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Abstract. We study oscillatory properties of solutions and existence of nonoscilla-

tory solutions with a power growth at the infinity for the system of differential equations

of neutral type

— Lxt(t) - fli(ί)*/(Mί))] = Pi(t)fi(x3-i(9i(t))), nteNt i = 1, 2.

1. Introduction

In this paper we consider systems of neutral differential equations of the form

^ ίxt(t) - aMxMtm = Pt(t)fι(x3-i(gt(t)))> nteN9 i = 1, 2. (S)

The following conditions are assumed to hold without further mention:

(a) ai9 hh gh pt: U+ -» U, ft: U -> R, i = 1, 2, are continuous functions;

(b) ht(t) < t for teU+, l i m ^ ^ h^t) = oo, l i m ^ ^ gt(t) = oo, i = 1, 2;

(c) zfi(z) > 0 for z Φ 0.

We put

x,(ί) - aMxiihM) = ut(t), i = 1, 2.

For ί0 > 0 denote

ίx = min {inf ^( ί) , inf ^( ί) , i = 1, 2}.
t > to t > to

A vector function X = (xί9x2) is defined to be a solution of system (S) if

there exists a t0 > 0 such that X is continuous on [tί9 oo), M£ is nt times
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continuously differentiable in [ί 0 , oo), i = 1, 2, and X satisfies system (S) on

[ί 0 , oo).

Solution X = (xί9 x2) is called a proper solution if sup {|xi(ί)l + Iχi(t)I>

t > T} > 0 for any Γ > 0.

A proper solution X of (S) is defined to be nonoscillatory if there exists

a ί o > 0 such that every its component is different from zero for all t > t0. A

proper solution X is defined as oscillatory otherwise.

Present paper consists of two parts. In the first part we prove the

existence of nonoscillatory solutions of system (S) with a polynomial growth

at the infinity. An additional assumption is made that

aiif) = b = const, t — hi(t) = τf = const > 0.

A solution X = (x l 5 x2) is said to have a polynomial growth at the infinity

if there exist nonnegative numbers βu β2 such that

x (t) x (t)
lim - ^ - = const φ 0, lim -^- = const φ 0.

Existence of nonoscillatory solutions of scalar equations or systems of

equations of neutral type with certain asymptotic properties, including the

polynomial growth solutions, has been studied in, e.g. [1-5, 7, 8].

The second part deals with the oscillatory behavior of solutions of

(S). Sufficient conditions for the oscillation of all solutions of linear systems

have been obtained by V. N. Shevelo et. al. [8], Gyόri and Ladas [1].

The results of this paper generalize those obtained in a previous paper

by the authors [3].

2. Existence of nonoscillatory solutions

Throughout this section we assume the following additional to (a)-(c)

conditions to hold:

at(t) = λt = const Φ ± 1, ht(t) = t - τi9 τf > 0, i = 1, 2; (2.1)

lim s u p , ^ — < σt < oo, σt > 0, i = 1, 2; (2.2)

\fi(z)\ < δi\z\aί for large \z\ and some positive constants αt , δh i = 1, 2.

(2.3)

2.1. Auxiliary transformations and Lemmas

Let C[T, oo) be the Frechet space of continuous functions in [7^ oo) with
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the topologyof the uniform convergence on compact subintervals.

A. Let |λ| > 1 and let Cλτ[T, 00) stand for a subset of C[T, 00) consisiting

of all functions u(t) such that the series ΣJΓ=I λ~ku(t + kτ) are uniformly

convergent on every compact subinterval of [7^ 00).

Define the operator ΨTtλtt: Cλτ[T, o o ) - > C [ T - τ , 00) as follows:

Ψτ,x.Mt) = Σ λ~ku(* +fcτ)> t>T-τ. (2.4)
k= 1

B. Let \λ\ < 1. Define the operator ΦTtλtt: C{T, 00) -+C[T- τ, 00) as

follows:

" ( ί )~ 1 \λ\n(t)u(T)
= Σ \Mku(t - kτ) + ' ) ' , t>T,

k=o 1 — \ M

= ^γr.> T-τ<t<T, (2.5)

where n(t) stands for the smallest integer such that t — n(t)τ < T.

LEMMA 2.1. If ueCλτ[T, oo) /Ae« x=Ψτλτu satisfies the difference

equation

x(t) - λx(t - τ) = - M(ί), ί > T.

LEMMA 2.2. If'ueC[T, oo) then x = Φτ λτu satisfies the difference equation

x(t) - λx(t -τ) = u(t), t > T.

Proof of Lemmas follows immediately from (2.4) and (2.5) respectively.

LEMMA 2.3 ([4, Lemma 1.3]). Let ueC[T, oo) be positive and nonincreas-

ing. Then for every constant pe(0, 1) there exist positive constants c 1 ? c2 and

c3 depending on λ and τ only and such that

#r.A..κ(ί) < cxu(pt) + c2u(T)λ(1-p)t/τ + c3u(T)λ{t-T)/tau. (2.6)

COROLLARY 2.1. Let u(t) be as in Lemma 2.3 and m be a nonnegative

real number. If

Γ 0 0

tmu(t)dt < oo
JT

then

tmφτ λτu{t)dt < oo.Γ
JT
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Proof of Corollary 2.1 follows from (2.6).

2.2. Solutions with a power growth

T H E O R E M 2 . 1 . L e t the assumptions (2.1)—(2.3) hold and / ^ { O , l,...,Wj - 1 } ,

/ = 1, 2, be given. Suppose there exist continuous nonincreasing functions

qt: [ίo> oo)-> U, i = 1, 2, such that |pf(ί) < ^(ί) /or ί > ί0

Γ < oo, i = 1, 2.

/or arbitrary (bί9 b2) (bιb2 > 0) system (S) ΛβΛ ^ nonoscillatory solution

(xί9 x2) with the property

PROOF. A). Let \λ,\>l, i = 1, 2. Set T* = min {inf,>τ^(ί), T - τ, ,
i = 1, 2}. For Xι(t)eC[T+, oo), i = 1, 2, define the mapping F(Z) = F((xi, x2))
= (F1Z, F 2 X) given by

= c(, Γ# < t < T, i = 1, 2, (2.8)

where c; φ 0, d; > 0, ί = 1, 2.

Assume that the mapping F has a fixed point A"0 = (x?, x2), i.e.

Z° = (x?, x5) = ( F ^ 0 ^ ) , F2X°(ί)) Differentiation of (2.8) shows that

(x?(t))<-> = - Ψτ,λi,τi{Vi{t)fAA-i{9λt))), i = 1, 2,

and therefore, in view of Lemma 2.1, (x?(ί)> x^)) is a solution of system

(S). From (2.8) it follows that l i m ^ xfi](t) = di9 implying lim^,, Xi(t)/tli =

const > 0, i = 1, 2.

Define subsets Wt c C[T#, oo), i = 1, 2, as follows:

2d (t — T)li

, oo): ci<w(t)<ci+
 Λ ' , t > T, and

if

w(t) = ch T^KtKTj-, i= 1,2.

It is easy to see that Wt, i = 1, 2, are convex subsets of CΓ.T,,., oo). We shall
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show next that for arbitrary constants dt > 0, c{ φ 0, i = 1, 2, T can be chosen

in such a way that F maps Wx x W2 into itself. The standard arguments

show that F(W1 x W2) is relatively compact in the topology of C[T^, oo) x

C[T^, oo). Therefore, the Schauder-Tychonoff theorem is applied to derive

the existence of a fixed point of F.

Take xte Wi9 i = 1, 2. Then in view of (2.2), (2.3) we obtain

Σ \λ,\-kqt(t + k

oo oo

^ Qi(t) Σ l^iΓ*/i(^3-itei(ί + ^τi))) ^ ^iίi(0 Σ \λi\~kβiih~i(t + feτf)
fc= 1 fc = ^[

00

where

00

yf = δiσfih~i Σ |αj |" k (l + fc)^'3"*, i = 1, 2.

In view of (2.7) for every d[ > 0, i = 1, 2, there exists a T > 0 such that

._sr-u-i

J r ( ' i - >•)• Js \ni — h — 1)'

r ( ί , - l ) ! Jr (nt-h-iy.

'Λ"I<"1+β<l3"l«iWdr < dί(ί - T)'S ί > 7; i = 1, 2.

It follows that FtXi a Wt(i = 1, 2) provided x f e Wf(i = 1, 2). This shows that

f(Wί x ^ 2 ) c W ί x ^ 1 Therefore, F has a fixed point.

B). Case \λt\ < 1, i = 1, 2. Let 7^ be defined as above and x^C^T^, oo),

i = 1, 2. Define the mapping F{X) = F((xl9 x2)) = {F^X, F2X) as follows:

t > T,

( 2 9 )

F Y(t\ — r T < t < T i — 1 9

where cf ^ 0, dt > 0, / = 1, 2. If the mapping i7 has a fixed point (x?,
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then differentiation of (2.9) shows that

and Lemma 2.1 shows that (x?(ί), X2W) is a solution of (S). From equation

(2.9) it follows that l i m , ^ Xi(t)/tli = const > 0, ί = 1, 2.

Let subsets Wi be given as above. Take xte Wi9 ί = 1, 2. Then in view

of (2.2), (2.3), (2.7) and Corrolary 2.1 we obtain

f
J s

(r_s)»<-ι<-i

•f
J s

*Γ.Al.τ((«l(r) l^'-ίteί
(rit-li- 1)!

< 7i Γ r* <-ι<-χ+<"h->Φτ^τi(gi(r))dr < oo, i = 1, 2.
Jr

The last inequality shows that for arbitrary d > 0, i = 1, 2, there exists a
T> 0 such that for all s > T

: d'i9 ί = 1, 2.
s (rii - lt - 1 ) !

As for the case A) this implies F(WX x W2) a Wλ x W2 provided x^eWi and

T > 0 is sufficiently large. As before, F is continuous and F(Wγ x W2) is

relatively compact in the topology C[T^, oo) x C\T^, oo). Therefore, F has

a fixed point, which gives a nonoscillatory solution of (S). This completes

the proof of the theorem.

3. Oscillation criteria

In addition to the assumptions (a)-(c) we suppose

|fl,(ί)| < λt < 1, aMa^iή) > 0, ί = 1, 2; (3.1)

Pi(ί) = Pi(0> Pi(t) = σp2(t), p2(t)>09 t > 0, σ e { - l , + 1 } ; (3.2)

For every d > 0 there exist £f > 0, / = 1, 2,

such that inf {|/i(z)|: |z | > d} > <5£, i = 1, 2. (3.3)

REMARK 3.1. System (S) whose coefficients ph i= 1, 2, satisfy (3.2) will

be denoted (Sσ).

In the sequel the following Lemma (called Kiguradze's Lemma) will be used.
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LEMMA 3.1 ([6]). Let zeCm[t0, oo) be such that z(t) φ 0, vz(t) zm(t) > 0

for t > t 0 , ve{ — 1, + 1}. Then there exists an integer /e{0, l,...,m}

v ( - l)ι + m = 1 <z«ί/ To > t0 such that for t > To one has

z(t)zw(t)>0 for Jk = O, 1,...,/,

( - l)ι+kz(t)z(k\t) > 0 /or fe = / + l , . . . ,m.

COROLLARY 3.1. 7/" w«der assumptions of Lemma 3.1 l i m ^ ^ z(ί) = 0 then

z(k)(t) (k = 0, l , . . . ,m) tem/ monotonically to zero as t -> oo.

Denote

= sup {s: Λ,(s) < ί, flf£(ί) < ί, i = 1, 2, t > 0}.

Let (xi,x 2 ) be a nonoscillatory solution of system (Sσ). Let (3.1)—(3.3) and

(1.1) hold. Then in view of Lemma 3.1 from (Sσ) we get for all sufficiently

large t either

xi(t)ui(t)>09 ie{ l ,2} , (3.4)

or

x f ( ίK ( ί ) < 0 , ίe{ l ,2} . (3.5)

Denote by N+ (respectively N~) the set of components of all nonoscillatory

solutions (x l 9 x2) °f system (Sσ) such that (3.4) (respectively (3.5)) is satisfied.

LEMMA 3.2. Let xteN + , ίe{l, 2}, α/irf (1.1), (3.1)

(a) If Xiiήu'iit) > 0 for t > ί0, ί/ẑ « //zere exw/ constants bt and To > t0

such that xtbi > 0 and

|x,(ί)| > IMOKl - ^) > \bt\(ί - λd > 0, ί = 1, 2, ί > To. (3.6)

(b) L^ί xt(i)M-(i) < 0 and \Ui(t)\ > δ > 0 for t >t0. Then there exist ε > 0

and 7\ > t0 such that

xi(t)>ε1\ui(t)\>ε1δ==ε>0 for t>Tί9 ί = 1, 2. (3.7)

PROOF, (a) Without loss of generality we assume that xL(ί) > 0, u^t) > 0

and uj(ί) > 0 for t > t0. The last two inequalities imply that there exist b1

and ίx > ί0 such that ux > bx for t > tx. Then (1.1) together with (3.1) gives

AJ > fci(l - Ax) > 0 for t

(b) Let x 1 ( ί ) > 0 , u[(t)<0 and w 1 ( ί ) > ^ > 0 for t > to. Choose δx:

1 < (5i < l/λί. Then there exists ί2 > ίx such that 0 < δ < wx(ί) < M M O ) ^

^(5^ The last inequality, in view of (1.1) and(3.1), implies xx(t) >

A A ) > (5(1 - A ^ J = ε > 0 for t > γ(γ(t2)) =
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LEMMA 3.3. Let xteN~, i = 1, 2, and (1.1), (3.1) hold. Then l i m , ^ wt (ί)

= 0, l i m ^ . ^ x ^ O ^ O , i = l,2.

PROOF. Without loss of generality we assume that x 1 ( ί ) > 0 , M 1 ( ί)<0

for t>t0. Then (1.1) in view of (3.1) implies 0 < xx(t) < α1(ί)x1(/i1(ί)) <

XiίMO) for t > t0. Function x^f) is nonincreasing and therefore, l i m ^ ^ x^t)

= c > 0. Then with regard to 0 < x^t) < λ1x1(h1{t)) we have c < λ1c, a

contradiction to 0 < λ1 < 1. Therefore c = 0. Then (1.1) together with (3.1)

implies l i m ^ ^ u2(t) — 0.

REMARK 3.4. The case Xj eiV" can occur only if a^t) > 0 and v(— I)"1 = 1,

i = 1, 2.

LEMMA 3.4. Let ah pt and fi9 ί = 1, 2, satisfy the assumptions (3.1)—(3.3)

and let

w£(ί) = z(t) - aMziUt)), i = 1, 2,

where z(t) is a solution of the equation

™{m\t) = Pt(t)fMgi(t))), i = I 2, t > t0, (E)

where meN, v e { - 1, + 1}. If z(t) >d>0 (z(t) <d < 0) for t > t0 and

ί Pi(ήdt = oo, i = 1, 2, (3.8)
ίo

then

lim wf\t) = voo (lim wίfc)(ί) = - voo), k = 0, l , . . . ,m - 1, i = 1, 2. (3.9)
ί—• oo f - > oo

PROOF. Assume z(t) > d > 0. Then with regard to (3.3) there exist δ > 0

and Tj > ί0 such that / - ( ^ ( ί ) ) ) > 5 for ί > T l 9 i = 1, 2. Integrating equation

(E) from Tx to t and using the last inequality we obtain

•ϊ
JT

i = i, 2.

This last inequality together with (3.8) implies (3.9).

THEOREM 3.1. Let σ = - 1 am/ let the assumptions (3.1)—(3.3) and (3.8)

hold. Then every proper solution (x l 5 x2) o/ (S_x) is either oscillaltory or w^f)(ί)

(ki = 0, 1,...,^-, Ϊ = 1, 2) te«ί/ monotonίcally to zero as ί-^ oo.

PROOF. Let σ = — 1 and let (x l s x2) be a nonoscillatory solution of

defined in [ί 0, oo).
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A). Assume first that XIEN + and xt(t) > 0 for t > ί0, i = 1, 2. (The

proofs for cases xt(t) < 0, t > t 0 , i = 1, 2, and Xi(ί)^2(0 < 0 are similar.) Then

in view of (3.1)—(3.3) we obtain from system (S): u^t) > 0, i = 1, 2, wf^ί) > 0,

W

(

2" 2 )(ί)<0 for ί > ί i : = 7 ( ί 0 ) .

(i) Let «! be odd and n2 be either odd or even. Then by Lemma 3.1

there exists t2 > t1 such that u[ > 0 for t > t2. With regard to Lemma 3.2

there exist a1 > 0 and ί3 > t 2 such that xx(ί) > αx for ί > t 3 . Using Lemma

3.4 we obtain lim,^^ w2(ί) = — oo, which contradicts M2(r) > 0 for t > ί2.

(ii) Let wf , Ϊ = 1, 2, be even. By Lemma 3.1 there exists ί2 > t0 such

that w2 > 0 for t>t2. Using Lemma 3.2 and Lemma 3.4 we get

lim^oo u2(t) = oo. Then, in view of Lemma 3.1, u[ > 0 for large ί. Then we

can proceed the same way as for the case (i) to get a contradiction.

(iii) Let nί be even and n2 be odd. Then by Lemma 3.1 either u (t) > 0

or u't(t) < 0 for t > t2. If u[(t) > 0 we have the case (i), and if u'2(t) > 0 we

have the case (ii), which lead to the same contradictions.

Let u[(t) < 0, i = 1, 2, for t >t2. Then since Mf(ί) > 0, i = 1, 2, for ί > t0

there exist l i m ^ ^ Mf(ί) = αf, i = 1, 2. Assume α̂  > 0. Then by Lemma 3.2

and Lemma 3.4 we get l i m ^ ^ wx(ί) = oo, l i m ^ ^ u2(t) = — oo, which con-

tradicts the fact that t/((ί), ί = 1, 2, are bounded. Therefore a{ = 0, ί = 1, 2

and in view of Corollary 3.1 ( P J holds (n + m is odd for this case).

B). Let Xi{t)sN~, i = l , 2 (αt (ί) > 0, i = 1, 2, for t > ίo) Assume

Xj (ί) < 0 for ί > ί0, i = 1, 2 (the proofs for the cases xf < 0, ΐ = 1, 2, and

x 1 ( ί ) x 2 ( ί ) < 0 for large ί are similar). From system (S) with regard to

(3.1)-(3.2) we obtain ut(t) < 0, i = 1, 2, u{^\t) > 0, u2

n2\t) < 0 for t > tx := y(t0).

Therefore, in view of Remark 3.2 and Lemma 3.3, nι is odd, n2 is even and

l i m ^ ^ Ui(t) = 0, ί = 1, 2. Then by Corollary 3.1 (Px) holds (nx + n2 is odd).

C). Let xxeN +, x2eN~(a2(t) > 0 for t > ί0). Assume x^t) > 0, i = 1, 2,

for £ > ί0. (The proofs in the cases xt (ί) < 0, i = 1, 2, and Xi(£)x2(0 > 0 a r e

analogous.)

From system (S) with regard to (3.1)—(3.3) we obtain u^t) > 0, u{"ι)(t) > 0,

w2(ί) < 0, u(22)(t) < 0 for t > tx = γ(t0). Using Lemma 3.3 and Remark 3.1 we

get l i m ^ ^ u2(t) = 0, where n2 is even. By virtue of Lemma 3.1 there exists

t2>tx such that for nx odd u2(t) > 0 and for rcx even either uf

2(t) > 0 or

u2(t) < 0 for t > t2. If u2(t) > 0 or w2(ί) < 0 and l i m ^ ^ wx(ί) = ax > 0 then

by Lemmas 3.2 and 3.4 we get l i m ^ ^ u2(t) = — oo which is a contradiction

to limt^ODu2(t) = 0. Therefore, l i m ^ ^ uΐ(t) = 0. Using Corollary 3.1 we

conclude that (Px) holds (n1 + n2 is even).

The proof of Theorem 3.1 is complete.

THEOREM 3.2. Let σ = 1 and let the assumptions (3.1)—(3.3) and (3.8)

hold. Then every proper solution (x l 5 x2) °f system (S) is either oscillatory or
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(PJ holds or

lim u\ki)(t) = (sgn ut) oo, fcf = 0, 1,...,^- - 1, ί = 1, 2. (P 2 )
f-* 00

PROOF. Let σ = l and ( x l 5 x 2 ) be a nonoscillatory solution of (S) in

[ί 0 , oo).

A). Assume first that x>e JV + , ί = 1, 2.

(I) Let Xi(t) > 0, i = 1, 2, for ί > ί0 (the proof for the case xt(t) < 0,

i = 1, 2, is similar). Then from system (S) in view of (3.1)—(3.2) we obtain

ut(t) > 0, tι<»'>(t) > 0, ί = 1, 2, for ί > ίx = γ(t0).

(i) Let rtx be odd and n2 be either odd or even. Then by Lemma 3.1

there exists t2 > t1 such that u[(t) > 0 for t > t2. Using Lemma 3.2 and then

Lemma 3.4 we get l im^^ u2

k2)(t) = oo, k2 = 0, l,...,w2 — 1. The last relation

with regard to Lemmas 3.2 and 3.4 implies l im^^ u(kl)(t) = oo, k1 = 0 , 1,...,

«! - 1. Therefore, (P2) holds.

(ii) Let n2 be even and n1 be either odd or even. By Lemma 3.1 u[(t) > 0

or u[(t) < 0 for t > ίx. If wi(ί) > 0, then we proceed as in the case (i) and

conclude that (P2) holds. Therefore, the case u[(t) < 0 for t > t0 is impossible.

(II) Let x1(t)> 0, x2(t) < 0 for t > t0 (the proof of the case xx(ί) < 0,

x2(t) > 0 for t > t0 is similar). Then from system (5) in view of (3.1)—(3.2)

we get Mi(ί) > 0, u{^\t) < 0, u2(t) < 0, u2

n2\t) > 0 for t > ί t = y(ί0).

(i) Let n2 be even and nί be either odd or even. By Lemma 3.1 there

exists t2>t1 such that u'2(t) < 0 for t>t2. Using Lemma 3.3 and then

Lemma 3.4 we get l i m ^ ^ u1(t) = — oo, which contradicts wx(ί) > 0 for ί > ί0.

(ii) Let nx be even and n2 be odd. By Lemma 3.1, u[(t)>0 for

t > t2>t1. Using Lemma 3.2 and then Lemma 3.4 we get l i m ^ ^ u2(t) = oo,

which contradicts u2(t) < 0 for t > t0.

(iii) Let ni9 i = 1, 2, be odd. Then by Lemma 3.1 either u[(t) > 0 or

u[(t) < 0, i = 1, 2, for t>t2>t1. If wi(ί) > 0 or u[{t) < 0 and l i m ^ ^ u1(t) =

a1>0 then using Lemma 3.2 and Lemma 3.4 we obtain l i m ^ ^ u2(t) = oo,

which contradicts u'2(t) < 0, t > t2. Therefore, l i m ^ ^ u2(i) = 0. If u'2{t) < 0

or u2(t) > 0 and l i m ^ ^ u2(t) = a2 < 0, then with regard to Lemmas 3.2 and

3.4 we have l i m ^ ^ wx(ί) = — oo, which contradicts u1(t) > 0, t > ί1# Therefore,

l i m ^ ^ w2(ί) = 0. Thus, in view of Corollary 3.1 (Px) holds.

B). Assume xteN~ (αt (ί) > 0 for t > tθ9 i = 1, 2.)

Let x 1 ( ί ) > 0 , x2(ί) < 0 for t > to (the cases x^ί) < 0, x2(ί) > 0 and

X ! X 2 > 0 are similar). Then (S) together with (3.1)—(3.3) implies ux(t) < 0,

u{ζι)(t) < 0, u2(t) > 0, u2

n2\t) > 0 for t>t1 = y(t0). T h e r e f o r e , in view of

Lemma 3.3 and Remark 3.2 l i m ^ ^ wf(ί) = 0, ί = 1, 2 and nh ί = 1, 2, are
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even. Then by Corollary 3.1 ( P J holds (n1 + n2 is even).

C). We suppose that x1eN + , X2EN~ (a2{t) > 0 for t > t0). (The case

x1eN~, x2eN+ is treated similarly.) Let xx(ί) > 0, x2(t) < 0 for t > t0 (the

proof in the cases x1{t)<0, x2(t) > 0 and x1(t)x2(t)> 0 is similar). Then

from system (S) with regards to (3.1)—(3.3) we get ut(t) > 0, i = 1, 2, u(ί f )(ί) < 0

and w(

2"
2)(ί) >0 ϊor t>tί= γ(t0). By virtue of Lemma 3.3 and Remark 3.2

we have l i m ^ ^ u2(t) = 0 and n2 is even. By Lemma 3.1 there exists t2 > t1

such that for nί even u[(t) > 0 and for n1 odd either u[(t) > 0 or t^(ί) < 0

for ί > t2. If wj(ί) > 0 or u[(t) < 0 and l i m ^ ^ uλ{t) = aγ > 0, then by Lemmas

3.2 and 3.4 we conclude that l i m ^ ^ u2(t) = oo, which contradicts l i m ^ ^ u2(t)

= 0. Therefore, l i m ^ ^ u^t) = 0. Then, in view of Corollary 3.1, (Px) holds

(nι + n2 is odd).

This completes the proof of Theorem 3.2.

We suppose next that for at(t) (i = 1, 2) one of the following conditions

hold

fli(i) > 0, or fl,.(i) < 0, or

αf(ί) < 0 and a3_i(i) exchanges sign, i = 1, 2, (3.10)

or ai(t)(i = 1, 2) exchanges sign.

THEOREM 3.3. Lei the assumptions of Theorem 3.1 and (3.10) fee

fulfilled. Then every proper solution (x1 ? x2) °f system (S_x) w oscillatory for

nx + n2 ^ ^ Λ and is either oscillatory or satisfies (Px) for nx + n2 odd.

THEOREM 3.4. Let the assumptions of Theorem 3.2 and (3.10) be

fulfilled. Then every proper solution (xί9 x2) of system (Sx) is either oscillatory

or (P2) holds for n1 + n2 odd, or either ( P J or (P2) holds for n1 + n2 even.

PROOF OF THEOREMS. If the assumptions of Theorem 3.3 and 3.4 hold

then the case C) cannot occur. Therefore, proper solutions of (S_x)

(respectively (SJ) cannot have property (Px) when nx + n2 is even (respectively

ni + n2 is odd). This fact together with the proof of Theorems 3.1 and 3.2

yields conclusions of Theorems 3.3 and 3.4.
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