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0. Introduction

The first result on fractional powers of a closed operator was obtained
by S. Bochner [ 4 ]. In 1949, he constructed fractional powers of —A, using
essentially that the Laplacian A generates a bounded C0-semigroup. E. Hille
and R. Phillips (see [ 8 ] and [21]) took up this idea and defined fractional
powers of the negatives of arbitrary generators of bounded C0-semigroups.

In 1960, A. V. Balakrishnan [ 2 ], giving a new definition, extended the
theory of fractional powers to closed operators A for which the resolvent
R(λ, A) := (λ — A)'1 exists and satisfies

on an open sector {λe C: |arg λ\ < a] for some 0 < a < - . For such opera-

tors, other, by [ 14 ] equivalent definitions of fractional powers have been

given, e.g. by T. Kato [10], H. Komatsu [12], H. W. Hovel and U. Westphal

[ 9 ] and C. Martinez, M. Sanz and L. Marco [15].

Motivated by the examples below, we study in this paper fractional
powers (— Af (b e C) and the semigroups generated by their negatives (if
any) in the case that the resolvent set ρ(A) contains a closed sector Σ(a) =
{λ e C: |arg λ\ < a} U {0}, and the resolvent satisfies

\\R(λ,A)\\<c(i + \λ\γ

for some ne No and all λ e Σ(a).

EXAMPLES. (1) A closed, densely defined, linear operator A is the genera-
tor of an integrated semigroup (see for example [ 11 ] or [18]) if and only
if the resolvent of A exists and is polynomially bounded on a right half plane
{ΛeC:9U>ω}. If in addition [0, oo) ̂  p{A), then A belongs to the class
of operators we will discuss in this paper. The domains of the fractional
powers of such generators are important in the study of the associated abstract
Cauchy problem
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(ACP) u'(t) = Au{t) (t > 0), ιι(0) = x .

It is shown in [23], that the (ACP) has a classical solution for all x e

D(( — A)b+1)9 where b > 0 depends on the growth of the resolvent of A on

the right half plane.

In defining fractional powers of the negatives of certain generators of

integrated semigroups, approaches have been made by K. Yoshinaga [24],

H. A. Emami-Rad [ 6 ] and M. Balabane [ 1 ] within the framework of

distribution semigroups.

(2) In 1972, R. Beals [ 3 ] investigated the class of closed, densely defined,

linear operators A such that R(λ, A) exists and satisfies \\R{λ, A)\\ < C(l + \λ\)n

for all λ e C with 9U > i^(|3U|) and 9U > ω, where ω > 0 and φ is a continu-

ous, nonnegative, concave function on [0, oo) such that ψ(t)-+co, t^ψiή +O

{t -» oo), and J? t~2φ{t)dt < oo (see also [ 19 ]). If in addition [0, oo) £ ρ{A\

then A satisfies the assumptions above.

The paper consists of two sections. In the first part, we construct frac-

tional powers and study some of their properties. The definition is motivated

by a functional calculus similar to the one used by H. O. Fattorini [ 7 ] and

S. G. Krein [13] in the case n = - 1 .

One of the reasons for the construction of fractional powers is their

application to incomplete abstract Cauchy problems

jX u(t) = ( - ir+1Au(t) (ί > 0), ιι(0) = x

for m > 2 (see example below). Here, it is of interest whether the fractional

powers — ( — A)1/m are infinitesimal generators. In Section 2, we show that

for every exponent 0 < b < \ the operator — (—A)b is the complete generator

of an analytic semigroup of growth order α.

1. Construction of fractional powers

Let A be a closed, densely defined, linear operator on a complex Banach

space X. We assume that there are constants 0 < α < - , C > 0 and n e No

such that the closed sector

is contained in p(A\ and ||#(A,,4)|| < C(l + \λ\f for all λeΣ(a).

Since p(A) is open, the assumption 0 e ρ(A) implies the existence of a

constant 0 < d < 1 such that the closed ball Bd := {λ e C: \λ\ < d} is contained

in p(A). The resolvent is analytic on p(A) and therefore bounded on Bd.
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Hence, we can assume that

(1.1) \\R(λ,A)\\ < C(l + \λ\γ for all λeΣ(a)UBd.

Throughout the paper, we use the following notations. For 0 < a < a

and 0 < d < d, the (upwards oriented) curve Γ(ά, d) is given by /\ \JΓ2UΓ3,

where

/\ : = μ 6 C : arg λ = -a, \λ\ >d} = {-te~iά :-oo<t<-d}

(1.2) Γ2 : = μ G C : |arg λ\ > a, \λ\ =d} = {de l ( 2*- f ) :a<t<2π-ά}

Γ3 : = {2 G C : arg A = α, |/l| > d) = {teiά :d<t<oo} .

N o t e that the argument function used takes on values in ( — π , π ] .

For every beQ the mapping λ\-^(-λ)b is given by (-λ)b := eblogi~λ\

where we take the main branch of the complex logarithm. Hence, λ i—• ( — λ)b

is defined and analytic on C\[0, oo) and can be estimated by

(1.3) \(~λ)b\ = <j*"og|A|-:»are(-A) < μ|9»e«|3fc| #

Our definition of fractional powers ( — A)b is based on a functional calcu-

lus, i.e. on improper integrals of the form

(1.4) — (-λ)bR(λ,A)xdλ.
2πι JΓ

Note that the curve Γ encloses the spectrum σ(A) and is contained in the

intersection of p(A) with the domain of the analytic mapping λ H> ( — λ)b.

LEMMA 1.1. Let SRb < —(n + 1). Then, the improper integral in (1.4)

exists for all xe X and is independent of the particular choice of Γ — Γ(ά, d).

Further,

— (-λ)bR(λ,A)xdλ eπ^C2ndm+1\\x\\.
SRh + n + 1

PROOF. Using the estimates (1.1) and (1.3), one can show that

— \\(-teiά)beiάR(teiά, A)x\\dt < ^- t*beπ™C{\ + t)n\\x\\dt
2πja 2π yd

-C

Considering the parametrizations given in (1.2), this yields the existence of

the curve integral over Γ3. Similarly, with the same final estimate, one obtains

the existence of the integral over Γx. The integral over Γ2 exists because
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Γ2 is a finite path. Further, since \\(-λ)bR(λ, A)\\ < d*heπ™C(\ + d)n for all

- ί I (-λ)bR(λ,A)xdλ <2πd-
l)nd*

2π

To see the independence of the choice of Γ = Γ(ά, d\ it is sufficient to show

that all integrals coincide with the one over Γ(a, d). By Cauchy's Theorem,

we have

1 if Γ 1 . I f
—;< — >( — λ)R(λ, A)xdλ = lim — : ( —
2πi IJr(fld) JΓ(aJ)j m-oo 2πi J Γ m

where the curve Γm (m > d) is given by Γm := {meiι: —a <t < -ά}U

{me^'.άKt <a). Along Γm, the integrand ( — λ)bR(λ, A)x is bounded by

||x||. Hence,

2πί J Γm

λ)bR(λ, A)xdλ <2πm-
+m)n

2π

Similar to the case n = — 1 (see for example [ 2 ] or [ 7 ]), we introduce

first linear operators Jb (b e C) which will later form the basis of our definition

of fractional powers of A. Here, [ft] (ft e C) denotes the largest integer smaller

than or equal to SRft. Note that -{n + 2) < 5R(ft - [ft] - n - 2) < -(n + 1)

for all beC.

DEFINITION 1.2. Let beC. On D(A[b]+n+2), the operator Jb is defined by

(~λ)bR{λ, A)xdλ if -(n + 2) < «ft < -(n + 1)

jb-[b]~n-2(-Af]+n+2x otherwise.

REMARKS. (1) The operators Jb are well-defined since, by Lemma 1.1,

our definition gives a bounded linear operator for — (n + 2) < 9ϊft < — (n + 1).

Note that we use 'bounded operator' in the meaning of 'bounded operator

on X\

(2) With the generalized resolvent equation

(1.5) A)(-A)m+1x = R(λ, A)x (-λyu+1)(-

for all λep{A\ λφO, meN0 and xeD{Am+1\ and the equality

^—.\r( — λ)bdλ = 0 if W) < — 1, we obtain the following representation of the
2nι
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operators Jb (b e C). For every x e D(A[b]+n+2),

λ)bR(λ, A)xdλ if Mb < 0
2πι J Γ

(1.6) J»x =
1 Γ

if <Rf> > 0 ._ 1 _ Γ ( -
2πi J Γ

(3) The operator J& is bounded if 9to < -(n + 1).

PROPOSITION 1.3. // 9lfr > - ( n + 1), then the operator Jb is closable.

PROOF. It follows from the closedness of (—A) [ b ] + n + 2 that the operators
jb-m-n-2 a n d (_^)[*]+n+2 commute on D(A[b]+n+2). Therefore,

jb = jb-[b]-n-2f Aγ]+n + 2 £ s_^\[b]+n + 2jb-[b]-n-2 ^

With its maximal domain, the operator to the right is closed. Thus, Jb is

closable. •

Next, we show that the operators Jb (b e C) satisfy the properties expected

of fractional powers. We begin with the semigroup property. Here, <f>>

denotes max {0, [ft] + n + 2} for any b e C.

LEMMA 1.4. Let b, ceC. Then, JbJcx = Jb+Cx for every x e D(A<b>+<c>).

PROOF. The claim is proved in two steps. First, assume that 9ϊfc, 9ίc <

— (n + 1) which implies <fc> = <c> = 0. By (1.6) and Lemma 1.1, we obtain

for every x e X

JbJcx = Q ^ Y ί ί (-λ1)
b(-λ2)

cR(λu A)R(λ2, A)xdλ2dλ1 ,

where Γ = Γ(a, d) and T = Γ(a, d) for 0 < a < α, 0 < d < d. Since ΓΓ\Γ= 0 ,

the resolvent equation {λ - μ)R(λ, A)R(μ, A) = (R(μ, A) - R(λ, A)) and Fubini's

Theorem yield

It follows from Cauchy's Integral Formula that

since Γ runs to the right of Γ. Therefore, JbJcx = Jb+Cx.
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Now, let b9 c be arbitrary complex numbers and xe D(A<b>+<c}). Then,

xeD(Jc) and, since the operators ( — A)'1 and Jc commute on D(JC\ Jcxe

D(A<by) = D(Jb). Hence, x e D(JbJc). The inequality <fc> + <c> < \b + c] +

n + 2 yields that x 6 D(Jb+c) as well. By Definition 1.2, we have

The operators j ' - M - " - 2 and —X commute on D(A). Thus, the first part of

the proof yields

Jbjcχ _ jfc+c-[fe]-[c]-2«-4^

The statement JbJcx = Jb+Cx follows from

(1.7) Jb = Jb+\-A)-1 for all b e C . •

LEMMA 1.5. J* = ( —i4)*|1)(i4»+1,+2) /or α// integers b.

PROOF. First, let ft = 1 and x e D(^iπ + 3). By (1.6), we have to show that

{-λy'Riλ, A)(-A)2xdλ = -Ax .

Applying Cauchy's Integral Formula, we obtain

1 Γ 1 1 Γ 1
lim — -R(λ, A)(-A)2xdλ = R(09 A){-A)2x + — -R(λ, A){- A)2xdλ ,

m ôo 2πi jΓmλ 2πiJΓλ

where the curve Γm is given by Γm := {meu: —a < t < a}. The resolvent equa-

tion (1.5) and the resolvent estimate (1.1) yield the existence of a constant

M > 0 such that

M
\\R(λ9A)x\\<jIι(\\x\\ + \\Ax\\ +•••+ \\An+1x\\)

for all x e D(An+1) and λ e Σ(a) U Γ with \λ\>d. Hence,

1 Γ 1

M
'" ' Λ : | | + \\A3x\\ +•••+ M w + 3 x | | ) ^ 0 ( m ^ o o )2πm

1 , 1
and —- \Γ-R(λ, A)(-A)2xdλ = Ax. The assertion follows with (1.7).

2πι λ

PROPOSITION 1.6. limb^1J
bx= —Ax for every xeD(An+3).

PROOF. Let S := {b e C : 0 < Mb < 2}. By (1.6) and (1.7), we have
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Jbx = J-\ (-λ)b-n-3R{λ,A)(-A)n+3xdλ
2πι JΓ

for all beS. Now, the mapping (6, λ) ι-> (-λ)b-n~3R(λ, A)(-Λ)n+3x is contin-

uous on S x Γ. By Lemma 1.1, the integral above converges uniformly on

every compact subset of S. Therefore, b i—• Jbx is continuous on 5. In partic-

ular, Λ c - ^ J 1 * (b-+l). But, by Lemma 1.5, Jxx = -Ax. •

The remaining part of this section is devoted to the closures Jb of the

operators Jb (b e C) (see Proposition 1.3). In the proof of Proposition 1.3,

we have shown that, for every b e C, Jb is a restriction of the closed operator

with maximal domain. By Lemma 1.1, Is = Jb e @(X) if Kb < -(n + 1).

PROPOSITION 1.7. (a) For every integer b, Jb = (—A)b.

(b) If Kb > n + 1, then Jb = Cb.

PROOF, (a) By Lemma 1.6, Jb = ( — A)b\D{Ab+n+iy Therefore, it is sufficient

to show that D(Ab+n+2) is a core for (-A)b.

If b < 0 , this follows immediately since (-A)be@(X) and D(Ab+n+2) is

dense in X. Thus, assume b > 0 and x e D(Ab). Since D(An+2) is dense in

X, there is a sequence (ym)meN in D(An+2) such that ym^( — A)bx as m-> oo.

Define x m : = ( - i ) Λ m e D ( ^ + " + 2 ) . Then, xm = (-A)-bym^(-A)-b(-Afx =

x and (-Afxm = > ; m ^ ( - ^ x .

(b) As mentioned above, Jb is the restriction of the closed operator Cb

to D{A[b]+n+2). Similar to part (a), we will prove that D{Jb) = D{A[b]+n+2) is

a core for C*\

Let x e D(Cb), i.e. Jb-[b]-n~2x e D(A[b]+n+2). Since D(yl [ b ] + π + 2) is dense in

X, there is a sequence (ym)w e J V in D{Am+n+2) such that ym -> Cbx (m -• oo).

We take xm := J'bym. Note that J~b e ^(AΓ). Since the operators J~* and

( — A)k (keZ) commute on D(A% the set D(Ak) (fe > 0) is invariant under

J~b. Hence, xm e D(A[b]+n+2). Moreover, using Lemma 1.4 and part (a),

ΓbCbx = J-b(-A)[b]+n+2Jb-[b]-n-2x = (-A)[b]+n+2J-[b]-n~2x = x .

Analogously, one can show that Jbxm = (-A)[b]+n+2Jb-[b]-n-2Γbym = ym for

all meN. Thus, xm = J'bym -• J~bCbx = x and Jbxm = ym -• Cftx as m ̂  oo.

•

Unfortunately, we do not know whether the above result holds for ex-

ponents — (n + 1) < SRb < n + 1, b φ Z, i.e. it is not clear at present whether

j b = c b for every b e C and all operators A. An example in which the equal-

ity holds is given next.
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EXAMPLE. On X = C0(R, C2), consider the matrix multiplication operator

(1.8) s/q:f^qf,feD{sfq):={feX:qfeX}9

where q:R-+M2(C) is defined by

q(x) :=
x + i(x + 1)

0 x - i(x + 1)
(xeR).

The spectrum of s/q is given by σ(s/q) = {x + i(x + 1), x — i(x + 1): x e /?},

and R(λ, sίq)f = (λ- qi-TWeX), where

(λ -

1

λ-x-i(x+ί) {λ-x-i{x + ί))(λ-x + i(x + 1))
1

Hence, the set S :=

0

π

8

(xeR).

λ - x + i(x + 1)

is contained in p(s/q), and \\R(λ, s/q)\\ < M

for all λ e S. Thus, j / β satisfies the assumptions of this paper with a = -
o

and n = 0.
By Cauchy's Integral Formula and induction, it follows that the operators

Jb (b e C) with domain D{s/^b]+2) concur with multiplication by

(1.9)

ΛW =
(-χ-ί(χ

0
2i(x + l)1

Obviously, Jb is bounded if Mb < — 1 (compare to Remark 3). For Wb > — 1,
the operator Jb is a restriction of the closed matrix multiplication operator
Mjb: / \-+jhf (with maximal domain). Moreover, since D(Jb) = D(s/^b]+2) con-
tains C00(R, C2) which is a core for Mjb, it follows that Jb = Mjb. Calculating
the pointwise product of j b and —q shows that

(1.10) jb(x){-q(x)) = (-q(x))jh(x) = Λ + i ( x ) for a l l x e ί .

Consequently, the operators Jb and Cb coincide on the core Coo(/?, C2). This
yields β = Cb for all beC.

Note that Jb is unbounded if - 1 < Mb < 0. •

By definition, the space D(A[b]+n+2) = D{Jb) is a core for J* (ft e C). In
order to extend the semigroup property of the operators Jb (ft e C) to their
closures, we need to know that the spaces o(Λιb]+n+2+k) (k > 1) have the same
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property. For 9ίb < — (n + 1), this follows instantly since the operator Jb is

bounded and the spaces D(Ak) (feeTV) are dense in X.

LEMMA 1.8. Let Wb > -(n + 1). Then, D{A[b]+n+2+k) (k > 1) is a core

for Jb.

PROOF. Let k > 1 and x e D(Aιb]+n+2). Since D{Ak) is dense in X, there

exists a sequence (ym)meN in D(v4k) such that ym -• ( — A)[b]+n+2x as m -• oo. We

define xm := ( - Aym+n+2)ym e D(Aιb]+n+2+k). Now,

xm = (-A)-m+n+2)ym -> (-A)-([b]+n+2)(-A)[b]+n+2x = x ,

and

as m -> oo. Note that j b "^-«-2

We can now prove a weakened semigroup property for the operators

Is {be C).

PROPOSITION 1.9. For all b , c e Q J 5 ^ c j 5 ^ wiίΛ equality if I**1 = Cb

PROOF. By Lemma 1.4, ̂ rfc+clz>(̂ <ί»+<c>) = JbJc\D(A<f»+<c>) £ J 5 ^ . Taking clo-

sures on both sides, the first part of the assertion follows by Lemma 1.8.

Now, assume that J^ = Cb+C. Take any xeD{CbCc\ i.e. j ' - w - " " 2

 e

D(i4 w + " + 2 ) and j»-m-»-2(- i4)i*]+»+2j^w-»-2

x e D(A[b]+n+2). Since the opera-

tors j*-w-»- 2 and (-A) [ c ] + π + 2 commute on D(Λ [ c ] + π + 2), it follows by Lemma

1.4 and equality (1.7) that Jb+c-[b+c^n-2x e D(A[b+c]+n+2). Hence, x e D ( C b + c )

and Cb+Cx = CbCcx. Therefore, CbCc c Cb + C and, since Cb + C is a closed opera-

tor, also CbCc s Cft+C. With the first part of our proof, it follows that

jb+c £ jbjc s C b C c £ Cb+c

But, by assumption, we have Jb+C = Cb + C which gives the assertion. •

Next, we consider the special case c = — b. By Proposition 1.7, we have

J° = Ix. Therefore, Proposition 1.9 yields

for all b eC. However, one can even get a more precise result.

LEMMA 1.10. J~bJb = /D(jF) for every beC.

PROOF. Let x e D(Jb). By Lemma 1.8, there is a sequence (xm)meN in

D(A<b>+<~b>) such that x w - > x and Jbxm^Jbx as m->oo. Taking ym :=
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JbxmeD{A[-b]+n+2) yields ym = Jbxm - J*x _and, by_Lemma_1.5, Γbym =

J~bJbxm =xm -» x (m -> oo). But this means Λ c e D(J" b ) and J~ bΛc = x. •

Hence, as expected of fractional powers, the operator J~b is the possibly

unbounded inverse of Jb. In particular, the operators Jb (b e C) are injective,

and for 9tb > n + 1, we have 0 e p(Jb). However, a spectral mapping theorem

σ(Tb) = (-σ(A))b

can in general not be expected, as the following example shows.

EXAMPLE. Consider again the matrix multiplication operator s/q on X =

C0(R, C2) given in (1.8). As shown above, the operators Jb (b e C) correspond

to matrix multiplication by j b (see (1.9)). Hence, if the inverse of λ — Jb

(λ e C) exists, it must concur with multiplication by

1 x2

λ-(-x-ί(x+l))b 2f(x+l)|_Λ-(-x-ί(x+l))b λ-(-x
1

0 7

Take any 0 < SRfo < 1. The term in the upper right of (λ —jb)
 1 is unbounded

for every λeC. Thus, σ(J*) = C. •

Coming to the end of the first section, and justified by the properties

shown above, we finally define fractional powers of —A.

DEFINITION 1.11. For every beC, we define the fractional power ( — Af

of the operator —A by

We summarize the results of this section.

THEOREM 1.12. The fractional powers { — Af (b e C) satisfy the following,

(ί) For every b e C, the operator ( — A)b is closed. If 916 < — (n + 1), then

(ίi) If beN, then (-A)b = (-A)...(-A) and (-A)~b = ((-Afy1. Also,

b times

) X

(Hi) The operators ( — A)b (b e C) are injective, and ( — A) b(~A)b = ID(i_A)b)

for every b e C.

(ίv) For all b, c e C, (-A)b+C c (-A)b(-A)c with equality if (-A)b+C = Cb+C.

(v) l i m ^ i (-A)bx = -Ax for every x e D(An+3).
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REMARK. In the case that A is not densely defined, the results for the

operators Jb (b e C), that is Lemma 1.4, Lemma 1.5 and Proposition 1.6, still

hold.

2. Fractional powers as generators

As in the previous section, the linear operator A is closed and densely

defined. Its resolvent exists and satisfies \\R{λ, A)\\ < C(l + \λ\)n on the set

Σ(a)ϋBd.

Regarding applications to higher order abstract differential equations, it

is of interest whether the negative fractional powers — ( — A)b as defined above

are infinitesimal generators. In the following, we will show that for exponents

0 <b < — -, thus in particular for 0 < b < \, the negative fractional power
2(π - a)

— ( — A)b generates an analytic semigroup (Tb(t))t>0 of growth order —-—
b

given by

(2.1) Tb(t) := ^ \ e-«-*R& A)dλ (ί > 0).

Semigroups of growth order α were introduced by G. Da Prato [ 5 ] in

1966 (see also I. Miyadera, S. Oharu and N. Okazawa [ 16 ], N. Okazawa

[20], P. E. Sobolevskii [22] and A. V. Zafievskii [25]). We recall the

definition.

DEFINITION 2.1. Let α > 0. A family (Γ(ί)) ί > 0 of bounded, linear opera-

tors on X is called a semigroup of growth order α if it satisfies the following

conditions.

(i) T(t + s)= T(t)T(s) for all ί, s > 0.

(ii) The mapping 11-» T(t) (t > 0) is strongly continuous.

(Hi) If T(ήx = 0 for all t > 0, then x = 0.

(iv) ||ίαT(ί)|| is bounded as t tends to zero,

(v) Xo := \Jt>0T(t)X is dense in X.

As a first step, we prove the existence of the integral in (2.1).

PROPOSITION 2.2. Let Y be a complex Banach space. Assume that

F: ρ(A) -• Y is analytic, and that there are constants K > 0 and ke No such

that \\F(λ)\\ < K{\ + \λ\)k for all λ e Σ(a) \JBd. IfO<b< „, * , and Γ =
2(π - a)

Γ(ά, d) for any max < — — — π, 0 > < a < a and 0 < d < d, then the improper
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integral

2πιJΓ

converges for all t e W(b, α) := {t e C: |arg t\ < arctan (cos (b(π — a)))} uniformly

on compact subsets of W(b, a) and coincides with the curve integral over Γ(ά, ί)

for every a < ά < a and 0 < <2 < d. Moreover, there exists a constant M > 0

depending on Γ, b, K9 k such that \\UΓ(t)\\ < M(ctί - \t2\y{k+1/b\ where c :=

cos (b(π - ά)\ for all t = ίx + it2 e W(b, a).

PROOF. The assumption a > max \ — ; — π, 0 > yields b < . Thus,

I 2b J 2(π-ά)

for all λ e Γ, 0 < b|arg (-λ)\ <b{π-ά)<^- and therefore cos (b arg (-λ)) >

cos (b(π — a)) = c> 0. Now, take t = t1 + it2 e W(b9 a). Since \t2\ < ctu which

follows from the assumption |arg ί| = arctan-?- < arctan c, we obtain

(2.2) |e~ ί (~λ ) b | = β

for all λeΓ. By this, it follows that

I ί e-(«ι-fci> *κ(i + r)*i/r + i \ e-^
2Jd 2 J i

(1 - ~d)e-^-™)ihK2k-1 + K2k~ι Γ e-
Jo

where Γ() denotes the gamma function. Considering the parametrizations

given in (1.2), this yields the existence of the curve integral over 7"3. Analog-

ously, with the same final estimate, one obtains the convergence of the integral

over /\. The integral over the finite path Γ2 obviously exists, and, since

||έΓ ί (-λ)bF(;i)|| e-^-{t2l)BbK2k for all λeΓ2, it can be estimated by

\\UΓ2(t)\\ < K2ke-{ct^t2])ib.

The coincidence of the integrals follows with Cauchy's Theorem. In fact, if

Γ = Γ(ά, ά) for any a < ά < a and 0 < <l < d9 then U^t) - Uj(t) = lim,.^ UΓr(t),

where Γr = {reiφ: -ά<φ < -a}U {reiφ: a < φ < ά}. Along Γr (r > 1), the
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integrand is bounded by e~ ( c ί l~ | ί 2 l ) r bK(l + rf. Thus,

r)k

L ^ O (r->oo).

541

2 π r ^ O

PROPOSITION 2.3. Let F, b and Γ be as in Proposition 2.2. Further, let

λoe ρ(Λ)\(Σ(a)UBd). If m e {0,1}, then the improper integral

I
converges uniformly for t e W(b, a).

PROOF. Let m e {0, 1} and t e W{b, a). Note that λ0 φ Γ. By (2.2), we

have

for all λe Γ. Hence,

e-(ctί-\t2\)\λ\b

n ' e )

00 r m b

This estimate yields the uniform convergence of the curve integrals over Γ3.

Similarly, one shows that the curve integrals over Γx converge uniformly. •

It follows from our assumptions on R(λ, A) and Proposition 2.2 that the

following definition is justified.

DEFINITION 2.4. Let 0 <b <

operator Tb{t)e@(X) is defined by

2(π - a)
and Γ = Γ(a, d). For t > 0, the

We will show that the operator family (7i( ί)) f > 0 satisfies Definition 2.1.

It follows immediately from Proposition 2.2 that there is a constant

Nb > 0 such that for all ί > 0

(2.3) \\Tb(t)\\

PROPOSITION 2.5. The mapping 11—• Tb(t) has an analytic extension into

the open sector W(b, a). For all me TV,

ίtΐ Tb{t) =
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PROOF. For every ί e C , λ\-+e~t{~λ)b is analytic on C\[0, oo). Hence,
ί d\m

for m = 0, 1, 2, ..., the mapping (A, t) H> ί - 1 *"«-»bR(λ9 A) =

(-l)m(-Λ)mftέΓί(~λ)bK(Λ, A) is analytic in ί and continuous on Γ x W(b, a).

Further, we have for all m > 0 and λ e Σ(a) U Bd

\\(-λ)mbR(λ9 A)\\ < \λ\mbc(i + \λ\γ < c ( i *

By Proposition 2.2, the improper integrals

2πι JΓ

converge uniformly on compact subsets of W(b, a). Hence, for every m > 0,

the mapping 11-» Um(t) is analytic on W(b, a), and its derivative is given by

U() U ( ) •

The following part treats the semigroup property of the operator family

PROPOSITION 2.6. Tb(t)Tb(s) = Tb(ί + 5) /or all t, se W(b, a).

PROOF. If ί, s > 0 then, by Proposition 2.2, we can write Tb(s) as a curve

f 2b - 1 ]
integral over Γ(ά, d\ where max <———π, 0> < a < a, 0 < d < d. Similar to

I 2b J
the proof of Lemma 1.4, one can show that the semigroup property holds.

Since 11—• Tb(t) is analytic on W(b, a) (see Proposition 2.5), the assertion follows

by the uniqueness theorem for analytic functions. •

The set Xb := [Jt>0Tb(t)X is a dense subset of the continuity set

Ωb:={xeX:Tb(t)x^x(t-+0)}

of (Tb(t))t>0. In order to show that statement (v) of Definition 2.1 is fulfilled,
it is therefore sufficient to prove that Ωb is dense in X.

LEMMA 2.7. // xeD{An+2), then

~ ί (-λf-'Riλ, A)(-
Zπi J Γ

Uτb(t)x - x) -> ~ ί (-λf-'Riλ, A)(-A)xdλ = -Jbx

t Zπi J

as t -* 0, t e W(b, a). In particular, D{An+2) c Ωb.

PROOF. Let x e D(An+2). Fix Ao e p(A)\(Σ(a) U Bd). For every λ e p(A\
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(2.4) R(λ, A)x = Σ n

( ~ / v + i α o - A)>x + {~^"2R(λ, A)(λ0 - Af^x .
j=0 [A — /0Λ (/ ~ λθ)

We insert this in the definition of Tb(t). By Proposition 2.2, we can inter-
change integration and summation. Cauchy's Integral Formula for the deriva-
tives yields

-r(-λ)'

x=λ0

for all ί e W(b, a). Therefore,

1 1 n+1 C i

[ϊi() - x] = -\e-«-»h - l]x + Σ V (λ0 -

for all ί G »F(&, 4 Now, - [β" ί (~λ)b - 1] -• - -A)fc for every λ e C\[0, oo) and

as ί^O. Further,

n+2 R(λ, A)(λ0 - AY+2xdλ

since, by means of Proposition 2.3, we can interchange differentiation and

integration. Hence -[Tb(t)x — x] converges as ί->0, teW(b, α), and
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lim -lTb(t)x-x]
t->o t

teW(b,a)

= -(-λofx + "f <—^(- iy-i
l J !

Using Cauchy's Integral Formula for the derivatives and (2.4), one obtains

lim \[Tb{t)x - x] = -(-λo)
bx + -L f _(_A)bΓκμ, X) - — [ —\xdλ .

ί^o t Zπi J Γ [_ λ — λoj
teW(b,a)

Note that Cauchy's Integral Formula can not be applied to the term — ( — λo)
b

1 — (— λ)b

since the integral -z—.jr—* —dλ does not exist. But, with the identity
2.711 A — ΛQ

R(λ, A)(λ — A)x = x for all λ e p(A) and Cauchy's Integral Formula, it follows
that

= o.

By (1.6), this gives the assertion. •

PROPOSITION 2.8. The operators Tb(t) (t e W(b, a)) are injective.

PROOF. Let t0 e W(b, a). Assume Tb(t0)x = 0 for some xeX. Proposi-
tion 2.6 yields Tb(t0 + t)x = Tb(t)Tb(t0)x = 0 for all t e W(b, a). Since, by Prop-
osition 2.5, t H* Tb(t)x is analytic, it follows by the uniqueness theorem for
analytic functions that Tb(t)x = 0 for all t e W(b, a). Using that the operators
( - ^ Γ 1 and Tb(t) commute, we obtain Tb(ή(-A)-(n+2)x = (-A)-(n+2)Tb(ήx = 0.
But (-A)-(n+2)xeD(An+2). Therefore, Lemma 2.7 yields (~A)-(n+2)x =
lim^o Tb(t)(-A)-{n+2)x = 0 which implies x = 0. •

From the results above, it follows that the operator family (7ί,(ί))ί>0 forms

an analytic semigroup of growth order —-—. The generator Ab of this
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semigroup is defined by

A b x : = Mm-[Tb(t)x - x ] o n D(Ab) := ixeX: l i m -{Tb{t)x - x ] e x i s t s > .

In general, the generator of a semigroup of growth order α is not closed. But,

by [20], Lemma 3.1, it is always closable. Its closure is called the complete

generator of the semigroup. In the following, we will show that the complete

generator A~b of (Tb(t))t>0 coincides with the negative fractional power — ( — A)b

given in Definition 1.11.

LEMMA 2.9. -(-Af c J~b.

PROOF. By Lemma 2.7, -J b = Ab\D{An+2). Thus -Jb^Ab. Taking

closures on both sides, the assertion follows by Definition 1.11. •

To prove Lemma 2.9, we used that the operators — ( — A)b and Ab coincide

on the core D(An+2) for — ( — A)b. The opposite inclusion can be shown in

a similar way. Consider the space

Xb:=\JTb(t)X.
ί>0

LEMMA 2.10. Xb <Ξ D(A">).

PROOF. Fix t > 0 and xe X. For me No, the function gm(λ) :=

e-«-λ)bλmR(λ9A)x is continuous on Γ, gm(λ)eD(A) and Agm(λ) = gm+1(λ)-

e~t(~λ)bλmx for all λ e Γ. By Proposition 2.2, the integrals — \Γgk(λ)dλ (fee Wo)

2ni

exist. Cauchy's Theorem yields — $Γe~t(~λ)bλkdλ = 0 for all keN0. Since

A is closed, we can conclude that

By induction, it follows that for all me N

Tb(t)x e D(Am) and AmTb(t)x = -*- ί e-
t(-λ)bλmR(λ, A)xdλ . •

2πι JΓ

In particular, Xb is contained in D(An+2) and therefore in the domains

of - ( — A)b and A~b. To see that Xb is a core for A~b we need the following

considerations.

It x e Ωb9 then, by (2.3), the mapping 11-> ||Tb(r)x|| (t > 0) is bounded, i.e.

ί > 0
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exists. Further, Nb(x) > \\x\\ for every xeΩb. Obviously, Nb( ) defines a

norm on Ωb9 and the space Ωb provided with the norm Nb( ) is a Banach

space.

Since Tb(t)X s Ωb for all ί > 0, we can restrict the semigroup (Tb(t))t>0

to the space Ωb, i.e. we study the operator family (Ub(t))t>0 given by

Ub(t):=Tb(t)\Ωb ( ί > 0 )

Ub(0):=IΩh.

Further, let Eb be the restriction of the generator Ab of (7J(ί)) f > 0 to the space

Ωb, i.e.

Ebx = Abx for all x e D(Eb) := {x e D(Ab): Abx e Ωb} .

Being a restriction of the closed operator Ab, Eb is closable in X By [ 16 ],

Lemma 3.2, we even have that D(Eb) is a core for Ab or, equivalently,

(2.5) Έb = Ab.

Moreover, Theorem 2.2 in [ 16 ] yields that the operator family (Ub(t))t>0

forms a strongly continuous semigroup of contractions with generator Eb on

(Ωb,Nb(-)).

PROPOSITION 2.11. The space Xb is a core for the operator Ab.

PROOF. We will first show that Xb is a core for Eb in the Banach space

(Ωb,Nb(-)).

Since the operators Ab and Jb coincide on D(An+2\ and Jb commutes with

{-A)'1 on D(Jb) = D(An+2), it follows that AbD(A2Λ+4) s D(An+2) c D(Ab).

By definition of Eb, we therefore have D(A2n+*) ^ D(Eb\ and Lemma 2.10

yields Xb £ D(Eb).

Let t > 0 and x e l By definition of the semigroup (Ub(t))t>0, we obtain

Ub(s)Tb{t)x = Tb(t + s)x e Xb for all s > 0. Hence, Xfc is (L/ft( ))-invariant.

If x e Ωb, then Nb(Ub(ήx - x) -+ 0 (ί -• 0) since (L^(ί))t>0 is strongly contin-

uous on (Ωb9Nb(-)). But, for t > 0, I4(ί)x = Γ f t ( ί ) x e 4 Thus, Xfc is ΛΓ6( )-

dense in Ωb.

By [17], A-I, Proposition 1.9, it follows that Eb\x"
h{m) = Eb.

On the other hand, being a restriction of the closed operator Ab9 Eb\Xb

is also closable in X, i.e. with respect to the norm || ||. Since Nb(x)> \\x\\

for all x e Ωb, we obtain

Moreover, since £^1^ is closed in X, it follows that £ b ^ £fclχb ^ ^b By

(2.5), this gives the assertion. •
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Lemma 2.9 and Proposition 2.11 allow the following conclusion.

PROPOSITION 2.12. A~b = -(-A)b.

PROOF. By Lemma 2.10, we have Xb c D(A°°) c D{An+2\ Hence, Lemma

2.7 yields Ah\Xb ^ — Jb. Taking closures on both sides, we obtain

by means of Proposition 2.11 and Definition 1.11. Now, Lemma 2.9 gives

the assertion. •

EXAMPLE. If A is the generator of a n-times integrated semigroup such

that R(λ, A) exists on {λ e C: 9U > 0} U {0}, and D(A) is dense in X, then,

for every 0 < b < 1, the negative fractional power — ( — Af is the generator
• -j

of a semigroup (7i(0)t>o of growth order — - — . In particular, the incomplete
b

abstract Cauchy problem

'ά (ί > 0), M(0) = x ,

where m > 2, has a bounded solution given by T1/m( )x for every x e D(Amin+2)).

•
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