On exterior $\boldsymbol{A}_{\boldsymbol{n}}$-spaces and modified projective spaces

Yutaka Hemmi
(Received May 12, 1993)

1. Introduction

A space X with a continuous multiplication $\mu: X \times X \rightarrow X$ with a unit is called an H-space. A typical example of H-space is a loop space. It is known that not all H-spaces have the homotopy type of loop spaces. The 7-dimensional sphere S^{7} is one of such counter examples.

Sugawara [12] gave a criterion for an H-space to have the homotopy type of a loop space. His criterion is a kind of higher homotopy associativity of infinite order. Almost the same time Stasheff [9] reached the same idea, and he defined the A_{n}-space which is the H-space with higher homotopy associative multiplication of n-th order. In his sense A_{2}-spaces are H-spaces, A_{3}-spaces are homotopy associative H-spaces, and A_{∞}-spaces are spaces with the homotopy type of loop spaces.

In his paper, Stasheff defined the projective n-space $P_{n}(X)$ associated to a given A_{n}-space X, which is considered as a generalization of the n-th stage of the construction of the classifying space of a topological group or an associative H-space. In fact, $P_{n}(X)$ is defined inductively by $P_{n}(X)=P_{n-1}(X) \cup$ $C\left(X^{* n}\right)$ with $P_{0}(X)=*$, where $X^{* n}$ is the n-fold join of X. Then Stasheff proved that if $X=\Omega Y$, then $P_{\infty}(X)$ has the homotopy type of Y, where $P_{\infty}(X)=\bigcup_{i=1}^{\infty} P_{i}(X)$. The name 'projective' comes from the fact that if X is the unit sphere in the real, the complex or the quaternionic numbers, then $P_{n}(X)$ is the usual real, complex or quaternionic projective n-space.

The projective n-space has been very useful for the study of the cohomology of A_{n}-spaces. In fact, we have the following fact.

Theorem (Iwase [4]). Let X be a simply connected A_{n}-space so that

$$
H^{*}(X ; \mathbf{Z} / p) \cong \Lambda\left(x_{1}, \ldots, x_{k}\right), \quad \operatorname{dim} x_{i}: \text { odd }
$$

where p is a fixed prime. Suppose that there are classes $y_{i} \in H^{*}\left(P_{n}(X) ; \mathbf{Z} / p\right)$ so that each y_{i} restricts to the suspension of x_{i} in $H^{*}(\Sigma X ; \mathbf{Z} / p)$ by the homomorphism induced by the inclusion $\Sigma X \subset P_{n}(X)$. (This property is referred as the A_{n}-primitivity of x_{i}.) Then there is an ideal S in $H^{*}\left(P_{n}(X) ; \mathbf{Z} / p\right)$ closed under the action of the Steenrod operation, so that

$$
H^{*}\left(P_{n}(X) ; \mathbf{Z} / p\right) / S \cong T_{n+1}\left[y_{1}, \ldots, y_{k}\right]
$$

where $T_{n+1}\left[y_{1}, \ldots, y_{k}\right]$ is the truncated polynomial algebra of height $n+1$, i.e., the quotient algebra of the polynomial algebra $\mathbf{Z} / p\left[y_{1}, \ldots, y_{k}\right]$ by the ideal generated by the $n+1$-fold decomposable elements.

Iwase's original theorem in [4] is on the K-ring of $P_{n}(X)$. We can also prove the above theorem by the same method.

The above theorem is used especially for the study of the action of the Steenrod operation on $H^{*}(X ; \mathbf{Z} / p)$ when $n \geq p$. In fact, the unstable condition $\mathscr{P}^{m} y=y^{p}(\operatorname{deg} y=2 m)$ can be used to deduce a variety of results (cf. [2]).

On the other hand, the classes x_{i} are not always A_{n}-primitive. One can only prove the A_{n-1}-primitivity of x_{i} ([4]). If we don't assume the $A_{n}{ }^{-}$ primitivity of x_{i}, it seems to be very difficult to give a useful structure theorem for $H^{*}\left(P_{n}(X) ; \mathbf{Z} / p\right)$. Iwase [5] also studied such cases. He considered the case that there exists a particular subspace of X called a generating subspace. He used this subspace to construct a modified projective n-space. Then, without assuming the A_{n}-primitivity of x_{i}, he gave a structure theorem for the K-ring of the modified space which is very similar to the one for the usual projective n-space of the A_{n}-primitive case.

In this paper we construct another modified projective space. Then we show that the cohomology of this space has a very similar structure to the one in the above theorem. The advantage of our construction is that we need not assume the A_{n}-primitivity of x_{i} or the existence of a particular space like a generating subspace. Our main result is as follows:

Theorem 1.1. Let X be a simply connected A_{n}-space with

$$
H^{*}(X ; \mathbf{Z} / p) \cong \Lambda\left(x_{1}, \ldots, x_{k}\right), \quad \operatorname{deg} x_{i}: \text { odd }
$$

for some odd prime p. Then there are a space Y, a map $\varepsilon: \Sigma X \rightarrow Y$, classes $y_{i} \in H^{*}(Y ; \mathbf{Z} / p)(1 \leq i \leq k)$ and an ideal $M \subset H^{*}(Y ; \mathbf{Z} / p)$ so that the following conditions are satisfied.
(1) $\varepsilon^{*}\left(y_{i}\right)=x_{i}$, where we identify $\tilde{H}^{*}(\Sigma X ; \mathbf{Z} / p)$ with $\tilde{H}^{*}(X ; \mathbf{Z} / p)$ via the suspension isomorphism.
(2) $\varepsilon^{*}(M)=0$.
(3) $M \cdot \tilde{H}^{*}(Y ; \mathbf{Z} / p)=0$.
(4) There is a subalgebra A^{*} of $H^{*}(Y ; \mathbf{Z} / p)$ isomorphic to $T_{n+1}\left[y_{1}, \ldots, y_{k}\right] \oplus$ M as an algebra, where $T_{n+1}[\ldots]$ is the truncated polynomial algebra of height $n+1$.
(5) A^{*} and M are closed under the action of the $\bmod p$ Steenrod algebra $\mathscr{A}_{(p)}$. Thus $T_{n+1}\left[y_{1}, \ldots, y_{k}\right]=A^{*} / M$ has a structure of an unstable $\mathscr{A}_{(p)^{-}}$ algebra.

Then $R_{n}(X)$ is the space Y and the inclusion $\Sigma X=P_{1}(X) \subset R_{n}(X)$ is the map ε in Theorem 1.1. For the construction we consider the loop space ΩX of X. Since ΩX is an A_{∞}-space, we have projective spaces

$$
\begin{gathered}
\Sigma \Omega X=P_{1}(\Omega X) \subset P_{2}(\Omega X) \subset \cdots \\
P_{\infty}(\Omega X)=\bigcup_{i} P_{i}(\Omega X) \simeq X
\end{gathered}
$$

Hereafter, we consider $P_{t}(\Omega X)$ as a subspace of X by identifying $P_{\infty}(\Omega X)$ with X. Put

$$
C_{n-1}=\bigcup_{i=1}^{n-1}(\Sigma \Omega X)^{* i-1} * P_{2}(\Omega X) *(\Sigma \Omega X)^{* n-1-i} \subset X^{* n-1}
$$

Take the restriction map b_{n-1} of $\beta_{n-1}: X^{* n-1} \rightarrow P_{n-2}(X)$ and define $R_{n-1}(X)$ as its mapping cone;

$$
b_{n-1}: C_{n-1} \rightarrow P_{n-2}(X), \quad R_{n-1}(X)=P_{n-2}(X) \cup_{b_{n-1}} C\left(C_{n-1}\right)
$$

Let $f_{n-1}: R_{n-1}(X) \rightarrow P_{n-1}(X)$ be the induced map. Put

$$
C_{n}=(\Sigma \Omega X)^{* n} \subset X^{* n} .
$$

Lemma 2.1. There is a map $b_{n}: C_{n} \rightarrow R_{n-1}(X)$ so that

$$
f_{n-1} \circ b_{n} \simeq \beta_{n} \mid C_{n}
$$

Proof. According to Stasheff [8], there is a map $\Sigma \Omega X \times \Sigma \Omega X \rightarrow P_{2}(\Omega X)$ so that the following diagram is homotopy commutative, where the vertical maps are inclusions;

Then the result follows immediately.
q.e.d.

We study the above map $\Sigma \Omega X \times \Sigma \Omega X \rightarrow P_{2}(\Omega X)$ more generally in section 6.

Now we define $R_{n}(X)$ as the mapping cone of b_{n};

$$
R_{n}(X)=R_{n-1}(X) \cup_{b_{n}} C\left(C_{n}\right)
$$

To prove that $R_{n}(X)$ has the required properties, we need to know the cohomology of $P_{t}(X)$ and $P_{t}(\Omega X)$.
(6) ε^{*} induces an $\mathscr{A}_{(p)}$-module isomorphism,

$$
Q\left(T_{n+1}\left[y_{1}, \ldots, y_{k}\right]\right) \rightarrow Q H^{*}(X ; \mathbf{Z} / p)
$$

where Q denotes the indecomposable module.
The above theorem is the odd prime version of [3].
This paper is organized as follows. The space Y in Theorem 1.1 is constructed in section 2 . To prove the required properties on Y, we need to study the cohomology of projective spaces and the loop space of X. Sections 3 and 4 are devoted to it. The properties (1)-(4) are proved in section 5. In section 6 we discuss more general constructions than that of Y. Then we prove (5) and (6) in section 7. We give some applications in section 8.

2. Construction

In the rest of this paper the cohomology has a coefficient in \mathbf{Z} / p for a fixed odd prime p.

The space Y in Theorem 1.1 is constructed in an analogous way to the projective n-space $P_{n}(X)$ of X. First we recall the definition of projective spaces. The readers refer to Stasheff's original paper [9].

The projective t-space of X, denoted by $P_{t}(X)$, for $t \leq n$, is defined inductively by a relative homeomorphism

$$
\left(K_{t+2} \times X^{t}, S_{t}\right) \rightarrow\left(P_{t}(X), P_{t-1}(X)\right),
$$

where K_{t+2} is the Stasheff complex with $K_{t+2} \approx I^{t}, S_{t}=\partial K_{t+2} \times X^{t} \cup K_{t+2} \times$ $X^{[t]}\left(X^{[t]}=\left\{\left(x_{1}, \ldots, x_{t}\right) \in X^{t} \mid x_{i}=*\right.\right.$ for at least one $\left.\left.i\right\}\right)$, and the map $S_{t} \rightarrow P_{t-1}(X)$ is constructed from the A_{n}-structure of X. It is proved in Theorems 11 and 12 of [9] that $P_{t}(X)$ is also considered as the mapping cone of a suitable map

$$
\beta_{t}: X^{* t} \rightarrow P_{t-1}(X) ; \quad P_{t}(X)=P_{t-1}(X) \cup_{\beta_{t}} C\left(X^{* t}\right),
$$

where $X^{* t}$ is the t-fold join of $X ; X^{* t}=X * \cdots * X$. Then by definition, we have

$$
\begin{aligned}
& \Sigma X=P_{1}(X) \subset P_{2}(X) \subset \cdots \subset P_{n}(X) \\
& P_{t}(X) / P_{t-1}(X) \simeq \Sigma X^{* t} \simeq \Sigma^{t}\left(X^{\wedge t}\right)
\end{aligned}
$$

where $X^{\wedge t}$ is the t-fold smash product of $X ; X^{\wedge t}=X \wedge \cdots \wedge X$.
Now we construct spaces $R_{n-1}(X)$ and $R_{n}(X)$ with

$$
P_{n-2}(X) \subset R_{n-1}(X) \subset R_{n}(X) .
$$

3. Cohomology of projective spaces

Let X be an A_{n}-space. Since $P_{t}(X) / P_{t-1}(X) \simeq \Sigma^{t}\left(X^{\wedge t}\right)$, we have an exact triangle for $t \leq n$;

where $\operatorname{deg} \varepsilon_{t}^{*}=0, \operatorname{deg} \beta_{t}^{*}=1-t, \operatorname{deg} \rho_{t}^{*}=t$, and $R^{\otimes t}=R \otimes \cdots \otimes R$ (t-fold) for any R. Note that ρ_{1}^{*} is equal to the suspension isomorphism. Stasheff [9] introduced a $\bmod p$ cohomology spectral sequence $\left\{E(X)_{r}^{*, *}, d(X)_{r}\right\}$ associated to the filtration

$$
P_{0}(X) \subset P_{1}(X) \subset \cdots \subset P_{n}(X)
$$

Then

$$
\begin{gathered}
E(X)_{1}^{t *}= \begin{cases}\tilde{H}^{*}(X)^{\otimes t} & (t \leq n) \\
0 & (t>n)\end{cases} \\
d(X)_{1} \mid E(X)_{1}^{t *}=\sum_{j=1}^{t}(-1)^{j-1} i d^{\otimes j-1} \otimes \tilde{m}^{*} \otimes i d^{\otimes t-j},
\end{gathered}
$$

where $\tilde{m}: \tilde{H}^{*}(X) \rightarrow \tilde{H}^{*}(X) \otimes \tilde{H}^{*}(X)$ is the reduced coproduct of the H-structure $m: X \times X \rightarrow X$, and $i d^{\otimes s}$ is the s-fold tensor product $i d \otimes \cdots \otimes i d$.

Suppose that

$$
H^{*}(X) \cong \Lambda\left(x_{1}, \ldots, x_{k}\right), \quad \operatorname{det} x_{i}: \text { odd }
$$

According to Borel [1, Theorem 4.1] we can assume that each x_{i} is primitive if $n \geq 3$. Let I_{s} be the \mathbf{Z} / p-submodule of $H^{*}(X)$ spanned by all s-fold multiplications of generators $\left\{x_{i_{1}} \ldots x_{i_{s}}\right\}$. It is clear that

$$
\begin{gathered}
I_{s} \cap I_{t}=0 \quad \text { for } s \neq t \\
D_{t} H^{*}(X) \cong \bigoplus_{s \geq t} I_{s}
\end{gathered}
$$

where $D_{t} R$ is the submodule of R of all t-fold decomposables. Furthermore, $D_{t} H^{*}(X)$ are closed under the action of $\mathscr{A}_{(p)}$, and if x_{i} are primitive, so are I_{s}. Put

$$
I_{s}^{t}=\bigoplus_{\substack{s_{1}+\cdots+s_{t}=s \\ s_{i} \geq 1}} I_{s_{1}} \otimes \cdots \otimes I_{s_{t}} \subset \tilde{H}^{*}(X)^{\otimes t}
$$

Then

$$
\begin{gathered}
I_{s}^{t} \cap I_{r}^{t}=0 \quad \text { for } s \neq r \\
I_{s}^{t}=0 \quad \text { for } s<t \\
\tilde{H}^{*}(X)^{\otimes t}=\bigoplus_{s \geq t} I_{s}^{t} .
\end{gathered}
$$

It is also clear that $\bigoplus_{i \geq s} I_{i}^{t}$ are $\mathscr{A}_{(p)}$ closed for any s, t, and I_{s}^{t} are $\mathscr{A}_{(p)}$ closed if x_{i} are primitive. By definition, $E(X)_{1}^{t^{*} *}=\bigoplus_{i \geq t} I_{i}^{t}(t \leq n)$, and if x_{i} are primitive, $d(X)_{1}\left(I_{i}^{t}\right) \subset I_{i}^{t+1}$. Put

$$
\begin{array}{r}
M(t)_{s}=\rho_{t}^{*}\left(I_{s}^{t}\right) \\
M(t)=\sum_{s>t} M(t)_{s} .
\end{array}
$$

Then

$$
\begin{gathered}
M(t)_{i} \cap M(t)_{j}=0 \quad \text { for } i \neq j \\
M(t)_{s}=0 \quad \text { for } s<t
\end{gathered}
$$

and $\sum_{i \geq s} M(t)_{i}$ are $\mathscr{A}_{(p)}$ closed, and if x_{i} are primitive, so are $M(t)_{s}$. The following fact is immediate from the definition (cf. [4]).

Lemma 3.1. For the above spectral sequence, we have the following properties.
(1) $I_{i}^{t-1} \xrightarrow{d(X)_{1}} I_{i}^{t} \xrightarrow{d(X)_{1}} I_{i}^{t+1}$ is exact for $t<n$ and $i \neq t$.
(2) $d(X)_{1}\left(I_{t}^{t}\right)=0$ for $t \leq n$.
(3) $\rho_{t}^{*}: I_{t}^{t} / d(X)_{1}\left(I_{t}^{t-1}\right) \cong D_{t} H^{*}\left(P_{t}(X)\right)$ for $t<n$.
(4) $\operatorname{ker} \beta_{t+1}^{*} \cap M(t)=0$ for $t<n$.
(5) If x_{i} are A_{n}-primitive, (3) also holds for $t=n$. Here x_{i} is called A_{n}-primitive if $\rho_{1}^{*} x_{i} \in \varepsilon_{2}^{*} \ldots \varepsilon_{n}^{*}\left(\tilde{H}^{*}\left(P_{n}(X)\right)\right)$.
(6) If $n \geq 3$, then

$$
E(X)_{2}^{*, *} \cong \cdots \cong E(X)_{n-1}^{*, *} \cong T_{n+1}\left[y_{1}, \ldots, y_{k}\right] \oplus M(n),
$$

where $y_{i}=\left[x_{i}\right] \in E(X)_{1}^{1, \operatorname{deg} x_{i}}$. Furthermore, if x_{i} are A_{n}-primitive, in addition, then the spectral sequence collapses;

$$
E(X)_{2}^{*, *} \cong \cdots \cong E(X)_{\infty}^{*, *} .
$$

From the above fact we have the following theorem (cf. [4]).
Theorem 3.2. For any $1 \leq t \leq n-1$ and $1 \leq i \leq k$, there are $y(t)_{i} \in$ $H^{*}\left(P_{t}(X)\right)$ so that the following facts hold.
(1) $\varepsilon_{t}^{*}\left(y(t)_{i}\right)=y(t-1)_{i}(2 \leq t \leq n-1)$.
(2) $\varepsilon_{t}^{*}(M(t))=0(2 \leq t \leq n)$.
(3) $\quad \tilde{H}^{*}\left(P_{t}(X)\right) \cdot M(t)=0(1 \leq t \leq n)$.
(4) $D_{t+1} H^{*}\left(P_{t}(X)\right)=0$ for $1 \leq t \leq n$. Furthermore, if $t \leq n-1$, then

$$
H^{*}\left(P_{t}(X)\right) \cong T_{t+1}\left[y(t)_{1}, \ldots, y(t)_{k}\right] \oplus M(t)
$$

as algebras.
(5) $M(t)$ are closed under the action of $\mathscr{A}_{(p)}$. Thus, in particular, the quotient algebra $H^{*}\left(P_{t}(X)\right) / M(t) \cong T_{t+1}\left[y(t)_{1}, \ldots, y\left(t_{k}\right]\right.$ are unstable $\mathscr{A}_{(p)}$ algebras for $t \leq n-1$.
(6) $\rho_{t}^{*}\left(x_{i_{1}} \otimes \cdots \otimes x_{i_{t}}\right)=y(t)_{i_{1}} \ldots y(t)_{i_{t}}(1 \leq t \leq n-1)$. Thus, in particular $\rho_{1}^{*}\left(x_{i}\right)=y(1)_{i}$.
(7) $\varepsilon_{t}^{*}\left(H^{*}\left(P_{t}(X)\right)\right) \subset T_{t}\left[y(t-1)_{1}, \ldots, y(t-1)_{k}\right](2 \leq t \leq n)$.
(8) If x_{i} are A_{n}-primitive, then (1), (4), (5) and (6) also hold for $t=n$.

4. Cohomology of ΩX

We continue to study the space X in section 3. First note that

$$
H^{*}(\Omega X) \cong \Gamma\left[\sigma^{*}\left(x_{1}\right), \ldots, \sigma^{*}\left(x_{k}\right)\right] \quad \text { as coalgebras }
$$

where the right hand side of the equation is the divided polynomial Hopf algebra over $\sigma^{*}\left(x_{1}\right), \ldots, \sigma^{*}\left(x_{k}\right)$. (σ^{*} is the cohomology suspension.) This can be proved by using Eilenberg-Moore spectral sequence (cf. [7, Prop. 2.8]). In particular, the primitive module $P H^{*}(\Omega X)$ has $\left\{\sigma^{*}\left(x_{1}\right), \ldots, \sigma^{*}\left(x_{k}\right)\right\}$ as a basis.

Now choose \mathbf{Z} / p-submodule J of $\tilde{H}^{*}(\Omega X)$ with

$$
\tilde{H}^{*}(\Omega X) \cong J \oplus P H^{*}(\Omega X)
$$

Put

$$
J(t)=\sum_{j=1}^{t} \tilde{H}^{*}(\Omega X)^{\otimes j-1} \otimes J \otimes \tilde{H}^{*}(\Omega X)^{\otimes t-j}
$$

Note that $\tilde{H}^{*}(\Omega X)^{\otimes t} \cong J(t) \oplus P H^{*}(\Omega X)^{\otimes t}$. Since ΩX is an A_{∞}-space, we have the same spectral sequence as in section 3 for ΩX. Then we put

$$
S(t)=\rho_{t}^{*}(J(t)) \subset \tilde{H}^{*}\left(P_{t}(\Omega X)\right) \quad \text { and } \quad x(t)_{i}=\varepsilon_{t, \infty}^{*}\left(x_{i}\right)
$$

where $\varepsilon_{t, \infty}: P_{t}(\Omega X) \subset P_{\infty}(\Omega X) \simeq X$.
Theorem 4.1. Under the above notations, we have the following facts.
(1) $\operatorname{ker} \varepsilon_{t, \infty}^{*}=D_{t+1} H^{*}(X)$.
(2) $x(1)_{i}$ is $\sigma^{*}\left(x_{i}\right)$ by identifying $\tilde{H}^{*}(\Sigma \Omega X)$ with $\tilde{H}^{*-1}(\Omega X)$.
(3) $\varepsilon_{t}^{*}(S(t))=0$.
(4) $\quad \tilde{H}^{*}\left(P_{t}(\Omega X)\right) \cdot S(t)=0$.
(5) $\quad H^{*}\left(P_{t}(\Omega X)\right) \cong T_{t+1}\left(\Lambda\left(x(t)_{1}, \ldots, x(t)_{k}\right)\right) \oplus S(t)$ as algebras, where $T_{m} R$ is the truncated algebra of height m of any algebra $R ; T_{m} R=R / D_{m} R$.
(6) $\rho_{t}^{*}\left(\sigma^{*}\left(x_{i_{1}}\right) \otimes \cdots \otimes \sigma^{*}\left(x_{i_{t}}\right)\right)=x(t)_{i_{1}} \ldots x(t)_{i_{t}}$ (which is 0 if $i_{j}=i_{s}$ for some $j \neq s)$.
(7) $\operatorname{ker} \beta_{t+1}^{*} \cap S(t)=0$.
(8) $\quad \varepsilon_{t}^{*}\left(H^{*}\left(P_{t}(\Omega X)\right)\right)=T_{t}\left(\Lambda\left(x(t-1)_{1}, \ldots, x(t-1)_{k}\right)\right)$

The proof of the above theorem is easy by the standard spectral sequence argument.

Put

$$
P_{s}^{t}(\Omega X)=\bigcup_{\substack{s_{1}+\cdots+s_{t}=s \\ s_{i} \geq 1}} P_{s_{1}}(\Omega X) \wedge \cdots \wedge P_{s_{t}}(\Omega X)
$$

Then

$$
\begin{aligned}
P_{\infty}^{t}(\Omega X) & =\bigcup_{s=1}^{\infty} P_{s}^{t}(\Omega X)=X^{\wedge t} \\
P_{s}^{t}(\Omega X) & =* \quad \text { for } s<t \\
P_{t}^{t}(\Omega X) & =(\Sigma \Omega X)^{\wedge t} \\
P_{s}^{t}(\Omega X) / P_{s-1}^{t}(\Omega X) & =\bigvee_{s_{1}+\ldots+s_{t}=s}^{\substack{s_{i} \geq t}} \mid V_{s_{1}}(\Omega X) / P_{s_{1}-1}(\Omega X) \wedge \cdots \wedge P_{s_{t}}(\Omega X) / P_{s_{t}-1}(\Omega X) \\
& \simeq \underset{\substack{s_{1}+\ldots+s_{t}=s \\
s_{i} \geq t}}{ } \Sigma^{s}(\Omega X)^{\wedge s} .
\end{aligned}
$$

Now we have an exact triangle of cohomology as follows;

where $\operatorname{deg} \varepsilon_{s}^{t *}=0, \operatorname{deg} \beta_{s}^{t *}=1-s, \operatorname{deg} \rho_{s}^{t *}=s$.
Let $\left\{E^{t}(\Omega X)_{r}^{*, *}, d^{t}(\Omega X)_{r}\right\}$ be the spectral sequence associated to the filtration

$$
P_{0}^{t}(\Omega X) \subset P_{1}^{t}(\Omega X) \subset \cdots \subset P_{s}^{t}(\Omega X) \subset \cdots
$$

Since the above filtration of $X^{\wedge t}$ is induced by the filtration $P_{0}(\Omega X) \subset$ $P_{1}(\Omega X) \subset \cdots$, we have

$$
E^{t}(\Omega X)_{r}^{*, *} \cong E(\Omega X)_{r}^{*, *} \otimes \cdots \otimes E(\Omega X)_{r}^{*, *} \quad(t \text {-fold })
$$

Let

$$
\begin{gathered}
J(s)^{t}=\bigoplus_{\substack{s_{1}+\cdots+s_{t}=s \\
s_{i} \geq 1}} J(s) \\
S(s)^{t}=\rho_{s}^{t *}\left(J(s)^{t}\right) \\
\varepsilon_{s, \infty}^{t}: P_{s}^{t}(\Omega X) \subset P_{\infty}^{t}(\Omega X)=X^{\wedge t} .
\end{gathered}
$$

The following theorem is clear by Theorem 4.1.
Theorem 4.2. Under the above notation, we have the following facts.
(1) $\operatorname{ker}\left(\varepsilon_{s, \infty}^{t}\right)^{*}=\sum_{l_{1}+\cdots+l_{t}=s+1} D_{l_{1}} H^{*}(X) \otimes \cdots \otimes D_{l_{t}} H^{*}(X)=\sum_{i \geq s+1} I_{i}^{t}$
(2) $\left(\varepsilon_{s}^{t}\right)^{*}\left(S(s)^{t}\right)=0$.
(3) $\tilde{H}^{*}\left(P_{s}^{t}(\Omega X)\right) \cdot S(s)^{t}=0$.
(4) $H^{*}\left(P_{s}^{t}(\Omega X)\right) \cong A(s)^{t} \oplus S(s)^{t}$ as algebras, where

$$
A(s)^{t}=\left(\varepsilon_{s, \infty}^{t}\right)^{*}\left(H^{*}\left(X^{\wedge t}\right)\right)
$$

(5) For $z \in \tilde{H}^{*}\left(P_{s_{1}}(\Omega X) / P_{s_{1}-1}(\Omega X) \wedge \cdots \wedge P_{s_{t}}(\Omega X) / P_{s_{t}-1}(\Omega X)\right)$ we have

$$
\left(\rho_{s}^{t}\right)^{*}(z)=\left(\varepsilon_{s, \infty}^{t}\right)^{*}\left(\bar{x}_{1} \otimes \cdots \otimes \bar{x}_{t}\right),
$$

where z, which is identified with a class in $\tilde{H}^{*}(\Omega X)^{\otimes s}$, is denoted by $\sigma^{*}\left(x_{i_{1}}\right) \otimes$ $\cdots \otimes \sigma^{*}\left(x_{i_{s}}\right)$, and $\bar{x}_{j}=x_{i_{s_{j}-1}+1} \ldots x_{i_{s_{j}}} \in \tilde{H}^{*}(X)$.
(6) $\operatorname{ker}\left(\beta_{s+1}^{t}\right)^{*} \cap S(s)^{t}=0$.
(7) $\left(\varepsilon_{s}^{t}\right)^{*}\left(H^{*}\left(P_{s}^{t}(\Omega X)\right)\right)=A(s-1)^{t}$.

5. Cohomology of $\boldsymbol{R}_{\boldsymbol{n}}(X)$

In this section we prove (1) $\sim(4)$ of Theorem 1.1. First we study the homomorphism $f_{n-1}^{*}: H^{*}\left(P_{n-1}(X)\right) \rightarrow H^{*}\left(R_{n-1}(X)\right)$ given in section 2.

Lemma 5.1. $\operatorname{ker} f_{n-1}^{*}=\bigoplus_{s \geq n+1} M(n-1)_{s}$.
Proof. Since $R_{n-1}(X) / P_{n-2}(X)=\Sigma C_{n-1} \simeq \Sigma^{n} P_{n}^{n-1}(\Omega X)$, we have the following commutative diagram;

Let $\quad u \in \tilde{H}^{*}\left(P_{n-1}(X)\right) \cong T_{n}\left[y(n-1)_{1}, \ldots, y(n-1)_{k}\right] \oplus M(n-1) \quad$ with $f_{n-1}^{*}(u)=0$. Then by the usual diagram chasing method (or the MayerVietoris type argument), there is $v \in \widetilde{H}^{*}(X)^{\otimes n-1}$ with

$$
\rho_{n-1}^{*}(v)=u \quad \text { and } \quad\left(\varepsilon_{n, \infty}^{n-1}\right)^{*}(v)=0 .
$$

Since $\operatorname{ker}\left(\varepsilon_{n, \infty}^{n-1}\right)^{*}=\bigoplus_{s \geq n+1} I_{s}^{n-1}$ by Theorem 4.2 (1),

$$
u \in \rho_{n-1}^{*}\left(\bigoplus_{s \geq n+1} I_{s}^{n-1}\right)=\bigoplus_{s \geq n+1} M(n-1)_{s}
$$

It is also clear that $f_{n-1}^{*}\left(M(n-1)_{s}\right)=0$ for $s \geq n+1$.
q.e.d.

Let

$$
z_{i}=f_{n-1}^{*}\left(y(n-1)_{i}\right) \in H^{*}\left(R_{n-1}(X)\right) .
$$

Proposition 5.2

$$
e_{n}^{*}\left(H^{*}\left(R_{n}(X)\right)\right) \cap f_{n-1}^{*}\left(H^{*}\left(P_{n-1}(X)\right)\right)=T_{n}\left[z_{1}, \ldots, z_{k}\right]
$$

where $e_{n}: R_{n-1}(X) \subset R_{n}(X)$. Thus, in particular, there is $y_{i} \in H^{*}\left(R_{n}(X)\right)$ so that

$$
\varepsilon^{*}\left(y_{i}\right)=x_{i}
$$

where $\varepsilon: \Sigma X \subset R_{n}(X)$.
Proof. Since $\tilde{H}^{*}(\Omega X)$ is concentrated in even dimensional, $z_{i} \in \operatorname{ker} b_{n}^{*}=$ $e_{n}^{*}\left(\tilde{H}^{*}\left(R_{n}(X)\right)\right)$ for dimensional reason. Note that $z_{i_{1}} \ldots z_{i_{t}}=f_{n-1}^{*}\left(y(n-1)_{i_{1}} \ldots\right.$. $\left.y(n-1)_{i_{t}}\right)=0$ if and only if $t \geq n$ by Lemma 5.1. Thus

$$
T_{n}\left[z_{1}, \ldots, z_{k}\right] \subset e_{n}^{*}\left(H^{*}\left(R_{n}(X)\right)\right) \cap f_{n-1}^{*}\left(H^{*}\left(P_{n-1}(X)\right)\right)
$$

Next choose any

$$
u \in e_{n}^{*}\left(\tilde{H}^{*}\left(R_{n}(X)\right)\right) \cap f_{n-1}^{*}\left(\tilde{H}^{*}\left(P_{n-1}(X)\right)\right)=\operatorname{ker} b_{n}^{*} \cap f_{n-1}^{*}\left(\tilde{H}^{*}\left(P_{n-1}(X)\right)\right) .
$$

Then u can be written as

$$
u=u_{0}+f_{n-1}^{*}\left(u_{1}\right), \quad \text { where } u_{0} \in T_{n}\left[z_{1}, \ldots, z_{k}\right], u_{1} \in M(n-1)_{n} .
$$

Since $b_{n}^{*} u_{0}=0$, we have $b_{n}^{*} \circ f_{n-1}^{*}\left(u_{1}\right)=0$. Consider the following commutative diagram

Since β_{n}^{*} is mono on $M(n-1)$ by Lemma 3.1 (4), and $\left(\varepsilon_{n, \infty}^{n}\right)^{*}$ is mono on $\beta_{n}^{*}\left(M(n-1)_{n}\right) \subset I_{n}^{n}$ by Theorem $4.2(1), b_{n}^{*} \circ f_{n-1}^{*}$ is mono on $M(n-1)_{n}$. Thus $u_{1}=0$, and $u \in T_{n}\left[z_{1}, \ldots, z_{k}\right]$. The existence of y_{i} is clear. q.e.d.

Put

$$
P^{2} H^{*}(\Omega X)=P H^{*}(\Omega X) \cdot P H^{*}(\Omega X) .
$$

Then $P^{2} H^{*}(\Omega X)$ is the \mathbf{Z} / p-submodule of $H^{*}(\Omega X)$ spanned by $\left\{\sigma^{*}\left(x_{i}\right) \cdot \sigma^{*}\left(x_{j}\right)\right\}$. Since p is an odd prime, the following fact is clear by definition.

Lemma 5.3. $P H^{*}(\Omega X) \cap P^{2} H^{*}(\Omega X)=0$, and $P H^{*}(\Omega X)$ and $P^{2} H^{*}(\Omega X)$ are closed under the action of $\mathscr{A}_{(p)}$.

Choose a submodule L of $H^{*}(\Omega X)$ with

$$
\tilde{H}^{*}(\Omega X) \cong P H^{*}(\Omega X) \oplus P^{2} H^{*}(\Omega X) \oplus L
$$

Let

$$
\begin{aligned}
N(t)= & \sum_{i=1}^{t} P H^{*}(\Omega X)^{\otimes i-1} \otimes P^{2} H^{*}(\Omega X) \otimes P H^{*}(\Omega X)^{\otimes t-i} \\
T(t)= & \sum_{i=1}^{t} \tilde{H}^{*}(\Omega X)^{\otimes i-1} \otimes L \otimes \tilde{H}^{*}(\Omega X)^{\otimes t-i} \\
& +\sum_{\substack{i, j \geq 1 \\
i+j \leq t}} \tilde{H}^{*}(\Omega X)^{\otimes i-1} \otimes P^{2} H^{*}(\Omega X) \otimes \tilde{H}^{*}(\Omega X)^{\otimes j-1}
\end{aligned}
$$

$\otimes P^{2} H^{*}(\Omega X) \otimes \tilde{H}^{*}(\Omega X)^{\otimes t-i-j}$.
Then

$$
\tilde{H}^{*}(\Omega X)^{\otimes t} \cong P H^{*}(\Omega X)^{\otimes t} \oplus N(t) \oplus T(t),
$$

and $P H^{*}(\Omega X)^{\otimes t}$ and $N(t)$ are closed under the action of $\mathscr{A}_{(p)}$.
Now since $R_{n}(X) / R_{n-1}(X)=\Sigma C_{n} \simeq \Sigma^{2 n-1}(\Omega X)^{\wedge n}$, we have an exact triangle

Put

$$
M=r_{n}^{*}(N(n))
$$

Then we have the following fact.

Proposition 5.4. M is closed under the action of $\mathscr{A}_{(p)}$, and

$$
\varepsilon^{*}(M)=0, \quad M \cdot \tilde{H}^{*}\left(R_{n}(X)\right)=0 .
$$

Moreover, for any $y_{i} \in \tilde{H}^{*}\left(R_{n}(X)\right)$ with $\varepsilon^{*}\left(y_{i}\right)=x_{i}, T_{n+1}\left[y_{1}, \ldots, y_{k}\right] \oplus M$ is a subalgebra of $H^{*}\left(R_{n}(X)\right)$, and

$$
y_{i_{1}} \cdots y_{i_{n}}=r_{n}^{*}\left(\sigma^{*}\left(x_{i_{1}}\right) \otimes \cdots \otimes \sigma^{*}\left(x_{i_{n}}\right)\right)
$$

Proof. Since $N(n)$ is $\mathscr{A}_{(p)}$ closed, so is M. Clearly we have $\varepsilon^{*}(M)=0$ and $M \cdot \tilde{H}^{*}\left(R_{n}(X)\right)=0$. The other properties are proved by the standard method and Proposition 5.2.
q.e.d.

Proof of Theorem 1.1 (1)-(4). (1) is proved in Proposition 5.2, and (2)-(4) are in Proposition 5.4.
q.e.d.

We have shown Theorem 1.1 except for (5) and (6). (6) is a consequence of (5). Thus we need to prove (5). Furthermore, since M is $\mathscr{A}_{(p)}$ closed by Proposition 5.4, we prove that $A^{*}=T_{n+1}\left[y_{1}, \ldots, y_{k}\right] \oplus M$ is $\mathscr{A}_{(p)}$ closed for some choice of $\left\{y_{i}\right\}$ hereafter.

6. General constructions

In this section we give more general constructions than in the section 2. Recall the filtration

$$
\Sigma \Omega X=P_{1}(\Omega X) \subset P_{2}(\Omega X) \subset \cdots \subset X
$$

Put

$$
F_{s}\left(X^{* t}\right)=\bigcup_{\substack{s_{1}+\cdots+s_{t}=s \\ s_{i} \geq 1}} P_{s_{1}}(\Omega X) * \cdots * P_{s_{t}}(\Omega X)
$$

Then

$$
\begin{gathered}
=\cdots=F_{t-1}\left(X^{ t}\right) \subset F_{t}\left(X^{* t}\right)=(\Sigma \Omega X)^{* t} \subset F_{t+1}\left(X^{* t}\right) \subset \cdots \\
F_{\infty}\left(X^{* t}\right)=\bigcup_{s=1}^{\infty} F_{s}\left(X^{* t}\right)=X^{* t}
\end{gathered}
$$

By definition

$$
F_{s}\left(X^{* t}\right) / F_{s-1}\left(X^{* t}\right)=\underset{s_{1}+\cdots+s_{t}=s}{\bigvee_{s_{i}} \geq 1} V_{s_{1}, \ldots, s_{t}},
$$

where

$$
\begin{aligned}
V_{s_{1}, \ldots, s_{t}} & \simeq P_{s_{1}}(\Omega X) / P_{s_{1}-1}(\Omega X) * \cdots * P_{s_{t}}(\Omega X) / P_{s_{1}-1}(\Omega X) \\
& \simeq \Sigma^{t-1}(\Sigma \Omega X)^{\wedge s}
\end{aligned}
$$

Note that C_{n-1} and C_{n} of section 2 are equal to $F_{n}\left(X^{* n-1}\right)$ and $F_{n}\left(X^{* n}\right)$, respectively.

Let $F_{t}\left(\beta_{n-1}\right): F_{t}\left(X^{* n-1}\right) \rightarrow P_{n-2}(X)$ be the restriction of β_{n-1}. Define $F_{t}\left(P_{n-1}(X)\right)$ as the mapping cone of $F_{t}\left(\beta_{n-1}\right)$;

$$
F_{t}\left(P_{n-1}(X)\right)=P_{n-2}(X) \cup_{F_{t}\left(\beta_{n-1}\right)} C\left(F_{t}\left(X^{* n-1}\right)\right) .
$$

Then we have

$$
\begin{aligned}
& R_{n-1}(X)=F_{n}\left(P_{n-1}(X)\right) \subset F_{n+1}\left(P_{n-1}(X)\right) \subset \cdots \\
& F_{\infty}\left(P_{n-1}(X)\right)=\bigcup_{s=1}^{\infty} F_{s}\left(P_{n-1}(X)\right)=P_{n-1}(X) .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& F_{s}\left(P_{n-1}(X)\right) / F_{s-1}\left(P_{n-1}(X)\right) \\
& \quad \simeq \Sigma\left(F_{s}\left(X^{* n-1}\right) / F_{s-1}\left(X^{* n-1}\right)\right) \\
& \quad \simeq \bigvee_{s_{1}+\cdots+s_{n-1}=s} \Sigma V_{s_{1}, \ldots, s_{n-1}} .
\end{aligned}
$$

The following fact is a generalization of Lemma 2.1.
Proposition 6.1. There are maps $F_{t}\left(\beta_{n}\right): F_{t}\left(X^{* n}\right) \rightarrow F_{t}\left(P_{n-1}(X)\right)$ with $F_{\infty}\left(\beta_{n}\right)=\beta_{n}$ so that the following diagram is homotopy commutative;

Furthermore, if $\lambda_{t}: F_{t}\left(X^{* n}\right) / F_{t-1}\left(X^{* n}\right) \rightarrow F_{t}\left(P_{n-1}(X)\right) / F_{t-1}\left(P_{n-1}(X)\right)$ is the induced map, then by the isomorphisms

$$
\begin{aligned}
& \tilde{H}^{*}\left(F_{t}\left(X^{* n}\right) / F_{t-1}\left(X^{* n}\right)\right) \cong \bigoplus_{\substack{s_{1}+\cdots+s_{n}=t \\
s_{i} \geq 1}} \tilde{H}^{*}(\Omega X)^{\otimes t} \\
& \tilde{H}^{*}\left(F_{t}\left(P_{n-1}(X)\right) / F_{t-1}\left(P_{n-1}(X)\right)\right) \cong \overbrace{\substack{s_{1}+\cdots+s_{n-1}=t \\
s_{i} \geq 1}} \tilde{H}^{*}(\Omega X)^{\otimes t},
\end{aligned}
$$

we have that

Proof. The existence of maps $F_{t}\left(\beta_{n}\right)$ follows from the same reason as in Lemma 2.1. In fact, there are maps

$$
m_{s, t}: P_{s}(\Omega X) \times P_{t}(\Omega X) \rightarrow P_{s+t}(\Omega X)
$$

for any s and t, which are restrictions of the multiplication of X (see Stasheff [11, p. 72]).

Now the map $m_{s, t}$ induces a map

$$
\begin{aligned}
\bar{m}_{s, t} & P_{s}(\Omega X) / P_{s-1}(\Omega X) \wedge P_{t}(\Omega X) / P_{t-1}(\Omega X) \\
& \simeq P_{s}(\Omega X) \times P_{t}(\Omega X) /\left(P_{s}(\Omega X) \times P_{t-1}(\Omega X) \cup P_{s-1}(\Omega X) \times P_{t}(\Omega X)\right) \\
& \rightarrow P_{s+t}(\Omega X) / P_{s+t-1}(\Omega X)
\end{aligned}
$$

Since $P_{k}(\Omega X) / P_{k-1}(\Omega X) \simeq(\Sigma \Omega X)^{\wedge k}, \bar{m}_{s, t}$ is considered as a map $(\Sigma \Omega X)^{\wedge s} \wedge$ $(\Sigma \Omega X)^{\wedge t} \rightarrow(\Sigma \Omega X)^{\wedge s+t}$. We can describe $\bar{m}_{s, t}$ by using permutations. In fact, let $\mathscr{S}(s, t)$ be the set of all ($s, t)$-shuffles, i.e., $\mathscr{S}(s, t)$ is a subset of $(s+t)$-th symmetric group \mathscr{S}_{s+t} so that $\sigma \in \mathscr{S}(s, t)$ if and only if $\sigma(i)<\sigma(i+1)$ for $i \neq s$. For any $\sigma \in \mathscr{S}(s, t)$ we define

$$
\sigma^{*}:(\Sigma \Omega X)^{\wedge s} \wedge(\Sigma \Omega X)^{\wedge t} \rightarrow(\Sigma \Omega X)^{\wedge s+t}
$$

by

$$
\begin{aligned}
& \sigma^{*}\left(\left(a_{1}, u_{1}, \ldots, a_{s}, u_{s}\right),\left(a_{s+1}, u_{s+1}, \ldots, a_{s+t}, u_{s+t}\right)\right) \\
& \quad=\left(a_{\sigma^{-1}(1)}, u_{\sigma^{-1}(1)}, \ldots, a_{\sigma^{-1}(s+t)}, u_{\sigma^{-1}(s+t)}\right),
\end{aligned}
$$

where $\left(a_{i}, u_{i}\right) \in S^{1} \wedge \Omega X=\Sigma \Omega X$. Then by definition of $m_{s, t}$

$$
\bar{m}_{s, t} \simeq \sum_{\sigma \in \mathscr{\mathcal { Y }}(s, t)} \sigma^{*} \quad(\text { see }[11, \text { pp. 71-72] }) .
$$

Now the composition $X^{* n} \rightarrow P_{n-1}(X) \rightarrow P_{n-1}(X) / P_{n-2}(X) \simeq \Sigma X^{* n-1}$ induces a homomorphism on cohomology $\widetilde{H}^{*}(X)^{\otimes n-1} \rightarrow \widetilde{H}^{*}(X)^{\otimes n}$ given by

$$
\sum_{j=1}^{n-1}(-1)^{j-1} i d^{\otimes j-1} \otimes \tilde{m}^{*} \otimes i d^{\otimes n-1-j}
$$

In fact, this map is equivalent to the derivation $d(X)_{1}$ of the spectral sequence in section 3. The composition

$$
F_{t}\left(X^{* n}\right) \rightarrow F_{t}\left(P_{n-1}(X)\right) \rightarrow F_{t}\left(P_{n-1}(X)\right) / P_{n-2}(X) \simeq \Sigma F_{t}\left(X^{* n-1}\right)
$$

is the restriction of the above map $X^{* n} \rightarrow \Sigma X^{* n-1}$. Thus λ_{t}^{*} is described by using $\bar{m}_{s, t}$, and so it is given by appropriate shuffles. More precisely, $\lambda_{t}^{*}\left(\tilde{H}^{*}\left(V_{s_{1}, \ldots, s_{n-1}}\right)\right)$ is included in $\oplus \tilde{H}^{*}\left(V_{t_{1}, \ldots, t_{n}}\right)$ where $\left(t_{1}, \ldots, t_{n}\right)$ runs all the sequences with $\left(t_{1}, \ldots, t_{i-1}, t_{i}+t_{i+1}, t_{i+2}, \ldots, t_{n}\right)=\left(s_{1}, \ldots, s_{n-1}\right)$ for some $1 \leq i \leq n-1$. Furthermore, if $\left(t_{1}, \ldots, t_{i-1}, t_{i}+t_{i+1}, t_{i+2}, \ldots, t_{n}\right)=\left(s_{1}, \ldots, s_{n-1}\right)$, then for any $z \in \tilde{H}^{*}\left(V_{s_{1}, \ldots, s_{n-1}}\right)$, the component of $\lambda_{t}^{*}(z)$ in $\tilde{H}^{*}\left(V_{t_{1}, \ldots, t_{n}}\right)$ is given by

$$
(-1)^{i-1}\left(i d^{\otimes i-1} \otimes \bar{m}_{t_{i}, t_{i-1}} \otimes i d^{\otimes n-1-i}\right)(z)
$$

Thus we have the result.
q.e.d.

Consider the cofiber sequence

$$
F_{t}\left(X^{* t}\right) \rightarrow F_{t+1}\left(X^{* t}\right) \rightarrow F_{t+1}\left(X^{* t}\right) / F_{t}\left(X^{* t}\right) \xrightarrow{\mu} \Sigma F_{t}\left(X^{* t}\right) .
$$

Now

$$
\begin{gathered}
\Sigma F_{t}\left(X^{* t}\right) \simeq \Sigma\left((\Sigma \Omega X)^{* t}\right) \simeq \Sigma^{2 t}(\Omega X)^{\wedge t} \\
F_{t+1}\left(X^{* t}\right) / F_{t}\left(X^{* t}\right)=W_{1} \vee \cdots \vee W_{t},
\end{gathered}
$$

where

$$
\begin{aligned}
W_{i} & \simeq(\Sigma \Omega X)^{* i-1} *\left(P_{2}(\Omega X) / \Sigma \Omega X\right) *(\Sigma \Omega X)^{* t-i} \\
& \simeq \Sigma^{2 t}(\Omega X)^{\wedge t+1} .
\end{aligned}
$$

(Note that $W_{i}=V_{1, \ldots, 1,2,1, \ldots, 1}$ where 2 is in the i th place.) Furthermore the restriction of μ on W_{i} is essentially the same as

$$
i d^{* i-1} * \Sigma \beta_{2} * i d^{* t-i}
$$

where $\beta_{2}: \Omega X * \Omega X \rightarrow \Sigma \Omega X$ is the map in section 2 with $P_{2}(\Omega X)=(\Sigma \Omega X) \cup_{\beta_{2}}$ $\Sigma(\Omega X * \Omega X)$. Thus $\left(w_{1}, \ldots, w_{t}\right)=\mu^{*}\left(u_{1} \otimes \cdots \otimes u_{t}\right)\left(w_{i} \in \tilde{H}^{*}\left(W_{i}\right) \cong \tilde{H}^{*}(\Omega X)^{\otimes t+1}\right)$, for any $u_{1} \otimes \cdots \otimes u_{t} \in \tilde{H}^{*}(\Omega X)^{\otimes t}$, is given by

$$
w_{i}=u_{1} \otimes \cdots \otimes u_{i-1} \otimes \tilde{m}^{*}\left(u_{i}\right) \otimes u_{i+1} \otimes \cdots \otimes u_{t}
$$

where $m: \Omega X \times \Omega X \rightarrow \Omega X$ is the loop multiplication. Then we have the following fact.

Lemma 6.2

$$
\begin{aligned}
& \left(\mu^{*}\right)^{-1}\left(\oplus_{i=1}^{t} P H^{*}(\Omega X)^{\otimes t+1}\right) \\
& \quad=P H^{*}(\Omega X)^{\otimes t} \oplus \sum_{i=1}^{t} P H^{*}(\Omega X)^{\otimes i-1} \otimes P^{2} H^{*}(\Omega X) \otimes P H^{*}(\Omega X)^{\otimes t-i}
\end{aligned}
$$

Proof. Since p is an odd prime, it is clear that

$$
\left(\tilde{m}^{*}\right)^{-1}\left(P H^{*}(\Omega X) \otimes P H^{*}(\Omega X)\right)=P H^{*}(\Omega X) \oplus P^{2} H^{*}(\Omega X)
$$

Thus the result follows.
q.e.d.

7. Action of the Steenrod operations

In this section we prove (5) and (6) of Theorem 1.1. First we prove a technical lemma.

Consider the following homotopy commutative diagram, where e, e_{0} and e_{1} are natural inclusions to the mapping cones of f, φ_{0} and φ_{1}, respectively, ρ and ρ_{0} are natural projections, and h is the induced map by fixing a homotopy between $g \circ \varphi_{0}$ and $\varphi_{1} \circ f$;

Lemma 7.1. Let $\alpha: Y_{1} \rightarrow K_{0}$ and $\xi: Y_{0} \cup_{\varphi_{0}} C X_{0} \rightarrow K_{0}$ be any maps with $\xi \circ e_{0} \simeq \alpha \circ g$. Then there is a map $\psi: X_{1} \cup_{f} C X_{0} \rightarrow K_{0}$ with $\psi \circ e \simeq \alpha \circ \varphi_{1}$ so that for any $\theta: K_{0} \rightarrow K_{1}$ and $\beta: Y_{1} \cup_{\varphi_{1}} C X_{1} \rightarrow K_{1}$ with $\beta \circ e_{1} \simeq \theta \circ \alpha$, there is a map $\lambda: \Sigma X_{0} \rightarrow K_{1}$ with

$$
\lambda \circ \rho \simeq \theta \circ \psi \quad \text { and } \quad \theta \circ \xi \simeq(\beta \circ h) * \lambda
$$

Here $(\beta \circ h) * \lambda$ is defined by the composition

$$
Y_{0} \cup_{\varphi_{0}} C X_{0} \rightarrow\left(Y_{0} \cup_{\varphi_{0}} C X_{0}\right) \vee \Sigma X_{0} \xrightarrow{\beta \circ h \vee \lambda} K_{1} \vee K_{1} \rightarrow K_{1},
$$

where the left arrow is the natural coaction of ΣX_{0} on $Y_{0} \cup_{\varphi_{0}} C X_{0}$, and the right one is the folding map.

Proof. First we note that we can assume that $\xi \circ e_{0}=\alpha \circ g$ by changing ξ to a suitable homotopic map if necessary. Now the map $h: Y_{0} \cup_{\varphi_{0}} C X_{0} \rightarrow$ $Y_{1} \cup_{\varphi_{1}} C X_{1}$ is given by a homotopy H between $g \circ \varphi_{0}$ and $\varphi_{1} \circ f$ as follows;

$$
\begin{aligned}
h(y) & =g(y) \quad y \in Y_{0} \\
h(t, x) & = \begin{cases}H(2 t, x) & 0 \leq t \leq 1 / 2, x \in X_{0} \\
(2 t-1, f(x)) & 1 / 2 \leq t \leq 1, x \in X_{0} .\end{cases}
\end{aligned}
$$

Define $\psi: X_{1} \cup_{f} C X_{0} \rightarrow K_{0}$ by

$$
\begin{aligned}
\psi\left(x_{1}\right) & =\alpha \circ \varphi_{1}\left(x_{1}\right) \quad x_{1} \in X_{1} \\
\psi\left(t, x_{0}\right) & = \begin{cases}\alpha \circ H\left(1-2 t, x_{0}\right) & 0 \leq t \leq 1 / 2, x_{0} \in X_{0} \\
\xi\left(2 t-1, x_{0}\right) & 1 / 2 \leq t \leq 1, x_{0} \in X_{0} .\end{cases}
\end{aligned}
$$

It is clear that

$$
\psi \circ e=\alpha \circ \varphi_{1} .
$$

Now this ψ satisfies the required condition. In fact, for any θ and β, we define $\lambda: \Sigma X_{0} \rightarrow K_{1}$ by

$$
\lambda(t, x)= \begin{cases}\beta(1-3 t, f(x)) & 0 \leq t \leq 1 / 3 \\ \theta \circ \alpha \circ H(2-3 t, x) & 1 / 3 \leq t \leq 2 / 3 \\ \theta \circ \xi(3 t-2, x) & 2 / 3 \leq t \leq 1\end{cases}
$$

where we assume $\beta \circ e_{1}=\theta \circ \alpha$ by changing β to a suitable homotopic map if necessary. Then $\lambda \circ \rho: X_{1} \cup_{f} C X_{0} \rightarrow K_{1}$ is homotopic to the restriction of a map $\lambda^{\prime}: C X_{1} \cup_{f} C X_{0} \rightarrow K_{1}$ defined by

$$
\begin{aligned}
& \lambda^{\prime}\left(t, x_{1}\right)=\beta\left(t, x_{1}\right) \quad\left(x_{1} \in X_{1}\right) \\
& \lambda^{\prime}\left(t, x_{0}\right)= \begin{cases}\theta \circ \alpha \circ H\left(1-2 t, x_{0}\right) & 0 \leq t \leq 1 / 2, x_{0} \in X_{0} \\
\theta \circ \xi\left(2 t-1, x_{0}\right) & 1 / 2 \leq t \leq 1, x_{0} \in X_{0}\end{cases}
\end{aligned}
$$

Thus $\lambda \circ \rho \simeq \theta \circ \psi$. One can also prove $\theta \circ \xi \simeq(\beta \circ h) * \lambda$ easily. q.e.d.
Put

$$
Q_{n-1}(X)=F_{n+1}\left(P_{n-1}(X)\right)=P_{n-2}(X) \cup C\left(F_{n+1}\left(X^{* n-1}\right)\right) .
$$

Let

$$
g: R_{n-1}(X) \rightarrow Q_{n-1}(X) \quad \text { and } \quad h: Q_{n-1}(X) \rightarrow P_{n-1}(X)
$$

be inclusions with $h \circ g=f_{n-1}$. Define

$$
\alpha: P_{n-1}(X) \rightarrow K_{0}=\prod_{i=1}^{k} K\left(\mathbf{Z} / p, \operatorname{deg} y(n-1)_{i}\right)
$$

by $\alpha\left(w_{i}\right)=y(n-1)_{i}$ where $w_{i} \in H^{*}\left(K_{0}\right)$ correspond to the fundamental classes in $H^{*}\left(K\left(\mathbf{Z} / p, \operatorname{deg} y(n-1)_{i}\right)\right)$. Then we have the following homotopy commutative diagram;

where the left vertical and the upper two horizontal sequences are cofiber sequences. We note that the cohomology homomorphism induced by inclusions $F_{n}\left(X^{* n}\right) \subset F_{n+1}\left(X^{* n}\right) \subset X^{* n}$ is equivalent to the ones by $\varepsilon_{n+1}^{n}:(\Sigma \Omega X)^{* n}=$ $P_{n}^{n}(\Omega X) \rightarrow P_{n+1}^{n}(\Omega X)$ and $\varepsilon_{n+1, \infty}^{n}: P_{n+1}^{n}(\Omega X) \rightarrow X^{\wedge n}$.

Lemma 7.2. There is a map $\xi: F_{n+1}\left(X^{* n}\right) / F_{n}\left(X^{* n}\right) \rightarrow K_{0}$ so that $\xi \circ \pi^{\prime} \simeq$ $\alpha \circ h \circ \gamma_{n}$ and

$$
\xi^{*}\left(\tilde{H}^{*}\left(K_{0}\right)\right) \subset \bigoplus P H^{*}(\Omega X)^{\otimes n+1}
$$

where $\tilde{H}^{*}\left(F_{n+1}\left(X^{* n}\right) / F_{n}\left(X^{* n}\right)\right)$ is identified with $\bigoplus \tilde{H}^{*}(\Omega X)^{\otimes n+1}$ as described in section 6. Moreover, there is a map $\psi: R_{n}(X) \rightarrow K_{0}$ with $\psi \circ e_{n} \simeq \alpha \circ h \circ g$ so that, for any maps $\theta: K_{0} \rightarrow K_{1}$ and $\beta: Q_{n-1}(X) / R_{n-1}(X) \rightarrow K_{1}$ with $\beta \circ \pi \simeq$ $\theta \circ \alpha \circ h$, there is $\lambda: \Sigma F_{n}\left(X^{* n}\right) \rightarrow K_{1}$ with

$$
\lambda \circ r_{n} \simeq \theta \circ \psi \quad \text { and } \quad \theta \circ \xi \simeq\left(\beta \circ \lambda_{n+1}\right) * \lambda .
$$

Furthermore $\psi^{*}\left(H^{*}\left(K_{0}\right)\right)$ is an $\mathscr{A}_{(p)}$ subalgebra of $H^{*}\left(R_{n}(X)\right)$ generated by some y_{i} with $e_{n}^{*}\left(y_{i}\right)=z_{i}$.

Proof. Since deg w_{i} is even, $\left(\varepsilon_{n+1}^{n}\right)^{*} \circ \gamma_{n}^{*} \circ h^{*} \circ \alpha^{*}\left(w_{i}\right)=0 \in \tilde{H}^{*}(\Omega X)^{\otimes n}$ for dimensional reason. On the other hand, $h \circ \gamma_{n}$ is a restriction of $\beta_{n}: X^{* n} \rightarrow$ $P_{n-1}(X)$. Thus, $\gamma_{n} \circ h^{*} \circ \alpha^{*}\left(w_{i}\right) \in\left(\varepsilon_{n+1, \infty}^{n}\right)^{*}\left(\tilde{H}^{*}(X)^{\otimes n}\right)$, and so by Theorem 4.2 (1) (5),

$$
\begin{aligned}
& \gamma_{n}^{*} \circ h^{*} \circ \alpha^{*}\left(w_{i}\right) \in \operatorname{ker}\left(\varepsilon_{n+1}^{n}\right)^{*} \cap\left(\varepsilon_{n+1, \infty}^{n}\right)^{*}\left(\tilde{H}^{*}(X)^{\otimes n}\right) \\
&=\left(\varepsilon_{n+1, \infty}^{n}\right)^{*}\left(\sum_{i=1}^{n} P H^{*}(X)^{\otimes i-1} \otimes P^{2} H^{*}(X) \otimes P H^{*}(X)^{\otimes n-i}\right) \\
& \subset\left(\rho_{n+1}^{n}\right)^{*}\left(\bigoplus P H^{*}(\Omega X)^{\otimes n+1}\right),
\end{aligned}
$$

where the map $\pi^{\prime}: \tilde{H}^{*}\left(F_{n+1}\left(X^{* n}\right) / F_{n}\left(X^{* n}\right)\right) \rightarrow \tilde{H}^{*}\left(F_{n+1}\left(X^{* n}\right)\right)$ is identified with $\left(\rho_{n+1}^{n}\right)^{*} \oplus \tilde{H}^{*}(\Omega X)^{\otimes n+1} \rightarrow \tilde{H}^{*}\left(P_{n+1}^{n}(\Omega X)\right)$. Thus there is a map

$$
\xi: F_{n+1}\left(X^{* n}\right) / F_{n}\left(X^{* n}\right) \rightarrow K_{0}
$$

so that

$$
\xi^{*}\left(w_{i}\right) \in \bigoplus P H^{*}(\Omega X)^{\otimes n+1} \quad \text { and } \quad \xi \circ \pi^{\prime} \simeq \alpha \circ h \circ \gamma_{n} .
$$

Furthermore $D H^{*}\left(F_{n+1}\left(X^{* n}\right) / F_{n}\left(X^{* n}\right)\right)=0$ since $F_{n+1}\left(X^{* n}\right) / F_{n}\left(X^{* n}\right)$ is a suspension. Thus

$$
\xi^{*}(w) \in \oplus P H^{*}(\Omega X)^{\otimes n+1} \quad \text { for all } w \in \tilde{H}^{*}\left(K_{0}\right) .
$$

This proves the first part. For the second one, we can use Lemma 7.1. The last one is clear since $e_{n}^{*} \circ \psi^{*}\left(w_{i}\right)=g^{*} \circ h^{*} \circ \alpha^{*}\left(w_{i}\right)=z_{i}$.

Now we prove Theorem 1.1 (5), (6).
Proof of Theorem 1.1 (5), (6). By Proposition 5.4, M is closed under the action of $\mathscr{A}_{(p)}$. Thus we prove that $\tau(u) \in T_{n+1}\left[y_{1}, \ldots, y_{k}\right] \oplus M$ for any $u \in T_{n+1}\left[y_{1}, \ldots, y_{k}\right]$ and $\tau \in \mathscr{A}_{(p)}$.

Take any $u \in T_{n+1}\left[y_{1}, \ldots, y_{k}\right]$ and $\tau \in \mathscr{A}_{(p)}$. Now $e_{n}^{*}(u) \in T_{n}\left[z_{1}, \ldots, z_{k}\right] \subset$ $f_{n-1}^{*}\left(H^{*}\left(P_{n-1}(X)\right)\right)$, and so by using Proposition 5.2 we have

$$
e_{n}^{*}(\tau u) \in e_{n}^{*}\left(H^{*}\left(R_{n}(X)\right)\right) \cap f_{n-1}^{*}\left(H^{*}\left(P_{n-1}(X)\right)\right)=T_{n}\left[z_{1}, \ldots, z_{k}\right] .
$$

Thus there is $v \in T_{n+1}\left[y_{1}, \ldots, y_{k}\right]$ so that

$$
e_{n}^{*}(\tau u-v)=0
$$

Let $\theta: K_{0} \rightarrow K_{1}=K(\mathbf{Z} / p, \operatorname{deg}(\tau u-v))$ be a map so that $\theta \circ \psi$ represents $\tau u-v$. Then

$$
\begin{equation*}
\theta \circ \psi \circ e_{n} \simeq * . \tag{1}
\end{equation*}
$$

Consider the following homotopy commutative diagram, where horizontal sequences are cofiber sequences;

Now by Lemma 7.2, $\alpha \circ h \circ g \simeq \psi \circ e_{n}$. Thus $\theta \circ \alpha \circ \varepsilon_{n-1} \simeq \theta \circ \alpha \circ h \circ g \circ e_{n-1} \simeq$ $\theta \circ \psi \circ e_{n} \circ e_{n-1} \simeq *$ by (1), and there is a map $\tilde{\beta}: \Sigma^{n-1} X^{\wedge n} \rightarrow K_{1}$ so that

$$
\begin{equation*}
\tilde{\beta} \circ \rho_{n-1} \simeq \theta \circ \alpha \tag{2}
\end{equation*}
$$

Since $\tilde{\beta} \circ \sum^{n-1} \varepsilon_{n+1, \infty}^{n-1} \circ \Sigma^{n-1} \varepsilon_{n+1}^{n-1} \circ r \simeq \theta \circ \alpha \circ h \circ g \simeq \theta \circ \psi \circ e_{n} \simeq *$ also by (1), there is $\eta: \Sigma P_{n-2}(X) \rightarrow K_{1}$ so that

$$
\eta \circ \Sigma b_{n-1} \simeq \tilde{\beta} \circ \Sigma^{n-1} \varepsilon_{n+1, \infty}^{n-1} \circ \Sigma^{n-1} \varepsilon_{n+1}^{n-1} .
$$

Put $\bar{\beta}=\tilde{\beta}-\eta \circ \Sigma \beta_{n-1}$. Then

$$
\bar{\beta} \circ \Sigma^{n-1} \varepsilon_{n+1, \infty}^{n-1} \circ \sum^{n-1} \varepsilon_{n+1}^{n-1} \simeq * .
$$

Now by Theorem 4.2 (5),

$$
\left(\varepsilon_{n+1, \infty}^{n-1}\right)^{*}\left(\tilde{H}^{*}(X)^{\otimes n-1}\right) \cap \operatorname{ker}\left(\varepsilon_{n+1}^{n-1}\right)^{*} \subset\left(\rho_{n+1}^{n-1}\right)^{*}\left(\bigoplus P H^{*}(\Omega X)^{\otimes n+1}\right) .
$$

Here $\left(\rho_{n+1}^{n-1}\right)^{*}$ is induced by the following natural map

$$
\begin{aligned}
v: \Sigma^{n-1} P_{n+1}^{n-1}(\Omega X) & \rightarrow \Sigma^{n-1} P_{n+1}^{n-1}(\Omega X) / \Sigma^{n-1} P_{n}^{n-1}(\Omega X) \\
& \simeq Q_{n-1}(X) / R_{n-1}(X)
\end{aligned}
$$

Then we have a map $\beta: Q_{n-1}(X) / R_{n-1}(X) \rightarrow K_{1}$ so that

$$
\left.\beta \circ v \simeq \bar{\beta} \circ \Sigma^{n-1} \varepsilon_{n+1, \infty}^{n-1} \quad \text { and } \quad \beta^{*} w\right) \notin \oplus P H^{*}(\Omega X)^{\otimes n+1},
$$

where $w \in H^{*}\left(K_{1}\right)$ is the fundamental class. This shows that

$$
\begin{aligned}
\beta \circ \pi & \simeq \beta \circ v \circ \rho^{\prime} \\
& \simeq \bar{\beta} \circ \Sigma^{n-1} \varepsilon_{n+1, \infty}^{n-1} \circ \rho^{\prime} \\
& \simeq \tilde{\beta} \circ \rho_{n-1} \circ h-\eta \circ \Sigma \beta_{n-1} \circ \rho_{n-1} \circ h \\
& \simeq \theta \circ \alpha \circ h
\end{aligned}
$$

by (2). Now we can apply Lemma 7.2, to get a map $\lambda: \Sigma F_{n}\left(X^{* n}\right) \rightarrow K_{1}$ with

$$
\lambda \circ r_{n} \simeq \theta \circ \psi \quad \text { and } \quad \theta \circ \xi \simeq\left(\beta \circ \lambda_{n+1}\right) * \lambda .
$$

On the other hand, we have by Proposition 6.1 that

$$
\lambda_{n+1}^{*}\left(\oplus P H^{*}(\Omega X)^{\otimes n+1}\right) \subset \bigoplus P H^{*}(\Omega X)^{\otimes n+1}
$$

Thus

$$
\mu^{*} \circ \lambda^{*}(w)=\xi^{*} \circ \theta^{*}(w)-\lambda_{n+1}^{*} \circ \beta^{*}(w) \in P H^{*}(\Omega X)^{\otimes n+1}
$$

by Lemma 7.2. Then by Lemma 6.2

$$
\lambda^{*}(w) \in P H^{*}(\Omega X)^{\otimes n} \oplus \sum_{i=1}^{n} P H^{*}(\Omega X)^{\otimes i-1} \otimes P^{2} H^{*}(\Omega X) \otimes P H^{*}(\Omega X)^{\otimes n-i}
$$

Thus

$$
r_{n}^{*} \circ \lambda^{*}(w) \in D_{n}\left(T_{n+1}\left[y_{1}, \ldots, y_{k}\right]\right) \oplus M
$$

and so

$$
\tau u=v+\psi^{*} \circ \theta^{*}(w)=v+r_{n}^{*} \circ \lambda^{*}(w) \in T_{n+1}\left[y_{1}, \ldots, y_{k}\right] \oplus M .
$$

This proves Theorem 1.1 (5). Since (6) is a direct consequence of (5), this completes the proof of Theorem 1.1.
q.e.d.

8. Application

Theorem 1.1 can be used to deduce variety of results on the action of Steenrod operations on the cohomology of A_{p}-spaces. For example, the main result in [2] is still valid without the hypothesis of the A_{p} primitivity of generators. In this section we give some more applications. First we prove the following fact.

Theorem 8.1. Let $H^{*}=T_{p+1}\left[y_{1}, \ldots, y_{k}\right]$ be an unstable algebra over the $\bmod p$ Steenrod algebra $\mathscr{A}_{(p)}$. Let $\operatorname{deg} y_{i}=2 n_{i}\left(n_{1} \leq \cdots \leq n_{k}\right)$. Define non negative integers a, b with $b \not \equiv 0 \bmod p$ by $n_{k}=p^{a} b$. If $b>p$, then y_{k} is detected by primary operations modulo decomposable elements, that is, there exist operations $\theta_{i} \in \mathscr{A}_{(p)}(1 \leq i \leq k-1)$ so that

$$
y_{k}-\sum_{i=1}^{k-1} \theta_{i} y_{i} \in D H^{*}
$$

Proof. We prove by contradiction. Suppose y_{k} is not detected by primary operations. Let I be the ideal of H^{*} generated by $\left\{y_{1}, \ldots, y_{k-1}\right\}$. Then for any operation $\theta \in \mathscr{A}_{(p)}$ with $\operatorname{deg} \theta>0$, we have $\theta\left(H^{*}\right) \subset I+D H^{*}$. Then the inductive argument implies

$$
\theta\left(D_{t} H^{*}\right) \subset I+D_{t+1} H^{*}
$$

Now

$$
y_{k}^{p}=\mathscr{P}^{n_{k}} y_{k}=\sum_{i=0}^{a} \mathscr{P P}^{i} \alpha_{i} y_{k}
$$

for some $\alpha_{i} \in \mathscr{A}_{(p)}$. Here $\alpha_{i} y_{k} \in D_{p} H^{*}$ for dimensional reasons, and then $\mathscr{P} p^{i} \alpha_{i} y_{k} \in I$ since $D_{p+1} H^{*}=0$. This is a contradiction, and the theorem is proved.
q.e.d.

The following theorem follows from the above theorem by Theorem 1.1.
Theorem 8.2. Let X be a simply connected A_{n}-space with

$$
H^{*}(X ; \mathbf{Z} / p) \cong \Lambda\left(x_{1}, \ldots, x_{k}\right) \quad \operatorname{deg} x_{i}=2 n_{i}-1 \quad\left(n_{1} \leq \cdots \leq n_{k}\right)
$$

Let $n_{k}=p^{a} b$ with $b \not \equiv 0 \bmod p$. If $b>p$, then there exist operations $\theta_{i} \in \mathscr{A}_{(p)}$ $(1 \leq i \leq k-1)$ so that

$$
x_{k}=\sum_{i=1}^{k-1} \theta_{i} x_{i}
$$

Let $(G(n), d)=(S U(n), 2)$ or $(S p(n), 4) . \quad$ Let M_{λ} be the total space of princi-
pal $G(n-1)$-bundle over $G(n) / G(n-1)=S^{d n-1}$ induced by a degree λ map on $S^{d n-1}$ from the principal bundle $G(n-1) \rightarrow G(n) \rightarrow G(n) / G(n-1)$.

Theorem 8.3. Let $d n / 2=p^{a} b$ with $b \not \equiv 0 \bmod p$. If $b>p$, then the following conditions are equivalent.
(1) $\quad M_{\lambda}$ is $a \bmod p A_{p}$-space.
(2) M_{λ} is $a \bmod p$ loop space.
(3) $\lambda \not \equiv 0 \bmod p$.

Proof. We have only to prove that if $\lambda \equiv 0 \bmod p, M_{\lambda}$ is not a $\bmod p$ A_{p}-space. But this follows immediately from Theorem 8.2. In fact, let $f: M_{\lambda} \rightarrow G(n)$ be the induced map. Then

$$
\begin{aligned}
& H^{*}(G(n) ; \mathbf{Z} / p) \cong \Lambda\left(x_{1}, \ldots, x_{k}\right) \\
& H^{*}\left(M_{\lambda}: \mathbf{Z} / p\right) \cong \Lambda\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)
\end{aligned}
$$

where $k=n$ or $n-1$, $\operatorname{deg} x_{1}<\cdots<\operatorname{deg} x_{k}=d n-1$, and $f^{*} x_{i}=x_{i}^{\prime}$ for $i<k$, and $f^{*} x_{k}=0$. This shows that x_{k}^{\prime} is not detected by primary operations.
q.e.d.

The above theorem strengthens Iwase's results [6].

References

[1] A. Borel, Topics in the Homology Theory of Fibre Bundles, Springer Lecture Notes in Math., 36 (1967), New York Berlin Heidelberg.
[2] Y. Hemmi, Homotopy associative finite H-spaces and the mod 3 reduced power operations, Publ. Res. Inst. Math. Sci., 23 (1987), 1071-1084.
[3] Y. Hemmi, The projective plane of an H-pairing, J. Pure Appl. Algebra, 75 (1991), 277-296.
[4] N. Iwase, On the K-ring structure of X-projective n-space, Mem. Fac. Sci. Kyushu Univ. Ser. A, 38 (1984), 285-297.
[5] N. Iwase, H-spaces with generating subspaces, Proc. of Royal Soc. of Edinburgh, 111A (1989), 199-211.
[6] N. Iwase, Homotopy associativity of sphere extensions, Proc. of Edinburgh Math. Soc., 32 (1989), 459-472.
[7] R. M. Kane, On loop spaces without p torsion, Pacific J. Math., 60 (1975), 189201.
[8] J. D. Stasheff, On homotopy abelian H-spaces, Cambridge Philos. Soc. Proc., 57 (1961), 734-745.
[9] J. D. Stasheff, Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc., 108 (1963), 275-292.
[10] J. D. Stasheff, Homotopy associativity of H-spaces, II, Trans. Amer. Math. Soc., 108 (1963), 293-312.
[11] J. D. Stasheff, H-spaces from a homotopy point of view, Springer Lecture Notes in Math., 161 (1970), New York Berlin Heidelberg.
[12] M. Sugawara, A condition that a space is group-like, Math. J. Okayama Univ., 7 (1957), 123-149.

Department of Mathematics
Faculty of Science
Kochi University
Kochi 780, Japan

