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Introduction

T. Hida, H. Cramer and many other mathematicians have investigated the
theory of canonical representations of Gaussian processes. Especially, T. Hida
[3] has proved that any purely non-deterministic separable Gaussian process
has a unique generalized canonical representation, which is obtained by
applying Hellinger-Hahn's theorem to the reproducing kernel Hubert space
made from the covariance function of the process. This representation is
called canonical if the multiplicity of the representation is 1 (T. Hida and
N. Ikeda [4]). However, it seems that for non-Gaussian processes (especially
without 2nd moments), any general theory of canonical representations has
not been established yet.

We know that Gaussian random variables are symmetric stable random
variables with index α = 2. So in this paper, we deal with canonical
representations of symmetric-α-stable (= SαS) processes (0 < α < 2).

In Gaussian case, Levy-McKean's M(ί)-processes are precious examples
to study the theory of canonical representations. The M(ί)-process is defined
as the spherical mean process of the multi-parameter Brownian motion with
the spherical harmonic as its weight. N. N. Chentsov [2] found that this
Brownian motion can be constructed by integral geometry, and H. P. McKean
Jr. [9] used this fact to obtain a causal representation of the M(ί)-process.
We apply this very fact to extend the notions of the multi-parameter Brownian
motions and M(ί)-processes to non-Gaussian SαS case (0 < α < 2), and we
obtain causal representations of these M(ί)-processes in the form of

-ΓJo
X(t) = F(t,u)dZ(u).

Jo

We investigate the canonicalities of these representations by the following
methods.

i) Similarly to Gaussian case (α = 2), we can consider the closed linear
hulls of {Z(s);s<ί} and { X ( s ) ' , s < t } respectively for every t. We find
whether the hull of {X(s)\ s < t} includes the hull of (Z(s); s < t} for all t or
not (the inverse inclusion is trivial). In case that the equality holds (this case
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we say that the representation is proper), we make the procedure to obtain

{Z(s);s<ί} from {X(s);s<t}.

ii) In case of M(ί)-processes, {Z(ί)} is an SαS process with independent
stationary increments (i.e., an SαS motion). For non-Gaussian case (0 < α < 2),

we apply the Levy-Itό's theorem on the decomposition of paths to modify

(Z(ί)} into a process whose paths are right continuous and have left limits
(this modification is called D-modification in this paper). Using this

modification, we obtain a D-modification of {X(t)} (to obtain the modification,

we apply the integration by parts). And we consider the regularity of paths
and we calculate the jumping times and heights of {Z(s); s < t} from those

of {X(s)'9 s<t}. This idea is found in P. Levy [8], and T. Hida and N. Ikeda

[4], but cannot be applied to Gaussian case because the paths of Brownian

motion are continuous.

Through the argument, we can find whether a causal representation in

a certain class is canonical or not. We hope it will be a first step to study

the theory of canonical representations of SαS processes.

§ 0. Preliminaries

A real-valued random variable X is called a symmeίric-a-stable ( = SαS)

random variable if the characteristic function of X is exp(— c|z|α) with some

constant c > 0. The SαS random variable exists if and only if 0 < α < 2.

When α = 2, an SαS random variable is a Gaussian random variable with

mean 0.

In this paper, the time domain T is fixed either [0, oo) or (— oo, oo). A

stochastic process {X(t);teT} is called an SαS process if any finite linear

combination Σaj^(tj^ (ajE^ tjET) is an SαS random variable. We assume
that any SαS process in this paper is separable. Especially, an SαS process

with independent stationary increments is unique up to a constant and is

called an SαS motion.

Let (S, 23, μ) be a σ-finite measure space.

DEFINITION 0.1. A random field {Y"(B); £e23, μ(B) < 00} is called an

SαS random measure controlled by (S, 93, μ) if it satisfies the following three

conditions:

i) Any finite linear combination ΣajY*(Bj) is an SαS random variable.
ii) The characteristic function of YΛ(B) is equal to exp(— μ(B)\z α).

iii) If {#/};=!,2,...> μ(Bj) < oo, is a family of disjoint sets, then

{yα(#/)};=ι,2,... is a family of mutually independent random variables, and if

μ(\JBj) < oo, then Y*(\J BJ = Σ γ"(Bj) a s

j j j
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If {Ya(B)} is an SαS random measure controlled by a measure space (T, 93, t;),
X*(i) = yα([0, ί]) if t > 0, = rα([ί, 0]) if ί < 0 is called an SαS process with
independent increments controlled by (T, 93, v) in this paper.

ί Γ 1L(α)(S, 93, μ) denotes the family of measurable functions </; \f\Λdμ < oo >
I Js J

Q \ ( l / α ) Λ l
|/-0|αdμ) Note that

s /
L(α)(S, 93, μ) is a Banach space only in case 1 < α < 2.

Now we define the Wiener-type stochastic integral /d7α of / in
Js

L(α)(S, 93, μ) with respect to { Y Λ ( B ) } . If / is a step function X^/βj., where
{£,} is a family of finite disjoint sets and IB denotes the indicator function

of B, then fdYa is defined as ^ιajΎ(B^. For a general /, we take a
Js

sequence of step functions {//}_/= 1,2,... which converges to / in L(α), then

converges in p-ih order expectation for all p < α (also p = 2
l,2...

when α = 2). The convergence does not depend on the selection of {/)}, thus

we define fdY* as this limit. (See M. Schilder [13].)
Js

In this paper, for two processes (X(t); ίeΓ} and {X(t)ι ίeT}, (X(t)} =

{X(t)} means that all finite dimensional distributions are equal to each other.

§ 1. Representations of SαS processes by causal stochastic integrals

T. Hida [3], and T. Hida and N. Ikeda [4] gave definitions and obtained
some propositions on stochastic integral representations of Gaussian processes.
We extend them to SαS case.

Assume that an SαS process {X(f); ίeT} (0 < α < 2) has the following
modification written in the form of stochastic integral

X(t) = F(ί, u)dZ(u), (1.1)
J

where
i) (Z(ί); teT} is an SαS process with independent increments controlled

by a measure space (7^ t;),
ii) F(ί, u) is a function on T x T which vanishes on {(ί, u); u > t} and

p r
belongs to L(α)(7^ v) as a function of u for every t e T and means

J J(-oo,ί]nΓ
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DEFINITION 1.1. The formula (1.1)

X(t) Γ
i = F(t,

satisfying the above i) and ii), is called a causal representation of ( X ( t ) } .

In non-Gaussian case (0 < α < 2), it is unknown whether any SαS process
has a causal representation or not. But it is known that any SαS process

{X(t);tεT} (0 < α < 2) has a version written in the form of (non-causal)

stochastic integral

/(ί,ιι)dZ(tι),

where (Z(f); ίe[0, 1]} is an SαS motion and f(t, u) belongs to L(α)[0, 1] as
a function of u for every teT (see J. Kuelbs [7]).

Suppose that -{X(t); teT} is an SαS process with a causal representation

(1.1). For every teT, &t(X) denotes the σ-field generated by SαS random
variables (X(s); s < t}. It is obvious that

» f(A-)c» f(Z) for every teT.

DEFINITION 1.2. A causal representation (1.1) is called canonical (in the

sense of σ-field) if it satisfies

S fpf) = S,(Z) for every te T.

This case we call (Z(t)} an innovation process of (X(t)}.

For a given canonical representation of an SαS process, it is a question

whether this canonical representation is unique or not. The following
proposition would be an answer.

PROPOSITION 1.3. Suppose that there exist two canonical representations

X(t)= ΓF(Λ(ί,M)dZω(ιι) (/=1,2)

for an SαS process {X(t); teT}. Then the formula

fs ΓS

F(1)(ί, u)dZ(l\u)=\ F(2\t,u)dZ(Z\ύ) (1.2)
J J

is satisfied for every s and t (s < t). (For Gaussian case (α = 2), see T. Hida

[3].)
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PROOF. Fix s and ί (s < ί) arbitrarily. For all λ e R, we have

Γ Γs I f f
= exp < iλ F(j\t, u)dZ(j)(u) > exp < - \λ\*

(. J J I Js

for each 7. Therefore

r r r* r*
e x p j i λ F(1)(ί, w)dZ (1)(w)- F(2)(ί, w

L L_ J J

Γ Γ Γ Γ' 11
= expjμπ |FU)(ί, u)\* dυ(ί\u) - |F(2)(t, w)|"«to(2)(u) >

L L J s J s -JJ

for all /le/?. We can see the left hand side is complex random variable of

absolute value 1 a.s., while the right hand side is real. This means (1.2). Π

For every feT, Wt(X) denotes the closed linear hull of (X(s); s<t} in

L(α). It is obvious that for the causal representation (1.1),

2R?PO c ΪR«(Z) for every ί e Γ.

DEFINITION 1.4. A causal representation (1.1) is called proper if it satisfies

= a»?(Z) for every ί e T.

It is trivial that a proper representation is canonical. For Gaussian case

(α = 2), it is well-known that a canonical representation is proper. By contrast,

for non-Gaussian case (0 < α < 2), there exist causal representations which are

not proper but canonical. We show some examples with such a property in

§3.
For Gaussian case, T. Hida [3] gave a criterion to determine whether a

given causal representation is proper canonical or not. For 1 < α < 2, there

exists a similar criterion by virtue of the following theory of the projections

in Banach space (see I. Singer [14]).

Assume that M0 is a closed subspace of Banach space L(α)(T, S, v)

(1 < α < 2). For any /eL(α)(Γ, 95, v), /0 is called a projection of / on M0 if

it minimizes \f — fQ\adv in M0. For any /eL(α)(T, 93, v)9 the projection /0

Jr
exists uniquely and satisfies

Q for any
IT

where x<Λ~ιy = \x α~ 1 sgn(x). (This case it is said that / —/0 is right-

orthogonal to M0.)
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We have already known that 2Jί"(Z) has the norm induced by L(<X}(T9 93, t;),
so we can apply the theory of projections to the pair 9Jΐ*(Z) and its subspace
$Jl}(X). Therefore, we obtain the following proposition.

PROPOSITION 1.5. For 1 < α < 2, a causal representation (1.1) is proper if
and only if, for any t0eT9 any function φeL(α)(T, 93, υ) which satisfies

'ί

F(ί, )φ<Λ~1>dv = 0 for all t < ί0

is equal to 0 0« (— oo, ί0] n T.

§2. SαS M(0-processes

In T. Hida [3], Levy's M(ί)-processes provided us precious examples of
canonical representations of Gaussian processes. Moreover, H. P. McKean Jr.
[9] constructed extended (Gaussian) M(f)-processes. He obtained their causal
representations and investigated the canonicalities of them. In this section we
consider the similar extended M(ί)-processes in SαS case, which are constructed
in the same procedure.

2-1 The constructions of SαS M(f)-processes

Levy's multi-parameter Brownian motion can be constructed by integral
geometry (N. N. Chentsov [2]). We construct the similar random field, which
we would call the multi-parameter SαS motion, as follows (see S. Takenaka
[16]).

Let 3tfn be the set of all hyperplanes of codimension 1 in the Euclidean
space Rn(n > 1). We introduce a parametrization (q, p) in 3^n, geS""1, p > 0,
as follows:

(q, p) <—> h(q, p) = {x e Rn — (x - q) + p = 0}

Define a measure μ on J fn as dμ = dqdp where dq is the normalized uniform
measure on S""1 and dp is the Lebesgue measure on [0, oo). Note that μ
is the invariant measure under rotations and parallel transformations in Jf".

For fixed α (0 < α < 2), we have an SαS random measure {Y*(B)} with
control measure space (Jf", μ). For re/?", set

St = {h E Jjfn h separates the origin 0 and t}

and define

X*n(t) EE Yn (SJ = ί Yn

a(dqdp) (2.1)
Jθ<p<t(ξ q)



SαS M(ί)-processes and their canonical representations 311

where t = tξ\ t > 0,

Then the SαS random field {X%(t);teRn} has the following properties:
i) *«(0) = 0.
ii) For any geSO(n) and αe/?", we have the formula

{X«n(gt + α) - X;(Λ); tεR"} {*„*«

iii) The characteristic function of X%(t) — X%(s) is equal to

exp(-C(n)d(f,s)|zr),

where C( l )=l/2, C(w) = Γ(n/2){(n - l)π1/2Γ((n - .l)^)}'1 for n>2 and
d ( - , •) denotes the Euclid distance of /?". This property derives the linear

additive property which means that X%(a + λb) is an SαS process with
independent increments with respect to λeR for any a and beR".

Especially in Gaussian case (α = 2), the Gaussian random field {X^(t)i teRn}

is equal to Levy's Brownian motion with parameter Rn up to a constant.

Furthermore, the uniqueness of the SαS random field with properties i) and

iii) is recently proved in T. Mori [10], So we would call this random field
the SαS motion with parameter Rn.

In Gaussian case (α = 2), Levy-McKean's M(ί)-process is defined as the
spherical mean process of the multi-parameter Brownian motion with the

spherical harmonic as its weight. We can extend M(ί)-processes to SαS case

(0 < α < 2) by integral geometry as McKean used in [9] .

For each n > 1, let v"tm(ξ) be the spherical harmonic on S""1, where
/(= 0, !,-••) is the degree of harmonic and m is the associated multi-suffix. If

n = 1, / runs only 0 or 1. ι;"0 is called the zonal spherical function which

depends only on the colatitude. (For details, see N. J. Vilenkin [18].)

Now we consider that

= ί
J

ί>0, (2.2)
ξeSn - l

where dξ is the normalized uniform measure on S""1. The right hand side

can be defined as the limit of Riemannian sum in L(α), explained later. We
call the SαS process (M£Λm(ί); ί > 0} the SαS M(t)-process. Of course,

{M£0>0(ί)} is Levy's M(ί)-process and {M^ m(ί)} is McKean's M(ί)-process
up to a constant.

Let us calculate the right hand side of (2.2). Using (2.1),

M"n,l,m(t)=\ (\ Y;(dqdp))vlm(ξ)dξ.
JξeS"-1 \Jθ<p<t(ξ q) /
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We can select an appropriate sequence of Riemannian sums

(where {#*,;}ι<, </t is a partition of Sn 1

9 ξkj is an element in Bkj and
is the area of BktJ)9 which converges to

f
J(ξ-q)>P/t

uniformly in (q, p)eSn~1 x [0, ί] as the mesh converges to 0 (so that the
sequence converges in L(α)). Therefore we can exchange the order of the
integrations and we have

MJUJt) = f (ί vlm(ξ)dξ\Yn«(dqdp).
JSn-lx[0,t] \J(ξ q)>plt /

According to McKean [9], for n > 2,

J ( ξ q)>P/tL
= vΐ,m(<l)( \ sin""2 θdθj \ "' P?(cos 6»)sin"-2 θdθ,

\ J o / J o

where PJ(x) = Cίπ-2)/2(x)/Cί"-2)/2(l) (Cξ(x) is the Gegenbauer polynomial).
Thus we obtain the following formula which is a causal representation of SαS
tΛf/^^^CC / Λ/f« ft\ t ^ Π\process {M^m(t)\ t > 0} :

where

Z^m(p)^ ί ti.m(qmdq x [0, p])
Js"-ι

and

απ \ - l pcos-^p/ί)

sinn-2<9i/(9 P
3 / Jo

= (- l)'C(n, /)Γ f 1 ̂ (1 - x2)/ + ("
= P/t
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with a constant C(n, /) = Γ(n/2){2lπ1/2Γ(l + (n - 1V2)}'1 for n > 2. Note
that the process {Z£ι m(p); p > 0} is a 1-parameter SαS process with
independent stationary increments, i.e., an SαS motion and that the kernel

Fntl(t, u) depends on neither α nor m.

2-2 The canonicalities of the representations (I)

Here we consider the question whether the causal representations (*) are

canonical or not. For n = 1, it is easy to see that both (/ = 0, 1) of the
representations (*) are proper canonical. Firstly, we find whether the

representations (*) are proper or not for n > 2.

LEMMA 2.1. Let n>2. For any fixed t > 0, we can apply a differential

operator

-0. + I-D.1 n + l

~dll

to M;+2,ι,m(f) at t in the sense of L(α)(0 < α < 2) and we obtain

with a positive constant K = X(α, n, /, m, m'). (Especially, K = n if α = 2 or

/ = 0. For Levy's M(ί)-process (α = 2 and / = 0), see T. Hida [3].)

PROOF. Note that the kernel FΛtl(t, u) is homogeneous, i.e., it is a function
of w/ί, therefore

Let us consider the right differentiability of ί" + /MJJ+ 2 f l f m(ί). Fix any ί > 0
and let h > 0.

h d}_

Λ l Λ V J t t dϊ

Γ f Γ + h dl

Jo

(2.3)
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The first term converges to 0 in L(α) as h J O because

dl

dx1

= (a polynomial in x, h and t) x [(ί + h)2 - x2]("~1)/2

and

Γs[

4"*fl Jί

Al

. X

The integrand of the second term of (2.3) converges to

-{(- l)'C(π + 2, /) Γ-^-(
3t[ Judxl

= (-l)lC(n + 2, /) - -(t2 - x2Γ<"-
Judxl\dt

= (-l)lnC(n, I) [—At2 - x2)l + (n~3)/2 dx
Judx1

as /ι|0 for every point we[0, t]. The function FnJ(t, u) is right continuous
in ί uniformly on we[0, ί], so we find the second term of (2.3) converges to

in L(α). Hence we complete the proof of the right differentiability.
For any ί > 0 and h > 0, we have the formula

-h)- t»

= (-l)'C(n + 2, /) x
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/

Thus to prove the left differentiability, we have only to show similarly that

Pthe first and the second term converge to 0 and ntn + l 1FnJ(t, u)dZ"+2J>m(u)

in L(α) respectively. We complete the proof. Π

By this lemma, we can reduce the problem of canonicalities to the case
n = 3 or n = 2 according as n is odd or even respectively.

LEMMA 2.2. In case n = 3.
i) If I = 0, 1, 2, the causal representation (*) is proper for 0 < α < 2.

ii) If I > 3, the causal representation (*) is not proper for 1 < α < 2.
iii) For any fixed t > 0, Ml^m(t) is differentiate at t in L(α) (0 < α < 2).

(Hida [3] and H. P. McKean Jr.' [9] for α = 2)

CONJECTURE. The causal representation (*) is not proper for α = 1 and

(*) is proper for 0 < α < 1.

PROOF, i). We already know that

»2 ' Aand

F3f2(ί,ιι) =

So we can easily show that

, ,
at

3, l)ZS i l f W(ί) and

for every t > 0 in L(α) (0 < α < 2). Now it is clear that (*) is proper if

/ = 0, 1. If / = 2, using the equation

[s~2( (Sudu\ds= f Y l -
J o V J o / J o V

we have
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udZl^m(u)

for every t > 0, where the integration in ds means the limit of Riemannian

sum in L(α). The right hand side belongs to 5Dlf(M3 t2>m) for every t > 0 and

the kernel is equal to F3>0(ί, u) up to a constant. Hence we show that (*)

is proper for / = 2.

ii). For a fixed ί0 > 0, let us compute the inner product between F3J(t, u)

(0 < t < ί0) and uj (0 <j < I - 2) on [0, ί].

P . ΓT d1'1 "||
F3J(t, u)ujdu = (— 1)* + 1C(3, /) —Γ^T^~χ2M UJ^U ( '— 3)

Jo J o L dx J l x = u / ί

•-if dl~J-2

= c0τm. x ί 7 M — ._ (1 — .

Using a recurrence property, it can be showed that the value is 0 for all

0 < t < t0 if j is even or odd, according as / is odd or even respectively. This

implies that w j7(α~1} is right-orthogonal to F3tl(t,u) in L(α)[0, ί] (1 < α < 2).

We apply Proposition 1.5 and complete the proof of ii).

iii) can be proved similarly to Lemma 2.1. Π

LEMMA 2.3. In case n = 2, then the statements i) and ii) of Lemma 2.2

also hold. (McKean [9] for α = 2)

PROOF, i). We already know that

is'1-, F7, ,(i, u) = C(2, l ) < J l - [ - ) [> and
t

And we can show that

Γ-Γ-!-
Jo(ί -s

- ds I cos : — du = - \ ( 1 — ) du,
Jo s 2 J o \ ί.

"λ ' j π / , " i j jί/u = - 1 dw and
s/ J 2J0

1 A M J 1
r-j-r</S -<1 -

p Z λ l / Z ! o / \ c~ ~ ^ J J o λ ^ \ λ

Put dZ2,ί,m(w) (/ = 0, 1, 2) in place of du in these three formulas, where the
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above integral operators in ds act in L(α). Thus we know that

t

l-")dZlltn(u)eW;(M 2ΛtJ and
o '

/ «, \ 2 ^

(fi) e SRf(M ϊ,2i J

for every ί > 0. Now we can easily obtain the innovations {Z^^t)}
(/ = 0, 1, 2), similarly to i) of Lemma 2.2.

ii). It is easily proved that uJI(Λ~l) (0 <j < I — 2) is right-orthogonal to
F2J(t, u) in L(α)[0, ί] (1 < α < 2) for any t > 0 if j is even or odd, according
as / is odd or even respectively, in the same way as the proof of ii) of Lemma
2.2. This implies ii). Π

Lemmas 2.1 ~ 2.3 imply the following theorem.

THEOREM 2.4. Let n>2.
i) If I = 0, 1, 2, the causal representation (*)

zs proper for 0 < α < 2.

ii) If l> 3, //z£ causal representation (*) w «0ί proper for 1 < α < 2.
iii) Tf n w 0dd (= 2d + 1), /A^w M^/>m(ί) is d-times differentiable at t in

L(α) ( 0 < α < 2 ) for any fixed t > 0. T/* n is even (= 2d), then M^>m(ί) is
(d — \)-times differentiate at t in L(α) (0 < α < 2) for any fixed t > 0.
(Hida [3] and McKean [9] for α = 2)

§3. Regularities of paths and canonicalities of representations

In Gaussian case (α = 2), to know whether a causal representation is
canonical or not, we have only to apply Proposition 1.5 to check whether it
is proper or not. On the other hand for non-Gaussian case (0 < α < 2), by
observing the regularity of paths of the process, we can prove that a causal
representation which belongs to a certain class is canonical even if it is not
proper (see P. Levy [8] and T. Hida and N. Ikeda [4]).

3-1 Regularities of paths of certain SαS processes

Firstly, we apply the Levy-Itό's theorem on the decomposition of paths
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to an SαS motion.

Let T be a subinterval in [0, oo), then D(T'} denotes the set of functions
which are right continuous and have left limits at all points in T'. If T' is
compact, D(Γ') has a norm of uniformly convergence on T', i.e., H / H ^ =

sup I/(ί)I for feD(T'). A stochastic process on T' is called a D(Γ')-process if
ίeΓ'

its almost all paths belong to D(T').
It is well-known that any SαS motion {Z0(ί); ίe[0, oo)} (0 < α < 2) has

a D([0, oo))-modification {Zo(ί, ω); ίe[0, oo)} represented by

Γ Γ
7*>(t, ω) = lim yN(dudy,

/~> c° J[0,f] J | y | > l / ί

ω)

where N(dudy, ω) is a Poisson random measure with control measure

on [0, oo) x (/?\{0}) and lim means that almost all

D[0, oo)-paths converge on any compact interval. Note that the random

variable N((s, s'] x £, ω) is equal to the number of jumps with height in E
on time interval (s, s'] of path Z$ ( - , ω) for any 5 and s' (s < s') and any

Borel set E of R\{0}. (For details, see K. Itό [5] and K. Sato [12].)

With the help of this theory, let us consider the regularity of paths of
SαS process {X(t); ίe[0, oo)} which is represented by

X(t)= F(t,u)dZ0(u). (3.1)
Jo

Now we regard that the kernel F(ί, u) is a function restricted on
DQ = {(ί, w); t > u > 0} \ {(0, 0)}. We use the following notations which mean
conditions on the kernel.

k l) F(ί, u) is continuous on Z)0.
k2) For any fixed t > 0, F(ί, u) is differentiable in u on [0, ί] and

d
— F(ί, u) is continuous on D0.
du

k3) F(ί, t) is bounded in the neighborhood of t = 0.
d ,

k4) sup < const, x ί x in the neighborhood of ί = 0.
ue[0,t] OU

k5) F(t, u) belongs to C2 on D0.

k6) —F(t , u) is bounded in the neighborhood of (ί, u) = (0, 0).
du

To the next lemma, we apply the integration by parts. The idea is

borrowed from K. Takashima [15].
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LEMMA 3.1. Assume that the kernel F(t,u) satisfies kl) and k2). For

almost all D[0, ao)-paths ZQ( - , ω), we define a process {XD(t, ω); t > 0} as

XD(t, ω) = F(t, t)Z?(ί, ω) - f Z?(κ, ω)(|-F(ί, u)) d" (3.2)
J[0,f] \d" /

ΓΛett {XD(ί, ω)} w α D(0, ^-modification of {X(t)} given by (3.1). Λtwrf

there exists a relation of jumping times and heights between paths XD( - , ω)

and ZQ( - , ω) expressed as

XD(t, ω) - XD(t - , ω) = F (t, t) {Zξ(t, ω) - Z°(t - , ω)} a.s. (3.3)

Moreover, if F(t, u) satisfies k3) and k4), then XD( , ω) is right continuous at

t = 0 and XD(Q, ω) = 0.

PROOF. By the conditions k l) and k2), we can regard that the right

hand side of (3.2) is defined in the sense of L(α) for every t > 0 and we find

that the right hand side is a modification of [ X ( i ) } . The condition kl) implies
Γ f ?\ \

that F(ί, ί)Z?(ί, ω) is a D(0, oo)-process. By k2), Zj(w, ω)( — F(ί, M) }du
J[0,ί] \5 w /

is well-defined and has finite value for all t > 0 for almost all D[0, oo)-paths

ZQ( - , ω). Let us show that this term is continuous on (0, oo) as paths. Fix

ω, consider the right continuity at ί > 0. Let h > 0.

Γ //•) \ Γ / / 3 \
Z£(«, ω) ( — F(t + h, u) } du -\ Z°(u, ω) l—F(t,u)} du

J[O,I + Λ] \Su ) J[0.tl \δu )

F(t + Λ, u) -
5w du

+ Z?(u, ω) I- F(ί

converges to 0 as /z |0 by k2). This term is left continuous at t > 0 because

Z?(u, ω)(^-F(t - h, u)}du - \ Z?(ιι, ω)f |-
f - Λ ] \<3w / j[0ϊf] v^w

Z?(u, ω)(^F(t - h, u) - |-F(ί,
- \δ w du

converges to 0 as ft|0 by k2). Hence we prove that {XD(t, ω)} is a

D(0, oo)-modification of {X(ί)}
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Assume k3) and k4). Then F(ί, ί)Zo (ί, ω) is right continuous at t = 0

by k3). And

Zo («. «)
[O.Λ] on

< h sup \ZQ(U, ω)\ sup -F(Λ, u)
ou

converges to 0 as h[0 by k4). Thus we prove the right continuity of

{XD(t, ω)} at ί = 0. D

Now we consider these two special cases.

1°) F(t, ί) = 0 on fe(0, oo),
2°) F(f, ί) ̂ 0 on fe(0, oo).

The case 1°). We have the following corollary by the relation (3.3).

COROLLARY 3.2. If F(t,u) satisfies kl), k2) α«d 1°), almost #//
Jfβ( , ω) are continuous on (0, oo).

Furthermore, we can consider the differentiability of paths.

LEMMA 3.3. If F(t, u) satisfies k5) and Γ), then the paths XD( - , ω) have
right and left derivatives at all t > 0 and they satisfy

dt+

at.

Z°(t,ω)-\ ZS(u,ω)(--F(t,u)
[0,ί] C7W

(3.4)

—
dt'

Moreover, if F(t, u) satisfies k6), the paths XD( , ω)

d

τ~F(t,u) du
du at J

(3.5)

differentiable at

f = 0
D(ί, ω) = 0.

PROOF.

ί
Jto

rz'^/z/ differentiability at t > 0; Lei /z > 0, //ze« by k5),

F(t + h,u)-^~ F(t, u) du
du J

Z^(u,ω)^-~F(t (where 0 < 0 - 0(fc, ί, w) < 1)
[0,1]

[0,f]
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On the other hand

1

)(t,t + h]

d]τu h, u}du

d
fej

t'it,u'it

By Γ) and k5), we have

+ —F(t'9u')
,'=,,„'=, ί'=ί,u'=ί

so we obtain (3.4).

The left differentiability at t > 0; By k5),

Z°(u, ω) - F(t -h,u)-~ F(t, u) du

= \
JrO.t-Λ

Z^(u,ω)~~F(t-θh,ύ)du

Γ

ΛO
Now the interval [0, t) can be replaced by [0, t]. And

I f r», S

(t-h,t] du

d

du'' u ' T ί

321

DSo we obtain (3.5).

Especially, the paths belong to (^(O, oo) if

ΞΞ 0 on (0, ex)).

The case 2°). For simplicity, we assume F(ί, ί) = 1. Then by (3.3), for
any fixed t > 0, N((s, s'] x E, ω) can be obtained from {XD(r, ω); reβn[0, ί]}
for any 5, s'(eβ, 0 < 5 < s' < t) and any Borel set E of R\ {0}. For example,
if E = (yQ, co) (y0 > 0),

, 5'] x(y 0 , oo), ω) > 1}
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= U Π U {ω\XD(r', ω)-XD(r,ω)>y0+l/m}.
m n r,r'eQ;

s<r<r' <s',
r'-r< 1/n

So, for every t'eQ (0 < t' < t) and leN, we calculate

fcΣ [XD(sn,k, co) - XD(sn,k-,, ω)}N((snth-l9 5π,k] x (- 1, j Y, ω\

where {sn > f ceβ; 0 < k < n} is a partition of [0, ί'] and the mesh tends to 0

as n-> oo. As the above random variable converges a.s. as n -» oo for every
ί', we regard the limit of variables as a stochastic process whose paths belong

to D([0, ί]) a.s. Taking the limit as /->oo, we obtain the D-modification

{ZQ(S, ω); se[0, ί]} of (Z0(s); se[0, ί]} (see K. Itδ [5] for reference). Thus
we have

PROPOSITION 3.4. If the kernel satisfies kl), k2) α«d 2°), then the causal

representation (3.1) is canonical (see P. Levy [8] and T. Hida and N. Ikeda [4]).

3-2 The canonicalities of the representations (II)

For Gaussian case (α = 2), as we saw in Theorem 2.4 of subsection 2-2,
the representation (*) is not canonical if n > 2 and / > 3 (H. P. McKean Jr.

[9]). McKean obtained the proper canonical representations of {M^l%m(t)}
in these cases. For non-Gaussian case (0 < α < 2), we apply the argument of

the previous subsection to SαS M(ί)-processes and their representations (*).

LEMMA 3.5. In case n = 3.
i) For all /, {MlJίm(t}} (0 < α < 2) has a modification whose paths are

continuous on [0, oo) and differentiable in both sides at all t > 0. (The
derivatives are not equal to each other. And (tMltltm(t)} has a modification

whose paths are right differentiable at t — 0.)
ii) For all /, the causal representation (*) of {M^lίtn(t)} (0 < α < 2) is

canonical.

PROOF, i) is proved bacause

c = u/ί

satisfies the conditions k l ) ~ k 5 ) and Γ). And

3

5ίF2M

so the right and left derivatives are not equal.

/ O on (0,oo),
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ii). Let us consider the right derivative of the C-modification of

{^3,/,m(0} as a process, then the process satisfies 2°). So we apply Proposition

3.4 to obtain {Z5ιlfIΠ(ί)} D

LEMMA 3.6. In case n = 2.
i) For all /, (M^^ί)} has a modification whose paths are continuous on

[0, (X)).
ii) For all /, the causal representation (*) of [M^^Jf)} is canonical.

PROOF, i). Let us prove {M2>/fOT(ί)} has a modification in the form of
(3.2). The kernel

F2il(ί, u) = (-1)'C(2, /) Γ - (̂1 - x2)l~1/2dx
L dxl

= u/t

satisfies k l) and 1°) (thus the first term of (3.2) vanishes), and is differentiable
in u on [0, ί) for every ί > 0. Note that

3 . , , / , , u\ ί / ιΛ 2 Γ 1 / 2 l— F2 ι(t, u) = [ a polynomial in — x < 1 — — > —.
du ' V t J V t J } t

So, according as —F 2 /(ί, u) -> oo or — oo as u]t (whether the limit is oo or
du

— oo depends only on /.), we have some ε = ε(ί, /) > 0 such that —F 2 ι(t'', w)
δw '

increases or decreases monotonously in u and decreases or increases

monotonously in t' on {(ί', w); ί — ε < u < t' < t + ε} respectively.
Hence the second term of (3.2)

f

J[0,f]

(3.6)

where {Zo(ί, ω)} is a D-modification of {Z2,ίjm(ί)}9 is well-defined for all
ί > 0 because

[t-ε,t]

ZS(u,ω) [-F2tl(t,u)]du
cu

. sup |Zj(u,ω)|
ue[ί-ε,ί]

< 00.

Let us prove the right continuity of (3.6) at t > 0. Let h be 0 < h < ε then

[0,ί-ε]

-F2 f I(ί + Λ, M) - -
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By kl),

Z?(κ,ω)(|-
(ί-ε,ί] \^U

< sup (ZO(M, ω

Katsuya KOJO

2tl
du

d d
— F 2 j ( t + h,u)-—F2.l(t,u)}du

and

f
J(ί,ίt + h]

< sup w, ω)
'ί + Λ

(A JO).

To prove the left continuity of (3.6) at ί > 0, we have only to let h be 0 < ft < ε
and prove similarly that

J[0,f-e] ' \Su 2^ ' du

J(t-ε,t-h] \du du '

i f r\ \

ZS(u9ω)(-F2J(t9u))du
:t-h,t] \Su )

and

converge to 0 as h JO.

Using the fact that
d

'du1 du is bounded (constant in fact) in the

neighborhood of ί = 0, we show the right continuity at t — 0. Hence i) is
proved.

ii). The proof is similar to i) of Lemma 2.3. We apply an integral

Γ s'"1

operator t (l υ — Y^ds to (M^/?m(s); 0 < s < ί} (/ > 1) and we obtain
Jo (t s )

a new process with a causal representation whose kernel is a polynomial in
u/t (like the odd dimensional cases). The kernel of the new process satisfies
either Γ) or 2°). In the case 2°), we apply Theorem 3.4 to finish the proof. In
the case 1°), we have only to differentiate the process a certain times until
2°) is satisfied. D

If n > 4, the kernel FnJ(t, u) satisfies k5) and the reduction formula below
(see the proof of Lemma 2.1).
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-Fn + 2tl(t, u) =

Finally, we have the following theorem.

t, u) for n > 2.

THEOREM 3.7. For 0 < α < 2.

i) For all n and /, the causal representation (*)

M*nJ.m(t)= Fntl(t,u)dZ<ntltm(u)
Jo

is canonical.

ii) If n is odd (= 2d + 1, d > 1), then {M£/>OT(f)} λαs # modification whose

paths belong to Cd~1(0, oo) αrcrf d-times differ entiable in both sides at all t > 0.

({ίdM£j5 m(f)} has a modification whose paths belong to Cd~1[Q, oo) and d-times

differentiate in both sides at all t > 0.) If n is even (= 2d), then {M£Zj l f I(f)}

has a modification whose paths belong to Cd~ί(09 oo). ({td~lM*Λ^m(t)} has a

modification whose paths belong to C^"1^, oo).)

Let us sum up the results of the path properties of {M£/>m(ί); t > 0} and

the canonicalities of their causal representations (*) as the following list.

/

n α

n= 1
(/ = 0,1)

n: even
(=2d)

n: odd
( = 2 d + l )

paths

(*)

paths

(*)

paths

(*)

/ = 0, 1, 2

0< α < 2

D

α = 2

C

proper

canonical

Cd-ι
Cd-l

proper

canonical

Cd-l Cd

proper

canonical

/ > 3

0 < α < 1 1 < α < 2 . α = 2

Cd'1

unknown

Cd~ 1

not proper

canonical

Cd-l

unknown

not canonical

Cd

not proper

canonical not canonical
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