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1. Introduction and preliminaries

In the past decade there has been much work on the oscillation of neutral
differential equations. Necessary and sufficient conditions via the characteristic
equations have been obtained for those with constant coefficients, and various
explicit sufficient conditions have been obtained, see [2-6, 8, 9]. For neutral
differential systems of first order, O. Arino and I. Gyόri also gave a necessary
and sufficient condition via the characteristic equation, see [1]. Since this
condition is not easy to verify, some explicit conditions are needed. But to
the best of the authors' knowledge there are very few results so far; here we
mention only the results by I. Gyόri and G. Ladas [7] for a very special
system and a weaker definition of oscillation. In this paper we will give some
explicit conditions for oscillation of neutral systems under a stronger
definition. We will show that even for the scalar case our results for explicit
conditions are still the best up to now.

Consider the neutral delay differential system in the form

I * [y(t) - Py(t - r)] + £ Qjy(t - τj) = 0 (1.1)
at j=i

where P, Qj (j = l,...,m) are given n x n matrices, r, τ7- (j = l,...,m) are
nonnegative numbers, v = max {r, τ l 5 . . . ,τ m } and N is a positive integer.

DEFINITION 1.1. By a solution of (1.1) on [— v, oo) we mean a function
yeC(\_— v, oo), R") such that y(t) — Py(t — r) is iV-times continuously differen-
t i a t e and satisfies (1.1) on [0, oo).

DEFINITION 1.2. A solution j ; = (yl9...,y,y: [— v, oo) ->R" of (1.1) is

called nonoscillatory if there exists a t0 > 0 and ioe{l,...,n} such that
\yio(t)\ > 0, t > t0. A solution y of (1.1) is called oscillatory if it is not
nonoscillatory. Eq. (1.1) is called oscillatory if all of its solutions are
oscillatory.

Note that the definition of oscillation here is much stronger than that in
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[7] in the sense that oscillation according to our definition implies oscillation

as in [7]. We will see later that even under the latter definition our results

are still much better.

Our results are based on the following lemma which is an extension of

Theorem 2.1 in [1].

LEMMA 1.1. Eq. (1.1) is oscillatory if and only if its characteristic equation

det [λN(I - Pe~λr) + £ Qjβ'λτq = 0 (1.2)

has no real root.

For the criteria of oscillation we need the following notations and

definitions.

For any n x n real matrix A we denote by λt(A) (i = l,...,n) the

eigenvalues of A satisfying

Re λx(A) ^ R e λi(A) > •• > Re λn(A).

\\Ax\\
We define \\A\\t = sup -, ί = 1, 2,..., oo, where x = (xu...,xn), | |x | | £ =

( Σ lχjl i)1 / i» * < °° a n c * IÎ ÎIoo == m<*x {\Xj\}> F o r each ί = 1, 2,..., oo, the

Lozenski measure μ^A) of A is defined as follows:

and vt(A) = — μά—A), i = 1, 2,..., oo. In general, without specification, we

denote by μ(A) and v(A) any pair of μ^A) and vt(A)9 i = 1, 2,..., oo. It has

been shown that μ^A) and v^A), i — 1, 2,..., oo, exist for any nxn matrix A

and can be explicitly calculated for i = 1, 2, and i = oo :

Λ n

μt(A) = sup {ajj + £ | α y | } , vx(A) = inf {α;j - ^ |αo-|};

-(>4 -f ^ Γ ) ) , v2(^) = AB( -(A -

2 7 V2
n

μ o o μ ) = sup{α / i + X |α l 7 | } , v ^ μ ) = inf {au - £ | α y | } .

For any nxn matrices A and B and any Lozenski measures we have

i) μ(A + B)< μ(A) + μ(B)9 v(A + B) > v(A) + v(B)
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ii) v(-A)=-μ(A), μ(-Λ) = v(A);

iii) μ(ocA) = ocμ(A), v(ocA) = ocv(A), a > 0;

iv) μ(A) > Re λM), vμ) < Re λH(A)> (1-3)

For more details concerning Lozenski measures, see [10]. In the sequel,

we will obtain some criteria for oscillation by using Lozenski measures. Since

the criteria are given by the general form of Lozenski measures μ and v, we

will actually have infinitely many different results corresponding to each

criterion in the theorems. Moreover, three of them, which are given by μt

and vi9 ΐ = 1, 2, oo, can be expressed explicitly. But for the scalar case, where

μ(A) = v(A) = A9 all of them coincide to give the same results.

2. Main results

To simplify the discussion and proofs we first consider a simpler equation

^ [y(t) - Py(t - r)] + Qy(t - τ) = 0 (2.1)

where P, Q are n x n matrices, r, τ > 0. The following conditions will be used

to determine the oscillation of eq. (2.1):

00

(A!) Σ
fc = 0

(A2) Σ*

(A3) Σ*
k

where £ * and £ * denote the sums over all the terms for k > 0 such that
k k

(k + l)r - τ > 0 and - (/c H- l)r + τ > 0, respectively.

THEOREM 2.1. Assume N is odd and v(Q) > 0. Then each of the following

is sufficient for (2.1) to be oscillatory.

i) μ(P) = v(P) = 1,

ii) 0 < v(P) < μ(P) < 1, and (AJ holds,

iii) 1 < v(P) < μ(P), and (A2) holds,

iv) 0 < v(P) < 1 < μ(P), oΛrf (4i),
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THEOREM 2.2. Assume N is even and v(Q) > 0. Then each of the following

is sufficient for (2.1) to be oscillatory.

i) 0 < μ(P) < 1, and (A3) holds,

ii) μ(P) > 1, and (Λ2), (Λ3) hold

REMARK 2.1. The condition (A3) in Theorem 2.2 is required in the sense

that if the set {/ceZ+ : - (k + \)r + τ > 0} is empty and v(P) > 0, then eq.

(2.1) must have a nonoscillatory solution. In fact, the above assumption

implies that r > τ. If (2.1) is oscillatory, then (3.1) has no real root. Let

Then

μ(F(0)) = μ(Q) > v(β) > 0

implies that μ(F(λ)) > 0 for all λeR. But

μ(F(λ)) < λN(l - v(P)e~λr) + μ(Q)e~λr • - oo

as λ -> — oo. This contradiction shows that all solutions cannot be oscillatory.

The above oscillation criteria for eq. (2.1) can be easily extended to the
m 1 m

eq. (1.1) by using the following conditions where q = ( Y[ v(<2y))1/m, τ = — £ τjt

(BJ Σ Σ MP)fv(Qj)(kr + τ / > f-Y, or (2.2)
mq f ίv(Pmkr + τ)N>(-), (2.3)

jt = o \ e J

(B2) Σ*[i"(P)]" ( k + 1 ) v(β,)C( f c + ! ) ' ~ τ ^ ^ f - Y ' OΓ

e

(B3) Σ JMi>)Γ ( k + 1 )v(e;)[- (fc + l)r + τj]N > ( - Y , or

Y
e J

where Σ * ' Σ * a r e defined the same as before; Σ*> Σ * denote the sums over
k k j,k j,k

all the terms for 1 <j < m, k > 0 such that (k + \)r — τ5 > 0 and — (fc + l)r +
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Xj > 0, respectively.

THEOREM 2.3. Assume N is odd and v(Q7) > 0 but not all zero,

j=l,...,m. Then each one of the following is sufficient for (1.1) to be

oscillatory:

i) μ(P) = v(P) = 1,

ii) 0 < v(P) < μ(P) < 1, and (BJ holds,

iii) 1 < v(P) < μ(P), and (B2) holds,

iv) 0 < v(P) < 1 < μ(P), and {BJ, (B2) hold.

THEOREM 2.4. Assume N is even and v(Q,) > 0 but not all zero,

j=l,...,m. Then each one of the following is sufficient for (1.1) to be

oscillatory:

i) 0 < μ(P) < 1, and (B3) holds,

ii) μ(P) > 1, and (B2), (B3) hold

The idea in the proofs of the above theorems may also be applied to the

case that v(Qj) are not all nonnegative. As an example we give a result for

the equations of the form

^ [y{t) - Py(t - r)] + Σ [ G ^ ( ί " *,) ~ Hjy(t - τ,)] = 0 (2.4)
at j=i

where P, Gj9 H} are w x n matrices, v(P) > 0, v(G;) > 0, ^(i/j) > 0, v{Gj) - μ(Hj)

> 0 and not all zero for j = l,...,m, r, σj9 τ ; (/ = l,...,m) > 0.

THEOREM 2.5. Assume N is odd. Then each one of the following is

sufficient for (2.4) to be oscillatory.

i) v(P) > 1, σ, < τ, < r, <z«ί/ (52) holds for the case where v(Qj) are replaced

by v(Gj) — μ(Hj), j = l,...,m. Furthermore,

/N\N

- - + aNv(P) + X [vίG^β-*^ 1 1"^ - μ(H/)έΓ I ' ' ( Γ-τ ' )] > 0 (2.5)

. m i n

ii) v(P) > 0, μ(P) < 1, σj > τy > 0, and (BO /IOWS for the case where v{Q)

are replaced by v(G-) - μ(/ί,), j = l,...,m. Furthermore, v{P~ιGj) > 0,

μ(p-1Hj)>0,j= l,...,
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where

a* = min

3. Proofs of the main results

The following lemma will be needed in the proofs of the results.

LEMMA 3.1. Let A be an n x n real matrix. If either v(Λ) > 0 or

μ(A) < 0, then det (A) Φ 0.

PROOF. From (1.3), if v(A) > 0, then Re λn(A) > 0. Hence Re λ^A) > 0

for i = 1, 2,...,rc. Thus

The case that μ(A) < 0 is similar. •

PROOF OF THEOREM 2.1. The characteristic equation of (2.1) is

det (λN(I - Pe'λr) + β£ΓΛτ) = 0. (3.1)

i) Assume μ(P) = v(P) = 1. Let

F(λ) = λN(I - Pe~λr) + Qe~λr.

Then v(F(0)) = v(β) > 0, and

v(F(λ)) > v(λN(I - Pe" Λ r )) + v(Q)e~λr.

For A > 0

AN(1 - μ(P)e~λr) + v(ρ)^ ' Λ τ (3.2)

For A < 0

v(F(A)) > |A| N v(- / + Pe~λr) + v(ρ)e" λ τ

> |A | N (- 1 + v(P)^-λ r) + v(Q)e~λτ > 0.

Thus v(F(A)) > 0 for all AeR. By Lemma 3.1, det F(λ) ΦO for AeR,

i.e., (3.1) has no real root.
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ii) Assume 0 < v(P) < μ(P) < 1. Clearly λ = 0 is not a root of (3.1). For

λ > 0, by (3.2)

v{F(λ)) > λN(l - μ(P)e~λr) + v(Q)e~λτ > 0.

Hence det (F(λ)) φ 0 for λ > 0 by Lemma 3.1. Let λ = — s and denote

G(s) = - sN(I - Pesr) + Qesτ. (3.3)

Then /I < 0 is a root of (3.1) if and only if s > 0 is a root of det {G{s)) = 0.

By Lemma 3.1, if det (G(s)) = 0 has a root s > 0, then v(G(s)) < 0. Since

N is odd,

0 > v(G{s)) > sN(- 1 +

which implies that 0 < v(P)esr < 1. As a result

sN > v(Q)esτ(l -v(P)esry1

= Σ [v(P)] fev(β)es(kr + t ) (3.4)

fe=o

The equality can not hold since es{kr+τ) attains its minimal value at

different point s for different k. Thus

ίN\N

Σ MP)Tv(Q)(kr + τf < - ,
k=o \ β /

contradicting (Ax). Therefore (3.1) has no real root.

ίii) Assume 1 < v(P) < μ(P). Similar to i) we see that λ < 0 is not a root

of (3.1). Assume λ > 0 is a root of (3.1). By Lemma 3.1 we have

0 > v(F(λ)) > λN(l - μ(P)e~λr) + \(Q)e~λτ (3.5)

which implies that μ(P)e~λr > 1. So

= Σ
k = 0

>

kΓ
that is,
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contradicting (A2).

iv) Clearly, λ = 0 is not a root of (3.1). From the proof of ii) and iii) we

see that (AJ and (A2) imply that any λ > 0 and λ < 0 can not be a

root of (3.1). •

PROOF OF THEOREM 2.2.

i) Assume μ(P) < 1. Similar to the proof of Theorem 2.1 ii), we see that

any λ > 0 is not a root of (3.1). Assume λ = — s < 0 i s a root of (3.1).

Then by Lemma 3.1 and from (3.1)

v(F(- s)) = v(sN(l - Pesr) + Qesτ) < 0.

Since N is even,

0 > v(F(- s)) > sN(l - μ{P)esr) + v(Q)esτ

which implies that μ(P)esr > 1. As a result

= Σ

that is,

ii) Assume μ(P) > 1. If λ is a real root of (3.1), then λ φ 0 and 2N > 0. By

the proof of i), (A3) implies that λ < 0 cannot be a root of (3.1). By the

proof of Theorem 2.1 iii), (A2) implies that λ > 0 cannot be a root of

(3.1). D

PROOF OF THEOREM 2.3 AND 2.4. Similar to those of Theorem 2.1 and

2.2. To show the difference we only give an outline of the proof of Theorem

2.3 ii) as an example.

Corresponding to (3.4) we now have

sN > Σ Σ ίv(P)fHQj)esikr + τj) (3.6)
j = l f c = 0
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that is,

>Σ Σ
j = i k = 0

/ N\N

Σ Σ [v(P)]fcv(β,)[/cr + τ , r < - ,

contradicting (2.2). From (3.6) we also have

sN>(Σ HQj)esτj)(Σ
k=0

> m( Π v(Q)esτj)1/m( Σ [y(P)]keskr)
j=ί k=0

= mqY Lv(P)fes{kr+τ)

k = 0

k = 0 "L—ϊϊ—J
that is,

mq Σ MP)T(kr + τf < - ,
e J

contradicting (2.3). Π

PROOF OF THEOREM 2.5. The characteristic equation of eq. (2.4) is

det (λN(I -Pe~λr)+ Σ (G, e~Aσj - Hje'^)) = 0. (3.7)

Let

F(λ) = λN(I -Pe~λr)+ Σ (Gje-λσJ - Hje~λτή.

Then λ = 0 is not a root of (3.7) since the assumption before Theorem 2.5
implies that

v(F(0)) = v( Σ (Gj - Hj)) > Σ (ΠGj) - μ(Hj)) > 0.

Hence det F(0) φ 0.

i) Assume v(P) > 1 and σ, < τ7- < r. If λ > 0 is a root of (3.7), then by
Lemma 3.1
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m

0 > v(F(λ)) > λN(l - μ(P)e~λr) + £ (v(G^

> λN(l - μ(P)e~λr) + Σ MGj)
This is a similar inequality to (3.5) for eq. (2.1). By a similar discussion

we can get a contradiction to (B2) where v(Qj) are replaced by v(G7 )

— μ(Hj)J = 1,..., m. If A < 0 is a root of (3.7), let λ = — s9 and denote

φ(s) = - sN(Ie~sr - P) + £ ( G ^ - s ( | - ^ - H έΓ'fr-^), (3.8)

φ)= -^(/e-^-P)

^.(5) = Gje-*-°* - Hje-*-**, j = l , . . . ,m.

Then det(0(s)) = 0, and since iV is odd,

v(α(s)) > 5 N (- ̂ " s r + v(P)) > 0,

We have ίj(s) > 0 if and only if

Set α = min {α7}. We have v(φ(s)) > 0 for 0 < s < a. Consider the

case that s > a. Then

/N\N

v ( α ( s ) ) > - - +aNv(P),
\erj

and since

/j(s) = - v(Gj)(r - σj)e-s{r-^ + μ(Hj)(r - x$e'«-**

we see the minimum of £^ are attained at

_ l _ l n v ( G f c ^ ) =

J τj-σj μ(Hj)(r-x})
 J'

and thus

v(βj(s)) > Sj(s) > ίj(Sj) = v(Gj)e-b*-"> - μ(Hj)e-b^-τ'\ j = l, . . . ,m.

Therefore by (3.8) and (2.5)
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v(φ(s)) > v(α(s)) + X v(βj(s))

(N\N m

> - - + aNv(P) + £ lv(Gj)e-b^-σ^ - μ{Hj)e-bj(r-τj)'] > 0
\ e r / j=i

contradicting that det (</>(s)) = 0.

ii) By Lemma 3.1, v(P) > 0 implies that P " 1 exists. Then (3.7) is equivalent
to

d e t ( - λN(I - P " V ) + Σ [p-1Gje
λ{r"^) - p-ίHje

λir-χJ)']) = 0.

With Λ, =• — s, we have

det (s"(/ - P - 1 ^ 5 ' ) + JΓ [ p - ^ ^ - ^ - ^ - P " 1 / / ^ - ^ - ^ ] ) = 0. (3.9)

Then we have a duality between (3.7) and (3.9) as follows:

(P, GJ9 Hj, σp τj) ̂  {P'\ P^Gj9 P " 1 ^ , r - σj9 r - τj).

Using this duality and part i) we obtain the desired result. •

4. Discussion for special cases

Here we mention the work by Gyδri and Ladas in [7] where eq. (1.1)
is considered for the case that N = 1, P is a diagonal matrix with diagonal
entries p1 ,...,/?„ such that 0 < pt < 1, i = 1,...,«. vί (Qj) > 0 where vx (β^ )
denotes the Lozenski measure defined in Section 1. Some comparison results
with delay equations are obtained. An explicit condition for oscillation
(actually componentwise oscillation) is given there:

If P = pi for pe[0, 1] (hence vx(P) = p), and

Σ Σ [
y = i Λ = o e

then eq. (1.1) is (componentwise) oscillatory.
Obviously this result is included in Theorem 2.3 ii), and the equality in

(BJ is not valid there.
A special case for eq. (1.1) is that P and QjJ= l,...,m, are symmetric

matrices. Since for any symmetric matrix A, μ2{A) = λx(Λ), v2(A) = λn(A) and
μ(A) > /Ii(v4), v(i4) < λn(A) for any Lozenski measures, then if we use μ2 and
v2 in the previous theorems, they will give the best results among those using
all the Lozenski measures.
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Another special case for eq. (1.1) is the scalar case, i.e., P and Qp

j= l,...,ra are constants, hence

μ(P) = v(P) = P, μ(Qj) = v(Qj) = Qp j = 1,..., m.

Therefore, if we substitute P and Q} into μ{P) or v(P), μ(Qj) or v ( ( y , ; = l,...,m,

respectively, the previous theorems will give criteria for oscillations of scalar

equations. It is easy to see they include and improve the following known

sufficient conditions for oscillation, see [2-6, 8, 9 ] :

A. N = 1, 0 < p < 1, Σ qjτj > ]—l or ( f\ qs)^( £ τ,) > i ^ , or

p > 1, r > Tj (j = l,...,m) and £ q.(r - τs) >
J = I

/2\2

B. JV = 2, m = 1, 0 < p < 1, p " ^ ( τ — ) ί

C. JV is odd, m = l , 0 < p < 1, and either one of the following:

/ N \ N

10 -i-fτ-^->(*)'
\-p \e

( N\N

iϋ) N nl

/ + 1 - 1 N fN\N

p - 1 V e/ or

v) max (z> + τ)Nqp* > I — .

D. N is even, m = 1, 0 < p < 1 and p ίq(τ — r)N > ( — I .
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