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1. Introduction

The Lusternik-Schnirelmann category cat X of a space X is the least
integer n such that X can be covered by n + 1 open subsets each of which
is contractible to a point in X. In particular, cat X is a homotopy type in-
variant and cat (\fiSHi) = 1 where \f stands for the one point union. We
know that πt(X) is a free group if X is a manifold and cat X = 1 [4], [7].

A locally flat knot (S"+2, Sn) is topologically unknotted if and only if the
category of its complement is one [14]. So, a smooth (or PL locally flat)
knot (Sn+2, Sn) is unknotted if and only if cat (Sn+2 - Sn) = 1 when n φ 2
([12], [25] for n > 4, [21] for n = 3 and [18] for n = 1). We know also
that there exists a smooth knot (5n + 2, Sn) whose complement is of category
m with 2 < m < n + 1 for any n [15], [16].

A smooth (resp. PL locally flat or locally flat) m-component link L stands
for m smoothly (resp. PL locally flatly or locally flatly) embedded disjoint
n-spheres L1U ULm in Sn+2. A smooth (resp. PL locally flat or locally
flat) m-component link is called trivial if it bounds m smoothly (resp. PL
locally flatly or locally flatly) embedded disjoint (n + l)-disks; boundary if it
bounds a Seifert manifold which consists of m disjoint compact smooth (resp.
PL locally flat or locally flat) (n + l)-submanifolds with connected bound-
ary. Let Nf = N(Li)(i = 1, ...,m) be the tubular neighborhoods of Lr which
do not intersect each other. The compact manifold E = Sn+2 — [j Int N(Li)
with boundary dE = [jdNi is called link exterior and has the homotopy type
of the link complement Sn+2 — L.

A smooth boundary link (S"l+2, L) is trivial if cat (Sn+2 - L) = 1 when
n φ 2 [11]. In particular, the complement Sn+2 — L of a smooth boundary
link L has the homotopy type of (Vm-S1) v (Vm-i^+1) if cat (Sn+2 - L) = 1
when n φ 2.

The purpose of this paper is to show the following Theorems 1 and
2. Note that any smooth or PL locally flat link is locally flat. So, Theorem
1 gives an alternative proof of the main theorem of [11] by unlinking criterion
of boundary links due to Gutierrez ([8] for n > 4 and use the splitting
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theorem [2] for n = 3). Moreover, we see that a PL locally flat or locally

flat boundary link is also trivial if cat (Sn+2 — L) = 1 when n φ 2.

THEOREM 1. Let Lbe a locally flat m-component link in Sn+2. Assume

that cat (Sn+2 — L) = 1. Then the link exterior E has the homotopy type of

(S/.S1) v (\/m-iSn+1).

The tubular neighborhoods N(Li) of L{ are the images of the embed-

dings Ψt: D2 x Sn -• Sn+2 with Ψt(0 x Sn) = Lf for i = 1, 2, . . ., m. Let M =
£ U ^ ( s ί χ S 7 ) ( s ί x ^ ϊ + 1 ) U U^^X5-)(S i x D£+1) denote the result of the

spherical modifications of Sn+2 with respect to all Ψt. We may call M mani-

fold obtained by a surgery along L.

THEOREM 2. Lei L be a smooth (resp. PL locally flat or locally flat) m-

component link and M the manifold obtained by a surgery along L. Suppose

that nφl. If cat (Sn+2 — L) = 1, then M is diffeomorphic (resp. PL homeo-

morphic or homeomorphic) to the connected sum of m copies of S1 x Sn+i.

A classical link L is trivial if π x (S 3 — L) is a free group by the loop

theorem [18]. See also [13] for a detailed proof. So, Theorems 1 and 2

are already proved for n = 1, since cat (Sn+2 — L) = 1 implies that π^S""1"2 — L)

is a free group as mentioned before.

Theorem 1 has no dimensional restriction. On the other hand, as for

Theorem 2 we know that M is homeomorphic to S1 x S3 when n = 2 and

m = 1 by [14], but there are more difficulties when n = 2 and m > 2 [6].

We will prove Theorem 1 in § 2 and Theorem 2 for n > 3 in § 3. We

will be concerned also with the conjecture that any link L is trivial if and only

if cat (Sn+2 — L) = 1 in §3. This conjecture is due to Professor T. Matumoto

and I express my heartiest thanks to him for suggesting the interesting

problem.

2. Homotopy type of the link exterior with category one

If cat (Sn+2 - L) = 1, then the fundamental group π 1 (S / I + 2 - L) = π x(£) is

a free group as we mentioned in the introduction. Since the abelianized

group H^E Z) is a free abelian group of rank m by the Alexander duality,

π x(£) is a free group Fm of rank m. Theorem 1 follows almost directly from

the following lemma.

LEMMA 2.1. Let L be a locally flat m-component link in Sn+2 such that

cat(SΠ + 2 — L)= 1. Then, the link exterior E satisfies

(1) πj(E) = 0 for 2 <j < n and

(2) πn+1(E) is isomorphic to a free Z[f^-module Z ^ ] " 1 " 1 of rank m—\

as Z.[f^-module.
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Due to [26, p. 458, Chapter X (1.3)] £ is a co-H-space, because cat E = 1

and E has the homotopy type of a CW-complex. So, we can use the following

lemma to prove Lemma 2.1 (1).

LEMMA 2.2 ([9, p. 11, Lemma 6.2]). Let Y be a connected co-H-space

and K a field. Then, the homology group H^Ϋ K) is a free K[πίY]-module

for i>\ and H{{Y\ K) = #,(?; K)®πχYK for i > 1, where Ϋ denotes the

universal covering of Y.

To prove Lemma 2.1 (1) and (2) we prepare the following algebraic

lemma, which will be also used in §3 to prove Lemma 3.3.

LEMMA 2.3. Let Fm be a free group of rank m generated by tl9 ...., tm

and A a K[Fm~\-module, where K is a field or ring Z of integers. Let

η1:A
m->A denote the map defined by η^x^ ..., xm) — Yj=χ (tj — l)xj. Assume

that A is a free K[Fm~]-module and η1:A
m-*A is surjective. Then A = 0.

PROOF OF LEMMA 2.3. We define a Z-homomorphism ηk:A
mk^A by

η1(xί,...9xm) = Σj(tj-l)xj and ηk = ηk-i°{nT ') inductively, where Ar de-

notes r times direct sum of A and η\ denotes r times direct sum of ηx. Since

ηx is surjective by the assumption, we see that ηk is surjective for any k by

the induction on k. Hence, A czlmηk for any k. We can take a free basis

{bi} of A as X[Fm]-module by the assumption. We define (ηk\ by the

restriction ^I-K[-Fm] <&,->. For each i we see that Im (η^ = /<b, > for the

augmentation ideal / of X[F m ] and that Im (ηk)t = /k<bf> for the fe-th power

of the augmentation ideal / of K[F m ]. We have that Π f cIm ηk = f]k

(®iJ*C\ » = ®i(Γ)fc^Λ)^i) By the residual nilpotency [11, p. 333, Lemma

3.2], [5, p. 556, (4.4) Corollary] we have that f]kI
k = 0. So, we obtain that

P)k Im ηk = ©i(Πfc^kK^i) = O This implies that A = 0, because we have

shown that A c Im ηk for any k. q.e.d.

PROOF OF LEMMA 2.1(1). Let p be a prime. We fix m free generators

tl9 ..., tm of the free group πx(£) of rank m. Let E be the universal covering

of E and due to N. Sato [20, p. 502, Proposition 2.4] we have a homology

long exact sequence:

• -> Hj+1(E; Zp) -> Hj(E; Zp)
m % Hj(E; Zp) -> Hj(E; Zp) -> .

Suppose that 2 <j < n. Then η1:A
m-^A is surjective by taking A = ///(£; Zp)

because Hj(E; Zp) = 0. By Lemma 2.2 A = Hj(E; Zp) is a free Zp[Fm]-module.

By applying Lemma 2.3 we get that A = Hj(E; Zp) = 0 for 2 < ; < n. There-

fore we obtain that Hj(E; Z) = 0 for 2<j<n by the universal coefficient

theorem and hence π;(£) = 0 for 2 < j < n by Hurewicz theorem. q.e.d.

PROOF OF LEMMA 2.1(2). We will prove that Hn+1(E;Z) is isomorphic
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to Z [ F m ] m - 1 as Z[Fm]-module. Even when (£, dE) admits no triangulation,
(£, dE) has the simple homotopy type of a finite Poincare complex by [10,
III, §4]. Let (£, dE) denote this finite Poincare complex instead of the origi-
nal link exterior hereafter. Let /?:£-•£ be the universal covering and put
dE = p~γ(dE). Let #*(£, dE; Z) be the cohomology of (£, dE) with compact
support. Since the CW complex pair (£, dE) has the proper homotopy type
of the universal covering of the original link exterior, we can apply the
Poincare duality theorem for the non-compact manifold and get that the left
Z[Fm]-module Hn+1(E; Z) is anti-Z[Fm] isomorphic to the right Z[Fm]-module
H}(E,dE;Z). The cellular chain complex C#(£, dE) of (£, dE) is a chain
complex of finitely generated free Z[FTO]-modules and we define the cochain
complex C#(£, dE; Z[Fm]) by HomZ[Fm](C#(£, dE\ Z[Fm]). We write the cel-
lular cochain complex of (£, dE) with compact support by Cc

#(£, dE\ which
has the right action (f-g)(c) = f(g-1c) (f e Cc*(E,dE), g e Fm9 ceC#(E,δ£)).
We define also a right Z[Fw]-homomorphism φ : CC*(E, dE) -• C#(£, dE; Z[Fm])
by φ(f)(c) = Σi^mAgtig-Hc e C#(£, dE\ f e CC*(E, dE)). Then, φ j s a co-
chain equivalence. In fact, we can take a free basis {cj of C#(£, dE) as
Z[Fm]-module and define a Z[Fm]-homomorphism φ: CΦ(E, dE; Z[Fm]) ->
Q#(£, dE) by φ(h)(w^Ci) = nυ when h{ct) = Σjn^iJ f o r h e c*^ dE> z K J λ
Πij e Z and wo e Fm with wo φ wif for ^ /. We see that φ and φ are
cochain maps and φoφ = φoφ = identity. Now consider the universal coef-
ficient spectral sequence Ep

2'
q = Extί[Fm](Hq(E, dE; Z), Z[Fm]) with d?'q: Ep/q -•

£?+ri€-r+i w h i c h converges to Hp+q(C^{E9 dE; Z[Fm])) = Hp+q(E, dE; Z). Then,
we obtain that H}(E, dE; Z) s H o m z ^ H ^ E , δ£; Z), Z [ F J ) by a standard
argument of spectral sequences, because if0CE> 5F; Z) = 0.

Note that the kernel of Z[Fm]-homomorphism between finitely generated
projective Z[Fm]-modules is a finitely generated projective Z[Fm]-module. In
fact, it is projective because Z[Fm] has the global dimension two due to
[17, p. 326, Corollary 2.7], and finitely generated because Z[Fm] is coherent
[3, p. 137, Theorem (2.1)], [24, p. 158, Proposition]. Moreover, due to
[1] a finitely generated projective Z[Fm]-module is a free Z[Fm]-module.
Then, Hi(£, dE Z) is a finitely presented Z[Fm]-module, that is, we can
take an exact sequence Px -»P0 -+HX{E, dE; Z)-»0, where Po and Px are
finitely generated free Z[Fm]-modules. By applying HomZ[Fm]( —, Z[Fm]) to
this exact sequence, we see that Hom^p^H^E, dE; Z), Z[Fm]) is the kernel of
HomZ[Fm](P0, Z[Fm]) -*HomZ [ F m ](P1, Z[Fm]), and hence a finitely generated
free Z[FJ-module. So, H?(f, dE; Z) s Hom^p^H^E, dE; Z), Z [ F J ) is a
free right Z[Fm]-module. Then, its Poincare dual HΠ + 1(£;Z) is also a free
left Z[Fm]-module.

Since Hn(E; Z) = Hn+2(E; Z) = Hn+1{E; Z) = 0 in the homology long exact
sequence due to N. Sato, we have a short exact sequence
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0 -> Hn+ί(E; ZT * Hn+1(E; Z) PΛ Hn+ί(E; Z) - 0 ,

where η1(x1,...,xm) = ΣAtj-ι)χj f o r (χu •••> * J G HΛ + 1(£; Z)m as before.
This exact sequence implies that Hn+1(E; Z) ^ Z [ F m ] m - 1 as Z[Fm]-module.
In fact, since p^ is surjective and Hn+1(E; Z) ̂  Zm~\ we have / =
rank^jr^^+iijB; Z) > m - 1 so that we can take the basis bl9 b2, ... b€

of Hn+1(E;Z) as Z[Fm]-module with />*&) = 0 for m<i<ί. For the
free Z[FJ-submodule ^ = 0f= w Z[FJ<b ί > of Hn+i(E;Z) generated by bm9

bm+1, ..., 2v the Z-homomorphism η1\Am:Am-^A is an isomorphism by the
above exact sequence. By applying Lemma 2.3 we get that A = 0 and hence
( = m - 1. Now by Lemma 2.1 (1) and Hurewicz theorem we see that
πn+1(E) ^ Hn+1(E; Z) as Z[Fm]-module and hence πw+1(£) is isomorphic to
Z[F m ] m " 1 as Z[Fm]-module. q.e.d.

We take a representative σ f:S/-^£ for each generator ίf of πx(£)
(i = l,...,w). We define / l ί V ^ 1 ) ^ ^ by / | # = σ|β Since πΛ+1(£) s
(^[^m])ml? w e t a^e a representative ŷ  : S^+1 -̂ >£ for each element of the basis
of πn+ι(E) (j = 1,..., m - 1). We define / ' : ( V . - i S Γ 1 ) ^ E by f'\SJ+1 = %>
and flfiίV^vίy^iS-^^fi by ^ | ( V ^ 1 ) = / and flf|(Vm-iS"+1) = Λ
Then, ^ induces an isomorphism of the fc-th homotopy group for any 1 < k <
n + 1. So, g is a homotopy equivalence by the theorem of Whitehead, because
E has the homotopy type of a CW complex of homological dimension n + 1.
The proof of Theorem 1 is completed.

3. Surgery along the link and further comments

In §2 we have proved that the link exterior E has the homotopy type
of (VmS1) v (Vm-iSn+1) if c a t £ = 1. So, it suffices to show the following
proposition in order to prove Theorem 2 for n > 3.

Before stating the proposition we remark that an element of π t(£) is
called meridian if it is conjugate to the generator of the fundamental group
of some component of dE = []?=1Sl x S". Moreover, in the case that π^E)
is a free group the link is boundary if and only if there exist m number of
meridians mί9 ..., mm which generate π^E) [8, p. 493, Proposition (3)], [23,
p. 178, 6.3 Theorem].

PROPOSITION 3.1. Let L be a smooth (resp. PL locally flat or locally flat)
m-component link in Sn+2 and M the manifold obtained by a surgery along
L. Suppose that π^E) is a free group and π^E) = 0 for 2 <j < n — 1. Then,
M is diffeomorphic (resp. PL homeomorphic or homeomorphic) to the manifold
obtained by a surgery along a trivial link, provided that n>3.

PROOF. By the assumption πx(£) is a free group of rank m as before.
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Since πx(E)^ nγ{M) for the natural inclusion E cz^M, we have m free genera-

tors tί9 . . . , tm of π1(Λf). The tubular neighborhoods iV(L, ) of Lf are the

images of the disjoint embeddings Ψt: Df x S" -> 5 n + 2 for i = 1, 2, . . . , m. We

take the manifold U0(L) obtained by adding m number of (n + l)-handles to

Sn+2 x [0, 1] under Ψt x 1 and get dU0(L) = Sn+2 U M. Since δ# : π2(l/0(L), M)->

π :(M) is surjective, there exists αf e π2(L/0(L), M) such that each djμt) is the

free homotopy class of ίf in π t(M). Because 4 < dim U0(L) = n + 3, we can

take disjoint embeddings φ[: (D2, 5/) -• (U0(L), M) such that each φ[(Df) repre-

sents the free homotopy class of αf. Since the normal bundle of φ[{Df) is

trivial, φ[ extend to the proper disjoint embeddings φt: (Df x D"+1, Si x D?+1) ->

(£/0(L), M). We define U^L) by the manifold obtained by adding m number

of 2-handles D2 x D?+1 to l/0(L) under ^|S> x D?+1. A connected manifold

X is defined by Sl/^L) = S n + 2 U I . Since n > 3 and X is the result of a

surgery on M along φ^Sl x 0) (/= 1, ...,m) which represent the generators

of π^M), X is simply connected. By the homology long exact sequences

of (M, M_), (Jf, M_) for M.=M- |JΓ=i Int ^(S> x A"+1) and the Poincare

duality we see that X is a homology (n + 2)-sphere, and hence a homotopy

(n + 2)-sphere. Now we will do a surgery on U^L) and get an ft-cobordism

between Sn+2 and X. Of course, U^L) is simply connected and the basis

of ^ ( ^ ( L ) , Sn+2; Z) is represented by φt(D? x D?+1)U A 2 x A ? + 1 = S? x A"+1

(i = 1,..., m), because H^t/^L), Sw + 2; Z) s ^ ( ^ ( L ) ; Z) s ^ ( l / ^ L ) , X; Z) s

^ ( ^ ( L ) , M U (UΓ=i Af2 x A + 1 ) ; Z) = ^ 2 ( ^ o ( U Af Z) s Zm. We perform the

spherical modifications with respect to the embeddings S? x D?+1 a UX{L) and

write the result by U(L). Then, we see that Hj(U(L), Sn+2; Z) = 0 for φ n,

n + 1 by the homology long exact sequences of (U^L), C/_(L)), (t/(L), IL(L))

for IL(L) = L/^L) - Qf=1 Int Sf x D?+1. By the Poincare duality we see

Hi(U(Ll Sn+2; Z) = 0 for i = n, n + 1. (For n = 3 we need a little more care-

ful observation). So, we get a simply connected /z-cobordism U(L) between

Sn+2 and X. Since n + 2 > 5, the /i-cobordism theorem implies that X

is diffeomorphic (resp. PL homeomorphic or homeomorphic) to Sn+2 [21].

We have now m embedded disjoint n-spheres (JΓ=i(O x S") in X =

M U ^ x ^ i j f D f x S iU. . U ^ i . ^ ^ ^ x S ; ) , by which we define a

smooth (resp. PL locally flat or locally flat) link L in X = Sw+2. Put £' =

X - (J^=1 Int (Dp x Si). Note that the spherical modification with respect

to the embeddings D'2 x S" in X gives back M and get natural inclusions

i: E -> M and V \E' -• M. Since ί̂  : π x(£')-> πx(M) is an isomorphism, π ^ F )

is generated by tί9 t2, . . . , tm. Since δ£ r = [jT=ιΦi(Sl x 5?), the elements tl9

t2, . . ., ίm give m number of meridians of L and hence L is a boundary

link by the remark stated above the proposition. On the other hand, M

is obtained by adding (n + l)-handles and (n + 2)-handles to E and hence

ί^ : πj(E) -> πj(M) is an isomorphism for 2 <j < n — 1. Similarly we see that
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i'^ : 7Cj(Ef) -> πj(M) is also an isomorphism for 2 <j < n — 1. So, n^E') = 0 for

2 <j < n — 1. Since we have shown that L is boundary, we get now that L'

is trivial by the unlinking criterion of boundary links [2], [8]. Hence, M

is diffeomorphic (resp. PL homeomorphic or homeomorphic) to the manifold

obtained by a suitable surgery along the trivial link L'. q.e.d.

This completes a proof of Theorem 2. The proof of Theorem 2 reminds

us of Poenaru's example. The example of an m-component link given by

Poenaru [19] satisfies the assumption of Proposition 3.1 for any m. He took

m words mί = tγ and mk = tίct1tk~
1tϊ1tk (2 < k < m) for m free generators tl9

ί2, . . ., tm of Fm. An m-component link L = Lx U... U Lm in X = Sn+2

9 n > 3,

is constructed by making surgery on ΦmSx x 5 n + 1 along circles representing

m1 = t1 and mk = ^Mi" 1 * ! 1 ** (2 < fe < m) of the free group π 1 ( # m S 1 x S^ 1 )

generated by tl9 t2, . . . , tm. Note that the Poenaru's link L with the exterior

E has m meridians m l 5 m2, . . . , mOT in π x(£) £ π 1 ( # m S 1 x 5W+1). Since the

system z1m1z^1, . . . , zmmmz^x can not be a system of generators for Fm for

any zieFm due to an algebraic lemma in [19, p. 48, Lemma], the Poenaru's

link is not boundary by the remark stated before Proposition 3.1. We will

show the following proposition.

PROPOSITION 3.2. The Poenaru's link L given above does not satisfy the

result of Theorem 1, that is, Hn(E; Z) is non-trivial for the universal covering

E of E.

This proposition gives also an alternative proof of the fact that the

Poenaru's link is not boundary by the unlinking criterion of boundary links

[2], [8].
To prove Proposition 3.2 we prepare the following lemma.

LEMMA 3.3. Let L be a locally flat m-component link in Sn+2 with

the link exterior E. The universal covering of E is denoted by p: £ -• E

and put dE = p~1(dE). If π^E) is a free group and Hn(E;Z) = 0, then

Ext1 ( i j : Exti [ F m ] (H0(M; Z), Z [ F J ) -> E x t ^ (H0(dE; Z), Z [ F J ) is surjective

for the inclusion i\dE^> E.

PROOF OF LEMMA 3.3. We use the same notation as in the proof of Lemma

2.1(2). We consider the same universal coefficient spectral sequence, that is,

Eψ = Extfoy (Hq(E, dE; Z), Z [ F J ) which converges to H*>+«(C*(E, dE; ZIF*]))

= H?+q(E,dE;Z)^Hn+2_p_q(E;Z). Since H0(E, dE; Z) = 0, we have that

£2,o = 0 W e w i u s e e a l s o t h a t £2,o = Hom Z [ F w ] (H2{E, dE; Z), Z [ F J ) = 0 in

this paragraph. Note first that H2{E; Z) ^ H2(E9 dE; Z) as Z[Fw]-module.

We assume that Hom Z [ F m ] (H2(E; Z), Z[F m ]) Φ 0, that is, there exists a non-

zero left Z[Fm]-homomorphism / : H2{E; Z) -•Z[F m ] . Then, there exists a
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prime p such that fp = / ® z id Z p : H2(E; Zp)-> Zp[Fm] is a non-zero left
Zp[Fm]-homomorphism. Since Zp[Fm] has a global dimension one due to
[17, p. 326, Corollary 2.7], any finitely generated submodule of a finitely
generated free Zp[Fm]-module is a finitely generated free Zp[Fm]-module.
So, Im/ p is a finitely generated free Zp[Fm]-module. Since H2(E;Zp) =
H3(E; Zp) = 0 in the homology long exact sequence due to N. Sato,
ηΐ:H2(E;Zp)

m-^ H2{E;Zp) is an isomorphism. Since Im/ p is a direct sum-
mand of H2{E; Zp) as Zp[Fw]-module, we see also that η^(Im f p ) m : (Im fp)

m -+
Im fp is an isomorphism. So, by applying Lemma 2.3 we get Im fp = 0.
Hence, fp = f (g) z ίdz is a null map. This is a contradiction and hence
E°2>

2 = 0. We have obtained that Eψ = 0 for p + q = 2 and (p, q) φ (1, 1).

Then, we obtain that ExtZ[Fm] (H^E, dE; Z), Z[Fm]) is anti-Z[Fm] iso-
morphic to Hn(E; Z) by a standard argument of spectral sequences and hence
vanishes by the assumption. Now apply ExtZ[Fm]( —, Z[Fm]) to the following
short exact sequence;

0 -> H,(E, dE; Z) -> H0(dE; Z) ^ H0(E; Z) - 0 ,

which comes from the homology long exact sequence of (£, dE) and we obtain
the desired result. q.e.d.

We will determine Ext1 (î ) explicitly and prove that Ext1 (î ) is not sur-
jective for the Poenaru's example given above. Let ik\H0{p~ι{dN{Lk));Z)-+
H0(E; Z) be a Z[Fm]-homomorphism induced by the inclusion p~1(dN(Lk)) CL>
E for any k with 1 < k < m. Then, Ext1 ( i j decomposes into
(Ext1 0\), Ext1 (i2), ..., Ext1 (O): ExtZ[Fm] (H0(E; Z), Z [ F J ) - @ΐ=1 Extz[Fm]

First, we note that ExtZ[Fm] (Ho(£; Z), Z [ F J ) = Z^T/iih ~ h h -
l , . . . , ί m - l ) > Z [ F J as right Z[FJ-module, where <(ίx - 1, t2 - 1,..., tm -
l)>Z[Fm] denotes a right submodule generated by a single element
(ίx - 1, t2 - 1,..., tm - 1) of Z[F m ] m with the diagonal action and Z[Fm]w/
<(ίx - 1, t2 - 1,..., tm - l)>Z[Fm] denotes the quoteint right Z[Fm]-module.
This follows directly from the free resolution of H0(E; Z) ^ Z given by

(3.4) 0 ^ Z[F m ] w Λ Z[Fm] A Z - , 0 ,

where ε(x) = ε(Σαnαwα) = Xαnα e Z for x = £ a n a w a G Z[Fm] with πa G Z and

wα G Fm, δ(x l 9 . . ., xj = Σjxj(tj - !) f o r (xi,. ., xm) e Z[Fm]m.
Secondly, we note that Extz[Fm] (Hoip-'idNiL,)); Z), Z [ F J ) = Z[Fm]/

<mk - l>Z[Fm] as right Z[Fm]-module, where <mfc - l>Z[Fm] denotes a right
submodule generated by mk — 1 of Z[Fm] and Z[Fw]/<mk — l>Z[Fm] denotes
the quotient right Z[Fm]-module. This follows directly from the free resolu-
tion of Hoip-'idNiL,)); Z) s Z[Fm]/Z[Fm]w<mk - 1> given by
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(3.5) 0 -> Z[Fm] 5 Z [ F J 3 Z[FJ/Z[F m ] <mfc - 1> -> 0 ,

where Z[Fm]<mk — 1> denotes a left submodule generated by mk — 1 of Z[Fm],
Z[Fm]/Z[Fm]<m f c- 1> denotes the quotient left Z[Fm]-module, φ'k{x) = [x]
for x e Z [ F J and [x] denotes the class of x in Z[Fm]/Z[Fm]<mfc - 1> and
%(*) = xfak - 1) f o r * e Z[Fm].

To determine Ext1 (ίk): Z[FJm/<(ίi " 1, h - 1,..., ίm - 1)>Z[FJ ->
/<m f c-1>Z[FJ we define a left Z[FJ-homomorphism ξ f e :Z[FJ-^
m by {k(x) = (x,0, . . . ,0)eZ[FJ" for X G Z [ F J if k = 1, and £fc(x) =

( * ( - V i ί " V + α 0, ..., 0, x(ί k M*"V - hhC + 1), 0, ..., 0)GZ[F m r for
x G Z[Fm] if k = 2, ..., m. Note that ik: Z[Fm]/Z[Fm] <mk - 1> ̂  Z is well-
defined by ίfc([x]) = Xαnα G Z for x = £ a n a w a G Z[Fm] with na ε Z and wα ε Fw

and [x] denotes the class of x in Z[Fm]/Z[Fm]<mfc — 1>. Since mx — 1 =
tx - 1 and mfc - 1 = (-Viί*"1^1 + **) (ίi - 1) + feίiίiΓ1^1 ~ hhC + 1)
(ίfc — l)(fe = 2,..., m), the following diagram is commutative:

0 > Z[Fm] ̂ ^ Z[Fm] ̂ U Z[FJ/Z[F m ]<m f c - 1> , 0

ltk I"
0 > Z [ F J - - ^ - Z[Fm] — i — Z , 0 .

Apply HomZ [ F w ] (-, Z[Fm]) to the above diagram. Then, since the horizontal
sequences are free resolutions (3.4) and (3.5), we see that Ext1 (ik): Z[Fm]m/

< ( ί l _ 1, h _ i,..., tm - l)>Z[Fm] ̂ Z[Fm]/<mfc - 1>Z[FJ is given by Ext1 (ik)
(l(xi,'.',xmΏ) = [*i] if k = 1, and Ext1 {ik)(l(xl9...,xm)]) = ίi-hhtΰ1^1 +
y * i + ( M i ί * ~ V - V i ^ + l)**] if ^ = 2, ..., m, where [(x l 9 . . ., x j ]
denotes the class of (x l 9..., xw) ε Z[F m ] w in Z[Fm]m/<(ί1 - 1, t2 - 1,..., tm -
l)>Z[Fm] and [x] denotes the class of x e Z [ F J in Z[Fm]/<m fc- l>Z[Fm].

We are in a position to prove that Ext1 (î ) is not surjective. We as-
sume contrary that Ext1 (î ) is surjective, in particular, Ext1 (^JIKerExt1 ( i j :
KerExt^ϊO-ίZCFaJ^m* - l>Z[Fm] is surjective. Let Z[<ί x>] be the group
ring of an infinite cyclic group <ίx> <= Fm generated by tί. We regard Z[<ί t>]
as the right Z[Fm]-module with the action defined by ίt(x) = txx and tj(x) = x
(2 < j < m) for x e Z[Fm]. We define a surjective right Z[Fm]-homomorphism
e:ZlFm-]Kmk-l>ZlFm-]^Zl(tiy] by e([ί1]) = ί1 and e{ltj])=l (2<j<
m). We see easily that KerExt1 (i\) is generated as right Z[Fw]-module by

m elements [(ίt - 1, 0,..., 0)] and [(0, 0,..., 0, ϊ, 0,..., 0)] (j = 2,..., m) where
[(X!,...,xm)] denotes the class of (x 1 ?..., x j ε Z[F m Γ in Z[FmΓ/<(ίi -
1, t2 - 1,..., tm - l)>Z[Fm]. Since e o (Ext1 (i^JIKerExt1 (zj) is surjective,
Z[Fm]/<mfc - 1>Z[FW] is generated by m elements e o (Ext1 (i2)|KerExtx (zj)

([( ί ! - l ,0 , . . . ,0)]) and ^ ( E x t ^ ^ l K e r E x t ^ i J ) ([(0, 0,..., 0, ί, 0,..., 0)])
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(7 = 2, ...,m). By a simple calculation e o(Extx (ϊ'^IKerExt1 (it))

1, 0,..., 0)]) = 0, e o (Ext1 (^IKerExt 1 (i t)) ([(0, 1, 0,..., 0)]) = 2 - t, and e o

(Ext1 (ίJIKerExt1 (i j) ([(0, 0,..., 0, ϊ, 0,..., 0)]) = 0 ( = 3,. . . , m). Hence,

Z[<ί i>] must be generated by 2 — tί as right Z[Fm]-module. Then, there

exists β e Z[<f x >] such that (2 - tx) β = 1 because the actions of ί2, ί3, . . . , tm

are trivial in Z[<ί !>] . Hence, 2 - t1 should be a unit in Z [ < ί ! > ] . This

contradicts the fact that 2 — tx is not a unit in Z [ < ί x > ] and we obtain that

Ext1 ( ϊ j is not surjective. The proof of Proposition 3.4 is completed.

Proposition 3.1 means that a link which satisfies the assumption can be

reconstructed in the same way as the Poenaru's example. Proposition 3.2

supports partially the following conjecture which is proposed by T. Matumoto.

CONJECTURE 3.6 (MATUMOTO). Let L be an m-component link in Sn+2.

Then, L is trivial if and only if cat (Sn+2 - L) = 1 provided that n > 3.

In fact, the following simpler conjecture is equivalent to Conjecture 3.2

by Theorem 1.

CONJECTURE 3.7. Let L be an m-component link such that Sn+2 — L has

the homotopy type of (Vm^1) v (Vm-i s π + 1 ) If n>3, then L is trivial.
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