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Introduction

Let Λ be a compact or noncompact Riemann surface and let y be a

cycle in R. Then there exists a unique square integrable harmonic differential

σ in R such that J y ω = (ω, *σ)R (= JJR co A cr) for all C2 square integrable

closed differentials ω in R. We call σ the reproducing differential for (R, y).

The norm λ= \\σ\\% is called the harmonic module for (R, y). L. V. Ahlfors

[2] noted their significance in the theory of functions of one complex vari-

able. In this paper we shall show their usefulness in that of several complex

variables.

To a complex parameter t in a disk B, we let correspond a covering sur-

face R(t) over the z-plane C with C00 smooth boundary dR(t) and with branch

points ξι(t) (1 < i < q\ where q does not depend on ί e B. Assume that dR(t)

varies C00 smoothly with the parameter tsB and that ξ^t) is a holomorphic

function on B. Thus 01 = \JteB(t9 R{ή) is a ramified Riemann domain over

B x C. We simply denote d0t = \jteB{t, dR{t)\ and write 0t: t -+ R(t\ t e B.

Now let y(i) be a cycle in R(t) which varies continuously with t e B in 0t. As

a Riemann surface, each R(t) with y(r) carries the reproducing differential

σ(ί, •) and the harmonic module λ(t) for (R(t), y{ή). We put ί2(ί, z) = σ(ί, z) +

i*σ{t,z) = f(t,z)dz for z e R(ί) and ||fl||(t,z) = |/(ί,z)|. In [15] and [16] we

showed that: // 01 is pseudoconvex over B x C, ίften >

ί e 5 . Furthermore, the equality holds for all t e B, if and only if $ is Levi

flat. In this paper, for any 0t\t^ R(t), t E B, we shall prove a variation

formula for λ(t) of the second order, which deduces the above result in the

pseudoconvex or Levi flat case. Precisely, let φ(ί, z) be a C2 defining function

of ^ , and put, for (ί, z) e d0t.

dφ

~dz

2 -2Re^^^y +
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which is called the Levi curvature of dR at (ί, z). Then, we have

d2λ(t)

δtδt
:t) i f
1 L J dR(t)

k2(t,z)\\Ω\\2(t,z)\dz\
dΩ

R(t)

By a triple {Jί, π, B), we mean that Jί is a connected 2-dimensional

complex manifold, B a region in the complex plane C, and π a holomorphic

mapping from Jί onto 5 such that each π" 1 ^) , tsB is a 1-dimensional

irreducible non-singular analytic set in ^ . We put M{t) = π~ι{t) for i e £ ,

which is a compact or noncompact Riemann surface. A triple SDl = {Jί, π, B)

is said to be topologically trivial, if there exist a Riemann surface R and a

topological mapping T from ^ onto B x R such that πBo T = π where π β

is the projection from B x R to B. If R is of (topological) type {g, ή), that

is, R is of genus g (0 < g < oo) and has H (0 < n < oo) ideal boundary compo-

nents, then 90t is said to be of type (g, ή). If g and n are finite, 9W is said

to be of finite type. Otherwise, 9W is said to be of infinite type. A triple

9ffi is said to be holomorphίcally trivial, if we can take a biholomorphic mapping

T from Jί onto B x R such that πB o Γ = π. A triple SOΪ is said to be 0/

locally Stein, if for any t0 e B, there exists a disk β 0 in 5 centered at t0 such

that π~x(B0) is a Stein manifold. As usual a holomorphic mapping α from

£ into Λ? such that π o α = (identity) is called a holomorphic section of Jί

defined on B.

As an application of the variation formula, we shall show

THEOREM. Let SDΪ = {Jί, π, C) be a topologically trivial triple of finite or

infinite type {g, n). Then we have the following results (I) ~ (IV):

(I) If n = 0, then SCR is holomorphically trivial.

Let n > 1 and assume that SDl is of locally Stein. Then

(II) SOΪ is holomorphically trivial except for the following three cases (i),

(ii) and (iii):

( i ) {g, n) = (0, 1) and M{to) for some toeC is conformally equivalent to

a unit disk,

(ii) {g, ή) = (0, 2) and M{to) for some toeC is conformally equivalent to

a punctured unit disk,

(iii) SDΪ is of infinite type.

(III) In case (i), SOΪ is holomorphically trivial, provided that there exist at

least two holomorphic sections of Jί defined on C {which may intersect each

other).

(IV) In cases (ii) and (iii), the same is true, provided that there exists at

least one holomorphic section of Ji defined on C.

Assertion (I) is proved by a combination of some classical theorems for

compact Riemann surfaces. (We shall give its brief proof at the end of this
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paper.) We recall that any noncompact Riemann surface S of finite type

(g, n) is conformally equivalent to the interior R of a compact Riemann sur-

face RA of genus g excluded ri (0 < ri < ή) simply connected domains {Dj

with Cω smooth boundary dDt and n — ri points {Pj}, namely, R = RA —

{Ji<i<nf {DiUdDiUPj}. Then we say that S has ri non-degenerating, and

n — ri degenerating ideal boundary components. The special case in (II) such

that all ideal boundary components of each π " 1 ^ ) , teC are degenerating, is

immediately reduced to (I) by Theorem 2 in Nishino [11]. Thus the variation

formula will be essentially used in the proof of the general case in (II) such

that π " 1 ^ ) for some toeC has at least one non-degenerating ideal boundary

component, and in the proofs of (III) and (IV).

The authors thank Professor Masakazu Shiba for very useful comments,

by which the original manuscript was largely revised.

1. Harmonic modules

Let R be a compact or noncompact Riemann surface. Following Ahlfors

and Sario [3] we define

Γ(R) = the Hubert space of square integrable differentials in R;

ΓC

2(R) = the space of square integrable closed differentials of class C 2 in R;

Γh(R) = the space of square integrable harmonic differentials in R.

Let y be a cycle in R. Then there exists a unique σγ e Γh(R) such that

(1.1) ω = (ω, *σγ)R for all ω e ΓC

2(R).
Jy

The harmonic differential σy is called the reproducing differential (or briefly,

r-dijf) for (R,y). The norm λγ = ||σy||£ is called the harmonic module (or,

h-mod.) for (R, y). It is well-known that, for any cycle δ in R,

(1.2) \ σy = y x δ (intersection number).
Jδ

Assume that R is a compact bordered Riemann surface of type (g, ri). That

is, R is of genus g and dR consists of n smooth curves {Q} (1 < i < ri] of

class Cω in a larger Riemann surface RA D D K . We put A = 2g + n — 1. As

a canonical homology base of R U dR, we can take A smooth curves on R U

dR: {Ap By, CJ (1 <j < g; 1 < i < n - 1) such that A x x Bj = δυ (Kronecker's

delta) and At x Aj = Bt x Bj = 0 (1 < i,j < g). Let y be a cycle in R. Then

σγ is constructed as follows:
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Case 1. y ~ Ct(\ <i<n — l). We consider the harmonic function wf(z)

in R with boundary values 1 on Ct and 0 on (dR) — Q. Then σγ = dut in R.

Case 2. γ ~ At. We cut R along Ai9 so that d(R - At) = (dR) + At -

AJ. We form a harmonic function vt(z) on R - ^ such that υt(z) = 0 on

dR and such that vt(z) is harmonically extended across A* and AJ to be

functions i>f

+ (z) and t f (z) with v* (z) = ϋt~ (z) — 1 for z e 17, where (7f is an

annulus around At. Then σy = dι>f in R.

Case 3. y ~ Bt. By replacing y4f and v^z) by B£ and w^z) such that

w^(z) = w^(z) + 1 for zeUi where L̂  is an annulus around Bh we have

σy = dWi in Λ.

g π-i

General Case. 7 ^ 2] [^i^t + ^iA] + Σ cfcQ» (αή ^» ck a r e integers). If
i l fcl

we set wy(z) = ΣlciiViiz) + ftiW^z)] + ^c f cuk(z), then uy(z) is a harmonic function

in R - (Jί-iίΛiUfii) such that (1) duy = σy in Λ; (2) wy(z) = 0 on Cn.

Such uy(z) being unique, we say that uy(z) is the normalized Abelian

integral for (R, y). We note that

(1.3) uy(z) = const. ck on each contour Ck (1 < k < n — 1).

In particular, σy(z) is of class Cω up to dD.

New let y be a Jordan curve in R. Two cases occur:

Case (i). y is a dividing cycle. Namely, R is divided into two domains

Rf and R" by y where the orientation of y is negative (resp. positive) with

respect to R' (resp. R").

Case (ii). γ is a non-dividing cycle, so that R — y is connected.

In both cases, for a fixed point α e R — y, we consider the Green function

g(a, z) for Δg = 0 of # with (logarithmic) pole at a. We set

(14) /(a) = ^

Then we have

PROPOSITION 1.1. In Case (i), uy(a) = I (a) + 1 for a e R'\ = I (a) for a e R'\

while, in Case (ii), uy(a) = I(a) for a e R — y.

PROOF. Stokes' formula implies that

tιy(z) * dg{a, z) = g(a, z)
J(aK)-y-«β(α) J (δR)-γ-δε{a)
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where δε(a) is the circle of center a and radius ε > 0. By letting ε -• 0, we

obtain Proposition 1.1. •

REMARK 1.1. In §4, we shall treat the case when R consists of a countable

number of Riemann surfaces {Rj} (1 <j < oo) and when y c R consists of cycles

7ί in Ri (1 < i < fc; k < oo). By relation (1.1) we define the r-diff. σy and the

h-mod. λy for (R, y). Clearly, σγ = σγ. in Rj(l <j < k); = 0 in Rj(k + 1 <j < oo)

and λy = λγi + ~- + λyk, where σγ. and λy. denote those for (Rj9 y,-).

2. Smooth variations

Let B be a disk: = {t e C\\t\ < r} and consider an unramified covering

domain 2 spread over B x C We simply say that 9) is a domain over

B x C. Given t e B, we set D(t) = {z|(ί, z) e 9f}. Then D(ί) consists of an at

most countable number of covering Riemann surfaces over C without branch

points. We call D(t) the fiber of @ at t. 2 may be regarded as a varia-

tion of Riemann surfaces D(t) with the complex parameter teB. We write

Q}\t^ D(t\ t e B. The following condition is imposed on 2:

CONDITION 2.1. There exist another domain Q)~ over B x C and a real-

valued C00 function φ(ί, z) in ®~ such that

(1) ^>~ 3 0 and D~(ή ZD => D(ί) φ φ for any ί e B; We denote by dθ)

the boundary of ® in ®~, and by 5D(ί) the boundary of D(ί) in D~(t);

(2) ^ = {(ί, z) G ®~|φ(ί, z) < 0}; d& = {(ί, z) 6 0~|φ(ί, z) = 0};

(3) For any fixed t e B, -^-φθ for any z e dD(t).
oz

When Condition 2.1 is satisfied, we say that 2f is a C00 smooth variation,

and that the pair (®~, <p) defines 3). Note that δ ^ = (J ί e β ( ί , 3D(ί)). We put,

for (ί, z) G 5^.

I f f / I f f M / M IM iM/MIMM/MIMMJ MIME M I I f J • / M IM M I M I β IB

(2.1)
δφ

dt dzdz\ 1

δφ

δz

which is independent of the choice of the pair (ί^~, φ). fe2(ί, z) is called the

Levi curvature of d<3 at (ί, z) (cf. Levenberg and Yamaguchi [6]). By (3) of

Condition 2.1, there exists a compact bordered Riemann surface S and a C00

diffeomorphism T :(ί, z) -• (ί, w) = (ί, φ(t, z)) of ® U d® o n t o B x S such that

ψ(t,D(t)) = S.

3. Variation formulas

Let ^ be a domain over B x C with Condition 2.1. We keep the nota-

tions φ and S at the end of § 2. Let S be of type (g9 ή). Let y be a cycle
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in 5, and put y(t) = φ'1(t9γ) for teB. Then γ(t) is a cycle in D(t) which

varies continuously with t e B in 3). For any fixed teB, we have the r-diff.

σ{U •) and the h-mod. λ(t) for (D(ή, y(ή). If we put σ(ί, z) = a(t, z)dx + b(t, z)dy,

then α(ί, z) and b(t, z) are harmonic functions for z e D(t) and of class C2

with respect to (tiz)e@Ud@ from (1.3).

DEFINITION 3.1. For ( ί , z ) e ^ U ^ , we put

dσ da. db
— (ί, z) = — (ί, z)rfx + — (ί, z)dy

They are harmonic differentials in each D(t\ teB. We consider the

normalized Abelian integral w(ί, z) for (D(ί), y(ί)). Then -—(ί, z) and -—=(t,z)
ct όtόt

are single-valued for z e D(ί). Indeed, we shall prove this in the case γ ~ Ah

for example. Let t0 e B. We can find a disk Bo of center t0 such that

Ai(t0) a D(t) for all t e Bo and A^tJ - ^^(0 in D(t). Since w+(ί, z) = u~(t, z) - 1

for zelJγ and ί e ΰ o where \J{ => Af(i0), we have du+/dt = du~/dt and d2w+/

dtdt = d2u~/dtdt for all (£, z ) e f i o x C7i5 which proves our claim. We thus have

_

for z e D{t). Given t e B , we write

Ω(t, z) = σ(t, z) + i*σ(t, z) = f(t, z)dz \\Ω\\(t, z) = |/(ί, z)\

dΩt λ δσ. , δσ, λ δ/.

Then (df/dt)(t,z) as well as /(ί, z) is a holomorphic function for z e D(t),

and is of class C 2 up to 3D(r) Clearly, Ω(t, z) = 2-^(ί, z) and — (ί,z) =
oz ^ί

δ2w
2——-(ί, z)dz. We shall show the variation formulas of the h-mod. λ(t) for

otoz

(D(ή, γ(ή).

THEOREM 3.1. For teB, we have

(1)

2A2(t) _ 1 Γ

5ίδ£ 2 JJ δD(ί) ^ ί

where dsz denotes the Euclidean line element of dD(t).
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(3.2)

(3.3)

PROOF. It suffices to prove these at t = 0. First, we prove (1) and

dλ.

δt
(0) •L dt' 'dn.

dσ,
In fact, ^ ( 0 , z) is harmonic in D(0), and is of class C2 up to dD(0). Since

dt

y(t) ~ γ(0) in D(t) for any t close to 0, we have

Λ η / Λ Λ \ / Λ

^τ(O) = U - *σ(ί, •) = *-τ-(0, ), σ(0, •)
dt \dtJy(O) Λ=0 V Ot

from (1.2), we get
D(O)

Since the last term is equal to - ( ί2(0, •), -— (0, •)
2 \ dt

2 du du
(1). By (1.3), we have *σ(0, z) = - —(0, z)dz = — (0, z)dsz along a/)(0). Here

ί dz dnz

d/dnz denotes the outer normal derivative, It follows from (3.1) that

dλ

~dt
(0) = Γ Γ ^ ( 0 , z) A *σ(0, z) = f ^ ( 0 , z)p-(09 z)dsz,JjD(θ)St JdD(O)dt dnz

which proves (3.2). Analogously, we have (3.3).

du.

(3 4)

Next we shall prove that, for any z e dD(0)(= Uϊ=iQ(°)) w i t h τ"(°»z) ^ 0,

du d2u

~dtdϊdz

du

Tz

In fact, let zoeCk(0) (ί<k<ri) with — ( 0 , z o ) # 0 . In case
oz

(1.3) implies that the function ±(u(t, z) — ĉ ) is a denning function of d@> near

(0,zo). Hence

M0,O=±W- - 2 Re

where the right hand side is evaluated at (0, z0). Since u(0, z) is harmonic

on Z>(0) and continuous on D(0), and —-(0, zo)= ±2
dnz

(3.4). If we substitute (3.4) for (3.3), then

, we obtain
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Since -— (0, z) is a single-valued harmonic function for z e D(0), it follows by
ot

Stokes' formula that the second term of the right hand side is equal to

= 4 Re 'fί
1 J JD(O)

2

dz A dz> =
8Ω

D(O)

(2) of Theorem 3.1 is proved. •

In the Introduction we defined a triple $R = (Jί, π, B). We call π a

projection. We put M(t) = π" 1 ^) , ί e 5, and call it the fiber of Λf at t. We

write Λf = \JteB(t, M(ί)). For an open set BoaB, we put JίBo = π~1(B0\

and define 9MBo = (JίBo, πlBo, Bo\ which is called a subtriple of SPΐ on 5O. Let

poe Ji with π(p0) = ί0. Then we can take local coordinates Bo x Uo where

£ o = {|ί - to\ < r0) and Uo = {|z| < p0) of a neighborhood ^r cz cz Jί of p0

such that p 0 corresponds to (ί0, 0), and M(ί)f1« to {ί} x ί/0. We call (ί,z)e

β 0 x (70 π-local coordinates at p0.

DEFINITION 3.2. A triple 501 = (Jί, π, B) is said to have C°°(resρ. Cω)

smooth boundary, if there exists a larger triple 901 ~ = (<y#~, π " , B) and a real-

valued C°°(resp. Cω) function φ(p) on Ji~ such that

(1) ^ ^ z> Ji and π^ = π on ÎT, and M~(t) =3 ZD M(ί) for all t e B. We

denote by dJί the boundary of M in ^ ~ ;

(2) J = {pe Jl~\φ{p) < 0}, δ ^ = {pe ^ ^ | φ ( p ) = 0} and (dφ/dz)(p0) Φ

0 at any p 0 e δ^# in Jί~ where (ί, z) is π~-local coordinates at p0.

We say that the pair (9JΓ, φ) dβ/inβs 9» with C°°(resp. Cω) smooth bound-

ary. In the rest of this section we assume that a triple 9W have a C00 smooth

boundary. Let poedJί in ^ ~ , and let ( ί , z ) e ΰ 0 x Uo be π"-local coordi-

nates at p0. Using φ(t, z) in β 0 x Uo9 we define k2(t,z) on (dJί)Γ\(B0 x L/o)

by (2.1). By simple calculation we see that k2(t, z)/\dz\ is independent of the

choice of the pair (Λίf ~, φ) and of π~-local coordinates (ί, z) at po, and so is

fc2(ί, z) > 0 or = 0 .

Now let a cycle γ(t) in M(ί) vary continuously in Jί with ί e f i . We

consider the r-diff. σ(t, z) and the Λ-mod. λ(t) for (M(ί), y(ί)) We put Ω(t, z) =

σ(ί, z) + i*σ(ί, z) = /(ί, z)dz on M(ί). Let p e J and (ί, z) e 5 0 x ί/0 be π-

local coordinates at p. Then (df/dt)dz does not depend on the choice of

π-local coordinates. It follow that, for a fixed t e B, (df/dt)(t, z)dz defines
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a holomorphic differential on M(t). We denote it by (dΩ/dt)(t, z). Since

||β||(ί,z)|έfe| is invariant on M(t)UdM(t), fc2(ί,z)||Ω||(ί,z) is a function on

dM(t). Then we have

THEOREM 3.2. For a triple SDt = {Jί, π, B) with C00 smooth boundary, the

same variation formulas (1) and (2) (where D(t) and dsz are replaced by M(t)

and \dz\) of Theorem 3.1 hold.

PROOF. It suffices to prove these at t = 0. By Nishimura [9] there

exists a disk Bo of center 0 such that the subtriple SOΪBo of SDt on Bo is

biholomorphically mapped onto an unramified domain R = (J ί e B o (ί, R(ή) over

Bo x C with Condition 2.1 by a transformation Φ\(t,z)^(t,w) — (t,φ(t,z))

where φ(t, M(ή) = R(t) for all teBo. We put γA(t) = φ(t,y(ή) in Λ(ί), and

consider the r-diff. σΛ(ί, w) and the /ί-mod. 2Λ(ί) for (K(ί), γA(ή). We apply

Theorem 3.1 to R and /lA(ί), so that formulas (1) and (2) for λA(t) hold. Since

all five terms appeared in (1) and (2) are invariant under the transformation

Φ, we have Theorem 3.2. •

We note that the variation formula for λ(t) of the second order stated

in the Introduction is a special caseof (2) of Theorem 3.2. We recall the

definition of pseudoconvexity for (Jί, π, B): Let p e dJί and let (£, z) be π-

local coordinates at p in Jl~. If k2(t, z) > 0 at p, then p is called a pseudo-

convex boundary point of M. If dJί consists of all pseudoconvex boundary

points, Jί is said to be pseudoconvex. If k2(t, z) = 0 on dJ(9 Jt is said to

be Levi flat. By Theorem 3.2, we have

COROLLARY 3.1. Let {Jί, π, B) be a triple with C00 smooth boundary.

Suppose that Jί is pseudoconvex. Then, (1)
ctδt

- (
dV

2

for teB.
M(t)

The equality holds for all teB, if and only if Jί is Levi flat; (2) // λ(t) is

a harmonic function on B, then Jί is Levi flat and Ω(t, z) is holomorphic for

(t, z) e Jί. Conversely, if Ω(t, z) is holomorphic for (t, z) e Jί, then λ(t) is a

constant on B.

4. Differentiability condition

In order to study the case of an infinitely many sheeted ramified domain

over B x C, we need a differentiability condition for σ(t, z). Let 3f be an

unramified covering domain over B x C which satisfies

CONDITION 4.1. There exist another unramified domain 3)~ and a Cω

plurisubharmonic function φ(t, z) in <3>~ such that
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(1) 3)~ => 3>\ D{t)~ z> z> D(t) φ φ for any t e B; We denote by d® the

boundary of Qt in @~, and by dZ)(ί) the boundary of D(ί) in D~(t);

(2) & = {(ί, z) G ®~|φ(ί, z) < 0}; 39 = {(ί, z) e < T > ( ί , z) = 0};

(3) (j^, ~ J (t, z) Φ 0 for any (t, z) e δ^;

(4) The subset L = \(t,z)e @~\φ(t, z) = ^ ( ί , z) = 0> consists of a finite

I ^ J
number of real 1-dimensional Cω smooth arcs (which may intersect
each other) in i^~. We denote by £ the projection of L to B.

By real analyticity of φ(t, z) in S&~9 (ϊ) f consist of a finite number of

real 1-dimensional Cω smooth arcs; (ii) dD(t) for t e i has a finite number of

singular points; (in) dQ) = [jteB(t, dD(ή). In general, the variation 3t\t-+ D(t\

t e B is no longer even topologically trivial.

Fix teB and a e D(t). We denote by g(t, a, z) the Green function for

(D(t\ a). Precisely, let Dx(t) be a connected component of D(t) containing α,

and denote by Qγ(t,a,z) the Green function of Dx(t) with pole at a. Then

g(t, a, z) = gx(t, a, z) for z e DM = 0 for z e D(ί) - Dx(i). We put

ί, α) = lim (g(t, a, z) - log )

which is called the itoftm constant for (D(t), a). In [17] it was shown that

under Condition 4.1,

(4.1) g(t, a, z) is continuous for (ί, α, z) e Uίea'fc ^(0* D(ή) with α # z.

Moreover, —- (ί, α) exists and is continuous for (ί, a)e<3>.
δt

By the same method we can prove

dg
LEMMA 4.1. Under Condition 4.1, -—(t,a,z) exists and is continuous for

ot

(t, a, z) e (J ί e β (ί , D(t\ D(ή) with aφz. Furthermore, if we set -£-(t9a,a) =

—— (ί, α), ί/ẑ w r̂- (ί, α, z) is continuous even at a = z.

Now we assume

CONDITION 4.2. To each teBwe let correspond a cycle γ(t) in D(ί) in

a continuous way in 9).

Precisely speaking, for any t0 e B and any product neighborhood Bo x G

of (ί0, y(ί0)) in ®, we can find a disk β x cz Bo of center ί0 such that y(t) cz G
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for all t e Bx and y(t) ~ y(t0) in G. Therefore, the following situations may

occur: y(ή for some teB0 is a dividing cycle in D{t\ while y(t) for other

t e Bo is a non-dividing cycle in D(t); the number of components of y(t) varies

with teB0. For each t e B, we denote by σ(ί, •) and λ(t) the r-diff. and

h-mod. for (D(ί), y(ί)) Then we have

THEOREM 4.1. Suppose that 2 satisfies Conditions 4.1 and 4.2. 77ιen, (1)

— (ί, z) exists and is continuous for (t,z)e@; (2) Λ(ί) is of class C1 in B.
ct

PROOF. Let to e B and write y(t0) = γ0. It suffices to prove the case

when y0 is a smooth curve. By Condition 4.2 we find a neighborhood Bo x G

of (ί0, y0) in ® such that y(t) ~ y0 in G. We thus assume γ(t) = y0 for ί e £ 0 .

We denote by D^t) the connected component of D(t) containing y0. Two

cases occur:

Case (i). y0 is a dividing cycle in D^t). Then D^ί) is divided into two

domains D[(t) and D'[{t) such that D^t) - y0 ~ />i(ί)UD2(ί); δD (ί) = Q(i) - yo;

dDl(t) = Q(t) + yo where βDJί) = CJ(ί) + C"2(t).

Case (ii). y0 is a non-dividing cycle in

In both cases we take a point a e D(£) — y0 and consider the integral

defined by (1.4): /(ί, a) = —- J7 o *dg(t, α, z). By (4.1), /(ί, α) is continuous for

(ί, a) e Q)BQ — (Bo x y0). Since (dg/dt)(t9 α, z) is separately harmonic for a and

z, Lemma 4.1 implies that — (ί, α) = — L *d (-r-(ί, α, z) I exists and is continu-
ed 2π \flί /

ous for (ί, α) e @Bo — (Bo x y0). Since the integrand of the right hand side is

a harmonic differential for z e D(t) (even at z = α), the integral is invariant

under replacing y0 by another curve y ~ y0 in G. It follows that — (ί, a)
at

defines a continuous function for all (ί, α) e $)Bo and that, for any fixed teB0,

— (ί, α) is harmonic for aeD(t).
ct

Now let w(ί, z) be the nomralized Abelian integral for (D(t), y0) such that

σ(ί, z) = dw(ί, z) for z e D(ί). By Remark 1.1, we have σ(ί, z) = 0 in D(t) - D^t)

and u(t, z) = 0 on D(t) — D^ί). Proposition 1.1 implies that, for t e Bo in Case

(i), iι(ί, z) = /(ί, α) + 1 for α e D[(t); = /(ί, α) for α € DJ(ft = 0 for a e D(t) - DM
while, for t e Bo in Case (ii), u(t9 a) = I(t, a) for a e D^t) -yo; = 0 for a e D(t) -

DM). In both cases, — (ί, α) exists and — (ί, α) = — (ί, α) for (ί, d)eQ)B —
ot ct ct



504 Andrew BROWDER and Hiroshi YAMAGUCHI

(Bo

 x Jo)- Again moving γ0 a little in G, we have — (ί, a) = — (£, α) for all

(ί, a)e @B . By (3.1), — (ί, α) = d\ —(ί, a) I exists and is continuous for (ί, a) e
° dί \ot J

<3Bo, which proves (1) of Theorem 4.1. Since —-— = $yo*-^-(t>z)> (2) follows

from (1). •

COROLLARY 4.1. Under the same conditions as in Theorem 4.1, either

l/λ(t)(> 0) is a C 1 superharmonic function on B, or l/λ(t) = +oo on B.

PROOF. We denote by B' (resp. B") = {te B\λ(t) > 0 (resp. = 0)}. Note

that t e B" iff γ(t) ~ 0. By Theorem 4.1, B' is open in B. Since 3 is un-

ramified over B x C, 5" is open in β. Consequently, B = Bf or £". We

assume B = F . Let toeB — t where *f was defined in (4) of Condition 4.1.

We take a disk Bo centered at t0 such that Bo a B — /. Then, the triple

(βBo,π,B0) satisfies Condition 2.1. Since φ(t, z) in Condition 4.1 is plurisub-

harmonic in ®~, the domain ^ B o over ΰ 0 x C is pseudoconvex.

By Corollary 3.1, d2λ(t)/dtdt> \\dΩ/dϊ\\l(t) for ί e £ o . Applying Schwarz's

inequality to (1) of Theorem 3.1, we have

dλ(t)

dt
\\2

m
D{t) dtdt

Thus, l/λ(t) is a C 2 superharmonic function in Bo, and hence in B — ί. On

the other hand, by Theorem 4.1, l/λ(t) is of class C 1 on B. Since / consists

of real 1-dimensional smooth curves in B, it follows from Stokes' formula

that l/λ(t) is a C 1 superharmonic function on B. •

5. Approximation theorem

Let 2 be a ramified domain over B x C which may be infinitely many

sheeted. For teB, we denote by (#(ί), n(ή) the topological type of the fiber

D(ί), and put /(ί) = 2#(ί) + n(ί) - 1. In general, (#(0, n(ί)) depend on teB,

and /(ί) may be +oo. Let 5^ be the set of branch surfaces of 3f, and, s/9

the set of singular points of Sf, so that s/ consists of isolated points in

3. We put & = \JteB(t, D(ή); <7 = \Jt€B(t, S(ή) and st = \JteB(t9 Λ(ή). We

assume

CONDITION 5.1. Sf contains no surfaces of the form t = const., and

D(t) Φ φ for any t e B.

Let (t0, z0) € $4. We find a bidisk Bo x Ko centered at (ίo, z0) such that

[Bo x (dK0)] Π Sf = φ and ff> Π [{ί0} x X J = (ί0, z0). Each fiber D(t) nκo,te
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Bo — {t0} consists of a finite number of components, each a sheeted surface

over Ko without relative boundary, say d^t) (1 < i < m). Note that m is

independent of t. Let t -• t0. Then some of these components, say d^t)

(1 < i < k < m), will be separated into several components d{(to) (m + 1 <

j < hi). Each d{(t0) or ds(t0) (m + 1 < s < n) is equivalent to the unit disk as

Riemann surface.

Now we set @* = 9 - £f = (J ί e β (ί , &*(*))> s o that @* is an unramified

domain over B x C, and each fiber D*(t), teB consists of an at most countable

number of unramified domains over C. We assume

CONDITION 5.2. ^ * is a Stein manifold;

CONDITION 5.3. To each teBwe let correspond a cycle y(t) in D(t) — A(t)

in a continuous way in 3) — stf.

Fix toeB. We denote by σ(ί, •) and λ(t) the r-diff. and the h-mod. for

(Z)(ί), y(ί)) We set Ω(t, z) = σ(t, z) + i*σ(ί, z) for z e D(ί). Contrary to the

case of compact bordered Riemann surfaces, it may happen that σ(ί, z) = 0

on D(t) and λ(ή = 0 for some teB even when y(t) is not homologous to 0

in D(t). (Precisely when y(t) is a dividing cycle on D(t) such that the ideal

boundary component of D(t) determined by y(t) or — y(t) is of generalized

capacity zero. See Marden and Rodin [8], for details.) The following theo-

rem is useful in §§ 6 ~ 8.

THEOREM 5.1. Assume that 2 satisfies Conditions 5.1 ~ 5.3. Then (1)

l/λ(t) ( > 0 ) is a superharmonίc function on B, which may be identically +oo;

(2) // λ(t) is a harmonic function on B, then Ω(t, z) is holomorphic for

(£, z)e@ -s/.

PROOF. Let toeB. By Condition 5.3 we find a cycle y0 near y(t0) in

D*(t0) and a neighborhood Bo x G c= c ^ * of (to, y0) such that y(ί) ~ y0 in

D(ί) for all t e Bo. By Condition 5.2 there exists a Cω plurisubharmonic

function φ(t, z) in <2>* such that, for any α < oo,

^ α = {(ί, z) e ®*|ί € 5O and φ(ί, z ) < α } c c ^ * .

We take an α0 such that <2)Λo => => β 0 x G. We can choose an increasing

sequence {απ} with αn -• oo such that ^ Λ n = (J ίeBo(ί, ^Λn(ί)) is a n unramified

domain over Bo x C satisfying Condition 4.1. Note the 3)Λn -• ^*(n -> oo).

We simply put αn = n. Each (Dn(ί), y0) carries the r-diff. σn(t, •) and the h-mod.

λn(t). By Corollary 4.1, l//ln(ί) ( > 0 ) is either a C 1 superharmonic function

on Bo, or identically +oo.

Now fix t e Bo and let m> n. Since σm(ί, •) G ΓΛ(Dn(ί)) and y(t) ~ y0 in

Dm(ί), we have
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(5.1) \\Dm(t)
= ί -),σn(t,

so that \\σm{tr) - σn{t,')\\2

Dn{t) < λn{t) - λjt). Hence, the sequence {σn(t, •)}

uniformly converges to a harmonic differential σΛ(ί, •) on any compact set

in D*(t), and λn(t)^ ||σΛ(ί, )llέ*(ί)

 a s " - • oo. Since D(ί) - D*(ί)(c= S(ί)) is an

isolated set, σΛ(ί, •) is harmonically extended to D(t), so that σΛ(ί, )eΓΛ(D(ί))

and σΛ(ί, •) = σ(ί, •) in D(t). Hence, λn(t) -+ λ(t) decreasingly as n -• oo. This

implies (1) of Theorem 5.1.

To prove (2), assume that λ(t) is a harmonic function on B. Then, by

Dini's theorem, λn(ή -• A(ί) uniformly on Bo. We set, for any t e Bo9 Ωn(t, z) =

σn(t, z) + i* σπ(ί, z) = /w(ί, z)dz on Dπ(ί); Ω(t, z) = σ(t, z) + i*σ(t, z) = f(t, z)dz on

D*(t). If we extend fn(t9z) to be 0 on D*(t) - Dn(t), then fH(t, z) -• /(ί, z)

uniformly on any compact set on D*(ί). We write ί = tγ + iί2

 a n ( l ^ ^ =

dxdydt1dt2 (the volume element of /?4) and ^ | o = U t 6 B o ( ί , £*(*))• It follows

from (5.1) and (1.2) that

lim ff
n-"oo J J ^

\fn(t, z) - f(t, z)\2dV < 2 lim (λn(t) -im = 0.

We shall show

(5.2)
dt

-(ί, z) = 0 for (ί, z) e <3% in the sense of distributions .

In fact, take any bidisk Bx x V1 c c ^ * o and let ^(t, z) e C ^ ^ i x Vx). Since

fn(t,z) is of class C 1 in ^ M from (1) of Theorem 4.1, we have

f
π-.ooJJBlχF π-oo J JB,XJΊ

By Schwarz's inequality,

U\2< Mm i f

lim f
n-+oo JBι

Bn(t)

2dv

Let ίn = {t e B0\dDn(ή has at least one singular point}, which consists of

1-dimensional Cω smooth arcs. We set Bo-ίn= (J?=iβo fc) where B™ is a

connected component. Then, <2)n:t-+ Dn(t), t e B^k) is a C00 smooth variation.

Since $)n is pseudoconvex, (1) of Corollary 3.1 implies d2λjdtdt> | |3βn/9ί| |Jn ( t )

in ^ f c ) , and hence in Bo - £n. Let φ(t) e C${B0) such that φ(ή >0 in Bo and

= 1 on Bx. Then
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hx d t Dn(t) JJBO-Sn d™t

By (2) of Theorem 4.1, λn(t) is of class C 1 on Bo and of class C2 on J50 - £n

Since *fπ consists of C ω smooth arcs, it follows by Stokes' formula that

*• = \i W^** - \i M
The last equality follows from the assumption d2λ(t)/dtdt = 0 on B. Hence

J = 0 and (5.2) is proved.

On the other hand, f(t, z) is a holomorphic for z e D(t), so that f(t, z)

is holomorphic for (t, z) e ^ o . In other words, Ω(t, z) is holomorphic for

(ί, z) e <2)%o. Since each Ώ(ί, z), t e Bo is holomorphic for z in D(ί) — si, Ω(t, z)

is holomorphic for (t, z) G ̂ B O — si. (2) of Theorem 5.1 is proved •

By a generalized triple {Jί, π, B) we mean that J f is a connected 2-

dimensional complex space, B a region in the complex plane C, and π a

holomorphic mapping from u? onto B such that each π" 1 ^) , teB consists

of an at most countable number of 1-dimensional irreducible analytic sets.

We denote by si the set of singular points of Jί. Assume that there exists

a cycle γ(t) in M(i) — si varying continuously with teB. We have the r-diff.

σ(t, z) and the Λ-mod. λ(t) for (M(t), γ(ή). We put Ω(t, z) = σ(t, z) + i * σ(ί, z)

on M(ί). Then we have

COROLLARY 5.1. // Jί is a Stein space, then (1) and (2) (where 9 is

replaced by Jί) of Theorem 5.1 hold.

PROOF. By Bishop's theorem [4], Jί is biholomorphically mapped onto

a ramified domain Qi over B x C with Conditions 5.1 and 5.2 by a transforma-

tion Φ : (t, z) e Jί -> (t, w) = (t, φ(t, z)) e 9). We put siA = Φ(stf) and yA(t) =

(̂*> y $ ) Then J ^ Λ is the set of singular points of Θ and yΛ(ί) varies continu-

ously in Qj — si^ with ί e £ , that is, γA(t) satisfies Condition 5.3. Hence

Theorem 5.1 is applied to 3f and yΛ(t). Since λ(t) and Ω(t, z) are invariant

under the transformation Φ, we have Corollary 5.1. •

6. Proof of (III) and (IV) in the Introduction

Given two triples SD̂  = (Jίh πh B) (i = 1, 2), we say that <SRί is topologi-

cally (resp. holomorphίcally) equivalent to 9M2, if there exists a topological (resp.

biholomorphic) mapping T from Jί1 onto Jί2 such that π 2 o T = πγ. In the

holomorphic case we write $Jl1 ~ 9W2. As defined in the Introduction, in the

case when 2R2 = (B x R, πB, B), where R is a Riemann surface and πB is the
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first projection, we say that <ί0lί is topologically (resp. holomorphically) trivial

If R is of (topological) type (g, n\ 90^ is said to be of type (g9 ή).

THEOREM 6.1. Let 9DΪ = (J(, π, C) be a topologically trivial triple of type

(0, 1). Assume that (a) 9M is of locally Stein; (b) M(t0) for some toeC is

conformally equivalent to the unit disk D = {|w| < 1}; (c) There exist at least

two holomorphic sections oct: t -• αf(ί) (i = 1, 2) 0/ «/# defined on C. Then SDΪ

is holomorphically trivial: 3R ~ (C x D, π c , C).

PROOF. By (c) we draw a Jordan curve y(t) on each M(t), ί e C rounding

α^ί) and α2(0 positively such that y(t) varies continuously with the parameter

teC in «y#. We consider the double sheeted domain MA over Jί with

branch surfaces a1 and α2 and without relative boundary. Let J\JiA -+M

be the canonical projection. We put π Λ = π o J and π * " 1 ^ ) = MΛ(ί), so that

. # Λ = (Jίec( ί »^ Λ (0) and MΛ(ί) is the double sheeted surface over M(t) with

branch points α^ί) and oc2(t) and without relative boundary. Denote by

Jt\MA(t)->M(t) the restriction J to MA(t). We find two disjoint curves

yi(t)czMA(t) (i = 1,2) over y(ί), which vary continuously with teC in ^ Λ .

For any ί e C , we consider the r-diff. σ(ί, zΛ) and the h-mod. λ(t) for

(MΛ(ί), 7i(0). We write Ω{t, zΛ) = σ(t, zA) + i * σ(t, zΛ) on MΛ(ί). Fix tβ e C

By (a), we find a disk 5 cz C of center ίo such that Jί£ is a Stein space. By

Corollary 5.1, l/λ(t) is a superharmonic function on B. Consequently, l/λ(t)

is a non-negative superharmonic function on C, so that it is a constant 1/c

on C, namely, 0 < λ(t) = c < 00 for all t e C Theorem in [14, p. 84] says

that, under conditions (a) and (b), all M(t) for teC — K, where K is a closed

set of logarithmic capacity 0: Cap K = 0 in C, are conformally equivalent to

the unit disk D. If we take a point toeC — K such that α ^ ί j ^ α2(
ίoX then

0 < λ(t0) = c < GO. It conversely follows that αx(ί) ^ α2(ί) for all t e C, and

that each M(t\ teC is conformal to D. By (2) of Corollary 5.1, Ω(t9z
A) is

holomorphic for (t,zA)eJίA.

—Fix teC and let zAeMA(t). We put φ(t, zA) = exp <— ί2(ί,zΛ)

where ί(t) is an arc connecting α^ί) and zΛ in MΛ(ί). From the theory of

one complex variable, we have (i) MA(t) is conformally equivalent to the

annulus A = {1/r < | W\ < r] by W = φ(t, zA) such that r = eπ/c; φ(t9 α^ί)) = 1

and φ(t9 α2(ί)) = - 1 ; (ii) for z e M(ί), we take two points zf e MA(t) (i = 1, 2)

such that Jt(zt

A) = z. If we put W{ = φ(t9 zf

A), then WXW2 = 1; (in) if we con-

sider the identification /: Wγ ~ W2 by WίW2 = 1 on A, then the quotient

space A/~ is conformally equivalent to the unit disk D. If follows that, for

each ί e C, w = / o ̂ (ί, Jf'^z)) ( = ι/̂ (ί, z)) is well-defined and one to one con-

formal mapping from M(t) onto D. Since Ω(t, zΛ) is holomorphic for (ί, zΛ) e
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*/#Λ, ψ(t, z) holomorphically depends on t e C. Hence, SPΐ ~ (C x D, π c , C) by

Ψ:(t,z)->(t, Ψ(t,z)). D

REMARK 6.1. The idea of constructing a double covering Jί* of Jί is

useful to prove the Picared theorem: // an entire function f(t) on C attains

neither 0 nor 1, then f(t) is a constant. Indeed, for each ί e C , we construct

a double covering D(t) over P1 with 4 distinct branch points {0, l,/(ί), oo}.

D(t) is a compact Riemann surface of genus 1. We can draw a non-trivial

cycle y(t) in D(t) such that y(ί) varies continuously with t e C, and consider

the h-mod. λ(t) for (D(ί), y(ί)) If we put 9 = (J ί e C (ί, D(ή), then 0 and y(ί)

satisfy Conditions 5.1 ~ 5.3. By (1) of Theorem 5.1, l/λ(t) is a positive super-

harmonic function on C, so that λ(t) is a constant on C, and hence /(ί) is

a constant on C

COROLLARY 6.1. Let SCR = ( ^ , π, C) be α topologically trivial triple of

finite or infinite type (g, ή). Assume that (a) n > 1 and SCR is of locally Stein;

(b) There exists toe C such that the universal covering surface M~(t0) of M(to)

is conformally equivalent to the unit disk D; (c) There exists at least one

holomorphic section α : t -> α(ί) of Jί defined on C. Then SCR is holomorphically

trivial: ΪR - (C x R, π c , C).

PROOF. For any ί e C w e construct the universal covering surface M~(ί)

of M(t) starting from the point α(ί). We denote by G(t) = {fn(t, z)}nssQΛtmmm

the cover transformation group of M~(ί), so that M~(t)/G(t) = M(ί). Since

9K is topologically trivial, we canonically obtain the topologically trivial triple

90ΐ~ = (Jt~^ π, C) of type (0, 1) and a holomorphic cover transformation group

« r = {TΠ}Π=0,i,... of ΛίT such that (i) Jl~l<3~ = Jί\ (ii) J(~ = \JteC(t9 M~(ί))

with π~ - 1 (ί) = M^(ί) for t e C; (iii) each Tn e &~ satisfies π~ o Tn = π~ in J(~

and the restriction of Tn to each M~(ί), ί e C is identical with /Π(ί, z). We

note that /M(ί, z) is holomorphic for (ί, z) e ^ . Since SO! is of locally Stein,

so is 9W~. By condition (c), SOΪ" has infinitely many holomorphic sections

oc~ = Tno(χ (n = 0, 1, ) defined on C. By (b), Theorem 6.1 implies that

301" ~ (C x D, π c , C). We denote by LΠ(ί, z) the cover transformation of D

corresponding to /n(ί, z) of M~(ί). Since Ln(t, z) is of the form Ln(t, z) =

e i θ n ( z - an(t))/(l - ajjήz) a n d s i n c e L n ( t , z) i s h o l o m o r p h i c f o r ( ί , z ) e C x D ,

LΠ(ί, z) does not depend o n ί e C : Ln(t, z) = Ln(z). If we put D/{Ln(z)}n=0Λ^^ =

R, then SR s (C x R, π c , C). Π

By the proof, we note that the holomorphic section α of Jί corresponds

to a constant section of C x R. Statement (III) in the Introduction is Theo-

rem 6.1, and (IV) easily follows Corollary 6.1.

In the theory of function algebra, it has been studied when an analytic

multivalued function $ in B x C contains a 1-dimensional analytic set (cf.
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Wermer [9, Theorem 1]). It is known that $ is a pseudoconcave set i n ΰ x C
in the theory of several complex variables, and the converse is true (see
Aupetit [1, Chap. VII]). We put E(t) = {z e C|(ί, z) e £} for each teB. By
applying the usual normal family method to Theorem 6.1 we immediately
have the following result concerning this subject:

COROLLARY 6.2. Let $ be a nonempty pseudoconcave set in C2 of two

complex variables (ί, z) such that each E(t\ teC is bounded in C and P1 — E(t)
is simply connected. Assume that there exists a meromorphic function f(t) on
C such that f{t) φ E(t) for t e C. Then we find an entire function g(t) such
that g(t) e E(t) for t e C.

We often use the following

NOTATION 6.1. Let 9W = (J(9 π, B) be a topologically trivial triple of finite
type (g, ri) with n > 1. We thus have a topological mapping

(NJ T: (ί, z)sJt-* (ί, w) = (ί, φ(£, z))eB x S with π β o Γ = π ,

where 5 is a Riemann surface of genus g and with n boundary components.
For any teB and any X c 5 , we define K(t) = φ~x{t, K) <= M(ί). Hence,
given cycle γ in 5, y(t) defines a cycle in M(t) which varies continuously with
teB in Jί. For each teB, we denote by σy(ί, z) and λy(ή the r-diff. and
h-mod. for (M(ί), y(ί)), and write Ωy(t, z) = σy(ί, z) + y/^ϊ* σy(t, z) for z ε M(ί).
We put dS = CΓ + + C~. We can draw n smooth cycles Cf in 5 such
that Q and Cf surround annulus domain Ei of S in the manner that

(N2) dEi = CΓ - Q and Et Π Ej = ̂ (i ̂  ).

We say that Et is an end of S with boundary component Cf. So, each £f(ί),
teB defines a noncompact region in M(ί) such that £,-(£) has a relative
boundary d£j (ί) = C^t) and an ideal boundary component of M(ί), which we
denote by Q~(£). £f(ί) is called an end o/ M(ί) with idea/ boundary component
CΓ(t). We write δJS ί̂) = Cf(ί) - C£(ί), and Q(ί)-CΓ(ί) in M(ί). In case
when γ = Cf(l < i < n), we simply put

(N3) σCi(t,z) = σi(t,z); λCi{i) = λi{t) and ΩCi(t, z) = Ωt(t, z).

As stated in the Introduction, each ideal boundary component Cf~(ί) of M(ί)
is either degenerating (to a point) or non-degenerating. We put

(N4)
Km = {te B\M(t) has at least one degenerating ideal boundary component} .

Under these notations we have
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LEMMA 6.1. Let 9ft = {Jί, π, B) be a topologically trivial triple of finite

type (d> n\ and of locally Stein. If Cap K^ > 0, then we find a topologically

trivial triple {M~, π~, B) of type (g, n — 1) and a holomorphic section α of

Jl~ defined on B such that 9ft ~ (Jΐ~ - α(£), π~, B).

PROOF. Take toe B such that, for any disk Bo of center t09 Cap(B0

0. Let p0 e M(t0) and let Bo x Uo be a π-local coordinates at p0. We put

M'(ί) = M(t) - Uo and consider a triple 9ft' = {Ji\ π', BJ where M' = M -

Box U0(czJΐ) and π'" 1 ^) = Af'(ί) for t e Bo. 9ft' is a topologically trivial tri-

ple of type (g, n + 1). We can take the cycle C^ή^CΓiή) c M'(ί) (1 < i < n).

Then we have the ft-mod. μf(ί) for (Λf'(ί), Q(ί)) for ί e B. It is clear that

μt(ί) = 0, if and only if Cf'(t) is a degenerating ideal boundary component of

M(t). Since each l/μ t(ί)(> 0) is superharmonic on Bo and since £ ? = 1 l/μf(ί) =

H-oo on B0Γ\Km, it follows that one of them, say l/μi{t), is identically +oo

on Bo, and hence on B. Thus, the ideal boundary component Cf(ί) of any

M(ί), ί 6 B is degenerating. It follows from Fundamental Theorem in Nishino

[10] combined with §3 in [13] that, for any toeB, we find a disk Bo of

center to and an end E\ (a Eγ) of S with ideal boundary Cf such that, if

we put g[ = T~1(B0 x E\) ( c «^), then the triple (^ , π, Bo) is holomorphically

equivalent to a triple (9l9πl9B0) of type (0,2) such that each fiber G^ί),

ί £ β 0 is a Jordan domain punctured at 0 which corresponds to Cf(ί). Thus

the lemma is proved. •

We can now prove that, under the condition: Cap K^ > 0, statement (II)

in the Introduction is true.

In fact, let 501 = (Jt, π, C) be a topologically trivial triple of finite type

(#, n) with n > 1, and of locally Stein. Assume that Cap Km > 0. Then

Corollary 6.1 combined with Lemma 6.1 readily implies that 9ft is holomor-

phically trivial, if (i) n > 2 and M(t0) for some toeC has at least one non-

degenerating ideal boundary component, or (ii) 2g + n — 1 > 3. The other

case is: 9ft is of type (0, 1), (0, 2) or (1, 1) such that all ideal boundary compo-

nents of each M{t), teC are degenerating. This case is reduced to (I) by

Nishino [11]. •

Statement (II) under Cap Km = 0 remains to be proved. In order to

study this in §8, we prepare local properties in §7.

7. Local properties

Let {M, π, B) be a triple. Let ft(t, z) (i = 1, 2) be a meromorphic function

for (£, z)e Jί such that, for any fixed t e B,



512 Andrew BROWDER and Hiroshi YAMAGUCHI

(7.1) fi(t9z) is non-constant for zeM(t).

We consider the transformation

and denote by 2t = T^Jί). Thus 2{ is a ramified domain over B x P1, and

T2 o T^1 is a biholomorphic mapping from &x onto ® 2 . We write

(7.2) Γ2 o T,-1: (ί, W l ) - (ί, w2) = (ί, Φ(ί, W l ) ) ,

where Φ(ί, w j = /2(ί, /Γ 1 ^, wj) is a meromorphic function on Sfx such that,

for each t e B, Φfaw^ is non-constant for w1eDί(t). We put

^ = {all irreducible components of the branch surfaces of ® J .

Let d e ^ and take a non-singular point (ί0, w0) of 4. Then, <J near (ίo, wo)

in 3ft is written in the form ό\ w, = £(ί) with £(ί0) = w0, where £(ί) is a

meromophic function for ί. In the case when ξ(t) is constant (resp. non-

constant) for ί, we say that the component o in Sf{ is constant (resp. non-contant)

for t. We put

5^/(resp. 5^") = { ^ G ^ | ^ is constant (resp. non-constant) for ί } .

We consider the following subset Σ in B x P 2 :

Γ = {(ί, w l5 w 2 ) e ϋ x P2\wt = ft(t, z) for (ί, z) e ^ } ,

which is a 2-dimensional irreducible analytic set in B x P2 (not always closed

i n f i x P2). We call Γ the graph of Jί by (fuf2). We say that Σ realizes
Jί, if Σ and */# are one to one except for an at most countable 1-dimensional

analytic sets. Then we have

LEMMA 7.1. Assume that there exists a ^-dimensional Cω set 3? =

(J ί e β ( ί , L(ή) in an open set <& ( c Jί) such that (a) each L(ί), t e B is a 1-

dimensional Cω non-singular arc in M(t); (b) Im {/f(ί, z)} = 0 for (ί, z) e JSf

(i = 1, 2). T^en ίΛβ following results (1) αwd (2) toW: (1) // di e 5^' ^xisίs,

ί/zβn T2 o T j " 1 ^ ) ( = d 2 ) belongs to S^, and the order of ramification of Q)γ

along oγ is equal to that of Q)2 along o2\ (2) // Σ (defined above) realizes Jί,

then Sf"(i = 1, 2) is empty.

PROOF. We first show that

(7.3) Φ(t, w j of (7.2) does not depend on teB.

In fact, by (7.1), (a) and (b), we find a point q0 e <£ with π(q0) = t0 (we put

t0 = 0) and π-local coordinates Bo x Uo = (\t\ < r0) x (|z| < po) of Jί at qo such

that (i) each arc L(ί), ί e 5 0 divides t/0 into two regions; (ii) the function
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fi(t, z) (ί = 1, 2) is holomorphic in Bo x Uo; (in) for any fixed t e Bo, /f(ί, z) is

univalent on Uo; (ίv) Im {/$, z)} = 0 for all zeL(ί)fΊl7o, ί e 5 0 . Now we

put (al9 a2) = (Λ(^), /2faβ)) e C 2 , where Im β£ = 0 (/ = 1, 2). Then, 7]: (ί, z) -

(ί, fi(t, z)) is a biholomorphic mapping from Bo x Uo onto a (schlicht) neigh-

borhood t] of (0, αf) in Bo x C, so that ifγ and iΓ2 are biholomorphic by

Γ2 o Tf 1 : (ί, wx) -> (ί, w2) = ((ί, Φ(ί, wj). We have

w2 = Φ(ί, W l ) = £ cB(ί)(w - fli)" with co(0) = a2
π=0

in a bidisk β x x Vx ( c TTJ of center (0, a x). Each cM(ί) is holomorphic on

Bx. By (iv), Im {Φ(ί, wj} = 0 for all (ί, w j e Bx x ^ with Im wx = 0. Hence

cn(ί) is real-valued on Bl9 and cn(ί) = const. cn on β ^ So, Φ(ί, w j on ^ x Fi

does not depend on t e Bt. Since ^ x is connected, (7.3) follows by analytic

continuation. In order to prove (1) of Lemma 7.1, let ox e Sf£ and let ίf — 1

(> 2) be the order of ramification of £&1 along <JX. We take a point (t0, ax) e o1

such that a1 near (ίo, ax) in ^ is of the form <j±: wt = ξx(ί) for ί e B 0 with

^1(̂ 0) = ai where ^ ( ί ) is a non-constant holomorphic function in a disk

βo(cz cz β) of center to. We put p0 = T^{t0, ax\ τ = T^{^) aJί,a2= / 2(p 0),

d2 = T2(τ) c ^ 2 and ό2\ w2 = ξ2(ή for t e Bo. Then ξ2(ί) is a meromorphic

function on Bo with ξ2(ί0) = α 2. For simplicity we assume that ξ2(t) is holo-

morphic on Bo. We take π-local coordinates (ί, z)e Bo x Uo at p 0 such that

τ corresponds to Bo x {0}. Then, /f(ί, z) near (ί0, 0) is of the form

! / i f e ) f i W , ( ) ^ + 1 ( )
(7.4)

w2 = /2(ί, z) = {2(ί) + Ci(ί)z + c2(ί)z2 + ,

where (ί, z) runs in Bo x Uo. Each coefficient bj(t), Cj{t) is holomorphic in Bo

and ίv(ί) / 0 for any teB0. It is enough for (1) of Lemma 7.1 to show

that (0 ξ2(t) is non-constant for t e £ 0 ; (ii) cx(ί) = ••• = c^^t) = 0 on Bo and

C/(ί) ^ 0 for some t e Bo. To prove these, we consider a set

(7.5) σ = {(wl9 w2) G />2|wf = /.(ί., z) for z e ί / o } .

If we take a small bidisk Fx x V2 of center (α l 5 α2), then σΠίl^ x F2) ( = σ0)

is a closed 1-dimensional analytic set in Vί x V2. By (7.1), we can write

σo = {(wl5 w2) G Kj x ^IFίwj , vv2) = 0} where F ^ , vv2) is a holomorphic func-

-—(w l 9 vv2) = 0 orf
tion on Vί x V2 such that the set A = < (wl9 w2) G σ

I
(w1,w2) = 0> is a finite point set. We take a smaller bidisk Bx x Ux

dw2 J

(cz Bo x Uo) of center (t09 0) such that fi(Bu Ux) c K, (i = 1, 2). Consider the

subgraph Γo of Σ: Σo = {(ί, w1? w2) e Bx x V1 x 72|w, = ^(ί, z) for (ί, z) G BX X
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Ux}. Then (7.3) implies that

(7.6) Σo^Boxσo.

First, we put z = 0 in (7.4). Then we have {(t9ξ1(t)9ξ2(t))eB1 x Vx x V2\

t e Bx} a Σo a Bo x σ0. Since ξ^t) is non-const, on Bo and since A is a finite

set, ξ2(t) is non-const, on Bo. (ί) is proved. Next, we put B[ = {t e Bγ\c3(t) φ 0

for some j (1 < j < < - 1)} and B'[ = {te Bx\c^t) = 0}. Fix t e B[ U B[. Then

(7.4), together with b^t) Φ 0, implies that {(^(ί), ξ 2(0)|ί e Bi U #ϊ} cz A. Since

ξi(ί) is non-const, on Bl9 the set B[UBfl is also a finite point set. Hence,

B[ = φ. Since b^t) φ 0 for any teBu (7.6) implies B'[ = φ. (ii) is proved.

We shall prove (2) of Lemma 7.1 by contradiction. Assume that there

exists an <jx e ^ with order of ramification ( - 1 (> 1). Using the above

notations we have

Σo = {(ί, ξΛt) + b,(t)z' + , ξ2(ή + cMV + )l(ί, z) 6 Bx x t / J <= Bβ x σβ.

Since Γ D Γ , , and Jt => 5X x l^, this contradicts the hypothesis. •

ACKNOWLEDGEMENT. (1) of Lemma 7.1 was proved in [16] by calcula-

tion. The above intuitive proof by use of the graph is due to Professor

Tetsuo Ueda.

Let 9Dΐ = (Jί, π, B) be a topologically trivial triple of finite type (g, ή). We

use ( N J ^ N J in Notation 6.1 for this 9M. Then we have

LEMMA 7.2. Assume that (a) 9K is of locally Stein; (b) Cap Km = 0; (c)

n>2 and at least one of {Λ(ί)}i<i<n» say ^iM> I S a constant kx in B. Then,

for any t0 e B, we find a disk Bo centered at t0 such that the subtriple (3JlBo

of SOΪ on Bo is holomorphically equivalent to a triple W = {JP, π', Bo) with Cω

smooth boundary: $JlBo ~ W.

PROOF. By (b), there exists t* e B such that the fiber M(t*) is conformally

equivalent to the interior Ro of a compact bordered Riemann surface Ro of

genus g with n Cω smooth boundary contours {Cio} by a conformal mapping

(7.7) ξ:ze M(ί*) -• w = ξ(z) e Ro.

We let correspond Cf(ί*) to Ci0 (1 < i < n) by ξ. We have λ^t*) = k1>0.

By (2) of Corollary 5.1, Ωx(t, z) is holomorphic for {t,z)eJί such that

Ω1(t,z)φ0 on M(t) for any t e B. We shall prove

1) where cγ > 0 ,

ί < ή) where cf < 0 .

In fact, the integral /f(ί) = ^.^Ω^t, z) (1 < i < ή) is a holomorphic function

1
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for teB. By (1.2), we have Re (Jf(ί)} = Q(ί) x Q(ί) = 0, so that It(t) is a

constant y/—l ct. If we consider the harmonic function U(w) on Ro with

boundary values 1 on Cί0 and 0 on Ci0 (2 <i < n), then we have σ^t*, z) =

dl/ o ξ(z) on M(ί*), and ct = f c l β ^ ώ , (1 < i < n). Hence, C l = λ^t*) = kx>

0, while ct < 0 (2 < i < n). (7.8) is proved.

Since c{ φ 0 (1 < i < ή) in (7.8), we see that each ideal boundary components

of all M(t\ teB is non-degenerating. Hence, for any t e B, we find a harmonic

function w(ί, z) on M(t) such that σ^t, z) = du(t, z) and

-fi(7.9) lim u(t,z): .
V ;

 z->cΓ(t) (P for 2 <i<n

where w(ί*, z) = U o £(z) in M(ί*). Let ίx be any point of B. Take a small

disk Bί of center ίx and a holomorphic section α: t -• α(ί) of e^B i defined on

Bx. For simplicity we write tx = 0; Bx= B and ^ B i = ^ . We put £ f =

Γ " 1 ^ x Ei) = (J ί e β (ί , £f(i))> where Et is defined in (N 2) in Notation 6.1. Be-

sides the section α of M on β, we draw holomorphic sections αf such that

α, (ί) G £^(ί) for all ί G 5. For any fixed ί e B, we connects α(ί) and αf(ί) by

an arc ^(ί) in M(ί) such that /f(ί) varies continuously in ^ with teB. We

consider the function on Et:

(7.10) /f(ί, z) = exp < — I I Ωx{t, z) + I Ωx(t, z)

where a path in the second integration lies in E^t). We put H(t) = w(ί, α(ί)).

Then \ft(t, z)\ = exp {(2π/ct)(u(t, z) - H(t))}. We put

r.(t) = ί e X P {(2π/Cl)(1 " H{t))ϊ f0Γ l = 1

| exp {( —2π/ci)/ί(f) for 2 < i < n .

By (7.8), each /j(ί, z) (1 < i < n) is a single-valued holomorphic function for

(ί, z) G £ f . By (7.9), /f(ί, z), ί e ΰ is univalent in £ f(ί) (if necessary, take a

smaller end E^t) with ideal boundary component Cf~(ί)). Hence the mapping

7> (ί, z) G E, ^ (ί, w) = (ί, /f(ί, z)) G β x C

is a holomorphic injection. We put 2X = T^E^ = ! J ί e B ( ί , Dt(t))9 where Df(ί) =

/f(ί, £ f(ί)) It follows that Df(ί), ί G B is a double connected region in C whose

outer boundary component (which corresponds to Cf (ί)) is given by the circle

|w| = rt(ί). It thus suffices for Lemma 7.2 to verify that H(t) is a Cω function

on B.

In fact, by condition (a), Q)i is pseudoconvex at all outer boundary points.

By measuring the outer radius from the origin w = 0 of each Df(ί), we see
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from Hartogs' theorem that all rf(ί) (1 < i < ή) are logarithmic superharmonic

function on B, so that H(t) is harmonic, and hence Cω on B. •

REMARK 7.1. Under the same conditions as in Lemma 7.2, we assume

that (#, ri) = (0, 2). Then, for any t0 e B, we find a disk Bo centered at t0

such that the subtriple WBo of SW on Bo is holomorphically trivial: SDlBo ~

(Bo x Ko, π B o , Bβ) where Ro = ({1 < |w| < ro} and r0 = e2π/kκ

PROOF. We use the same notation as in the proof of Lemma 7.2. When

(g, ή) = (0, 2), we have σ^ί, z) = -σ 2 ( ί , z) on M(ί) and Ct(t) = -C2(t) for t e B.

Moreover, the function w = /i(ί, z) of (7.10) for Ϊ = 1 conformally maps each

M(t\ t e B onto the annulus

D(t) = {we C\e~(2π/Cimt) < \w\ < ^ / C I K I - H C ) ) } a

Since H(t) is harmonic on B9 we can find a holomorphic function g(i) on £

such that log |^(ί)| ^ (2τr/c1)//(ί) on B. Since cί = kί9 Jί is biholomorphic

to B x Ro by the transformation Γf: (ί, z) -»(ί, P )̂ = (ί, giήf^t, z)). Remark

7.1 is valid. •

Now let SOI = (^#, π, β) be a triple with C ω smooth boundary. Then, 501

is topologically trivial of finite type (g, n) with n > 1. We use Notation 6.1.

We assume £ = 2g — n — 1 > 2 . Take ^ independent cycles yf(l < i < £) in

S. For ί e 5, we have a cycle y^ί) in M(ί) which varies continuously with

teB in Jί. Assume that

(7.11) Ωyι(t9z) and Ω72(t,z) are holomorphic for (ί, z)eJί.

Then the ratio φ(t9 z) = Ωyι(t9 z)/Ωγ2(t9 z) is a meromorphic function for

(ί, z)e Jί such that ι/̂ (ί, z) is non-constant on each M(ί), ί G B. We consider

the mapping

Ψ: (ί, z) G UT -> (ί, w) = (ί, ^ z β e f i x P 1 ,

and put

(7.12) U

Then ^ is an (at most 2A — 2) sheeted Riemann domain over B x P1 with

some branch surfaces £f such that (</#, π, B) ^ (^, π β , β) by Ψ where π^1(ί) =

D(ή. As in Lemma 7.1, we put Sf = ̂ ' U r and Jί = ψ-\^ff) c Λf.

Under these notations we shall prove

LEMMA 7.3. L^ί (Jί, π, £) b^ α triple with Cω smooth boundary, where B

is a disk centered at 0. Assume that A>2 and (7.11). We construct 3} by

(7.12). Then (1) // ¥" = φ, then @ = B x D(0); (2) // 9>" Φ φ, then any Ωγj(t, z)
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holomorphίc for (t,z)eJί is zero on Jί\ (3) // all Ωy.(t,z) (1 < ί < A) are

holomorphίc for (f, z) e Jί9 then 2 = B x D(0).

PROOF. By (2) of Corollary 3.1, dJί is Levi flat. By (1.3), we have

Im {φ(t, z)} = 0 on dJί. Since dM is Cω smooth, φ(t, z) is meromorphic for

(ί, z) beyond dJί. Levi's theorem implies that, for a given Q e dJί(§\ we

find a unique holomorphic section β:teB^> β(t, Q) e dJί such that /?(0, Q) =

Q. It follows that, for t e B,

dJί{t) = {β(t, Q)\Q e dJί{ϋ)} dD(t) = {ψ(t, β(t9 Q))\Q e dM(0)}.

For any fixed Q e dM(0\ the function ψ(t, β(t, Q)) is meromorphic for ί e β ,

so that it is a constant {//(O, Q) (because of Im φ = 0 on dJί). Hence dD(t) =

dD(0) for all teB, by which (1) of Lemma 7.3 follows. To prove (2), as-

sume that £f" φ φ and Ωy.(t, z) is holomorphic for (£, z) e M. Then the ratio

ψ.(t, z) = Ωy.(t9 z)/dφ(t9 z) is meromorphic for (ί, z)e Jί such that, for any fixed

teB, φj(t9 z) is non-constant on M(ί) and Im {φj(t, z)} = 0 on dJt. We

construct the mapping Ψy. (ί, z)e M' -• (ί, vv;) = (ί, ι/̂ (ί, z)) e β x P 1 , and put

Ψj(Jl) = 9j = \JteB(t, Dj(t)). Thus 2j is a Riemann domain over B x P1 with

branch surfaces <^ ( = SfjUSfj"). Now, take any component oe6f" and let

/ — 1 (> 1) be the order of ramification of 3) along ό. We can apply Lemma

7.1 for i f = δ ^ ; fx=φ and / 2 = ^ . We put τ = i/^"1^) c ^T, d, = ^.(τ) cz &>/;

τ : z = j?(ί) for ί e B , d: w = ^(ί) for t e B, and ^ : w, = ^(ί) for t e B. By (1)

of Lemma 7.1, φ and ^ near z = β(ί) are of the form

w = ^r(ί, z) = ι,(ί) + α,(ί)(z - β(t)Y + fl,+1(ί)(z - β(t)Y+1 +

MJ = ^(ί, z) = ηj(t) + 6,(ί)(^ - β(t)Y + 6/+iW(z - β(t)Y+1 +

where α^(ί), &/(ί) Φ 0. It follows that

Ωj(t9 z) = φj(t, z ) # ( ί , z)

where c^.^ί) = ^ ^(ί)α^(ί). Since t > 2, i^(i, z) is zero on jβ(ί). We thus have

(2) of Lemma 7.3. To prove (3), fix t e B. Then, each Ω^t, z) (1 < i < A) can

be holomorphically extended to the double M*(ί) of M(ί), which is a compact

Riemann surface of genus A. Consequently, f)f=ι {z ε M*(ί)|ί2f(ί, z) = 0} = ^.

Hence, (3) follows by (1) and (2). •

8. Proof of (II) in the Introduction

We shall give the proof of statement (II) for the triple 9W with Cap
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THEOREM 8.1. Let 90ί = (Jί9 π, C) be a topologically trivial triple of finite

type (g, n) except for (g, ή) = (0, 1). // 901 is of locally Stein and Cap K^ = 0,

then 9DΪ is holomorphically trivial

PROOF. Throughout the proof we use Notation 6.1 for our SUΪ for B = C.

By Cap Km = 0, we take a point t* e C which satisfies (7.7). The proof of

Theorem 8.1 is divided into four short steps:

1st step. (1) For any nontrivial cycle y in S (defined in (Nx)). λγ(t) is

constant on C; (2) Ωy(t, z) is holomorphic for (ί, z)eJί such that Ωy(ί, z) φ 0

on each M{t\ t e C.

In fact, (1) of Corollary 5.1 implies that l/λy(t) (>0) is a superharmonic

function on C (which may be = + oo on C). Thus, λy(t) is a constant cy

(> 0) on C. It follows from (2) of Corollary 5.1 that Ωy(t,z) is holomorphic

for (ί, z) e ^ . Since cy = λy(t*) > 0, we see that Ωy(t, z) φ 0 on each M(ί),

ί e C .

2nd step. Theorem 8.1 is true in the case (g, ή) = (0, 2).

In fact, we can take γ = Q in the 1st step. Then, λx{t) (defined in (N3))

is a constant fci > 0, so that Remark 7.1 is applied to our triple StR. The

rest of the proof of the 2nd step is standard: We choose a family of disks

(Bt) (i = 1, 2,...) in C such that Q ^ = C and (JfBi, π, Bt) ~ (Bt x Ro, πBi, Ro)

by a holomorphic 7J: (ί, z) e «^Bf >̂ (ί, wf) = (ί, /|(ί, z)) e Bt x S. Here Ko was

defined in Remark 7.1 (independent of i = 1, 2,...). Assume f^ni^ Φ φ and

fix ί G 5j Π Bj. Then vv, = fj o /j~1(ί, vvf) = /^(ί, wf) gives a holomorphic auto-

morphism of the annulus Ro. Since f^t, wf) holomorphically depend on ί e

BiΠBj and since /y(ί, C J - Q in 5, it follows that v̂  = fy(t, wt) = e^^^w^

where θ^ is a real constant on B( Π JB̂  . Since θi} + ^ + θkί = 0 (mod 2π) on

^ Π ^ ΠBfc ^ ^, we find a real constant 0f on 2?, (i = 1, 2,...) such that θυ =

θi — θj (mod 2π) on 5 f Π Bj. Then, the mapping

(ί, z) G ^ B i - (ί,

is a well-defined holomorphic transformation from Jί onto C x Ro.

From now on we may assume that 4 = 2g + n — 1 > 2 . Our triple 9W

is not assumed to have a Cω smooth boundary. However we make

3 rd step. For any t0 G C, there exists a disk Bo centered at t0 such that

the subtriple SPΐBo of SOΐ on Bo is holomorphically equivalent to a triple W =

(M\ π\ Bo) with °Cω smooth boundary: S£RjBo - 3M'.

In fact, we first assume that n > 2. Then we can take y = Cx in the 1st

step, so that ^( ί ) is constant kx > 0. From Lemma 7.2 we obtain the 3rd

step for n>2. We next assume that n = 1. Since g > 1, we can construct
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a two-sheeted covering surface Sx over S with neither relative boundary point

nor branch point such that Sί is of type (g9 2). Since 9DΪ is of locally Stein

and is topologically equivalent to (C x S, π c , C), we have the triple SP^ =

(Jiγ9 nί9C) where J(γ is a double covering of Jί with neither branch surface

nor relative boundary point such that 501 x is also of locally Stein and is

topologically equivalent to (C x Sl9 π c , C). Since n > 2 for 9Wl9 the 3rd step

is true for 30^, and hence for SOt.

4ίΛ step. Theorem 8.1 holds.

In fact, we have 4(>2) independent cycles {y,} on S. By the 1st step,

we make 4 holomorphic Ωγj(t, z) in M. Then ψ(t9 z) = Ω72{t9 z)/Ω7i(t9 z) is

a meromorphic function on Jί. We consider the mapping Ψ:(t,z)eJί-+

(ί, w) = (ί, ιA(ί, z ) ) e ϋ x P 1 , and put Ψ{Jί) = 9 = [jteC(t9 D(ή) like (7.12).

Hence 3) is a (at most 2/ — 2) sheeted Riemann domain over C x P1 such

that (ΛT, π, C) - (0, π c , C) by !P, where π ^ W = D(t) = ψ(t, M(ή) for teC. It

is enough for the 4th step to prove 9 = C x D(0). By the 3rd step we find

a family of disks Bj (j = 1, 2, •••) of center tj such that C=(JjD

= = 1B J and

mBj ~ Wj = {J(j9 π'p Bj), where 9Wj has a C ω smooth boundary. Note that,

for any fixed t e C, Ω^t, z) (1 < ί < £) is invariant under the holomorphic

mappings for z. Since all Ωj(t9z) (1 <j < 4) are holomorphic for (t,z)eJί,

it follows from (3) of Lemma 7.3 that 9Bj = Bj x D{t}) for each j9 where $)B. =

πcHBj). Consequently, D(tj) = D(0) for j = 1, 2, , so that ^ = C x D(0). ' Π

Proof of (I) in Introduction. Since 901 is topological trivial, we draw a

canonical homology basis {Λ^ή, Bf(ί)}f=i of each compact Riemann surface

M(ί) (of genus g independent of t e C), where At(t) and B^t) vary continuously

in Jt with teC. For any i (1 <i < g), we have a unique analytic differential

ω,(ί, •) on M(ί) such that J ^ ω ^ ί , •) = δu (l<j<g). If we put bu(t) =

\Bj(t)ωi(t> ')> then Im {(feί7 (ί)}i^i,i/ ĝ is a positive definite matrix. Since 501 is

a triple, each bo (ί) is a holomorphic function on C. Hence, by(t) must be a

constant on C By Torelli's theorem each M(ί) is thus conformal equivalent

to M(0). Then Fischer-Grauert's theorem [5] (even in the case when M(ί)

is higher dimensional) implies that the triple 9Jί is locally holomorphically

trivial. By the standard argument in the cohomology theory like the 2nd

step in the proof of Theorem 8.1, we see that 501 is holomorphically trivial. •
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