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Ergodic theorems for piecewise affine Markov maps
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We study piecewise affine Markov maps with "indifferent fixed points",
which are interesting with relation to intermittency. In the case that such a
map T has a Lebesgue-equivalent invariant σ-finite infinite measure μ, we give
ratio ergodic theorems which describe the limit value of the ratio of the sojourn
time of the trajectory {Tkx}l=0 in an interval Ό± with μ(Όx) = oo to that in
another interval U2 with μ(U2) = oo for almost every x.

0. Introduction

For an interval map T9 a fixed point p is called indifferent if

limx_>p T(x) = p and limx_^ | T'(x)\ = 1.

Maps with indifferent fixed points are related to physical type I intermittency
(cf. [1], [10], [13]). Our interesting indifferent fixed point p is a source, that
is, I T'(x)| > 1 for almost every x in the neighborhood of the fixed point p.

In Inoue's paper [4], the somewhat strange notion "weakly attracting
repellors" is given, that is, a fixed point p is called the weakly attracting
repellor of an interval map T if p is unstable (Tkx does not converge to p
for a.e. x) and if

for every continuous function / on the interval. In [4] we gave some
conditions for the existence of weakly atracting repellors for maps with only
one indifferent fixed point.

In this paper we are going to study maps with at least one indifferent
fixed point. A typical example of an interval map with indifferent fixed points
is

xj(\ _ x ) for χe[0, {ή

(2x- l)/x for xe[ i , 1],
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which is deeply related to continued fractions (see [7]). The class of piecewise

affine Markov maps with indifferent fixed points which is studied in this paper

contains a linearization of this example.

A piecewise affine Markov map with indifferent fixed points pf for some

i is defined in the following way.

Let 0 = c0 < ct < c2 < ••• < cr = 1 be a partition of [0, 1] and let p x = 0,

PiEici- L, Cι) for i = 2,-',r — 1, pr = 1. Let {ain} be an increasing sequence

satisfying the following conditions for ί = 2, , r:

α^-i = 0 , ait0 = C - i ,

K n - i - fl»,π-2) ~ K π - ai,n-i) > 0 for large n9

ain converges to pt as n -+ oo,

and let {bi,w} be a decreasing sequence satisfying the following conditions for

ί= l,. , r - 1:

(&i,π-2 - &i.π-i) ~ (foi,«-i ~ Kn) > 0 for large n,

bi>π converges to pt as n-̂ > oo.

Define 7J: [ c ^ i , c j -^ [0, 1] for i = l, ,r by

on ( α ^ - ^ α i j for n ̂  1,

on [fcifΛ, ft^.J for n ̂  1, and 7J(pf) = p£.

Let T: [0, 1]-> [0, 1] be a map such that T restricted to (c f _ l 9 q) is 7] for

ϊ = l, ,r. Then T is uniquely defined on [0, l]\{c f}. (The values {Γfo)}

are not needed in this paper since the set of c{ is of measure 0.) Such a map

T is called a piecewise affine Markov map. T is called a piecewise affine

Markov map with indifferent fixed points if

ai,n-2 ~~ ai,n-ί ^t,w'-2 ~ ^i,n-l

ai,n-ί - ai,n bi,n-l ~ bi,n

converges to 1 for at least one i as n -> oo.

Let l/i and l/2 be the right or the left neighborhoods of indifferent fixed
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points Pi and pj respectively (not necessary i Φ /) . The first aim of this paper

is to research the limit value of the mean sojourn time of the trajectory

{Tkx}l = 0 in Ux for almost every x and the limit value of the ratio of the

sojourn time of {T*x}£ = 0 in U1 to that in U2 for almost every x. For this

purpose, it is important to study a Lebesgue-equivalent T-invariant ergodic

measure. Each piecewise affine Markov map T defined above has a

Lebesgue-equivalent invariant ergodic σ-finite measure, say μ. But, in some

cases, this measure is not finite. See Theorem 1.1 in the present paper (cf.

[4], [11], [14], [15]).
For our aim, the Birkhoff individual ergodic theorem and the Hopf ratio

ergodic theorem give good information if μiUγ) < oo and μ(U2) < oo.

The Birkhoff individual ergodic theorem ([16], [8]): Let T be a measure

preserving transformation on a σ-finite measure space (X, J*, μ) and let

feL^μ). Then

K™n^JnΣVΛf(Tkx)=f* for μ-a.e. x andf*eL\μ\

The Hopf ratio ergodic theorem ([2], [8]): Let T be a measure preserving

ergodic transformation on a σ-finite measure space (X, SF, μ) and let f, geL1 (μ)

with \gάμ Φ 0. Then

\
for μ-a.e.x.

g d μ

Set / = l [ 7 l and g = ίϋ2, where \v is the indicator function of U. If

i) < oo and μ(U2) < oo, then /, geL1(μ) and we can apply these ergodic

theorems for T. In fact, if μ(l/x) < oo and μ(U2) < oo, then the mean sojourn

time in Ux tends to 0 in the case μ([0, 1 ] ) = oo and to μiUJ/μdO, 1]) in

the case μ([0, 1]) < oo, and the ratio of the sojourn time in U1 to that in

U2 tends to μ(Uι)/μ(U2). However, if μiU^ = oo or μ(U2) = oo, the previous

ergodic theorems do not describe anything of this nature. In this paper we

present two ratio ergodic theorems (Theorems 1.2 and 1.3) and two individual

ergodic theorems (Corollaries 1.2.1 and 1.3.1) which are applicable to the case

μ(Ui) = oo or μ(U2) = oo under some conditions.

In this paper we also research the asymptotic measure of T (Corollaries

1.2.2 and 1.3.2). If the weak limit of
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exists for almost every x, then its limit is called the asymptotic measure of T9

where δx is the Dirac δ measure on x.

Now we state the organization of this paper. In § 1 we state our main

results. In §2 we confirm the definition of ergodicity and state some basic

properties of the first return maps. In § 3 we study piecewise affine Bernoulli

maps with countable partitions, which naturally arise from the first return

maps and we prove two lemmas which are important to prove our main

theorems. In §4 we prove Theorem 1.1 and in §5 we prove Theorems 1.2

and 1.3 and their corollaries.

The author thanks to Prof. I. Kubo for his kind remarks to the

preliminary version of the manuscript. The author also thanks to Prof.

S. Oharu and Prof. S. Takenaka for their encouragements.

1. Results

Before stating the main theorems in the present paper, we state the

following theorem which describes some estimates of m-equivalent invariant

ergodic σ-finite measures for piecewise affine Markov maps defined in §0, (in

this paper m is the Lebesgue measure unless we put a particular notice).

THEOREM 1.1. Let T be a piecewise affine Markov map defined in

§0. Then T has an m-equivalent invariant ergodic σ-finite measure μ which

satisfies the following (l)-(3):

(1) μ(([0, l ] \ U = i πbd( P ί , A)) < oo for all A > 0,

(0, A) for i = 1

where nbd (ph A) = \ (Pi- A, p{ + A) for ί = 2, , r - 1

(1 - Δ, 1) for i = r.

(2) Fix i = 2, ,r arbitrarily. μ{(pi — A, pt)) = oo for every small A > 0 if

and only if

(3) Fix i = l, ,r — 1 arbitrarily. μ((pi9 Pi + A)) = oo for every small A > 0

if and only if

To state our main theorems we denote the conditions (C, a, i) and (C, b, i):

(C, a, i) (p, - aUn) ~ v(α, i ) n ~ K ( a > i ) ,
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where v(α, i), v(b, i), κ(a, ί) and κ(b, ϊ) are positive constants for each i (in this

paper vn ~ wn stands for l i m ^ (vjwn) = 1).

κ(a, i) and κ(b, ϊ) are related to the closeness of the graph of T to the

diagonal line in the left neighborhood of pt and in the right neighborhood of

Pi respectively. Precisely, for example, bln ~ v(b, l)n~K ( b > 1 ) means that

1 \X) — Λ — K\D) L)Vyu9 i) X

Denote

— A, pi) if ω = a
nbd (pi9 ω, A) = ,

^ if ω = 6, and

P(i) = Pi-

In the following main theorems (Theorems 1.2 and 1.3) and their corollaries

A9 Ao and Ax are arbitrary small positive numbers. We state two ratio ergodic

theorems. One of these is

THEOREM 1.2. Let T be a piecewίse affine Markov map with indifferent

fixed points. Fix ω0 = a or b and fix ω1 = a or b. For 7 = 0, 1, fix ij in

such way that 2 _̂  ij ^ r if cθj = α, 1 _̂  ij _̂  r — 1 if (Oj — b. Assume that T

satisfies the conditions (C, ω 0 , i0) #m/ (C, ω l 9 i\). //̂  κ(ω 0, i0) < κ(ωl9 ί t)

κ:(ω0, i0) = 1, ίAe/ι

-— = 0 for m — a.e. x.
M-»OO y-in . (Tkγ\

Zjfc = 0 Lnbd(p(io),ωo,Δo)\1 x)

From this theorem we can obtain the following individual ergodic theorem

as a corollary.

COROLLARY 1.2.1. Assume that T satisfies the conditions (C, ω, i) for all

(ω, i). If there exists only one (ω 0 , i0) such that κ(ω0, i0) < κ(ω9 i) for all

(ω, ί) Φ (ω 0, i0) and that κ(ω0, i0) ^ 1, then

lίm,.->αo -Σfc«0 1nbd(p(»o).ωo^)(:Γkχ) = ! fθT m - d. β. X.

n

Concerning to the asymptotic measure, we have

COROLLARY 1.2.2. Assume that T satisfies the conditions (C, ω, i) for all

(ω, ί). If there exists only one ί0 such that

min {κ(a9 io)9 κ(b9 i0)} < min {κ(ω9 i); i φ iθ9 ω = α, b}

min {κ(a, i0), κ(b9 i0)} = 1,
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li l <W) = δpdo) weakly for m - a.e. x.

This corollary means that pio is the weakly attracting repellor.

In Theorem 1.2 we assume that κ(ω0, i0) < κ(ω l 5 i\). In the following

ratio ergodic theorem we consider the case κ(ω0, ί0) = κ:(ω1? i j = 1.

THEOREM 1.3. Let T be a pίecewίse affine Markov map with indifferent

fixed points. Fix ω0 = a or b and fix ωι= a or b. For j = 0, 1, fix i} in

such way that 2 ^ ij ^ r if ω^ — a, 1 ̂  ij ^ r — 1 if ωs = b. Assume that T

satisfies the conditions (C, ω 0 , Ϊ 0 ) and (C, ω l 5 ΪΊ). 7/" κ:(ω0, Ϊ 0 ) = /c(ωl9 Ϊ\) = 1,

then

where p is a positive finite constant, which is independent of zf0, Λx and x. In

particular,

(1) If r = 2 and κ(b, 1) = κ(a, 2) = 1, then

l i m π _ Σ:.,lα-.,.»(Γ'x) = cΛa.2) m _ a e χ

Σ l l Λ T k ) ( l M b ί )

(2) // κ(b, i0) = κ(α, »o) = 1, then

H g = ol(p(W-^,.P(«o»(^*) = Φ L W f • _

L l 1 ) )

From this theorem we can obtain the following individual ergodic theorem.

COROLLARY 1.3.1. Assume that T satisfies the conditions (C, ω, i) for all

(ω, i). If κ(a, ί), κ(b, i) ̂  1 for all ί and if /c(ω0, ί0) = 1, then

lim Σl hωo,A)(Tkx) = s for in - a.e. x,
n

where s is a positive finite constant, which is independent of small A and x.

Concerning to the asymptotic measure, we have

COROLLARY 1.3.2. Assume that T satisfies the conditions (C, ω, i) for all

(ω, ί). If κ(a, ΐ), κ(b, ί) ̂  1 for all ί and if κ(a, ί) = 1 or κ(b, i) = 1 for at

least one ί, then

l im,,^ -Σl = l δτπχ) = Σ ' = i siδPi weakly for m - a.e. x,
n
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where s^s are constants satisfying

1 1 = 1 ^ = 1 and s^O for all i = l, - ,r,

and further sf / 0 if and only if κ(a, ί) = 1 or κ(b, ί) = 1.

In the case κ(ωθ9 i0) = /c(ωl5 ίt) < 1, the author conjectures that the limit

value of the ratio ergodic theorem does not exist.

2. Preliminaries

In this section we give the definition of ergodicity and a basic corollary

of the Hopf ratio ergodic theorem, and we summarize some basic properties

of the first return maps. First we give the definition of ergodicity for a

transformation T on a σ-finite measure space (X, 3F, μ).

DEFINITION 2.1. (T, μ) is called ergodic if μ(A) = 0 or μ(X\A) = 0 for

every Ae& with Ύ~γA = A μ — a.e.

Now we give a basic corollary of the Hopf ratio ergodic theorem.

LEMMA 2.1. Let T be a measure preserving ergodic transformation on a

σ-finite measure space (X, $F> μ), let feL1(μ) and let \gdμ — oo. Then

yn

for μ — a.e. x.

PROOF. Let g^g and J ^ dμ < oo for each i. Then we have

yn

Σϊ-c
L f(Tk

From the Hopf ratio ergodic theorem, it follows that

lim sup
n~* co

V" f(Tkx)
\ fdμ
Jx

L
for μ-a.e. x.

The right hand side of this inequality converges to 0 as ί goes to

infinity. Therefore we obtain the lemma.

Next we state some basic properties of first return maps.

The first return map of T on A is defined as Tn(x){x), where n(x) is

inf {n ^ 1; Tn(x)eA}. In the following three lemmas, let T be a transforma-
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tion on a measure space (X, 3F, m) and A c X a measurable set with

A c UΓ=i T~n(A). Then the first return map is well defined.

LEMMA 2.2. Let R be the first return map of T on A and μA an R-inυariant

σ-finite measure. Then the measure μ defined by

(2.1) μ(D) = Σ^ιμA(Λn0T-nD) for

is T-invariant, where Aγ= A and An + 1 = Anf]T~n(Ac) for n ^ 1.

For the proof of this, see the proof of Lemma 2 in [11].

LEMMA 2.3. Under the same situation as Lemma 2.2, if the first return

map R of T is μA-ergodic, then T is μ-ergodic.

The proof of this lemma is a minor modification of the proof of Lemma

3.2 in [4].

LEMMA 2.4. Let μ be a T-invariant ergodic σ-finite measure and let μ\A

be the restriction of μ to A. Then the first return map R of T on A is

μ\A-inυarίant ergodic. As a consequence, if μA is a μ-absolutely continuous

R-invariant σ-finite measure, then μA = const. μ\A.

The proof of this lemma is a minor modification of the proof of Lemma

1 in [11].

3. Ergodic properties for piecewise affine Bernoulli maps with countable
partitions

We devote this section to investigate some ergodic properties for piecewise

affine Bernoulli maps with countable partitions which naturally arise from the

first return maps and to prepare important lemmas.

In the whole of this section we assume that a piecewise affine Bernoulli

map R: [v, w] -• [ι>, w] satisfies the following condition:

There exists a countable partition {IUn} of [v, w] such that Iin is an

interval for each i, n and that

R(x) = K π - vJ-Hw - v)(x - υUn) + v

for x in the interior of Iin, where υ i f h and wUn is the left and right endpoints

of IUn respectively, and wt n converges monotonically to wt as n -> GO for each i.

PROPOSITION 3.1. There exists a unique m-absolutely continuous R-inυariant

ergodic probability measure μ.
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This is a special case of Proposition 5.1 in [4].

PROPOSITION 3.2. The m-absolutely continuous R-inυariant ergodic probabi-

lity measure μ is the normalized Lebesgue measure on \_v9 w].

PROOF. Let & : ̂ (m) -> ̂ (m) be the Frobenius-Perron operator associa-

ted with (R, m), which is defined by

I &f(x)m(dx) = I f(x)m(dx) for Ae&, fel}{m).
JA JR-HA)

(Some basic properties of the Frobenius-Perron operator are found in [6] and

[9]. For the proof of the proposition, it is important that i ? / = / implies

that / is the Radon-Nikodym derivative of an invariant measure.) Let Rin

be the restriction to Iin of R. Then

Thus the Lebesgue measure is K-invariant. Therefore we obtain the

proposition.

In the rest of this section, put

En = U, (l>i, w i t J (or [w t >, w,])) and

L = {z log2 (log2 z) is a positive integer},

and let u: N -+ N be a monotonic increasing function satisfying

(w -v)'1 z m(£u ( z )) ~ const Iog2(log2 z).

The following lemmas are important to prove Theorems 1.2 and 1.3.

LEMMA 3.3.

l i m ^ ^ , 2

z m(hU(Z))

PROOF. Put

Let P be the normalized Lebesgue measure on [u, w]. Then ξZtk

9s are random

variables on the probability space ([y, w], P). Since R is affine on (ι; ίn, win)

and R(vin, win) = (t?, w) for each i, n, ξz0, ζZti9-~9ζZtZ are independent random

variables with a common distribution. Put

* z = ΣU£z,* and pz
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Let ε > 0 be arbitrary. Then it follows from the Chebyshev inequality that

P({\(zpzy
2Xz\ > ε}) = P({\XZ\ > εz2p2})

^(εz2p2

zY
2\\Xz\

2άP

^ const. ε~2(log2(log2 z))~2 for sufficiently large z.

Hence

ΣzeLP({\(zpzy
2Xz\>ε})^ const, ε"2 £* = 1 Γ

2 < oo.

Therefore we obtain the lemma by the Borel-Cantelli lemma.

LEMMA 3.4. If m(E^ ~ const. l~κ for some 0 < K ^ 1, then

PROOF. Put

Let P be the normalized Lebesgue measure on [v9 w]. Then ζZik's are random

variables on the probability space ([υ, w], P). Since R is affine on (vin9 win)

and R(vin, win) = (v, w) for each i, n, ζ 2 > 0, ζzΛ,'
mmΛz,z are independent random

variables such that P(Cz,k = /) = P{Et) - P(Eι + 1). Put

First we assume that m ^ ) ^ const. Z" 1. Then

u(z) ^ const. z/log2 (log2 z).

Let ε > 0 be arbitrary. By the Chebyshev inequality we have

i\Yz - zΣϊ:\ P(Et)\2dP

^ const. ε~2(z log w(z))"2(zw(z))

^ const. ε~2(logz)~1 for sufficiently large z.

If m ( £ z ) ~ const. Γκ (K < 1), then u{z) - const. (z/log2 (log2 z)) 1 / κ. By

considering the third moment we have

P({\(zΣTι PiEi))-1^ - 1| > ε}) g const. (log2 (log2 z))" 2

for sufficiently large z. Therefore we obtain the lemma.
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4. Proof of Theorem 1.1

We are going to prove Theorem 1.1 using the first return maps defined

in §2.

In this section we assume that T is a piecewise affine Markov map defined

in §0. Let St be the first return map of Ton [pi9 c j . Then St: [pt, C/]->[Pi, c j

satisfies the following condition:

There exists a countable partition {Ij\jeJ} of [pf, c j such that the

restriction of Sf to the interior of each Ij is a monotonic continuous function

and that Sfj maps the closure of Ij onto [pί? c j for each j9 where Stj is the

continuous extension to the closure of Ij of the restriction of Sf to the interior

of Ij.

Let j p be the index such that Ijp = [p£, fcίtl]. Put

0Ln = S^{bitl) forn^Oand

βjn = SJx(α J for j e J \ {7P} and n ^ 0.

Now we consider the first return map Rt of Sf on [ftiϊl9 c j . Then K,-

can be represented in the following form. For jsJ\{jp},

Ri(x) = Si(x) if Sij(x)>biΛ

Rt(x) = SJ + 1{x) if S y M e ί o ^ α , . ! ) , for n ^ 1.

It is clear that Λf(x) is defined except on the set of the endpoints of the

countable partition of [b ί f l J cj. Thus, it follows from Proposition 3.2 that

Rι has an invariant probability measure μAi whose density is a constant. Let

μi be the measure on [pi9 c j defined by

(4.1) μt(D) = Σϊ=il*Λi(AnnSrD)

for any measurable set D c [ p f , c j , where Aι = [biΛ,c[\ a n d AH + 1=An

nSΓH([phbttl)) for n^ί.

LEMMA 4.1. μt defined by (4.1) is an m-equivalent S]^invariant ergodic

σ~finite measure. Further, μi satisfies the following (1)—(3):

(1) μάίPi + A, cj) < oo for every A > 0.

(2) //

then μ,([pj, cj) = oo.

(3) //

ΣΓ=o(απ-P;)< oo.
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then μi(lph cj) < oo.

PROOF. The proof is similar to that of Lemma 4.2 in [3] and to that
of Lemma 3.3 in [4]. In the proof of this lemma we omit index i for the
simplicity of notations. It follows from Lemmas 2.2 and 2.3 that μ is an
m-equivalent S-invariant ergodic σ-finite measure. Let Λn (n = 1, 2, ) be as
in the expression (4.1). First we prove (1). Let k be an integer with
αfc < p H- Δ. Then it is easy to see that

An{\S'n[μk, c] = {jkej-uP}
Sj'ί(ak+n-u απ-2) w-a.e. for n ^ 2.

From this it follows that

μ(ίp + Δ, c]) g Σ*j-υ,> MSj^l**, c]) + Σ*=o ^(S^ip, αn))) < oo.

Next we prove (2). Fix one j and let α,- be the left endpoint of /,. Then,
it is easy to see that

A H = > l a j 9 β J t H - 2 ] f o r n Z Z

Thus

where γ is (c - ί^i)" 1. Therefore μ([p, c]) = oo.
Finally we prove (3). It is easy to see that

An = ΌMj-Up)taj>β;,n-2] for n ^ 2.

Thus

]) = Σ;= 1 ^ μ j ^ Σ/̂ -ϋp) ΣΓ=2 μΛdaj, β ^ ) +1

PROOF OF THEOREM 1.1. Let μ be the measure on [0, 1] defined by

Σn=i j " i (^nT"" i ) ) for any measurable set D,

where -4i = [Pi,C!] ^ n + 1 = AnπS~n{[pl9 cj 0) for n ^ 1. Then, it follows
from Lemmas 2.2 and 2.3 that μ is an m-equivalent Γ-invariant ergodic σ-finite
measure. By Lemma 2.4, μ restricted to [pi9 cj is invariant under the first
return map on [pί? c j of T for each i and this measure equals to μt multiplied
by constant. Thus, by Lemma 4.1 we obtain a half of (1) and (3) of Theorem
1.1. The rest of Theorem 1.1 is similarly proved.
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5. Proof of Theorems 1.2 and 1.3

In this section we are going to prove Theorems 1.2 and 1.3.

We assume that T is a piecewise affine Markov map with indifferent fixed

points defined in §0. Fix i = l, ,r - 1 and fixj = 2, ,r. We allow all

the cases ί <j, i = ; or i >j. Let zf0, Δx > 0 be arbitrary. First we consider

the ratio of the sojourn time of the trajectory {Tkx}l = 0 in [p, , pf + ΔQ) to

that in iPj — Δl9pj\ for almost every x. Put p = ph c = ch d = cj__ί and

q = Py Let S be the first return map of T on B = [p, c] U [d, <?]. Then

S: B -+ B satisfies the following condition:

There exists a countable partition {Iλ: λeΛ) of £ such that the restriction

of 5 to the interior of Iλ is a monotonic continuous function and that Sλ(lf)

is either [p, c] or [d, g] for each λf where J^z is the closure of Iλ and Sλ is

the continuous extension to 1% of the restriction of 5 to the interior of Iλ.

Let Ac be the set of indices λ satisfying Sλ(Γλ

ι) = [p, c] and let Λd be the

set of indices λ satisfying Sλ(Γλ

ι) = [d, q]. Let λp and λq be indices such that

Iχp = [p9biΛ'] and Iλq = [ajΛ,q\.

Put

J Ϊ A . ^ S Γ 1 ^ . - ) for λeΛc\{λp} and n ^ 0, and

α λ M = S^iajJ for λey l d \U β } . and n ^ 0.

Then the first return map K of S on yl = [ b ί l 5 c] U [d, ^ ,i] can be represented

in the following form. For n ^ 1,

R(x) = Sn(x) if x 6 ( U , 6 Λ d . w ( α , ) n _ l 5 ocλJ)[)(\JλeΛc_{λp}(βλtn, βλ,n-χ)).

It is clear that R(x) is defined except on the set of the endpoints of the

countable partition of A.

Let Ra be the first return map on [d, ajΛ] of R and let Rb be the first

return map on [bitί9 c] of R. Then it follows from Proposition 3.1 that there

exist an jRfl-invariant measure on [d, ajΛ~] and an Rb-invariant measure on

[fri,i»c]> which are m-absolutely continuous ergodic probability measures.

Thus, by Lemmas 2.2, 2.3 and 2.4 there exists an m-absolutely continuous

R-invariant ergodic probability measure μA on A. Let μB be the m-absolutely

continuous S-invariant ergodic σ-finite measure as in Lemma 2.2.

Now we prepare some notations.

Notations:
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F(T t x)— ΣUo \d,q){Tkx)

Lk = O i(p,c)(1 X>

t v V - Σ t = O l(d,q)(S X )

«„:= E(an):= [jλ€Λa-{λq) {xelλ;x^ <xλj.

ί*: the integer satisfying log2 (log2 ί*) = [log2 (log2 ί)] + 1,

where [ ] is the Gaussian symbol.

n(ί):= nt: the maximal integer satisfying

log 2 (log2 ί*) ̂  t*(μA(E(ant)) + μΛ(E(βnt))).

Hd(t, x)
ίί( ί 'x) : =T77

Hc(t, x)
REMARK 5.1. For m-a.e. xeA we have

Hd(t, X) = Σk = θ Σ " = l l(a},ι-uaj,ii(Skχ) = Σ U θ Σ " = l lE(ai-i)(Rkχ)>

HΛt,χ) = ΣUoΣΐ=ihwι-1)(Rkχ)-

The following lemma means that it is essential for our purpose to calculate

the limit value of F(S, ί, x).

LEMMA 5.1. Assume thai

HB((P> P + β)) = oo, μB((q - ε, q)) = oo and

VB((P + ̂  c){j(d9 q - ε)) < oo for every small ε > 0

and that l i m ^ ^ F(S, ί, x) exists. Then

lim F(S t x) - lim 2̂ k = o 1(g-Ji>q)U x )

l^k = 0 M ^
 X )

/or μB-a.e. x and any small Ao, Δx > 0.
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PROOF. If the limit value of F(S, ί, x) exists, then obviously,

l im H a ) F(T, u x) = l i m , ^ F(S, ί, x).

By Lemma 2.1 we have

^ Σl-,W.,i(^),0 a n d ^ Σf-,

for μβ-a.e. x and any small zf0, Aλ > 0. Thus, we easily have

for μβ-a.e. x.

In the lemmas in the rest of this section we assume the conditions (C, a,j)

and (C, b, i). The following lemma is important to determine the limit value

of F(S, ί, x).

LEMMA 5.2. Assume that κ(b, i) g κ(α,;) ^ 1. Γλen: (I)

(5.1) /o = lim71-+OO

exists and 0 ^ p < oo, w/zer̂  α', α", b; α«ί/ ί?/r αr^ positive finite constants.

Further,

(1) p w 0 ifκ(b9i)<κ{a,j).

(2) p w positive and finite if κ(b, ί) = κ(a,j).

v(aj)(c-p)

v(b,i)(q-c)
if r = 2, i = 1, = 2 αnrf ιc(fe, 0 =

(4) p = ̂ 4 '/ J = i ™<l Φ> 0 = >Φ> 7) = 1.

(II) p in (5.1) satisfies the following property, for any ε > 0 α«d /or μA-a.e. x

there exists an integer t0 such that for t ^ t0
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Wt Y ' 1 (Rkx)
- p < ε.

Δul=l Lk = O lE(βι)\K X.

As a consequence η(t, x) converges to p for μA-a.e. x.

PROOF. Let g be the Radon-Nikodym derivative of μA with respect to the

Lebesgue measure m. By the virtue of Proposition 3.2 we have

yc for a.e. xe[biΛ, c]

γd for a.e. xe[d, ajΛ],

where γc and γd are positive finite constants. Put

Kbcc = ίhu C]0([JλeΛc-{λp}Iλ)9 Kbcd = [biΛ, c]n(UAeΛd-μq} Ά)>

Kdac = Id, aJtl] f)([jλ€Λc-{λp}Iλ) and Kdad = [d, α J t l]n(UλeΛd-μg} λ̂)

Since

hUn - p)m(Kbcc)
m(Eβnf)Kbcc) =

m(EβnnKdac) =

c-p

(bitn-p)m(Kdac)

c-p

q-d
and

CMC \

, n κdai) =
we have

q-d

Π Kbcd)

and

β n ) = (c - ydm(Kdac)),

which show the first two assertions in (I). Since

μΛ(Kbcc U Kbcd) = μA(R-1 (Kbcc U K J ) =

^ Π J C w ^ O and K t e n Kiac = 0,

we have
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ycm(Khcd) = γdm(Kdac).

Therefore

μA(EJ m(Kbcd) (m(Kdac) + m(KdJ) (c - p) (q - ahn)

μA(Eβn) m(Kdac) (m(Kbcc) + m(Kbcd)) - (q - d) {bUn - p)
(5.2)

Clearly, m{Kbcd) {m(Kdac) + m(Kdad)) (c - p) and m(Kdac) (m(Kbcc) + m(Kbcd))

(g — d) are positive and finite. Thus, the limit (5.1) exists and we obtain (1)

and (2). Next, we show (3). If r = 2 and = i + 1, it is obvious that

m(Kbcc) = m(Kdad) = 0. Hence,

U _ c (1 - ajtn)

μA(Eβn) (1 - c) • fcif(l

In addition, if κ(b, i) = κ(aj) = 1,

μ>ι(£oj c v(α,7)

μA(Eβn) (1 - c) v(&, ϊ)

This implies (3). Finaly we show (4). If j = i, it is obvious that

m(Kbcc)/m(Kbcd) = (c- p)/(p - d) and

m(Kdac)/m(Kdad) = (c- p)/(p - d).

Thus, from the trivial equalities Kbcc[)Kbcd = lbtΛ, c ] , Kdac[)Kdad = [d, ajtl],

Kbcc n Kbcd = 0 and Kdac Π Kdf l i i = 0, we have

m{KbJ^= (c-biΛ)(p-d)

m(Kdac) (ajΛ-d)(c-p)'

Hence it follows from (5.2) that

μA(EJ _(P- ajj

μA(Eβn) (bitH - p)'

In addition, if κ(b, i) = κ(a, i) = 1,

ϋ m μA(EJ = v(aj)

""°° μA(Eβn) v(b, i)

This implies (4).

Next we prove (II). Let ta = [ί μA{\_d, ajΛ]j] and let tb = [ί μ^([^i,i, c])].

Let ε > 0 be arbitrary. Notice that
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since Σ™=1 μA(Eaι) = Σ™=1 μA(Eβι) = oo. Then, by applying Lemma 3.4 for Ra

and Rb, it is easy to see that for μx-a.e. x there exists an integer tx such that

jLl=l LfcQ=O ^E(aι)(^aX) _
V^ fit Vίh Λ /τ*k \ '

for t

It follows from the Birkhoίf individual ergodic theorem that there exists an

integer t2 such that

V nt V1 ' 1 (Ώkv\ \pnt X^ta

^ # , < 2 " 1 ε for ί > ί2.

Therefore p satisfies the property in the lemma. It follows from Remark 5.1

that η(t, x) converges to p for μ^-a.e. x. This completes the proof of the

lemma.

For p in Lemma 5.2 we are going to prove the following proposition.

PROPOSITION 5.3. F(S, t, x) converges to p for μB-a.e. x if κ(b, ί) < κ(a,j)

^ 1 or κ(b9 i) = κ(a,j) = 1.

In order to prove this, we show the following lemma.

LEMMA 5.4. If κ(b9 i) < κ{aj) S 1 or κ(b, i) = κ(aj) = 1, then

μ^(ΠΓ=o Uί^jtί*; \F{S, τt, x) — p\ > ε}) = 0 for any ε > 0.

In order to prove Lemma 5.4 we prepare the following lemma.

LEMMA 5.5. If κ(aj) = 1,

Hd(t, x)~ a"t log nt,

where α" is the constant in Lemma 5.2 (I). A similar relation holds if b and

c replace a and d respectively.

PROOF. Let ta = t - μA([d, ajΛ]) and let Ra be the first return map of R

on [d, ajΛ~]. Then, by Remark 5.1 and the Birkhoff individual ergodic

theorem, we get

It follows from Lemma 3.4 that

This completes the proof.
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PROOF OF LEMMA 5.4. Put

Ent = E(nt) = E(θint)[}E(βnt).

Let Rnt be the first return map on Ent of R and let μE(nt) be the m-equivalent

KΠt-invariant ergodic probability measure.

First we consider the case κ(b, ί) = κ(a,j) = 1.

We remark that

F(S τ x) = Σ?-ol(d,,)(S'*) = Hi{t,x) + Hq(t,x)

Σί-oW 5 **) Hc(t,x) + Hp(t,x)'

Roughly speaking, Lemma 5.2 (II) implies that η{t, x) converges to p as t -* oo,

and hence it is sufficient to prove that Hd(t, x) and Hc(t, x) are much greater

than Hq(t, x) and Hp(t, x) for sufficiently large t.

Put

Ct = {xeA; ΣΓ-i lEM(R'x) > (log2 (log2 t*))2},

Dnt = {xeEnt; R>ntxe(Ent+Mf for all 1 ^ / ̂  (log2 (log2 ί*))2},

Γ t*(logn t)
1 / 2 "I

where M, = r ,

Lθog2(log2ί*))2J
El = Eni, El = J R - " + 1 £ n t \ ( U ί : ί ^ e ) for h ̂  2,

Di = Dnt and Ό\t = R->+1Dnt\(OlZ\Ek

n) for h k 2.

Then we have

(5.3) M α % U r = * { * e Λ ; Hp(t*, x) + Hq(t*, x) ̂  ί*(log »,)1/2})

= ^(ΠΓ=o UΓ-*Uί°-i {*e£n

Λ

t; Hp(t*, x) + Hq(t*, x) ̂  ί*(log n,)1'2})

S i n c e K is a n a ί ϊ i n e m a p o n e a c h (jS λ,π, βλ,n-ι) a n d o n e a c h (α A M _ 1 ? α Λ „) a n d

K m a p s ( α Λ j / J _ 1 ? otλtΛ) a n d (j8A f J I, >SA .Λ_α) o n t o (d, α Λ 1 ) a n d ( b i t l , c) r e s p e c t i v e l y ,

w e h a v e

1 « \ ̂ .)) = ΣΓ= i VA(K \D"nt)

= Σ*"= i G^(#.) ( ^ « \ Dh

nt)/μA(Eh

nt)))

= ΣΓ-1 ̂ « ) ( / Ά \ DJ/μA(EJ)
= μA(Ent\Dnt)/μA(Ent) = μE(nt)(Dc

n)

H e n c e
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(5.4) μΛ(0?=0 U,"-* UΓ=i (Et \Dh

n)) ^ l i π w £ , 6 i k / W # . ) .

where Lk = {t ^ fc; log2 (log2 ί) is an integer}. Since Lemma 3.3 implies that

it follows from (5.3) and (5.4) that

Γ=o ΌΓ-ΛxeA; Hp(t*, x) + Hq(t*, x) ^ t*(log n,)1'2})

Since t ίϊ ί*, by the above inequality we have

; Hp(ί, x) + f/,(t, x) ^ ί*(log nr)
1/2})

Now we estimate μE(nt)(Ent+Mt)- Since

n + M _ t*v + (log2 (log2 t*))-1t*(log(t*v/log2(log2

n + M

log2 (log2 t )

holds for v = α" + b", we have

nt+Mt) log 2 Qog 2 t*)/ / vt*

μ(Ent) v V \iog 2 (iog 2 ί*)

Thus

μE{Πt)(DcJ = 1 - fewΦJ = 1 - (1 - / ^ A + M , ) ) 1 0 8 2 0 0 8 2 ' * '

(log2 (log2 t*))2

~v(log( ί*v/ lo g 2 ( log 2 ί*))) 1 / 2 '

Therefore we obtain

Hence

fl(ί x) + H(t x) . .
= 0 for μ^-a.e. x,

ί, x) + Hq(t, x)
q

ί* log nf

which implies the lemma in this case by Lemma 5.2 (II) and Lemma 5.5.

Next we consider the case κ(b, i) < κ(a, j) ^ 1.

Roughly speaking, Lemma 5.2 (II) implies that η(t, x) converges to 0 as t -• oo,

and hence it is sufficient to prove that

HM9 x)/{HM, x) + HJt, x)) > 0 (t > oo).
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Put

G(αJ = {xeEnt; Rι

nt(x)eE(an) for some 1 ^ / ̂  (log2 (log2 ί*))2}.

If we show

(5-5) l im^ 0 O X ( e L k μ £ (

we obtain the lemma in this case in a way similar to the first case. So, we

are going to prove (5.5). By Lemma 5.2 (I) we have

μ(E(an)) ~ θx{ny^ ~

where θx and θ2 are some positive constants. Thus we have

-(lo g 2(log 2ί*)μ(£(αn t))ί*

- <92 log 2 (log2 t*)ι+{κ{aJ)lκφΛ)){t*)1-^0^1^13^.

Since /c(fo, i) < κ(aj) g 1, we obtain (5.5).

Thus the proof of the lemma is complete.

PROOF OF PROPOSITION 5.3. Let V be an arbitrary set with μA(V) = 0.

Since

V^0S-"A = B and μβ(U°°=o^"πn = 0,

it is sufficient to show that

μA(ΠίLoU**{xeX; |F(S, ί ,x)-p |>6}) = 0 for any ε > 0.

Obviously, this is equivalent to

τ f , x ) - p | > β } ) = 0 for any ε > 0.

Thus the proposition follows from Lemmas 5.2 and 5.4.

PROOF OF THEOREM 1.2. If / φ , ix) > 1, Theorem 1.1 and Lemma 2.1

imply Theorem 1.2. So we assume that κ(a, ij ^ 1. Since T is a piece wise

affine Markov map, Lemmas 5.1 and 5.2 and Proposition 5.3 imply

Lfc = 0 lnbd(p(io),b,Δo)\1 X)

The other cases are similarly proved.

. a e χ
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PROOF OF COROLLARY 1.2.1. This is obvious from Theorem 1.2.

PROOF OF COROLLARY 1.2.2. Let /eC([0, 1]). It is sufficient to show

that

lim^oo l-ΣiΛfiTk{x)) = f(pi0) for m-a.e. x.

Set

fε(x)=f(Pi0)
 i f *enbd(/? ί o, ε) and fE(x) =f(x) otherwise.

Then fε converges to / uniformly on [0, 1] as ε -• 0. Since / is bounded, it

follows from Theorem 1.2 that

Therefore, from the uniformity of convergence of fε it follows that

lim,,^ -Σ£Io/(Tk(x)) =f(pio) for m-a.e. x.

This completes the proof.

PROOF OF THEOREM 1.3. Since T is a piecewise affine Markov map,

Lemmas 5.1 and 5.2 and Proposition 5.3 imply

^ ^ — - — = p for m-a.e. x.

Lemma 5.2 (I) (2) means that p in the above equality is a positive finite

constant. "In particular" part follows from Lemma 5.2 (I) (3) and (4). The

existence of the positive finite constant p for the other combinations of ω 0

and ωx is similarly proved.

PROOF OF COROLLARY 1.3.1. This is obvious from Theorem 1.3.

PROOF OF COROLLARY 1.3.2. Remarking Theorem 1.1 and Lemma 2.1,

we obtain this corollary in a way similar to Corollary 1.2.2.

6. Remarks

In this section we state some remarks related to our main results.

In a way similar to the proof of Corollaries 1.2.2 and 1.3.2, we have

REMARK 6.1.1. Under the same situation as Corollary 1.2.1, let / be a
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function belonging to L1 (m) and satisfying the following conditions

•/ is bounded on (Uκ«u)si(Pi ~ Δ> Pi))U(Uκ(M)ίi(P. > Pi + A))-

- f is continuous on nbd(/?ίo, ω0, A) for a small A > 0.

Then

Uiio)_0f(x) if ω 0 = alίπi ^yn-i f ( τ k , _ Uιrnx^piio)_0f

n Um*-p<i 0) + o/(x) if ωo = b for m-a.e. x.

REMARK 6.1.2. Under the same situation as Corollary 1.3.1, let / be a

function belonging to ^(m) such that / is bounded and continuous on

Then

- ΣIZ lf(Tkx) = Σκia o = i *a.t li

for m-a.e. x, where sβ>ί's and sbJ's are constants, which are independent of /

and satisfy

V c _l_ V S — 1
Zjκ(α,ί)=l «.» "•" Δjκ(b,i)=l b>i '

sα i > 0 for ί with κ:(α, i) = 1 and s M > 0 for Ϊ with κ(fc, i) = 1.

By an idea similar to the proof of Theorem 1.2, we can prove

REMARK 6.2. Assume that a map T: [0, 1] -• [0, 1] satisfies the following

conditions:

(1) There exists a partition 0 = c0 < ci < ••• < cr = 1 such that the

restriction of T to ( c ^ u cf) is a C 2 function and can be extended to [c f _ l 9 c j

as a C 2 function; let Tt be such an extension for i = l, ,r.

(2) 7 ] ^ . ! , ^ = (0,1) for i = l , - , r .

(3) 7J'(x) > 1 for x with 7J(x) φ x.

(4) Let ω = a or fo, and let ΐ = l, ,r. There exist at least two pairs

of (ω, 0 such that

= ft, T/(ft) - 1,

J7j(x) - x| = κ(ω, i)v(ω, i)l* - ftp/^ W4-1 + o(|x - ft|(1'IC(ω £)) + 1 ) ,

where 0 < κ;(ω, i) ^ 1 and v(ω, Ϊ) > 0 are constants.

If (ω 0, i0) and (ω l 5 i j satisfy the above condition (4) with /c(ω0, i0) <

κ(ωl9 i\), then
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y 1 (Tkx)

lim^oo r ^ = 0 nbd(pillhωuΔί) = 0 for m-a.e. x,
Z*ιk = O *-nbd(p(io),ωo,Δo)\ * -V

where nbd(p t , ω, A) is the same one defined in §1.

We can give the corollaries of this remark which correspond to Corollaries

1.2.1 and 1.2.2.

The condition (1) in Remark 6.2 implies that the right and the left

derivatives of T at cf's are finite, which is important since, without the finiteness

of the derivatives, there are some cases such tht μ((0, A)) < oo for A > 0 even

if κ(b, 1) g 1, where μ is an m-equivalent Γ-invariant ergodic σ-finite measure

(cf. [4], [5]).
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