
HIROSHIMA MATH. J.

24 (1994), 257-298

Discriminant analysis under

elliptical populations

Hirofumi WAKAKI

(Received September 20, 1992)

0. Introduction

Consider independent random samples, of size Πj (j = 1, 2), from each of

two p-variate populations Πj having mean vectors μ7 and common covariance

matrix A. Let the sample mean be denoted by X} (j = 1, 2) and the pooled

sample covariance matrix by S. Let X be an observation from one of the

two populations. Fisher [7] showed that the linear combination of X which

maximizes between sample variance relative to within samples variance is given

by

(0.1) (X1-X2)'S-1X9

which is known as Fisher's linear discriminant function (LDF). Welch [31]

demonstrated that if both populations are assumed to be multivariate normal

then the value of the log likelihood ratio in the two populations at any point

X is given by

(0.2) λ = ίx - {-(μi + μΛ A~Hμi - μ2),

Therefore it can be shown that the optimal classification rule is to assign X

into Πx (or 772) according to λ > k (or λ < k). The cut point k is a constant

depending on the relative costs of misclassification from each populations.

Details of general principles of classification, and the derivation of the above

rule are given in Chapter 6 of Anderson [2].

In practial situations the parameters are unknown, so the above rule must

be modified. Wald [30] and Anderson [1] suggested replacing the unknown

parameters by their sample estimators. Okamoto [24] derived asymptotic

expansion formulas for the misclassification probabilities up to terms of the

second order with respect to (wf1, n^1) under the assumption of normality.

Siotani and Wang ([27], [28]) extended the formulas up to terms of the third

order. A review of asymptotic expansions of classification statistics under

normal populations is given by Siotani [26]. Chapter 9 of Siotani, Hayakawa

and Fujikoshi [29] is also useful.
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Under non-normal populations, several authors investigated the perfor-
mance of the LDF. Lachenbruch, Sneeringer and Revo [20] have considered
robustness of the LDF and the quadratic discriminant functions to three
specific distributions. These distributions were generated from the normal
distribution by using the non-linear transformations suggested by Johnson
[15]. Their results indicated that the LDF was greatly affected by
non-normality of the populations. On the other hand Balakrishnan and
Kocherlakota [3] mentioned that the LDF is quite robust against the
likelihood ratio rule in Monte Carlo simulations in which the mixtures of
normal populations were taken. Nakanishi and Sato [23] also investigated
the performance of the LDF and the quadratic discriminant function (QDF)
for three types of non-normal distribution. Their purpose was a comparison
of the LDF and the QDF. The results showed that the sign of the skewness
of each populations and the kurtosis have essential effects. Koutras [18]
obtained a general integral expression for evaluating the performance of the
LDF with the population parameters under spherical distributions. He gave
recurrence relations for certain special cases including the spherical gamma,
Pearson VII, and generalized Laplace distributions. Krzanowski [19] gave a
review of the work on the performance of the LDF when underlying
assumptions are violated, which included the cases of unequal covariance
matrices, continuous non-normal data, discrete data and mixtures of discrete
and continuous variables.

In order to get robust discriminant functions, Randies et al. [25]
considered to substitute M-estimators of the mean and the covariance matrices
in the usual expressions for the linear and the quadratic discriminant
functions. Their Monte Carlo results indicated lower misclassification pro-
babilities compared to the LDF in cases of heavy-tailed or contaminated
distributions. Broίϊitt, Clark and Lachenbruch [4] also investigated the
method to use robust estimators, Huberized and trimed estimators of means
and covariance matrices. However, none of their procedures produced a
sufficient reduction in rates of misclassifications to counterbalance the added
complexity of the discriminant rule.

In this paper we consider the classification problem when underlying
assumptions may be violated.

In Part I we investigate the Fisher's linear discriminant function under
elliptical populations with common covariance matrix. In Section 1 we give
a simple expression of the conditional misclassification probabilities of the
LDF. In Section 2, in order to derive asymptotic expansion formulas on
misclassification probabilities, we derive an asymptotic expansion of the joint
distribution of the sample mean and the sample covariance matrix under an
elliptical population. In Section 3, we consider the conditional distribution
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of misclassification probabilities. The asymptotic expansions of the expected

probabilities of each kind of misclassification are obtained. In the minimax

criterion of the rule, we propose a loss of the estimators of unknown

parameters. We also give an asymptotic expansion of the "risk" of the ordinal

sample estimators in this framework. In Section 4, we give an estimator of

the misclassification probabilities which is unbiased up to the order

(n 1 +n 2Γ 3 ' 2.
In Part II, we consider to use M-estimators in order to get a robust

classification rule. Huber [13] derived a robust M-estimator for location

model. For an elliptical model Huber [14] derived a robust M-estimators of

location and covariance matrix. For general parametric models Hample et

al. [11] developed robust estimations using the influence functions. They

obtained the B-robust M-estimator which has the smallest asymptotic variance

subject to the bounded influence function. We apply their approach to our

discriminant problem. In Section 5 we give a general setup of the discriminant

problem. In Section 6 we prepare some definitions and lemmas related with

the influence function under the case of two samples. In Section 7, we define

a measure of sensitivity and a measure of efficiency of the estimator based

on the loss function proposed in Section 3. In Section 8 we obtain the

optimal M-estimators. In Section 9, we consider equivariant estimators. In

the last section, we return to the elliptical model and apply the methods

investigated in Sections 5-9 to it.

PART I. Fisher's linear discriminant function under elliptical populations

1. Minimax classification rule between two elliptical populations

Consider the problem of classifying an observation X into one of two

populations Π1: Ep(μ1, A, h) and Π2: Ep(μ2, A, h), where Ep(μ, A, h) is a

/7-dimensional elliptical distribution with density function

(1.1) IΛΓ^hax-μyΛ-Hx-μ)),

where h is a decreasing function, μ is a p x 1 parameter vector and A is a

p x p positive definite matrix. It is known (cf. Kelker [17]) that the

characteristic function of Ep(μ, A, h) has the form exp (zVμ)φ((t — μ)Ά(t — μ)).

We assume that ψ(s) is three times continuously differentiable at s = 0, which

means that Ep(μ, A, h) has the 6th order moments. Then the covariance

matrix is Ω = — 2ψ'(0)A — ωΛ(say). We denote the unknown parameters as

θ = (μ l 9 μ2, A) and θ be the parameter space.

For any given parameter τ = (ηί9 η2, Ξ)eΘ, we define the classification

rule R(τ) as
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(1.2) assign X into 77y if (X - ή)'E~l^j - ηf) > 0 {j = 1, 2),

where ή = (ηx + η2)/2 and / = 3 -j. Let P, (τ; θ) (j = 1, 2) be the probability

of misclassifying X which belongs to Πj.

THEOREM 1.1. Let

(1.3) cj(τ, θ) = (ή - μjYΞ-Hηj ~ ηr)/\\Λ^2Ξ~Hηj - ̂ ) l l

( = 1, 2), α«ί/ Q be a distribution function whose density function is

(1.4) q(u) = πip-1)

7" is the gamma function, and h is defined by (1.1). Then the

misclassification probabilities are expressed as

(1-5) P;(τ;0) = ρ{c, (τ,0)} ( 7 = 1 , 2 ) .

PROOF. Let

(1.6) X = Λ1/2Y+μj.

Then Yis spherically distributed with the density function h(Y' Y). We have

(1.7) PJ(T; θ) = Pr {(X - ή)f Ξ~\ηj - ηf) <0\Πj}

= PτiY'Λ^Ξ-Hηj ~ ηr) < (η ~ μ / ^ " 1 ^ ~ nr)}

= Pr{U<Cj(τ,θ)},

where

(1.8) U = Y'Λ^2Ξ-Hηj ~ ηr)/\\Λ1/2Ξ-Hηj ~ rir)\\.

Let H be an orthogonal matrix whose first row is

(1.9) {Λ^Ξ-Hηj-ηjVWΛ^Ξ-Hηj-ηrU}-

Since Y is spherical the distribution of U is the same as the one of

(1.10) YΉΛWΞ-Hηj-

where Y=(Y1, Y2,...,Yp)'. Hence the distribution of U is the same as the

marginal distribution of Yi. In order to obtain the marginal dinsity function,

we use Chu's representation (Theorem 1 of Chu [5]) of the density functin as

(1.11) h(YΎ) = $w(t){2π)-p/2tp/2 exp {- tYΎ/2}dt,

where w(ί) is called the weighting function. Let V = (Y2, Y39...,YP)' then the

marginal density function is expressed as

(1.12) q(Yλ) = $\w{t)(2π)-p/2tp/2 exp {- tY'Y/2}dt(dV)
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= Jw(£)(2πΓ 1 / 2 ί 1 / 2 exp {- tY?/2}dt.

Using the expression (1.11) with YΎ= Yj2 + s, we get

(1.13) fs(p-D/2-

= $w(t)(2π)-p/2tpl2 Qxp\--tY1

2\$s{p-1)/2-1 exp j - -tsϊdsdt

" ( p " 1 ) / 2

Comparing this with (1.12) we obtain the marginal density functin as (1.4).

In the case of normal populations (1.4) is reduced to a standard normal

density function, which can be checked easily with h(s) = (2π)" p / 2 exp (— s/2).

THEOREM 1.2. The classification rule R(θ) is minίmax.

PROOF. Since h is decreasing, the rule R(θ) is equivalent with a Bayes rule:

assign X into 77, if

(1.14) h{(X - μjYΛ-HX ~ μj)} > h{{X - μ^'Λ'^X - μ3)}.

Therefore it is sufficient to show (cf. Anderson [2], page 203) that

P^θ; θ) = P2(θ', θ), which is easily shown from Theorem 1.1 with

(1.15) cj(θ, θ)=- l-(μj - μr)'Λ-1(βJ - μ r ) / I M " 1 / 2 ^ " ^')H

= -1-\\Λ-1'2(μ1-μ2)\\ = -zl/2(say), (j = 1, 2).

In our notation Fisher's linear discrimination is expressed as R{θs) with

θs = (Xί9 X2, co~1S) where Xj (j = 1, 2) is the sample mean and S is the

pooled sample covariance matrix. The Theorem 1.2 shows that Fisher's linear

discriminant function gives an asymptotically minimax rule in elliptical

populations, since θs asymptotically converges to θ.

2. Asymptotic expansion of the joint distribution of sample mean and sample
covariance matrix from an elliptical population

Hayakawa and Puri [12] derived an asymptotic expansion of the
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distribution of sample covariance matrix under an elliptical population with

mean 0. We deal with both the sample mean and the sample covariance

matrix in the general case where the mean is unknown.

Let Xί9 X2,...,Xn be an independent sample from Ep(μ, Λ9 h) whose

characteristic function is expressed as exp(it'μ)φ((t — μ)'Λ(t — μ)). Assume

that the covariance matrix Ω exists. Then Ω = ωΛ, where ω = — 2ψ'(O).

Denote the sample mean and the sample covariance matrix as X and S,

respectively, and let

(2.1) Z = nί/2Ω-1/2(S-Ω)Ω-1/2

and

(2.2) Y=n1/2Ω-1/2(X-μ).

Then the limiting distribution of Z and Y is mutually independent

normal. The purpose of this section is to derive an asymptotic expansion of

the joint distribution of Z and Y. Let

(2.3) Uj = Ω-1>2(Xj-μ)9 j=l,...9n

a n d

(2.4) U = l ^ U j '

Then Y and Z are expressed as

(2.5) Y=n1/2ΰ = n-1/2ΣUj

and

(2.6) z = „!/* j _ l _ Σ ( c / , - ΰ)(Uj - ϋy -1

n

n- 1
jUj - n1/2l - (nll2ϋΰ'

n W-^~n-ί/2(YY'-I),
n-Λ n-\

where

(2.7) jj

First we consider the joint characteristic function of W and Y. The joint

characteristic function is
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(2.8) φ{T9τ) = E[etτ{iTW+iτY'}]

= E[etr {in-1/2Σ(TUjUj - Γ + τl/j)}]

= [E[exp {m" 1 / 2 (- tr (T) +WTU + τ'ί/)}]]",

where Γ = ( -(1 4- ̂ ί , * ) , τ = (Sj) (ί ^j, k^p), δjk is Kronecker's delta and

U is a spherical variable with characteristic function ^(ω'^^τ'τ). By theorem

2 of Chu [5] U is represented as U = (l/R)Z, where Z is distributed as

Np(0, I) and R is independent with Z. Therefore we have

(2.9) E[exp {in'1/2(U'TU + τ'l/)}]

= E*[E[exp {in"ί/2(R-2ZΎZ + Λ'

= E* expj--log|/-2in-1/2/r27Ί

The reason of superscript * of the expectation is that the (probability) measure

of R may be signed measure. The argument of the above exponential can

be expanded as

(2.10) exp(n- 1 / 2 F! + n~1F1 + n~3/2F3)

where

(2.11) Fί = - i 2

F2= -R-4tr(T2)--R-2τ'τ,

F3= - 4iK"6tr(T3) - ίR-4τ'Tτ.

Therefore

(2.12) E[exp {w~1 / 2(- tr(T) + IΓ7Ί7 + τ't/)}]

= E* 1 + n



264 Hirofumi WAKAKI

The characteristic function of U is

\l/{k)(0)
(2.13) φ(ω-1τ'τ) = Σy^(ω-1τ'τ)k.

On the other hand we can express the characteristic function of U as

(2.14) φiω-^'τ) = E[exp(iτ'l/)]

Comparing coefficients of τ'τ in (2.13) and (2.14) we obtain

(2.15) E*[IT2*] = ( - 2)kω-kψik){0) = ψ{k)(0)/{ψ'(0)}k,

E*[/r2] = l,

E*[/T 4] = ψi2)(0)/{ψf(0)}2 = ic + 1,

where K is the kurtosis parameter, and

(2.16) E*[R" 6] = ι//3)(0)/{ι//(0)}3 = ̂ 3 + 1 (say).

Using these formulas we obtain

(2.17) E[exp {m" 1 / 2 (- tr (T) + U'TU + τ'C/)}]

= 1 + n~1G1 + n - 3 / 2 G 2 + O(n"2),

where

(2.18) G1 = Έ

-l-κVt (T)τ'τ - i(φ3 - K) tr (Γ) tr (Γ2)
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Here the notation tr*(Γ) means {tτ(T)}k. From (2.17) the characteristic
function of W and Y can be expanded as

(2.19) φ(T, τ) = {1 + n-1Gι + n

= exp[nlog{l +n~1G1 + n'3l2G2

Inverting φ(T, τ), the joint density function of Wand Ycan be expressed as

(2.20) f(W, Y) = (2π)- p ( p + 3 ) / 4 jexp {- itτ(WT) - h'Y + G j

where (dT) = Y[jdtjjY[k<mdtkm. From (2.6) we have

i

(2.21) W= Z + n" 1 / 2 (7r - /) = Z + n" 1 / 2 (yr - /) + 0{n~ι).

n

Since the Jacobian of the translation (W, Y) to (Z, 7) is

(2.22) {(n - l ) / n } p i p + X)l2 = 1 + O f a " 1 ) ,

the substitution of (2.21) to (2.20) gives an asymptotic expansion of the joint
density function of Z and Y as

(2.23) /(Z, Y) = (2π)"p ( p + 3 ) / 4 ί exp {- itτ(ZT) - iτ'Y+ G J

• [1 + n~1/2{G2 - iY'TY+ itr(T)}](dΓ)(dτ)

Let

(2.24) 7ί = ( ί ! ! , . . . , ίppy,

^ 2 = ( ^ 1 2 ' ί l 3 » » ^ p - l , p ) >

ί2x = 2(ιc + l)/ p + ic/Γ, / = (1 I)',

and

(2.25) Z1 = ( z n , . . . , z j , Z 2 = (z1 2, z 1 3 , . . . ,z p . l f P ) ' ,

where Z = (zw), (/c, / = 1, 2,...,/?), as in Hayakawa and Puri [12]. Then the
argument of the exponential is expressed as

(2.26) - iT[Zx - iT^Z2 - iτ'Y--{T[ΩιT1 + (K + 1)T2'Γ2 + τ'τ)
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which implies that the limiting distribution of Zγ,Z2 and Y is mutually

independent normal with mean 0. The covariance matrices of Z l 5 Z 2 and Y

are Ωl9 (K + l)Ipip-l)/2 and Ip, respectively. Let Jp = Ip- p'ΊΓ then

(2.27) Ωϊ1 = ulp + (v- u)p'ΊΓ = uJp + vp'ΊΓ,

where

(2.28) !
2(κ + 1 ) (p + 2)κ + 2

The expression (2.27) is useful in calculation of expectations since Jp and p~1W

are idempotent, Jpl = 0 and (p"1///)/ = / The calculation of integrations in

(2.23) gives the asymptotic expansion of the joint density function of Z and

y up to the order n " 1 / 2 as in the following theorem.

THEOREM 2.1. Let Z and Y be random matrix and random vector given

by (2.1) and (2.2), respectively. Then the joint density function of Z and Y can

be expanded for large n as:

(2.29) /(Z, Y) = (2πΓ^+^\Ω1\-^2(κ + l)-**-*)/*

where

(2.30) g(Z, Y) = a, tr (Z) + a2 tr 3 (Z) + a3 tr (Z3)

+ a4 tr (Z) tr (Z2) + α5 Y' Yiτ (Z) 4- α6 Y'ZY

and

(2.31) fli = — ψ-><uv(4p + 1 — 4Ό *) + ι>2( -n + 3 + 4r
[ \2F

+ K < | M I ? ( 2 P - 1) + V2(-p + 3 ) - * M - p + 1

I \2 ) \2

— 2uv(p + 1 — 2/?"1) — 4v2p~1,

4
Cl~ = )l/^ < —U^ r> * — 11* illn λ - L An z\ J - iiύ I L n" 1 ± n~2

- + p " Λ j + -M3p~2 - 4u2vp~2 + -i
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4

α4 = φ3{-4u3p~ί + w2ι;(4p~1 + 1)} - K^v-Au^p'1 +4u2vp~\

a5 = κl-up~1 +

a6 = KU.

In the case of normal population Y and Z is independent. Y has exactly
normal distribution Np(0, Ip). Since K; = φ3 = 0 the marginal density function
of Z can be expanded as

(2.32) 2 - ^ + 3 ) / 4 π - ^ + 1 ) / 4 etr (- -Z2

V 4

which was essentially given by Fujikoshi [8] (see also Siotani, Hayakawa and
Fujikoshi [29], page 159).

3. On the conditional misclassification probabilities

We return to the classification problem of two elliptical populations in
Section 1. Suppose that the training samples of size nι and n2 from Πί and
772, respectively, are given. Let Xj be the sample mean and Sj be the sample
covariance matrix from Πj (j = 1, 2). The pooled sample covariance matrix
is given by

(3.1) S = (N - 2)"1{(n1 - 1)SX + (n2 - ί)S2}

where N = nx + n2 and r,- = Πj/N (j = 1, 2). In this section we consider the
distributions of the conditional misclassification probabilities of Fisher's linear
discrimination R(θs), where θs = (Xl9 X2, ω" 1 ^). We modified S to ω~1S in
order to get a consistent estimator. However, this is just for convenience of
calculations, since the factor ω " 1 causes no change of the classification rule.

From Theorem 1 in Section 1, we know that the conditional
misclassification probability Pj(θs9 θ) is the function of Cj(θs, θ) (j = 1, 2).
Therefore we prepare the following lemma of Taylor expansion of c^τ, θ) in
a neighborhood of τ = θ in order to investigate Pj(θs, θ) using an asymptotic
expansion method.

LEMMA 3.1. Let τ = (ηl9 η2, Ξ)eΘ, where
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(3.2) ηj = μj + εj(j =1,2), Ξ = A + H.

Then the cut point Cy(τ, θ) given by (1.3) can be expanded for small ε/s and H as

(3.3) cj(τ;θ)

)fA'Hsj ~ εr) ~ Hj

εj + εr) - ξ

where ξ} = ^ " 1 / 2 ( μ , - μr) (j = I, 2; / = 3 - j) and A2 = ξ[ξx.

THEOREM 3.1. Let

(3.4) PNj = N-Wtfjφ,, θ) - Pj(θ, θ)} (j = 1, 2).

Then the limiting distribution of PNj is Λf(O, v2), where

(3.5) v2 = -q(- A/2)2ωr{1\
4

q is the density function given by (1.4) and r ( 1 ) = rfx + r^"1.

PROOF. From Theorem 1.1 and Lemma 3.1 we obtain

(3.6) (d/dηJPj(τ, θ)\τ=θ = ^q(- A^A^ξμ-1'2 (k = 1, 2),

Further, the limiting distributions of N]~1/2(Xj — μ) is N 7 (0, rJιΩ). These

shows the desired result (see Cramer [6], page 366).

In order to obtain the terms of O(iV~1/2), first we expand the joint

characteristic function of PNX anf PN2. Because the joint characteristic

function gives distribution of any linear combinations of PNX anf PN2. We

will need the distribution of {PNX — PN2)/2 in the last theorem of the present

section.
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LEMMA 3.2, Let Ψ(t) be the characteristic function of (PNU PN2) where

t = (tl9 t2)
f Then Ψ(i) can be expanded as

(3.7) Ψ(t) = cxpί-l-(tl-t2)
2v2

• {1 + N-^iΣtMti - t2)
2 + bk)} +

where v2 is given by (3.5),

(3.8) * o = - ^

K = ̂ 2 ω r u > +-

and

(3.9) q ι

PROOF. Let

(3.10) j j j β

ZJ = nj/2Ω-1'2(Sj-Ω)Ω'112.

Then

(3.11) Xj = μj + N-ll2ωll2Λll2r]-ιl2Yj,

Sj = Ω1/2[7 + n]-ll2Zj]Ω112 (j = 1, 2).

Since (n, - 1)/(ΛΓ - 2) = r} + OiN'1),

(3.12) ω - χ S = ω-ιΩll2(I + r1n;υ2Z1 + r2n2"-1/2Z2)ί31/2 + Op(iV-

= Λ + N-ll2Λll2(r\l2Zι + r\l2Z2)Λ112 + OP(ΛT3/2).

From Lemma 3.1 we obtain

(3.13) cjφ,; θ) = - -Δ + N-ll2rf> + Λ Γ 1 ^ 2 ' + Op(JV-3/2),

where

(3.14) cj1' = -A-ι
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cf = l-Δ-'ω(rj,^Yy + 3/ j " 1 ' 2 Ytf(τJ112 Yj - rjΛ'2 Yr)

Y}

- Ij-^ω^ξ'jiry1'2 Yj - rj:1'2 Yy) - ξj(r)l2Zj + rf

• {ω^ξ'jPrj-1'2 Yj + rjΓ1'2 Yr) - ξ\(r)'2Z} + rf

l2Zr)ξj}.

Considering Taylor expansion of Pj(θs, θ) = Q{Cj{θs, θ)) at c} = — A/2, we

obtain

(3.15) PNj^N1'2 IPjφ, θ) - Pj(θ 0)]

+ q2(cf

Therefore the characteristic function of PN1 anf PN2 can be expanded as

(3.16)

Ψ(t) = E[exp (iti PATt + it2PN2)]

= E|^exp | i Σ t t k q , l-ω1'2 Δ'»ξfc "2 Yk + r~k, >>2 Yk.)

Taking the expectation by using the joint density of (Zj9 Yj) given by (2.29),

we can see that the characteristic function can be reduced to (3.7).

Lemma 3.2 shows that the joint limiting distribution of PN1 and PN2 is

N2
( n I, ( 1 ) ' w ^ c ^ ^s degenerate (cf. Muirhead [22], page

4). More preciously, PN2 = — PN1 + OP(N~1/2). This means that variation

of the estimator causes Px get larger, smaller the P2 Therefore the total

misclassification probability (P : + P2)/2 (assuming equal prior probabilities) is

stable.

THEOREM 3.2. The marginal distribution function of PNj (j = 1, 2) can be

expanded as



Discrimination for elliptical populations 271

(3.17) Pr{PJV; < x }

= Pr {N~1/2lPjφs; Θ) - Pj(θ9 0)] < x)

. = Φ(x/v) + N-1/2φ(x/v)/v{(x2/v2 - l)b0 - bj} + OiN'1),

where Φ and φ are the distribution function and the density function of N(0, 1),

respectively, bj are given by (3.8) and

(3.18) b0 = bo/v2 = - -q2ωri2)/r{1).

PROOF. From Lemma 3.2 the characteristic function of PNj is given by

1 „
(3.19) Ψj(tj) = e x p t t

The inversion of Ψj gives the expansion of the distribution function.

COROLLARY 3.2. The expected misclassification probabilities can be

expanded as

(3.20) ElPjφ,; θ)-] = β ( - A/2) + N'% + O(N~^2) (j = 1, 2),

where Q is the distribution function given in Theorem 1.1 and bj is given by (3.8).

PROOF. The expectation of PNj is given by ί ~1 Ψ] (0) = N ~112 bj + 0 (N " : ) .

When we consider R(θ) as an estimator of the minimax rule R(θ), we

may use

(3.21) Lφ, θ) = max {P,09 θ), P2φ, θ)} - Ptf, θ)

= mzx{P1φ9θ)9P2φ9θ)}-P2{θ,θ)

as a natural loss of θ. Hence one of the important criteria on the goodness

of θ is given by E [L($, β)] which may be called the risk of θ in minimax

classification.

THEOREM 3.3. The risk of θs can be expanded as

(3.22) E[L((9S, 6>)] = ΛT 1 / 2 (2/π) 1 / 2 i ; + N~1-{bι + b2) + O(ΛT 3 / 2),

i; w gf/t ew by (3.5) ίz/7ί/ &_y (/ = 1, 2) is gf/ι;e« by (3.8).

PROOF. Using the equation max (a, b) = (a + fr)/2 + |α + b\/29 we get

(3.23) Nί/2E[Lφs, θ)2 = E[max(PNl9
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= -Ei(PNι + PN2) + \PNt - PΛT2|].

From Lemma 3.2 the characteristic function of (PNι — PN2)/2 is given by

(3.24) Ψ {(t/2, - r/2)'} = exp j - -t2v2 j

+ N-ll2^~t(b1 - b2)

It's inversion gives an asymptotic expansion of the density function of
j - PJV2)/2 as

(3.25) Ό'ιφ(x/υ)<l -N-1/2-(bί-b2)/v2 x

I 2
and hence

(3-26) ,2

= $\x\/v\l -N-ll2-(b1 -b2)/v2-x\φ{x/v)dx +

= ${2πΓll2v-1\x\exp {- x2/(2v2)}dx

= (2/π)1/2t>[- exp {- x2/(2,;2)}]o" +

From Corollary 3.2 we get

(3.27) EΓJPJV! + PN2)/2] = N~ ίl2(bί + b2)/2 + O(N~ι).

Substituting (3.26) and (3.27) into (3.23) we obtain the result (3.22).

In the case of normal population

(3.28) K = 0, ω = 1, q, = φ(- A/2), q2 = Δ/2φ(- A/2).

Therefore, the coefficients v, b0 and bj (j = 1, 2) are reduced as follows:

(3.29) v2 =\{Φ{-
4

16

l i ^(- A/2).
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4. Estimation of the misclassification probabilities

In this section we consider the problem of estimating the expected

misclassification probabilities, which is expanded as (3.20).

In order to get an unbiased estimator of these probabilities, we prepare

the next lemma.

LEMMA 4.1. Consider an estimator Q( — A/2) of misclassification probability

Q(—A/2) of R(θ), where Q is given in Theorem 1.1 and

(4.1) A2 = (Xx - X2)'(ω-1SΓ1(Xί - X2).

Then the bias is given by

(4.2) E[ρ(-i/2)]-β(-zf/2)

i r ( i ) ω + jL(3 κ + 2 ) z ί 2 l - - ί8 32 J 4

-(/? + 2)κ (p + 1 ) + —(3K: + 2)>Δ

4 4 16 J

PROOF. Using (3.11) and (3.12), A is expanded as

(4.3) A2 = A2 + N~ιl2δι + N~ίδ2 + Op(ΛΓ3/2),

where

-2ω1'2ξ'Λr['2Z1 +

+ ξ'1(r['2Z1+rll2Z2)
2ξ1}.

The expansion of Δ2 implies that

(4.5) - Δ/2 = - Δ/2 - -ΛT 1 / 2 zT

Op(N-3'2).

Therefore Taylor expansion of Q gives

(4.6) Q(-Δ/2) = Q(-Δ/2)



274 Hirofumi WAKAKI

where qx and q2 are given by (3.9). Taking the expectation, we get the desired

result.

From Corollary 3.2 and the above lemma we can get an estimator of

the misclassification probabilities for R(θs) as the following theorem.

THEOREM 4.1. Let Δ2 be given by (4.1), then

(4.7) Q(- A/2) + ΛΓ 1 Γ - ^q2i?κ + 2)Δ2 + q.ωrj'ip - \)A~ι

is an unbiased estimator of the expected misclassification probability E[P 7 (#S; θ)~\

(j = 1, 2) up to the order ΛΓ 3 / 2 .

In the normal case, (4.7) is reduced to

(4.8) Φ(- A/2) + N-11- l i 3 + rj\p - \)Δ~ι + * (4/? - l)ij(/>(- i/2),

which agrees with the result of McLachlan [21].

When K is unknown, we need to replace K in (4.7) by an estimate k.

PART II. Robust estimators in discriminant analysis

5. A general setup of estimation problem in discriminant analysis

In Part II we consider the classification problem under a general setup.

Suppose that the population 77, (j = 1, 2) has the density function /(x; η3),

where the unknown parameter γ\^ (e H) is a (q 4- r)-dimensional vector. We

assume that the last r elements of ηλ and η2 are equal. So that we denote

η. = (£j5 £')' (y = l5 2) and its parameter space as H = Z x Ξ, where Z ^ Rq

and £ c iT. We also use notations θ = (ζ'ί9 ζ'2, ξj and Θ = H x H x Ξ. The

sample space is written as β c F . In the case of elliptical populations,

q = p,r = p(p+ l)/2, η} = {μj9 A) and

(5.1) f(x; ηj) = \Λ\' 1/2h{(x - μ$A~\x - μ,)} (j = 1, 2).

We identify the minimax rule with the region of the sample space in which

the observation is assigned to Π^^. The minimax region is given by
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(5.2) R(θ) = {x;/(x; η1)/f(x; η2)

Here k(θ) is obtained from the equation

(5.3)

and F( η) is the probability measure corresponding to the density function

/(x; η). We often use the notation Fjθ instead of F( η^.

In Part I, we considered to use the sample mean and the pooled sample

covariance matrix to estimate the minimax classification rule for elliptical

populations. It is also natural to use the maximum likelihood estimator to

estimate the minimax region R(θ). However, in general, the maximum

likelihood estimator is not robust against deviations from the assumptions.

For example, the sample mean is known to be sensitive to outliers. For

general parametric models Hampel et al. [11] developed robust estimations

using the influence function. The influence function is a standardized

asymptotic bias of the estimator caused by one outlier. In our problem bias

of R(θ) is important rather than θ itself. Before considering the influence to

R(θ), first we describe some definitions and properties related with the influence

function of the estimator in the case of two samples.

6. Definitions and properties related with the influence function

The purpose of this section is to prepare some definitions and properties

related with the influence function for constructing robust M-estimators used

to obtain a robust discriminant rule in the following sections. In this section

we modify or generalize the works included in chapter 4 of Hampel et al. [11].

Suppose that we have training samples

(6.1) ^

from Πj (j = 1, 2). The corresponding empirical distribution is given by

where V(x) is the point math 1 in x. We consider the estimators of θ expressed

by functional, i.e., θ = T[FίMί)9 F2,π(2)] with some functional T: domain

(Γ)-><9. The domain of T is the set of all pairs of distributions for which

T is defined. We denote the corresponding parts of T with ζl9 ζ2 and ξ as

Γζ

(1), Γζ

(2) and Tξ, respectively. We also use the notation Tη

U) = (Tζ

u\ Tξ). It

is said that an estimator Tis Fisher consistent (Kallianpur and Rao [16]) if

(6.3) Γ [ F l β , F2Θ] = Θ for all θeθ.
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DEFINITION 6.1. The influence functions of Tat [ F l 5 F 2 ] are defined by

(6.4) 1FM T; Fl9 F2) = (d/dh)+ T[F?'\ F 2 ]

and

(6.5) IF2(u, T; Fl9 F2) = (d/dh)+ T[Fl9 F"2'
Λ],

where (δ/d/ι)+ is right derivative at h = 0 and F?'Λ = (1 - h)Fj + ΛF(κ).

The influence function was invented by Hampel ([9], [10]) in order to

investigate the infinitesimal behavior of real-valued functionals. We shortly

denote the influence function at [ F l θ , F2Θ] as IFj(u, T; θ) (j = 1, 2).

THEOREM 6.1. (Hampel et al. [11], page 196) Let FίM1) and F2M2) be

the empirical distributions of the samples from Fx and F 2 , respectively. Let

θ = T[FX π ( 1 ) , F2,W(2 )] and Θ=TJ[F1,F2] then the limiting distribution of

N1/2(θ — θ), with increasing sample sizes and with keeping n(l)/n(2) constant,

is JV[O, V(T; (9)], where N = n(l) + n{2)9

(6.6) V(T; θ) = rϊ1Vί (T; θ) + r2

 ι V2 (T; θ)9

γ. — n(j)/N and

(6.7) Vj(T; θ) = $IFj(u9 T; θ)IFj(u, T; θ)'dF(u; η3) (j = 1, 2).

DEFINITION 6.2. Let ψγ and φ2 be functions on the product space Ω x <9

to 6>. Then the M-estίmator given by ψ = \jψί9 ψ2~\ is defined by the implicit

equations:

(6.8) Yj]^rj\φj{x,T)dFj{x) = 0.

For the training samples or the empirical distributions F1Mί) and F2M2)

the above equation with r} = n(j)/N is equivalent with

(6-9) ΣUΣl-i4ΆxP >τ) = o

Note that the maximum likelihood estimator is an M-estimator. This is seen

by taking ψj = Sj(x9 θ) {j = 1, 2),

(6.10)

where s(x, ij) = (s(x, ζ)'9 s(x, ξ)')' = (δ/δi7) log/(x; η).

It is known that the M-estimator given by φ is Fisher consistent if

s(x,ξ) /

and
I

s2(x, θ) =

\

i 0

s(x,

I s(x,
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(6.11) Σ%i rj\Φλx θ)dFJβ{x) = 0 (j = 1, 2) for all 0.

THEOREM 6.2. Assume the equation:

(6.12) (d/δτO ί φj(x, τ)dFj(x) = J φj(x, τ)dFj(x) (j = 1, 2)

(δ/3τ/)ji(τ) = (dtf/Sti, dg/dτ2,...,dg/dτ2q+r) and φ}(x, τ) =
(δ/dτ')φj(x, τ), a (2q + r) x (2g + r) matrix. Then the influence unction of the
M-estimator is given by

(6.13) IFj(u, T; Fu F2) = M(φ; Fu F 2 ) " 'rj{φj(u, T) - jφj(u, T)dFj(u)}

0 = 1, 2), where M is a (2q + r) x (2q + r) matrix defined as:

(6.14) M(φ; Flt F2)= -ΣUi'jίΦfa τ)dFλu)

and φj{u, τ) = (d/dτ')φj(j = 1, 2).

PROOF. Let 0" * = Γ[FΪ*, F 2 ] and 0 = TEF!, F 2 ] . Then

(6.15) r^φ^x; 0" Λ ) ^ ; A(x) + r 2 f φ2(x; θ"-h)dF2(x) = 0.

Take the derivatives of both sides at h = 0, then we get

(6.16) rι{φ1(u;θ)-\φ1(x;θ)dFί(x)

+ \φ1{*; θ)dF1(x)IF1(u, T; Flt F2)}

+ r2lφ2{x; θ)dF2(x)IF1(u, Γ; Fu F2) = 0.

Hence we get

(6.17) M(φ; Fu FJIF^u, T; F l 5 F2) = r,{φ,(u; θ) -\φ,{x; θ)dFlθ},

which gives the desired result for IF^u, T; Flt F2). The result for IF2(u, T;
Fίt F2) is similarly obtained.

LEMMA 6.1. Suppose that T is Fisher consistent and that the equation:

(6.18) (d/dff)lψj(x, θ)dFjθ(x) = jid/δθ1){φj(x, θ)f(x, η)}dx

and (6.11) hold. Then it holds that

(6.19) Σ}1IFAX> T> θ)sλs' θ)'dFiβ(χ) = L

PROOF. Take the derivative of both sides of equation in (6.11), then we
get

(6.20) ΣUi rjiSHxI θ)dFjθ{x) + Jφj(x θ)Sj(x θ)'dFjβ(x)} = 0.

Therefore M(φ; θ) = M(φ; Flβ, F2β) can be expressed as:
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(6.21) M(ψ;θ) = Σ rj[ψj(x θ)Sj(x θ)'dFJΘ(x).

From Theorem 6.2 and js(x; η)dF(x; η) = 0, we get the desired result.

7. Measures of efficiency and robustness of the estimators in classification

We are interesting in obtaining an estimator R0) of the minimax

discriminant region R(θ) with certain optimalities in classification problem.

First we investigate R(0) such that R(ύ) minimizes the maximum of two kind

of the misclassification probabilities. For such a purpose we define a loss

Lφ\ θ) of 6 at θ by

(7.1) L(d; θ) = max {F(R0)c; ηj, F(R(Θ); η2)} - F(R(θ)c; ηx)

= max {F(R(6T; ηj, F(R(6); η2)} - F(R(Θ); η2).

LEMMA 7.1. Suppose that F(R(τ);η) is c1-class as a function of τ, for

any η. Then the following equation holds.

(7.2) l(d/dτ)F(R(τY; ηi)^θ + k(θ)L(d/dτ)F(R(τ); ^ 2 )] τ = θ = 0.

PROOF. The region R(θ) is also a Bayes rule when the prior probabilities

from Π1 and 772 are 1/{1 + k(θ)} and k(θ)/{l + k(θ)}9 respectively. So that

the function F(R(τ)c; ηj + k(θ)F{R{τ); η2) is minimized at τ = ft

THEOREM 7.1. Let θ = T [ F X M ί ) 9 F2M2)~\. Suppose that the limiting

distribution of N1/2(θ - θ) is Nq+r(0, V{T; θ)) and the condition of Lemma 7.1

holds. Then N1/2L(Θ; θ) is asymptotically distributed as the same distribution as

(7.3) {D{Θ)'V(T; Θ)D(Θ)}112 max {(7, - k(θ)U}9

where

(7.4) D(θ)=Ud/dτ)F{R{τ);η2)]taβ

and U is a standard normal variable.

PROOF. Consider Taylor expansions of F(R(τ)c\ ηx) and F(R(τ);η2) at

τ = θ and use Lemma 7.1. Then we get

(7.5) Lφ; θ) = max {[(e/dτ')F(R(τY; η^^φ - θ\

= m a x { - k(θ)D(θ)'φ - 0 ) , D ( θ ) ' φ - θ)} + o p ( \ \ θ - θ\\).

From the assumption of asymptotic normality of θ the limiting distribution

oϊN1/2D(θ)'φ - θ) is-JV(O, D(Θ)'V(T; Θ)D(Θ)), which shows the desired result.
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COROLLARY 7.1. Under the assumption of Theorem 7.1, the expectation

of N1I2L{Θ; θ) under the limiting distribution is given by

(7.6) (2πΓ 1 / 2 { l + k(θ)} {D(Θ)'V(T; Θ)D(Θ)}1/2.

PROOF. The expectation is easily obtained with the use of

(7.7) m a x {I/, - k(θ)U} = ^ { 1 - k(θ)}U + ^{1+ k(θ)}\U\.

(7.6) may be called as "an asymptotic risk" of the estimator. Therefore

we define a measure ed(T; θ) of efficiency of an estimator by

(7.8) ed(T; θ) = {D(Θ)'V{T; θ)D{θ)}-\

in the situation where our purpose is to estimate the minimax regions. The

superscript "d" means that the measure is defined for discrimination

problem. The large value of ed(T; θ) means small asymptotic misclassification

probabilities. For an M-estimator corresponding to φ we also denote the

efficiency as ed(φ; θ).

Next we consider the robustness of an estimator T [ F 1 / J ( 1 ) , F 2 M ( 2 ) ] .

Suppose that the n(l)-th value Xn{ί) was an outlier. Then the influence on

our loss is expressed as

(7.9) {L(Γ[F l f Π ( 1 ), F2M2)];Θ) -

-L(T[F1M1)_uF2M2)l;θ)\/{l/n(l)},

where the denominator means the ratio of outlier in the sample. Replacing

^Ί,n(i)-i a n d F2M2) with their limiting distributions Fίθ and F2Θ, respectively,

Xn(1) with w, and l/n(l) with h, we obtain

(7.10) {L{TlFlt F2Θ\ θ) - L(TIFIΘ, F2Θ\ θ)}/h.

Let h tend to zero, then we can formulate an influence function of an estimator

in the situation where we want to estimate the minimax discriminant regions

as follows.

DEFINITION 7.1. The influence functions of an estimator T at θ

corresponding to 771 and 772 are defined as

(7.11) IFi(u, T; θ) = (δ/dh)+ L(Γ[Ff ί , F2Θ)

and
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(7.12) IFd

2(u, T; θ) = (d/dh) +L(T[F1Θ, F"2θ

h).

Using the chain rule and Lemma 7.1, we get

(7.13) /Ff(i4, T; θ) = max {D(θ)ΊFj(u, T; θ), - k(θ)D(θ)ΊFj(u, T\ θ)}.

We define a gross-error sensitivity of T at θ as

(7.14) yd(T; θ) = supM IFftu, Γ; 0) (/ = 1, 2).

Hampel et al. [11] defined three types of gross-error sensitivity, i.e., the

unstandardized gross-error sensitivity, the self-standardized sensitivity and the

information-standardized sensitivity, for multidimensional estimators (see [11],

page 228-229). For each sensitivity, B-robustness of an estimator means that

its sensitivity is finite. In our situation, yd(T; θ) measures a robustness of a

discriminant rule obtained by using the estimator T. Therefore we say that

T is D-robust if yf s are finite. If k{θ) = 1, then (7.14) is reduced to

(7.15) γdj(T; θ) == supu | D ( 0 ) 7 ί > , T; θ)\.

This suggests that the gross-error sensitivity of the estimator should be defined

according to the purpose of estimation.

8. The optimal Z)-robust M-estimators

In the previous section we obtained a measure ydj(φ; θ) (j = 1, 2) of the

robustness and a measure ed(φ; θ) of the efficiency. It is impossible to obtain

the M-estimator which minimizes yd(ψ; θ) and maximizes ed(φ; θ), simultane-

ously. Therefore we consider to maximize the efficiency ed(φ;θ) in certain

class of φ-functions whose gross-error sensitivity yd(φ θ) is less than some

given constant. We say that an M-estimator is optimal D-robust if it attains

the maximum in certain class. The purpose of this section is to construct

the ^-functions which give the optimal D-robust M-estimator.

Let Ψ be a class of φ, pairs of ^-functions such that the conditions

(6.11), (6.12) and (6.18) hold and the integral:

(8.1) J Φj(x ηj)ψj(x ηj)'dF(x ηj) (j = 1, 2)

exists. In this class we want to maximize the efficiency ed(φ θ) subject to

yd(φ; θ) ^ Cj for given constant c} (j = 1, 2). The next theorem shows that if

cι = c2 = oo the maximum is attained by maximum likelihood estimator of θ.

THEOREM 8.1. Suppose that the score functions [s1(x, #), s2(x, θ)~] belong

to Ψ. Let J(θ) = r.J^Θ) + r2J2(θ), where
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(8.2) Jj(θ) = J sj(x θ)Sj(x θ)'dF(x ηj) (j = 1, 2).

Then the asymptotic covariance matrix of the maximum likelihood estimator is
J{θ)~ι and V(T;Θ)-J(Θ)~1 is positive semi definite for all M-estimator T
corresponding to φ which belongs to Ψ.

PROOF. From Theorem 6.2 and Lemma 6.1, the influence function of the
maximum likelihood estimator is shown to be rjJiθy^Sjiu, θ). From Theorem
6.1, we obtain that the asymptotic covariance matrix is Jiθ}'1. Let X and
Y be independent random vectors distributed as F l β and F2Θ, respectively.
Define a 4(q + r)-dimensional random vector U by

(8.3) U =

/ IF^X, T; θ) \

IF2(Y, T; θ)

\ s2(Y- θ)

For any (q + r)-dimensional vector α, let

(8.4) h = (r;ll2a', e2"
1/2α', - r\l2a'Jφy\ - r\l2a'

From (6.7) the covariance matrix of U is given by

(8.5) Cov (U) =

$IF1(X,T;θ)s1{X;θ)'dFlβ(X)

V2(T;Θ)

0

symmetric \

\ 0 \lF2(X,T;θ)S2(X;θ)'dF2β(X) 0 J2ψ)

From Theorem 6.1 and (6.19) we obtain

(8.6) h' Cov (U)h = n ' a' V, (T; θ)a + r2 * a' V2 (Γ; θ)a

1(x, T; θ)Sl(x; θ)'dFlβ(x)}J(θyιa

- 2a'{\lF2{x, T; Θ)s2(x; θ)'dF2β{x)} J{θy'a

= a'V(T; θ)a - a'Jiff}'1 a ^ 0.
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For finite Cj (j = 1,2), if the score functions are not bounded we must

modify the maximum likelihood estimator. Let θ be an arbitrary fixed point

in θ and T be a M-estimator given by some pair φ in Ψ. We use

abbreviations in the rest of this section as Fj(x) = Fjθ(x), Sj(x) = Sj(x, θ) and

IFj(x) = IFj(x, T; θ) (j = 1, 2).

From Theorem 6.2 and Lemma 6.1, it is shown that IF/s must satisfy

(8.9) llFj(x)dFj(x) = O 0 = 1,2)

a n d

(8.10) ΣjIFj(x)sjWdFj(x) = ϊ.

Let A be an arbitrary (2q + r) x (2q + r) matrix and let aj (j = 1, 2) be any

vectors. Then using (8.9) and (8.10) we have

sj(u) - aj)}\2dFj(u)

rjA(Sj(u) - aj)(sj{u) - a3)Ά'

- rjIFj(u)(sj(u) - aj)Ά' - rjA(sj(u) - aj)IFj(u)'}dFj(u)D(θ)

= ΣjDWlr^VjiT; θ) + rjA{Jj(θ) + α,αj}

- IIFj{u)Sj(u)'dFj{u)A' - Alsj(u)IFj(u)'dFj(unD(θ)

= ed(T; θ)'1 + D(Θ)'{AJ{Θ)A' - A + A + r^a^Ί + r2a2a'2}D(θ).

Therefore the maximization of ed(T; θ) with respect to T is equivalent with

the minimization of

(8.12) ΣJ'Γ1 i\D(θ)'{IFj(u) - rjA(Sj(u) - aj)}\2dFj(u)

with respect to IF1(u) and IF2(u), the influence functions of T. The condition

yj(T; θ) g cj is written as

(8.13) - Cj/k(θ) £ D(θ)ΊFj(u) ^ cj for all u.

Therefore the minimum is attained if

(8.14) D(θ)ΊFj(u) = hlrjD(θ)Ά{Sj(u) - aj} cj9 - Cj/k(θ)^

where ft is a translated Huber function defined as

( α if α < x

x if β < x S α

β if x < β

If β = — α then (8.15) agrees with the original Huber function. The following

theorem gives a way of constructing (//-functions whose influence functions
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satisfy (8.14).

THEOREM 8.2. Define φj(x; A, aj) (j = h 2) by

(8.16) ψj(χ; A,aj) = hgl{I - P(θ)}A{Sj(x) - aj cj/rj]

+ D(θ){D(θyD(θ)}-'hlD(θ)Ά{Sj(x) - aj};cj/rp - c, /{r,fc(0)}],

where £j {j = 1, 2) is appropriately chosen constant, P(θ) is a projection matrix

given by

(8.17) P(θ) = D(θ){D(θ)fD(θ)}-1D(θ)f

and hg is a generalized Huber function in R2q+r defined as

(8.18) Λ g ( t / ; c ) = I / - m i n { l , c / | | I / | | } .

If a system of equations for A, ax and a2'

(8.19) j φj(x A, aj)dFjθ(x) = 0 (j = 1, 2),

(8.20) Σj rjί ΦM A, aj)sj(x θ)'dFJΘ(x) = I

has a solution, A = AΘ, aj = ajθ (j = 1, 2), then φ = [φ1(x; Aθ9 a2θ), Φ2{x\ Aθ, α2 β)]

gives the M-estimator which maximize the efficiency.

PROOF. From Theorem 6.2 and Lemma 6.1, we obtain that the influence

function IFj(x, T; θ) is equal to φj (j = 1, 2) which is constructed as to satisfy

(8.14).

We note that the first term of (8.18) has no effect on either the efficiency

and the gross-error sensitivity in discrimination, but for finite samples, both

the risk and the influence of each sample point depend not only on the second

term but also on the first term.

If k(θ) = 1, (8.16) is written as

(8.21) φj(x; A, aj) = {I - P(θ)}A{Sj(x) - aj} Wf(x; A, α, )

+ P(Θ)A {sj(x) - aj} Wf(x A, a3) (j = 1, 2),

where

(8.22) Wf(x; A, aj) = min [1, Cj/\\rj{I - P(θ)}A{Sj(x) - aj | |]

and

(8.23) Wf(x; A9.aj) = min [1, Cj/\rjD(θ)Ά{sj(x) - ^ } | ] .

Using

(8.24) M] = J {Sj(x) - aj} {Sj(x) - a3}' W?{x A, aj)dFjθ(x)
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and

(8.25) M] = j {Sj(x) - aj} {Sj(x) - a3}' Wf(x A, aj)dFjθ(x) (j = 1, 2),

the system of equation (8.19) and (8.20) can be written as

(8.26) Σjrjlil - P(Θ)}AM] + P(θ)AMf] = /

and

(8.27) Aaj = {/ - P(0)μ Js/x) «7(x; X, aj)dFjθ(x)/j W?(x; A, aj)dFjθ(x)

; X, άj)dFJ$(s)/S Wf(x; A, a3)dFjθ{x).

Since W^(x; ^, α; ) depends only on {I-P(Θ)}A and {/ - P(θ)}Aap and
Wf(x; ^, α̂ ) depends only on P(Θ)A and P(θ)Aaj9 we can divide the system
of equation and the estimation equation into orthogonal-part and discriminant-
part as in the following lemma.

LEMMA 8.1. If a system of equation for A0 and a* (/ = 1, 2):

(8.28) ΣjrjA°MJ^^

(8.29) a°j = Jsj(x) W]{x A, aj)dFJΘ(x)/ϊ Wf(x A, aj)dFjθ(x)

has a solution, and a system of equation for Ad and aj (j = 1, 2):

(8.30) ΣjrjAdMJ = J.

(8.31) aj = J s/x) Wf(x A, afrdFje(x)ll Wf(x; A, a}dFj9(x)

has a solution, then a solution for (8.26) and (8.27) is given by

(8.32) A = {I-P(θ)}A° + P{θ)Ad, Aa} = {I - P(θ)}Aa°j + P(θ)Aadj.

Further, the estimation equation (6.8) for φj(x; A, α,-) (j = 1, 2) w equivalent with

(8.33) {/ - P0)}Σj' 1;Mβfo(*) - a?} Wf(x; A0, a^)dFj(x) = 0

and

(8.34) P(0)£,.rJ^{S j.(x) - α̂ } Wf(x; A', βj)df,(x) = 0.

9. Equivariant Λf-estimator

Consider a group of transformation on the sample space:

(9.1) j / = {α:Ω—>Ω}.

Suppose the model {F(x; η);ηsH} is invariant under s/, that is, every ccesΐ
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and ηeH determine a unique element in H, denoted by άη, such that

aF( η) = F( όίη), where oίF is the distribution of ocX with X being distributed

as F. We denote α = (α ( ζ ), α(ξ)')' corresponding to η = (£', ξj. We assume

that όί(ξ)η depends only on ξ. Then we can define the transformation ga

associated with α on whole parameter space Θ as

(9.2)

We assume that ga is differentiable with θ.

We say that an estimator T is equivariant if T [aFι, 5LF2] = #α7LFi, F 2 ]

for all α.

LEMMA 9.1. (Hampel et al. [11], page 259) If T is equivariant then

(9.3) IFj(au, T; &Fl9 F2) = [dgJdθΊIFj(u, T; Fl9 F2) (j = 1, 2),

where [βgaldθ'li is the derivative of gaτ at τ = θ.

PROOF. Because of (αF)α"'Λ = a(Fu'h) and equivariance, we get

(9.4) T ί ί α ί Ί Γ *, αF 2 ] = gΛT[Fΐ\ F 2 ] .

Take the right derivative of both sides with using chain rule, then we get the

desired result.

THEOREM 9.1. The efficiency and the gross-error sensitivities defined by

(7.8) and (7.14), respectively, are invariant if T is equivariant.

PROOF. The misclassification probability of Π2 can be written as

(9.5) F(R(τ) η2) = Pr {aX e α/?(τ) η2}

= F{aR(τ);όcη2}.

So that ocR(θ) gives the minimax region for Fxtβaθ and F2f9<χθ9 which implies

R(gaθ) = (xR(θ) with probability 1. If the support of f(x; η) does not depend

on η, then

(9.6) F(R(τ);η2) = F(R(gxτ);άη2).

Take the derivative of both sides at τ = θ, then we get

(9-7)

From Lemma 9.1
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(9.8) D(θ)ΊFj(u, T; θ) = D(gaθ)ΊFj(au, Γ; gβ) (j = 1, 2),

which implies the invariance of ed(T; θ) and ydj(T; θ).

The M-estimator corresponding to φ is equivalent if the equation

(9.9) Σ; = 1 r , | ιA,(x,τ)dF,M = O

is equivalent with

(9.10) ΣU'M"** ΘSWFjix) = 0.

Let δ(θ) be the maximal invariant function on θ under the group of

transformation <$ = {ga; α e ^ } . Let Θδ = {θeΘ\ δ(θ) = δ}9 the orbit of θ

such that the value of the maximal invariant function is δ. Let θδ be an

arbitrary fixed element of Θ. Then there is a transformation α(= αθ, say) on

Ω such that gaθ = 0 ί(f l).

THEOREM 9.2. i w ^ wλ/c/z defines an equivariant M-estimator, define

Ψ = O i , Ψi\ by

(9.11) φ/x, θ) = ψj(ocθx, θm) (j = 1, 2),

/Λ^ φ defines the same M-estimator as ψ.

PROOF. Let τ be a solution of (9.9). Substitution of α = ατ in (9.10) gives

(9.12) Σ,2=i

Similarly a solution of (9.12) is also a solution of (9.9).

The way of constructing the optimal D-robust equivalent M-estimator can

be partitioned to three steps.

Step 1. Find the maximal invariant δ and choose an appropriate set of θδ.

Step 2. For each θδ, compute the likelihood scores, and calculate the

matrix A(θδ) and cij(θδ) (j = 1, 2) described in Theorem 8.2.

Step 3. By using Theorem 9.2, define the ^-functions for all θ.

If k(θ) = 1, then Lemma 8.1 is useful in reducing the ^-functions to simple

forms.

10. The optimal D-robust M-estimators in elliptical opulations

In this section we construct the optimal D-robust equivariant M-estimators

in elliptical populations along the steps described in the previous section.

We return to the elliptical model (1.1) considered in Part I. Since the

symmetric matrix A contains redundance, we parametrize the model as
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(10.1) f(x; ηj) = \Λ\~ 1/2h{(x - μ / Λ " 1 ^ - μ, )} (j = 1, 2),

where ηj= {μj, vecs(Λ)'}', with operator vecs defined as follows (Hampel et

al. [11], page 272):

If 5 is a symmetric matrix, let vecs (S) be the vector

(10.2) vecs (S) = (S l l/2 1 / 2,...,5p p/2 1 / 2, s2 1, s3l9...9sPtP-J.

The whole parameter is θ = (μ[,μ2, vecs(Λ)')'. For any 2p + p(p + l)/2-

dimensional vector α, p-dimensional vector βl9 β2 and p x p symmetric matrix

Γ, we often use the notation α = (βl9 β2, Γ) instead of writing oc = (β[, β'2,

vecs(ryy.
From Theorem 1.2, we obtain that k(θ) = 1, the minimax discriminant

region R(θ) is given by

(10.3) R(θ) = {x; (x - μ)'Λ-\μι - μ2) > 0},

and

(10.4) F(Λ(τ); >/2) = P 2(τ; 0) = β{c2(τ, θ)}9

where c2(τ, ^) is given by (1.3) and Q is the distribution function whose desity

function is given by (1.4). From Lemma 3.1, the derivative of c2(τ, θ) is given

by

(10.5) [ ( 3 / δ τ ) c 2 ( τ , 0 ) ] τ β β = - i κ , ί , O ] ?

where

(10.6) ξ = A-1A

The results (10.4) and (10.5) imply

(10.7) β ( 0 ) = - ^ i K , ί , O ] ,

where qx is given by (3.9).

The model is invariant under the afϊine group of transformation si on

the sample space Ω = Rp, where

(10.8) si = {α = (L, b)\ L is a p x p nonsingular matrix, foe.Rp},

and ax = Lx + b for xe ίλ The induced transformation on H = {η} and Θ

are α̂ / = (Lμ + fc, LΛL) and #α# = (Lμx + ft, Lμ2 + b, LAL), respectively. It

is known that the maximal invariant of Θ under G is

(10.9) Λ2 = (μi-μ2)fΛ-1(μ1-μ2)
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(cf. Muirhead [22] page 220). Θ is partitioned by G as

(10.10) Θ = {JΔ>0ΘΔ.

where each orbit is defined as

(10.11) ΘΔ = {θ = (μ l s μ2, Λ); (μx - μ 2 ) ^ " 1 ( i u 1 - μ2) = A2}.

For each orbit ΘΔ% we choose 0 4 = (δ, 0, Jp), where (5 = (A, 0,...,0)\ We
denote ηδ = (δ, Ip) and η0 = (0, / p ).

The transformation <xθ such that the induced transformation transforms θ
to ΘΔ9 defined in the previous section, is

(10.12) αθ = (HΛ" 1 / 2 , - HΛ-^2μ2)9

where H is an orthogonal matrix whose first row is ξ\ where ξ is given by
(10.6). We shortly denote the induced transformation by aθ as gθ. From
(10.7) and (10.6) the projection matrix P{ΘΔ) is given by

(10.13)

where U is a p x p matrix whose 1-1 element is 1 and other all elements are 0.
The score function s(x, η) is given by

(10.14) s(x, η) = lA'x(x - μ)w(υ), Λ~x(x - μ)(x - μyΛ'1^) - A~lm]9

where

(10.15) v^ix-μYΛ-'ix-μ)

and

(10.16) w(υ) = - 2(d/dv) {log h(v)}.

Therefore we obtain sx(x9 ΘΔ) = sx(x — δ, θ0) and s2(x, ΘΔ) = s2(x, θo)9

where

(10.17)

and
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I
(10.18) s2{x, θ0) = zw(z'z)

\ vecs {zz'w(z'z) - I

Let the optimal estimation function be [ψl9 ι^2] From Theorem 8.2 and

Lemma 8.1 we obtain

(10.19) ψj(x, ΘΔ) = P(θΔ)Ad{Sj(x, ΘΔ) - adj} Wf{χ, ΘΔ)

+ {I - P{θΔ)}A°{sj{x9 ΘΔ) - a°j}WJ(x, ΘΔ)

where

(10.20) Wf(x, ΘΔ) = min [1, Cj/\rjD(θΔyAd{sj(x, ΘΔ) - αj}|]

and

(10.21) W7(x, ΘΔ) = min [1, Cj/\\rj{I - P(ΘΔ)}A°{SJ(X, ΘΔ) - a°j} | | ]

(j = 1, 2), and where Λ\ αj (ft = d, o j = 1, 2) is a solution of the system of

equations:

(10.22) a) = JSj(x, θΔ)W}(x; θΔ)dFjθΔ(x)l\ W}(x; θΔ)dFjθΔ(x)

and

(10.23) P(θΔ)AάΣjrjM< = P(ΘΔ)9- {I - P(θΔ)}A°ΣjrjM° = I - P(ΘΔ)

with

(10.24) M) = J {sj(x9 ΘΔ) - a)} {Sj(x, ΘΔ) - a)\ W»(x, θΔ)dFjθΔ(x).

Let

(10.25) <ή = Cj/{rj\\D{θΔ)\\}=2ι>2Cj/(rjqj) and c° = Cj/rj (j = 1, 2).

Then the weighting function W^(x, Θ4)'s are written as

(10.26) W*(x, ΘΔ) = W*(x - δ, θ0)

and

(10.27) Wξ(x, ΘΔ) = W}(x, θ0) (h = d9 o)

where

(10.28) Wf{z9 θ0) = min [1, ήlWPφjA^s^ θ0) - adj}\\}

and

(10.29) W](z9 θ0) = min [1, c°j/\\ {I - P(θΔ)}A°{Sj(z9 θ0) - a)} | | } .
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T h e s y s t e m of e q u a t i o n s for A h a n d a)(h = d, o j = 1, 2) a r e g i v e n b y

(10.30) a) = $Sj(z, 0o)W*(z; θo)dF(z; ηo)/\ Vή(z; θo)dF(z; η0)

and

(.10.31) P(θΔ)AdΣjrjMj = P(ΘΔ), {I - P{θΔ)}A°ΣjrjM°j = / - P(ΘΔ)

with

(10.32) M) = l{sj(z, θ0) - a)} {Sj(z, θ0) - ahj}'W*(z; θo)dF(z; η0).

Therefore Ah and a) (h = d, o j = 1, 2) do not depend on Δ for given cj and

caj U = 1, 2).

The optimal values of Ah and a) (h = d,o;j=l,2) may be calculated by

following iterative method.

The 7-th influence function (j = 1, 2) of the maximal likelihood estimator

at F( ηδ) and F( η0) is given by rjJ{θΔ)~1sj{x, ΘΔ) where J ( ^ ) = Γ i J ^ ^ ) +

r2J2(θΔ) with

(10.33) J / ^ ) = $sj(z, θo)sj(z9 θo)'dF(z; η0).

Therefore we set the starting values Am) = jφ^'1 and a){0) = 0 (h = d,o;

j = 1, 2). For the fc-th value Ah(k) and αj ( / c ), the fc-th weighting functions are

defined as

(10.34) Wf*>(z, βo) = min [1, c 7

d / | | P ( ^ ) ^ ( k ) { ^ (^ θ0) - af >} ||}

and

(10.35) ^7 ( f c )(^ βo) = min [1, cj/| | {/ - P(θΔ)}AoW{Sj(z, θ0) - afk)} | |}.

The (k + l)th values are given by

(10.36) α j ( * + 1 ) = J5/z, ^ o ) ^ ( f c ) ( ^ β o )dF/z; ι/0)/f « ? w f e ^ o ) ^ (z; ι,0)

and

(10.37)

where

(10.38) )

= J{5,(z, fl0) - αj(fc + 1)} {s,.(z, fl0) - aj ( f c + 1 )}'^ ( f c )(z, flo)^(z; η0)

(h = d, o j =12).

Actual calculations on the first few cycles of the above iterative process

show that W^{k)(z9 θ0) is a function of z\ and | | z 2 | | 2 where z = (z l 9Z2)' with
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z2 is a (p - 1) x 1 vector, and that afk) = [0, 0, (αj(k) - l)/p] and AHk) =

Diag {αjίft, α ^ V . - i * < £ , ah«]2Ip_u Ah/}} with some constants α*(*\ α j ^ ,

^i fc)2? ^ i ' ai(2,}2 a n d a semi-d-type matrix A ^ . Here Diag{£ l 5 B2,...,Bk},

for scalar or square matrix B/s (j = 1, 2, /c), means a square matrix given by

(10.39) Diag {£lffl2,••

# ! 0 ••• 0 \

0 B2 ... 0

\ 0 0 ••• By I

and the semi-rf-type matrix is defined as follows.

DEFINITION 10.1. The semi-d-type matrix D of order p ^ 2, given by five

numbers dλΛ, dλ2, dv, dβ and rfτ, is defined as

(10.40) D= \ 0 dλΛlp_ι

0 0 dAf-

where Dx is a /? x p matrix given by

0

0

}p

} ( p - l )

(10.41)

Id, dp

dp dv

\dP

up,2

Vt2

dp \

dP,i

dP,2

dv,2

with

(10.42) dy2 = dΛ,2
p - 1

idt-dλt2).

We use the notation A = D*[d λ f l , dλ2f dv9 dp9 dτ~\ which means that A is

a semi-d-type matrix given by dλtί9 dλt2, dv, dp and dτ.

If the sequence \_a\{k\ aψ\ AHk)~\ converges to [μh

u a
h

2, Ah~] for h = d and

o, then a) and Ah {h = d9 o j = 1, 2) are the optimal values and have the same

form as a){k) and Ah{k\ respectively. Therefore we guess that a) = [0, 0,

( f l } - l ) / J and Ah = Diag {ah

μUU alU2Ip_u ah

μ2Λ, ah

μ2>2lp.u Ah

Λ} with some

constans αj, α*kfl's (fe, / = 1, 2) and ^ = D*[αJ f l , α j t 2 , αj, αj, αj]. In order
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to simplify the ^-functions we prepare the following lemma which is a modified

vergion of Lemma 1 given by Hample et al. [11] (page 276).

LEMMA 10.1. Let Λ(z) be a p x p symmetric matrix whose elements are

functions of z = (z1 ? z2)', where zx is a scalar and z2 is a (p — l)-dimensional

vector. If Λ(z) satisfies the equation

(10.43) Λ{Γz) = ΓΛ(z)Γ,

where Γ = Diag {1, Γ} for all (p — 1) x (p — 1) orthogonal matrix Γ. then

nt\ΛΛ\ At \ ί ΨΛ,ΛZUZ2Z2) symmetric
(10.44) Λ(z) =

\z2ψΛf2(z1, z'2z2) z2z'2\j/A3(zi, z2z2) — IφΛA{
z\

for some functions ψΛfk(x, y)'s (k = 1, 2, 3 and 4).

Using the fact that al - bz2z2 has the latent roots a of multiplicity p — 2

and a — bz2z2, the norm of vecs {Λ(z)} is given by

(P ~

(10.45)

LEMMA 10.2. Let Λ(z) has the form given by Lemma 10.1, and

A = D*[aλί9 aλ2, av, ap, aτ^\ Let Ξ(z) be a symmetric matrix given by

vecs {Ξ(z)} = Λ vecs {Λ(z)}. Then Ξ(z) has the same form as one of Λ(z)

with ψΞtk's (k = 1, 2, 3 and 4), where

(10.46) φB,Λχ, y) = ^ΦΛΛ(X^ y) +

(10.47) ψΞ,2(χ> y) = αA,i^Λ,2(^ y)> ΨΞΛX> y) = ^ , 2 ^ , 3 ^ , y)

and

(10.48) ΨB,ΛX> y) = - apΨΛ,Λχ>ΨΛ,Λχ> y) +
p - 1

p-1

From (10.17), (10.18) and the above lemma,we obtain

(10.49) Ah{s1(z,Θ0)-ah

1}= \ 0

vecsμϊ(z)}
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and

/
(10.50) Ah{s2(z, θ0) - α2} = μ*(z)

\ vecs {Λh

2(z)}

where

/αί. ,z1w(z'z)\
(10-51) μ(z) = ^ , ( 7 = 1 , 2 )

and

/ ΦΛ i i (z) symmetric
(10.52) Λhj(z) = l J

h / h

with

(10.53) ΨΛJ,ΛZ) = ahΛz\w(z'z) - α?} + ah

P{
z2z2w(z'z) ~{p - l)αj},

(10-54) ΨHΛJ,2(Z) = a\,lZlW(Z'Z)> ΦHΛJ,3(Z) = β Λ , 2 W ( Z ' Z )

and

(10.55) ^ ,4(z) = ~ βpWvφ'z) - ^} - - J — αj{ziz2w(z'z) - (p - l)α}},
p - 1

^ , 2 Z 2 Z 2 W ( Z ' Z ) (h = d,o;j=l, 2 ) .+
p - 1

Therefore, from (10.45), we can see that the norm of Ah{sj(z, θ0) — a)} is a

function of z\ and z 2 z 2 , which is given as follows.

(10.56) \\Ah{sj(z,θ0)-ahj}\\2

= (alJΛ)
2z\w{z'z)2 + (ah

μl2)
2z'2z2w(z'z)2

+ 1-ί{z2Mz'z) - a1}}2{(ay + (p- \){ah

p)
2}

+ {z'2z2w(z'z) - (p - l)zhj}2{(ah

p)
2 + l/(p - ί)(ah

τ)
2}

+ 2{z\w(z'z) - a)} {z'2z2w(z'z) - (p - l)α}} {αjα* + ah

τaρ}

+ z2z'2z2w{z'z)2{ah

λΛ)
2 + || z21|4w(z'z)2(p - 2)/(p - l)(βl> 2) 2].

From (10.13), (10.49), (10.50) and (10.51)
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(10.57) \\P(θΔ){ΛhSj(z, θ0) - a)} | |2 = l-{ah

μjΛ)
2z2Mzfzf.

Therefore Wf(z9 θ0) is a function of z\ and | | z 2 | | 2 (h = d,o;j=l, 2).

In order to get the system of equations for αj, ah

μjtk, a\k, a\ and a\

(ft = d, o j , k = 1, 2), we use the following two lemmas.

LEMMA 10.3. Let Mh = rιM
h

1 + r2M\9 where M) (j = 1, 2) w given by

(10.32).

(10.58) MΛ = Diag {mh

μlΛ, mh

μίt2lp-ί9 mh

μlΛ, mh

μlt2lp-1

with semi-d-type matrix Mh

Λ given by

(10.59) M\ = D*lmh

λΛ, m\2, mh

v, m
h

p, m
hj,

where

< M = rj$z2Mz'z)2W?(z; θo)dF(z; η0),

< ,2 = rj^—[z'2z2w{z'z)2W^{z; θo)dF(z; η0),
p-l

1
J p - l 1 2 2 J

nΛ 9 =
7 ( / ? - l ) ( p + l )

(10.60)

mv-ΣrJ2

p-
- α } t 2

1 f 1 I 2

mτ = Σrj~(P - !)f i: ^ Z 2 2 2 w ( z ' z ) - αj > 2 > Wf(z; θo)dF(z; η0).
2 U P - 1 ) J

LEMMA 10.4. Let MΛ be a semi-d-type matrix. Z ) * [ m λ j l , m Λ > 2 , m v, m p ,

m j . 77ze« ίft̂  inverse matrix is also semi-d-type, which is given by

(10.61) MX' = D*[ml\, mil mjy, - mp/y, mt/y],

vvΛere

(10.62) y = mvmτ-(p- Y)ml.
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Now the system of equations (10.22) and (10.23) with (10.20), (10.21) and

(10.24) can be reduced to the following system of equations.

αj§1 = \z2Mz'z)\ή(z, θo)dF(z; ι/0)/f W}(z9 θo)dF(z; ηo)9

!'2z2w{zϊz)\ή(z9 θo)dF(z; ηo)/IWΪ(z9 θo)dF(z; ηo)9
P -

(10.63)

ah

x = mhjy\ ah

p = - mh

p/yh and ah

τ = mhjyh

(h = d, o;j9 k = 1, 2), where

(10.64) / = m\mh

x - (p - \)mp.

Here rnh

μjfk,'- are given by (10.60) and

(10.65) W*(z9 θ0) = min [1, ή/ή(z2

l9 z'2z2)-],

where the function υ)(x9 y) is non-negative and is given by

(10.66) {vhj(x, y)}2 = λ- (ah

μjΛ)
2xw(x + y)2

and

(10.67)

{v°(x, y)}2 = j « J ( 1 ) 2 x w ( x + y)2 + (a°μl2)
2yw(x + y)2

+ \ [{^w(x + y) - α,0}2 {(a°v)
2 + (p - \){a°p)

2}

+ {yw(x + y)-(p- 1K°}2{«)2

+ 2{xw(x + y)- q} {yw(x + y) - (p - l)αj} { « + <α°p}

+ xyw(x + y ) 2 K x ) 2 + y2w(x + y)2(p - 2)/(p - 1 ) « 2 ) 2 ] .

From Theorem 9.2, the optimal estimation functions are ψj(otθx, ΘΔ)

0 = 1 , 2 ) , where otθ and ψj(x9θΔ) are given by (10.12) and (10.19),

respectively. We can easily check

(10.68) <xθx-δ = HΛ-1/2(x-μi) and aθx = HA~1/2(x - μ2)9

and the first elements of <xθx — (3 and o^x are given by

(10.69) ξ'Λ~1/2(x-μi) and ξ'Λ~1/2(x - μ2),

respectively, where ξ is given by (10.6). Therefore using Theorem 8.2, Lemma
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8.1 and Theorem 9.2 we obtain the estimation equations which define the
optimal D-robust equivariant M-estimator of θ as in the following theorem.

THEOREM 10.1. Suppose that α}, ah

μj§k9 ah

λΛ, ah

x and a\ (h = d, o j , k = 1, 2)

solves the system of equations given by (10.63). Then the following system of

equations for T=(μ1,μ2,Λ) defines the optimal D-robust equivariant M-

estimator.

(10.70)

= r2a°μ2,2$y'2ξw(y'2y2)W°2(x)dF2(x),

0 = 0,

Σ / J W W - tfth + <(ίK)2]w(j);j))2^7W^w
= Σ / Λ K + (P - ιK) ί wyŵ F/x),

Σ / , < i ί(/ - ϊhyjyjfr{yjyjmχydFAχ) = °>

1

(10.71) yj = Λ'ί/2(x-μJ)9

(10.72) ξ = A~lί2(μγ — μ2)/\\Λ~1/2(μί — μ2)

and

(10.73) W}(x) = min [1, c}/^{(j>j£)2, j)j(/ - Γ

w/7Λ iή(x9 y) g i v e n b y ( 1 0 . 6 6 ) a n d ( 1 0 . 6 7 ) (h = d 9 o ; j = l , 2 ) .

The question of existence and uniqueness of the above estimator should
be answered for each model, i.e., for each function h in (10.1). These problems
are remained for further study.
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