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1. Introduction

Let D be a domain in Rn (n > 2) with the Green function G(x, y) for
the Laplace equation. By \D\ we denote the volume of D. In [5] Cranston
and McConnell proved the following result.

T H E O R E M A. Let n = 2 and let D be a domain of finite area. Then there
exists an absolute constant c such that for any function h>0 harmonic on D,

ί G(x,y)h(y)dy<c\D\h(x).

Their methods are highly probabilistic; they use the life time of condi-
tioned Brownian motion. Chung [4] gave a simplified proof of Theorem A.
His proof is based on the up-crossing and the down-crossing inequalities in
the martingale theory. Banuelos [2] extended Theorem A to general elliptic
equations and n > 3. (For the higher dimensional case we need to assume
some boundary regularity.) His proof is also probabilistic.

The purpose of this note is to give an elementary analytic proof of
Theorem A. Throughout this note we let A be a positive harmonic function
on D. We say that u is an ft-Green potential of density / if

h(x)]D

G(x, y)f(y)dy.

In other words, u is the Λ-Green potential of density / if hu is the Green
potential of density /. In this terminology, the conclusion of Theorem A
reads as follows: the upper bound of the h-Green potential of density h is
dominated by c\D\.

Let us consider the upper bound of /i-Green potentials. In the simplest
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case when h is a constant, the Λ-Green potential reduces to a usual Green

potential, whose upper bound is estimated as follows.

LEMMA 1. Let D be a domain of finite volume. Let R > 0 be such that

\B(0,R)\ = \D\ and let G* be the Green function for B(0, R). Then

sup I G(x, y)dy < \ G*(0, y)dy = c0 \D\2/n.
xeD JD JB(0,R)

where c0 is a positive constant depending only on n.

We observe that the right estimate co\D\ appears in case n = 2. This

lemma can be proved by the symmetrization [1, Theorem 2.8] or by the

Faber-Krahn inequality type argument [2, Lemma 1].

The main trick of Theorem A is how to reduce a general case to Lemma

1. It may be natural to consider subdomains in each of which h is nearly

constant. For example let Dj = {xeD: 2j~1 < h(x) < 2j+1} and let G, be the

Green function for Dj. Then, in each Dj9 the Λ-Green potential

1

is comparable to the usual Green potential j D j G7(x, y)dy, whose upper bound

is estimated by Lemma 1. Thus, if the upper bound over D of the /i-Green

potential

- - ί
is estimated by the sum of the upper bounds over Dj of uj9 then Theorem A

follows. This is the most difficult step in the proof of Theorem A. Roughly

speaking, a difficulty arises from the fact that Uj "vanishes" on dDj, while u is

positive on D Π dDj. Also the estimate heavily depends on the way of decom-

position. It seems that only probabilistic proofs have been known. We shall

generalize this step by considering essential conditions for the decomposition.

As a result we shall arrive at a purely analytic proof of Theorem A.

Suppose D is decomposed into at most countably many open subsets

Dj Φ 0, Nx <j < N2 where — oo < ΛΓX < N2 < oo. We assume that open sub-

sets Dj satisfy

(i) D_=\JJDJ,

(ii) DjΠDk = 0 if | 7 - f e | > 2 .

Condition (ii) implies that D is covered by Dj at most twice.

Suppose 0 < infjj. h < s\xpD. h < oo for each j ; and if ΛΓ2 = oo, then

(1) lim inf/i = o o
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Let cOj = cύj(x9 E) be the /i-harmonic measure of Dj. This means that coj(x, E)

is the PWBh solution of the characteristic function χE (see [3, Chapter XVI]

and [6, Chapter VIII]). We assume that there is a constant λ, 0 < λ < \,

for which the following inequalities hold uniformly for j

o)j{', dDjΠDj^) <λ on Kj,

ωj('9dDjΓ\Dj+1)£l-λ on Kj,

where Kj = Dj^Dj^ UD i + 1 ). We observe from (ii) that Kj is covered only by

Dp Kj includes DjΠdDj-1 and Djf)dDj+1. We understand the inequalities in

(2) always hold if Kj = 0. Our main result is as follows.

THEOREM 1. Let D, Dj9 h and λ be as above. Let u be an h-Green

potential on D with density / > 0 and let Uj be the h-Green potential on Dj

with density f\D. Then

2 - 2 Λ vsupw<- ^Σsupu,- .

REMARK. If D}, = {x e D : V'1 < h(x) < 2j+ί}, then all the assumptions for

Theorem 1 are satisfied with λ = ^. In fact, Kj = {x e D : h(x) = 2J} and

co,(x, SD

Therefore

L ) < - on Kj,

ωj('9dDjf)Dj+1)<- on Kj.

This is the case of [4] and [5]. In Section 3 we shall give a proof of Theorem

A by using Theorem 1.

I am grateful to Minoru Murata for introducing the work of Cranston

and McConnell. I would like to thank Matts Essen for drawing my attention

to the book of Bandle [1] and F.-Y. Maeda for helpful comments.

2. Proof of Theorem 1

PROOF OF THEOREM 1. In view of the monotone convergence theorem,

we may assume that / φ 0 a.e. is bounded and has compact support F. It

follows that the Green potential hu = $G(-, y)f(y)dy satisfies
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0</IM<V4<OO onD,

(3)
lim h(x)u(x) = 0 for q.e. ξ ε dD ,

x->ξ,xeD

where q.e. (quasi everywhere) means that the equality holds outside a polar

set (see [7, Lemma 6.24 and Theorem 8.34]). We see that

hu 1 h
< 1 < ̂ -Γ-Γ on F .supF (ftw) infF h

Since ftw is harmonic in D\F, it follows from (3) and the maximum principle

that

hu h
< on D ,supF (ΛM) infp h

whence

supF (An)
u < . * , < oo on D.

lnfp A

Thus u is bounded on D. Let Mj = supX j M. If Kj = 0, then we let Mj = 0.

Observe that M7 is bounded. Moreover, by (1) and (3), if N2 = oo, then

(4) Mj?-• 0 as '^> oo .

Hereafter we assume that ^ = —00 and iV2 = 00. If Nt or ΛΓ2 is finite, we

can argue in the same fashion by letting M; = 0 and Kj = 0 for j <> Nx or j > N2.

We claim

(5) u < Mj-± coj( -, dDj Π /),-_!) + Mj+1 cϋj( , 3 ^ Π /),.+!) + u,- on Dy.

To this end we rewrite (5) as

(6) h(u - Uj) < Mj-! h(Oj( -, dDj Π Dj_x) + Mj+1 hcθj{ , δDj Π D J + 1 ) o n Dy.

Note that both sides of (6) are bounded harmonic functions on Dj. We shall

apply the maximum principle on Dj. It follows from (3) that the left hand

side has nonpositive boundary values q.e. on dDj Π dD. Assumption (ii) yields

dDj Π D c (dDj Π Dj_γ) U (dDj Π Dj+1) c K ^ U Kj+1 .

By the definitions of My and ω,., the boundary values on dDj Π D of the

right hand side of (6) are greater than or equal to those of the left hand

side q.e. Hence the maximum principle yields (6). Thus (5) follows.

For simplicity we let Uj = supDj Uj. Then we have from (2) and (5)

(7) sup u < max {Mj_l9 Mj+1} + U3,
D
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(8) M} < λλtj-i + (1 - A)M, + 1 + U,.

We shall show from (8) that

(9) M ^ π ί Σ U« for all;.
1 — Ik k=-oo

Then the conclusion readily follows from (7) and (9).

Let us now prove (9). We write (8) as

Mj - aMj-x < Mj+1 - (xMj + βUj,

where 0 < α = λ/(ί — λ) < 1 and β = 1/(1 — λ) > 0. Apply the above inequal-

ity for j , ..., J to obtain

Mj - α M h l < MJ+1 - *Mj + jS £ t/fc .
K J

Letting J -* oo, we find from (4) that

^ ^ β Σ ^ ^ β Σ
k=j fc=-oo

Apply this inequality for j — ί to obtain

fc=-oo

whence

α) Σ
fc=-oo

Repeating this procedure, we get

4 Σ 111 Σ

— α it=-oo l — z λ k=-oo

since Mj is bounded and so <xkMj-k->0 as fe-^oo. Thus (9) follows. The

proof is complete.

3. Proof of Theorem A

PROOF OF THEOREM A. Let

fM ( x ) = ^ f G(x9y)h{y)dy.
n X )

Let Dj= {x e D: 2J'"1 < /i(x) < 2j+1} and let
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"; ( x ) = ά f Gj(x,y)h(y)dy,

where Gj is the Green function for Dj. By definition

Uj(x)<~^i G j (x,y)2^<4f Gj(x9 y)dy.

Applying Lemma 1 to Dj9 we obtain

Hence, Theorem 1 and (2') yield

2-2/3 «
sup u < _ _

For n = 2 this implies the required inequality. The theorem is proved.
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