covariance matrices, Ann. Math. Statist. 35 (1964),
1059-1063.

[ 5 ] T. W. Anderson and A. Takemura, A new proof of admissibility of tests in multivariate
analysis, J. Multivariate Anal. 12 (1982), 457-468.

[ 6 ] R. E. Bechhofer, A single sample multiple decision procedure for ranking means of normal
populations with known variances, Ann. Math. Statist. 25 (1954), 16-39.

[ 7 ] R. E. Bechhofer, C. W. Dunnett and M. Sobel, A two-sample multiple decision procedure



Admissibility of some tests in multivariate analysis 415

for ranking means of noral populations with a common unknown variance, Biometrika
41 (1954), 170-176.

[ 8 ] R. E. Bechhofer and M. Sobel, A single sample multiple decision procedure for ranking
variances of normal populations, Ann. Math. Statist. 25 (1954), 273-289.

[ 9 ] A. Birnbaum, Charactrization of complete classes of tests of some multiparametric
hypotheses, with applications to likelihood ratio tests, Ann. Math. Statist. 26 (1955), 21-36.

[10] R. D. Bock and R. E. Bargmann, Analysis of covariance structures, Psychometrika, 31
(1966), 507-534.

[11] C. W. Dunnett, On selecting the largest of k normal populations means, J. Roy. Statist.
Soc. B 22 (1960), 1-40.

[12] M. L. Eaton, Some optimum properties of ranking procedures, Ann. Math. Statist. 38
(1967), 124^137.

[13] M. N. GHOSH, On the admissibility of some tests of MANOVA, Ann. Math. Statist.
35 (1964), 789-794.

[14] W. J. Hall, The most economical character of some Bechhofer and Sobel decision
rules, Ann. Math. Statist. 30 (1959), 964-969.

[15] M. Kanazawa, ML classfication distances and rules in the normal populations when
covariance matrices are unequal, J. Japan Statist. Soc. 16 (1986), 25-36.

[16] J. Kiefer and R. Schwartz, Admissible Bayes character of T2-, R2-, and other fully invariant
tests for classical multivariate normal problems, Ann. Math. Statist. 36 (1965), 747-770.

[17] P. R. Krishnaiah and J. C. Lee, On covariance structures, Sankhya A, 38 (1974), 357-371.
[18] K. V. Mardia, J. T. Kent and J. M. Bibby, Multivariate Analysis, Academic Press, 1979.
[19] N. Nishida, A note on the admissible tests and classifications in multivariate analysis,

Hiroshima Math. J. 1 (1971), 427-434.
[20] N. Nishida, The admissibility of tests for the equality of mean vectors and covariance

matrices, Hiroshima Math. J. 2 (1972), 215-220.
[21] N. Nishida, Admissibility of classification procedures in multivariate analysis I, Bull.

Hiroshima Women's Univ. 12 (1976), 5-9.
[22] N. Nishida, Admissibility of classification procedures in multivariate analysis II, Bull.

Hiroshima Women's Univ. 13 (1977), 33-37.
[23] N. Nishida, Admissible selection procedures in multivariate analysis, Bull. Hiroshima

Women's Univ. 24 (1988), 69-74.
[24] N. Nishida, Admissibility of the likelihood ratio test for linear constraints, J. Japan Statist.

Soc. 20 (1990), 43-49.
[25] I. Olkin and S. J. Press, Testing and estimation for a circular stationary model, Ann.

Math. Statist. 40 (1969), 1358-1373.
[26] E. Paulson, A multiple decision procedure for certain problems in analysis of variance,

Ann. Math. Statist. 20 (1949), 95-98.
[27] C. R. Rao, Some problems involving linear hypotheses in multivariate analysis, Biome-

trika, 46 (1959), 49-58.
[28] S. N. Roy and R. Gnanadeskian, Two-sample comparisons of dispersion matrices for

alternatives of intermediate specificity, Ann. Math. Statist. 33 (1962), 432^38.
[29] R. Schwartz, Admissible tests in multivariate analysis of variance, Ann. Math. Statist. 38

(1967), 698-710.
[30] K. C. Seal, On a class of decision procedures for ranking means of normal populations,

Ann. Math. Statist. 26 (1955), 387-398.
[31] M. Siotani, T. Hayakawa and Y. Fujikoshi, Modern Multivariate Statistical Analysis,

American Sciences Press, 1985.



416 Nobuo NISHIDA

[32] J. N. Srivastava, On testing hypotheses regarding a class of covariance structure,

Psychometrika, 31 (1966), 147-164.

[33] C. Stein, The admissibility of Hotelling's Γ2-test, Ann. Math. Statist. 27 (1956), 616-623.

[34] S. Zacks, The Theory of Statistical Inference, John Wiley & Sons, New York, 1971.

Department of Life Science
Facculty of Home Economics

Hiroshima Women's University
Hiroshima 734, Japan




