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Abstract. We study oscillatory properties of solutions and existence of nonoscilla-
tory solutions with a power growth at the infinity for the system of differential equations
of neutral type

dn
i [xi®) — ai(@)xi(hi()] = pi(0) filx3-i(g:®)),  meN, i=1,2.

1. Introduction

In this paper we consider systems of neutral differential equations of the form

an .
ar [xi(2) — ay(®)x;(h;(1))] = pi(t) fi(x3-:(9:(2))), meN, i=1,2
The following conditions are assumed to hold without further mention:

(@ a;,hyg,pRT >R, fi: R>R, i=1,2, are continuous functions;
(b) h(t) <t for teR*, lim,, , hi(t) = oo, lim,_ , g;(t) = o0, i =1, 2;
(c) zfi(z) >0 for z #0.

We put
x;(t) — a;(t)x;(h;(t)) = uy(t), i=1,2.

For t, > 0 denote

t; = min {ti§£ h(t), 33{, gi(t), i=1,2}.

(S)

A vector function X = (x,, x,) is defined to be a solution of system (S) if
there exists a t, >0 such that X is continuous on [t,, ), u; is n; times
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continuously differentiable in [t,, o), i =1, 2, and X satisfies system (S) on
[ty, ).

Solution X = (x,, x,) is called a proper solution if sup {|x,(t)] + |x,(t)l,
t>T} >0 for any T>0.

A proper solution X of (S) is defined to be nonoscillatory if there exists
a t, > 0 such that every its component is different from zero for all t >¢,. A
proper solution X is defined as oscillatory otherwise.

Present paper consists of two parts. In the first part we prove the
existence of nonoscillatory solutions of system (S) with a polynomial growth
at the infinity. An additional assumption is made that

a;(t) = A; = const, t— h,(t) =1; = const > 0.
A solution X = (x,, x,) is said to have a polynomial growth at the infinity

if there exist nonnegative numbers f,, ff, such that

lim *1(0) =const #0, lim xzﬁ(t)

t=o0 P t— o0 tz

= const # 0.

Existence of nonoscillatory solutions of scalar equations or systems of
equations of neutral type with certain asymptotic properties, including the
polynomial growth solutions, has been studied in, e.g. [1-5, 7, 8].

The second part deals with the oscillatory behavior of solutions of
(S). Sufficient conditions for the oscillation of all solutions of linear systems
have been obtained by V. N. Shevelo et. al. [8], Gyori and Ladas [1].

The results of this paper generalize those obtained in a previous paper
by the authors [3].

2. Existence of nonoscillatory solutions

Throughout this section we assume the following additional to (a)-(c)
conditions to hold:

at)y=4;=const# 1, h(t)=t—1;, 1;,>0,i=1,2; (2.1)
g:(t)
t

lim sup,_, ., <06;<,0,;>0,i=12; (2.2)

| fi(2)] < 6;|z|* for large |z| and some positive constants a;, 6;, i = 1, 2.
(2.3)
2.1. Auxiliary transformations and Lemmas

Let C[T, wo) be the Fréchet space of continuous functions in [T, co) with
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the topologyof the uniform convergence on compact subintervals.

A. Let|A| > 1 andlet C, [T, ) stand for a subset of C[T, oo) consisiting
of all functions u(f) such that the series ) ° , A *u(t + kt) are uniformly
convergent on every compact subinterval of [T, o0).

Define the operator ¥ ;.: C, [T, ) - C[T— 1, ) as follows:

Yroaul) =Y A7%u(t + k), t>T—1. 2.4)
k=1

B. Let |A| < 1. Define the operator @ ;.: C[T, ) > C[T— 1, ®) as
follows:

nt)—1 n(t)
Op )= 3 AP — ko + A 4D g
k=0 1 —]4]
Pr, . u(t) = lu(—]&l T-1<t<T, (2.5)

where n(t) stands for the smallest integer such that t —n(t)t < T.

Lemma 2.1. If ueC, [T, o) then x = ¥, u satisfies the difference
equation

x(t) — Ax(t — 1) = — u(z), t>T
LEMMA 2.2. If ueC[T, w) then x = @ , .u satisfies the difference equation
x(t) — Ax(t — 1) = u(t), t>T
Proof of Lemmas follows immediately from (2.4) and (2.5) respectively.
LemMA 2.3 ([4, Lemma 1.3]). Let ueC[T, o) be positive and nonincreas-

ing. Then for every constant p€(0, 1) there exist positive constants ¢y, ¢, and
¢y depending on A and t only and such that

Dp . u(t) < cpulpt) + cu(T)AY P 4 cyu(T)AC~ Ditew, (2.6)

COROLLARY 2.1. Let u(t) be as in Lemma 2.3 and m be a nonnegative
real number. If

J t"u(t)dt <

T

then

J‘ t" Dy, u(t)dt < oo.

T
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Proof of Corollary 2.1 follows from (2.6).

2.2. Solutions with a power growth

THEOREM 2.1. Let the assumptions (2.1)—(2.3) hold and 1,€{0, 1,...,n; — 1},
i=1,2, be given. Suppose there exist continuous nonincreasing functions
q;: [to, ©)—> R,i=1,2, such that |p,(t) < q;(t) for t > t, and

f gulimttal-ig (1) dt < oo, i=1,2.
to

Then for arbitrary (by, b;) (byb, > 0) system (S) has a nonoscillatory solution
(xy, x,) with the property

fim 59 _ p

t— o0 tli

i=1,2

i’

Proor. A). Let |4]>1, i=12 Set T,=min/{inf,g,t), T— 1,
i=1,2}. For x,(t)eC[T,, o), i = 1, 2, define the mapping F(X) = F((x,, X,))
= (F,X, F,X) given by

di(t - T)li + (_ l)m“li—i J‘w (t — s)li—l

FlX(t) = Ci +
I r ;=1
© (r _ S)n,-—lf—l
X f m Y1, a0, (0i(r) filx3 - i(g:(r))) drds, t>T,

FXt)=c¢, T,<t<T i=12 2.8)

where ¢; #0, d;>0, i=1, 2.
Assume that the mapping F has a fixed point X°=(x{, x9), ie.
X% =(x9, x9) =(F,X°¢), F,X°(@)). Differentiation of (2.8) shows that

@) = — WT,).,-,:.»(pi(t)fi(Xg—i(gi(t)))7 i=1,2,

and therefore, in view of Lemma 2.1, (x?(¢), x2(¢)) is a solution of system
(S). From (2.8) it follows that lim,_  x{(t) = d;, implying lim,_ , x;(t)/t" =
const >0, i=1,2.

Define subsets W = C[T,, ), i =1, 2, as follows:

2d,(t — T)"

u{_—_{weC[T,oo):cisw(t)SCi+ . X , t>T, and

w(t) = ¢, T*stsT}, i=1,2

It is easy to see that W, i =1, 2, are convex subsets of C[T,, ). We shall
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show next that for arbitrary constants d; >0, ¢; # 0, i = 1, 2, T can be chosen
in such a way that F maps W, x W, into itself. The standard arguments
show that F(W, x W;) is relatively compact in the topology of C[T,, o) x
C[T,, ). Therefore, the Schauder-Tychonoff theorem is applied to derive
the existence of a fixed point of F.

Take x;e W, i =1,2. Then in view of (2.2), (2.3) we obtain

IY/T,).i,n(pi(t)f;'(x(;—i(gi(t)))' < i |4 7 qi(t + k) filks—i(g:(t + kT)))

k=1

<ai) i 27 filles (gt + ke)) < 8:4(0) 3 1Al *g2 B 4(t + ke

k=gq

< 6,078 ig,(t) Z (4174 + ko) B < pgi()e-i, i=1,2,
where

vo= 0,00 Y ol KL+ Ry i=1,2,

k=1

In view of (2.7) for every d; >0, i = 1, 2, there exists a T > 0 such that

© M1 © _ omi—li—1
(capet [T O o5 g s

(t )l, 1 oo(r_s)ni—li 1 a.l. ,
f U= 1)! f m— O

li—1 ©
<7 Ldsj‘ prichimttalb-ig (Ndr <dj(t — T), t> T, i=1,2.
r (i—=1! T

It follows that F,;X; = W/(i =1, 2) provided x;e W (i = 1,2). This shows that
F(W, x W) = W, x W,. Therefore, F has a fixed point.

B). Case|4] <1,i=1,2. Let T, be defined as above and x;€ C[T,, ),
i=1,2. Define the mapping F(X) = F((x,, x,)) = (F, X, F,X) as follows:

_ die =Ty e, [TE=9T!
Fi(X(t)—Ci"'T‘l'( 1) J; 7&'_1)!

1

x f . i—;‘_s;—_l), PP %5 g drds, =T,
s i i M (2‘9)

Xt)=c¢, T, <t<T i=12,

where ¢; #0, d;>0, i=1,2. If the mapping F has a fixed point (x{, x9)
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then differentiation of (2.9) shows that

PO = Dr 5, () (5-1(0:0))),  i=12

and Lemma 2.1 shows that (x9(t), x3(t)) is a solution of (S). From equation
(2.9) it follows that lim,_,  x;(t)/t" = const > 0, i = 1, 2.

Let subsets W be given as above. Take x;eW, i=1,2. Then in view
of (2.2), (2.3), (2.7) and Corrolary 2.1 we obtain

0 _ ni—li—1
f Ern‘._%)_"¢T,/I,-,t,—(pi(r)fi(x3—i(gi(r)))dr

<) i Li—1
<7 f %_—l), B o @) X5 g ) )dr |

LY
< ,le‘ rm_li_l+ail3-i¢T,1i,ri(gi(r))dr < 0, l — 1, 2
T

The last inequality shows that for arbitrary d; > 0, i =1, 2, there exists a
T >0 such that for all s> T

%) i~ Li—1
| o ta o | < i 1= 12

As for the case A) this implies F(W, x W;) < W, x W, provided x;e W, and
T > 0 is sufficiently large. As before, F is continuous and F(W, x W) is
relatively compact in the topology C[T,, ©) x C[T,, o). Therefore, F has
a fixed point, which gives a nonoscillatory solution of (S). This completes
the proof of the theorem.

3. Oscillation criteria
In addition to the assumptions (a)-(c) we suppose
la;(t)] < 4; < 1, alt)a;(hi(t)) = 0, i=1,2; (3.1)
p1(t) = p1(t), po(t) = op,(t), po(t) >0, t>0,0e{—-1,+1}; (32
For every d > 0 there exist 4, >0, i =1, 2,
such that inf {| f;(z)|: |z| > d} > 6;, i=1,2 (3.3)

REMARK 3.1. System (S) whose coefficients p;, i = 1, 2, satisfy (3.2) will
be denoted (S,).

In the sequel the following Lemma (called Kiguradze’s Lemma) will be used.
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LEmMa 3.1 ([6]). Let ze C™[t,, o©) be such that z(t) # 0, vz(t) - z"(t) = 0
for t>tg,ve{—1, +1}. Then there exists an integer 1€{0, 1,...,m} with
v(=1)'*" =1 and T, >ty such that for t > T, one has

2Oz2%0) >0  for k=0,1,...,],
(= ) *zt)z®(t) >0 for k=1+1,...,m.

COROLLARY 3.1. If under assumptions of Lemma 3.1 lim,_,  z(t) = 0 then
zZ®(@t) (k=0, 1,...,m) tend monotonically to zero as t— oo.

Denote
y(h)=sup {s: h(s) <t, g;t) <t i=1,21¢t>0}.

Let (x,, x,) be a nonoscillatory solution of system (S,). Let (3.1)-(3.3) and
(1.1) hold. Then in view of Lemma 3.1 from (S,) we get for all sufficiently
large t either

x(Du(t) >0, ie{l,2}, (3.4)
or
x(Hut) <0, iefl,2}. (3.5)

Denote by N* (respectively N ™) the set of components of all nonoscillatory
solutions (x,, x,) of system (S,) such that (3.4) (respectively (3.5)) is satisfied.

LEMMA 3.2. Let x;eN™*,ie{l, 2}, and (1.1), (3.1) hold.
(@) If x;(t)u;(t) >0 for t >ty, then there exist constants b; and Ty > t,
such that x;b; >0 and

[x;)] = |u ()1 (1 — 4) = |b;|(1 — 1) >0, i=1,2t>T,. (3.6)

(b) Let x;(t)ui(t) < 0 and |u;(t)| = 6 >0 for t > t,. Then there exist ¢ >0
and T, > t, such that

x(t) = e |u(t) = e,0=¢>0  for t =T, i=1,2 3.7

Proor. (a) Without loss of generality we assume that x,(t) > 0, u,(¢) > 0
and uj(¢t) >0 for t >t,. The last two inequalities imply that there exist b,
and t, > t, such that u; > b, for t > ¢,. Then (1.1) together with (3.1) gives
x1(t) = uy (t) + ay (Ouy (hy (1)) 2 uy (O)(1 — A1) = by (1 — 44) >0 for t > y(y(t) =
T,.

(b) Let x,(t)>0, ui(t) <0 and u,(t)=6>0 for t >¢t,. Choose J;:
1 <8, <1/4;. Then there exists t, > t; such that 0 < < u,(t) <u,(h,(t)) <
06,. The last inequality, in view of (1.1) and(3.1), implies x,(t) = u,(t) +
ay(Ouy(hy () 2 u ()1 = 410,) = 6(1 — 4,6,) =€e>0 for t 2 y(y(¢t;)) = T;.
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LemMMA 3.3. Let x,e N™,i=1,2, and (1.1), 3.1) hold. Then lim,_, , u;(t)
=0, lim,,_, x;(t)=0,i=1, 2.

Proor. Without loss of generality we assume that x,(¢) >0, u,(¢) <O
for t>t,. Then (1.1) in view of (3.1) implies 0 < x,(t) < a;(t)x,(h;(t)) <
x,(hy(t)) for t > t,. Function x,(t) is nonincreasing and therefore, lim,_, ,, x,(t)
=¢>0. Then with regard to 0 < x,(t) < 4;x,(h,(t)) we have c < Ai,c, a
contradiction to 0 < A; < 1. Therefore ¢ =0. Then (1.1) together with (3.1)
implies lim,_, ,, u,(t) = 0.

REMARK 3.4. The case x;€ N~ can occur only if a;(t) > 0 and v(— 1)" = 1,
i=1,2

LemMa 3.4. Let a;, p; and f,,i =1, 2, satisfy the assumptions (3.1)-(3.3)
and let

w;i(t) = z(t) — a;(t)z(h;(t)), i=1,2,
where z(t) is a solution of the equation
w(t) = p(0) fi(z(9:(),  i=1,2 t>1,, (E)
where meN, ve{—1, +1}. If z(t)=>d >0 (z(t) <d <0) for t > t, and

J p()dt = 0, i=1,2, (3.8)

0

then

tllrg wh(t) = voo (tllrg wh(t)= —ve0), k=0,1,....m—1,i=12 (39)

PrROOF. Assume z(t) >d > 0. Then with regard to (3.3) there exist 6 > 0
and T; > t, such that fi(z(g;(t))) > d for t > T, i = 1, 2. Integrating equation
(E) from T; to t and using the last inequality we obtain

t

vIw™ V() — wi"T(T)] 2 5f pi(s)ds, i=1,2

T
This last inequality together with (3.8) implies (3.9).
THEOREM 3.1. Let 6 = — 1 and let the assumptions (3.1)—~(3.3) and (3.8)

hold. Then every proper solution (x, x,) of (S_,) is either oscillaltory or u*)(t)
(k;=0,1,...,n;, i =1, 2) tend monotonically to zero as t — oo.

Proor. Let 0 = — 1 and let (x,, Xx,) be a nonoscillatory solution of (S_,)
defined in [t,, o).
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A). Assume first that x;e N* and x;(t)>0 for t>ty, i=1,2. (The
proofs for cases x;(t) <0, t >ty, i =1, 2, and x,(t)x,(t) < 0 are similar.) Then
in view of (3.1)—(3.3) we obtain from system (S): ;(t) >0, i = 1, 2, u{)(¢) > 0,
uP?(t) <0 for t = t,:=y(to)-

(i) Let n, be odd and n, be either odd or even. Then by Lemma 3.1
there exists t, >t; such that u; >0 for t >t,. With regard to Lemma 3.2
there exist a, > 0 and t; > t, such that x,(t) > a, for t >t;. Using Lemma
3.4 we obtain lim,, , u,(t) = — oo, which contradicts u,(t) >0 for t > t,.

(i) Let n, i=1,2, be even. By Lemma 3.1 there exists t, > t, such
that u, >0 for t>t,. Using Lemma 32 and Lemma 34 we get
lim,, , u,(t) = co. Then, in view of Lemma 3.1, u; > O for large t. Then we
can proceed the same way as for the case (i) to get a contradiction.

(iii) Let n, be even and n, be odd. Then by Lemma 3.1 either u;(t) > 0
or u/(t)<0 for t >t,. If uj(t) >0 we have the case (i), and if u;(t) >0 we
have the case (ii), which lead to the same contradictions.

Let u{(t)<0,i=1,2, for t >t,. Then since u,(t) >0, i=1,2, for t > t,
there exist lim,., u;(t) =a;, i=1,2. Assume a;>0. Then by Lemma 3.2
and Lemma 34 we get lim,, u,(t) = oo, lim,, u,(t) = — oo, which con-
tradicts the fact that u;(t), i =1, 2, are bounded. Therefore a;=0, i =1, 2
and in view of Corollary 3.1 (P,) holds (n + m is odd for this case).

B). Let x;(t)eN™, i=1,2 (a;(t)>0, i=1,2, for t>1t,). Assume
x;(t) <0 for t >ty, i=1,2 (the proofs for the cases x; <0, i=1,2, and
x,(t)x,(t) <0 for large t are similar). From system (S) with regard to
(3.1)—(3.2) we obtain u;(t) <0, i = 1, 2, u{(t) > 0, ul(t) < 0 for t > t,:= y(t,).
Therefore, in view of Remark 3.2 and Lemma 3.3, n, is odd, n, is even and
lim,, , u;(t) =0, i=1,2. Then by Corollary 3.1 (P,) holds (n; + n, is odd).

C). Letx;eN*', x,eN (ay(t)>0fort>t,). Assume x;(t)>0,i=1,2,
for t > t,. (The proofs in the cases x;(t) <0, i = 1,2, and x,(t)x,(t) > 0 are
analogous.)

From system (S) with regard to (3.1)—(3.3) we obtain u,(t) > 0, u{"’(t) > 0,
u,(t) <0, uf?(t) <0 for t > t, = y(t,). Using Lemma 3.3 and Remark 3.1 we
get lim,_ , u,(t) =0, where n, is even. By virtue of Lemma 3.1 there exists
t, >t, such that for n; odd uj(t) >0 and for n, even either u5(t) >0 or
us(t) <0 for t >t,. If uy(¢) >0 or uj(t) <0 and lim,, , u,(t) = a, > 0 then
by Lemmas 3.2 and 3.4 we get lim,,, u,(t) = — co which is a contradiction
to lim,, u,(t) =0. Therefore, lim,, u,(t)=0. Using Corollary 3.1 we
conclude that (P,) holds (n; + n, is even).

The proof of Theorem 3.1 is complete.

THEOREM 3.2. Let o =1 and let the assumptions (3.1)-(3.3) and (3.8)
hold. Then every proper solution (x,, x,) of system (S) is either oscillatory or
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(P,) holds or

lim u(*)(t) = (sgnu) o, k;=0,1,..,n—1,i=1,2. (P,)

t— o0

holds.

Proor. Let 6 =1 and (x,, x,) be a nonoscillatory solution of (S) in
[to, o0).

A). Assume first that x,e N*, i=1, 2.

(I) Let x;(t)>0, i=1,2, for t >t, (the proof for the case x;(t) <O,
i=1,2, is similar). Then from system (S) in view of (3.1)-(3.2) we obtain
u;(t) >0, u™(t) >0, i=1,2, for t >t, = y(t,).

(i) Let n, be odd and n, be either odd or even. Then by Lemma 3.1
there exists ¢, > t; such that uj(t) >0 for t > ¢,. Using Lemma 3.2 and then
Lemma 3.4 we get lim,, , u%?(t) = o0, k, =0, 1,...,n, — 1. The last relation
with regard to Lemmas 3.2 and 3.4 implies lim,_, u{’(t) = o0, k; =0, 1,...,
n, — 1. Therefore, (P,) holds.

(ii) Let n, be even and n; be either odd or even. By Lemma 3.1 u;(t) >0
or uj(t)<O0 for t >¢t,. If uj(¢) >0, then we proceed as in the case (i) and
conclude that (P,) holds. Therefore, the case u;(t) < 0 for ¢ > t, is impossible.

(IT) Let x,(t) >0, x,(t) <O for t > ¢, (the proof of the case x,(t) <O,
x,() >0 for t >t, is similar). Then from system (S) in view of (3.1)—(3.2)
we get u,(t) >0, uf(t) <0, u,(t) <0, u§?(t) >0 for t >t, = y(t,).

(i) Let n, be even and n, be either odd or even. By Lemma 3.1 there
exists t, >t, such that uj(t) <O for t>t¢,. Using Lemma 3.3 and then
Lemma 3.4 we get lim,_, , u,(t) = — oo, which contradicts u,(t) > 0 for t > t,.

(i) Let n, be even and n, be odd. By Lemma 3.1, u;(t)>0 for
t>t,>t;. Using Lemma 3.2 and then Lemma 3.4 we get lim,_, , u,(t) = oo,
which contradicts u,(t) <0 for t > ¢,.

(iii) Let n;, i=1,2, be odd. Then by Lemma 3.1 either u;(t) >0 or
ui(t)y<0,i=1,2,fort >t,>t,. If uj(t)>0 or u;(t) <0 and lim,_ , u,(t) =
a, > 0 then using Lemma 3.2 and Lemma 3.4 we obtain lim,. , u,(t) = oo,
which contradicts u3(t) <0, t >t,. Therefore, lim,, u,(t)=0. If u5(t) <O
or us(t) >0 and lim,_, , u,(t) = a, < 0, then with regard to Lemmas 3.2 and
3.4 we have lim,_, , u,(t) = — oo, which contradicts u,(t) > 0, ¢t > t,. Therefore,
lim,, , u,(t) =0. Thus, in view of Corollary 3.1 (P,) holds.

B). Assume x;e N~ (a;(t) >0 for t > ¢4, i=1,2)

Let x,(t)>0, x,(t)<0 for t>t, (the cases x,(t) <0, x,(t) >0 and
x,x, >0 are similar). Then (S) together with (3.1)-(3.3) implies u,(¢) <O,
uf(t) <0, uy(t)>0, uf?(t)>0 for t>t, =7y(t,). Therefore, in view of
Lemma 3.3 and Remark 3.2 lim,, u;(t)=0, i=1,2 and n;, i=1,2, are
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even. Then by Corollary 3.1 (P,) holds (n, + n, is even).

C). We suppose that x,eN*, x,e N~ (a,(t) >0 for t >t,). (The case
x,eN~, x,eN"* is treated similarly.) Let x,(t) > 0, x,(t) <O for t > t, (the
proof in the cases x;(t) <0, x,(t) >0 and x,(t)x,(t) > 0 is similar). Then
from system (S) with regards to (3.1)-(3.3) we get u;(t) >0,i=1,2, ul"(t) <0
and u$?(t) >0 for t >t, = y(t,). By virtue of Lemma 3.3 and Remark 3.2
we have lim,_ , u,(t) =0 and n, is even. By Lemma 3.1 there exists t, >t,
such that for n; even uj(t) >0 and for n, odd either u;(t) >0 or uj(t) <O
fort>t,. Ifuj(t)>0oru;(t) <0 and lim,_, u,(¢) = a, > 0, then by Lemmas
3.2 and 3.4 we conclude that lim,_, , u,(t) = co, which contradicts lim,_, , u,(t)
= 0. Therefore, lim,_ u,(t) =0. Then, in view of Corollary 3.1, (P;) holds
(ny + ny is odd).

This completes the proof of Theorem 3.2.

We suppose next that for q;(t) (i = 1, 2) one of the following conditions
hold

a;(t) >0, or a,(t) <0, or
a;(t) <0 and a;_;(t) exchanges sign, i =1, 2, (3.10)
or a;(t)(i =1, 2) exchanges sign.

THEOREM 3.3. Let the assumptions of Theorem 3.1 and (3.10) be
fulfilled. Then every proper solution (x,, x,) of system (S_,) is oscillatory for
n, + n, even and is either oscillatory or satisfies (P,) for n; + n, odd.

THEOREM 3.4. Let the assumptions of Theorem 3.2 and (3.10) be
fulfilled. Then every proper solution (x,, x,) of system (S,) is either oscillatory
or (P,) holds for ny + n, odd, or either (P,) or (P,) holds for n, + n, even.

ProorF oF THEOREMs. If the assumptions of Theorem 3.3 and 3.4 hold
then the case C) cannot occur. Therefore, proper solutions of (S_;)
(respectively (S;)) cannot have property (P;) when n, + n, is even (respectively
n, + n, is odd). This fact together with the proof of Theorems 3.1 and 3.2
yields conclusions of Theorems 3.3 and 3.4.
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