Behavior of bounded positive solutions of higher order differential equations

Witold A. J. Kosmala*
(Received July 15, 1993)

1. Introduction

There is little known about the behavior of solutions of the differential equation of the form

$$
\begin{equation*}
x^{(n)}+p(t) x^{(n-1)}+q(t) x^{(n-2)}+H(t, x)=0 \tag{*}
\end{equation*}
$$

where $n \geq 3$ is an integer and $H: \mathfrak{R}^{+} \times \mathfrak{R} \rightarrow \mathfrak{R}$ is continuous, decreasing in its second variable and is such that $u H(t, u)<0$ for all $u \neq 0$. Some properties of solutions of $(*)$ are given by the author in [5] and [6]. In [7] the author gave two oscillation results for odd order equations with certain conditions on the functions p and q. This paper is a continuation of the study of differential equation (*). Several results concerning bounded eventually positive solutions of (*) will be proven. The nonlinear functionals which appear in the first two theorems can become very useful when studying the oscillatory behavior of solutions of (*). This technique in fact was used in [7] as well as by Erbe [1], Heidel [2], Kartsatos [3], and Kartsatos \& Kosmala [4].

2. Preliminaries

In what follows \mathfrak{R} is used to denote the real line and \mathfrak{R}^{+}the interval $(0, \infty)$. Also, $x(t), t \in\left[t_{x}, \infty\right) \subset \mathfrak{R}^{+}$, is a solution of $(*)$ if it is n times continuously differentiable and satisfies (*) on [t_{x}, ∞). The number $t_{x}>0$ depends on a particular solution $x(t)$ under consideration. We say that a function is "oscillatory" if it has an unbounded set of zeros. Moreover, a property P holds "eventually" or "for all large t " if there exists $T>0$ such that P holds for all $t \geq T$. $\quad C^{n}(I)$ denotes the space of all n times continuously differentiable functions $f: I \rightarrow \mathfrak{R}$. And we write $C(I)$ instead of $C^{0}(I)$. Throughout this paper we will assume that $p \in C^{2}\left[t_{0}, \infty\right), q \in C^{1}\left[t_{0}, \infty\right)$ with

[^0]$$
2 q(t) \leq p^{\prime}(t)
$$
for $t \geq t_{0}>0$. From [7] we quote the following lemma.
Lemma 2.1. If x is an eventually positive solution of (*), then either $x^{(n-2)}(t) \leq 0$ or $x^{(n-2)}(t)>0$ for all large t.

3. Main results

Theorem 3.1. Suppose that n is odd, $p(t) \leq 0, p^{\prime}(t) \leq 0$, and $p^{\prime \prime}(t) \geq 0$ eventually, and let

$$
\begin{aligned}
F_{1}(x(t))= & 2 x^{(n-3)}(t) x^{(n-1)}(t)+2 p(t) x^{(n-3)}(t) x^{(n-2)}(t)-p^{\prime}(t)\left[x^{(n-3)}(t)\right]^{2} \\
& -\left[x^{(n-2)}(t)\right]^{2}
\end{aligned}
$$

If $x(t)$ is a bounded and eventually positive solution of (*), then either
(a) $x^{(n-2)}(t) \leq 0$, or
(b) $\quad x^{(n-1)}(t)<0$ and $F_{1}(x(t))>0$ eventually.

Proof. Suppose that all the assumptions on functions p and q are satisfied for all $t \geq t_{0} \geq 0$, and that $x(t)>0$ is a bounded solution of (*) for $t \geq t_{0}$. By Lemma 2.1, there exists $t_{1} \geq t_{0}$ such that $x^{(n-2)}(t) \leq 0$ or $x^{(n-2)}(t)>0$ for all $t \geq t_{1}$. If $x^{(n-2)}(t) \leq 0$, then there is nothing to prove. Therefore, we assume that $x^{(n-2)}(t)>0$ and consider three cases.

Case 1. Suppose that $x^{(n-1)}(t)>0$. This gives a contradiction due to the boundedness of x.

Case 2. Suppose that $x^{(n-1)}\left(t_{2}\right)=0$ for some $t_{2} \geq t_{1}$. Then, from (*) we have

$$
x^{(n)}\left(t_{2}\right)=-q\left(t_{2}\right) x^{(n-2)}\left(t_{2}\right)-H\left(t_{2}, x\left(t_{2}\right)\right)>0
$$

Thus, $x^{(n-1)}(t)$ is increasing at any $t_{2}, t_{2} \geq t_{1}$, for which it is zero. Therefore, $x^{(n-1)}(t)$ cannot have any zeros larger than t_{2}. This takes us to the final case.

Case 3. Suppose that $x^{(n-1)}(t)<0$ for $t \geq t_{3} \geq t_{1}$. Since $x(t)$ is bounded and positive and n is odd, there exist $t_{4} \geq t_{3}$ such that $x^{(n-3)}(t)<0$ and $x^{\prime}(t)>0$ for all $t \geq t_{4}$. Now we consider the nonlinear functional $F_{1}(x(t))$ as defined in the statement of this theorem. We will prove that $F_{1}(x(t))>0$ eventually by assuming to the contrary. So, let $t_{5} \geq t_{4}$ be such that $F_{1}\left(x\left(t_{5}\right)\right) \leq 0$. Note that if t_{5} like this does not exist, there is nothing to prove. So now, we drop the last two terms in the equation (*) to obtain

$$
x^{(n)}(t)>-p(t) x^{(n-1)}(t)
$$

Therefore, using this inequality when differentiating $F_{1}(x(t))$ we obtain

$$
\begin{aligned}
\frac{d}{d t} F_{1}(x(t))= & 2 x^{(n-3)}(t)\left[x^{(n)}(t)\right]+2 x^{(n-2)}(t) x^{(n-1)}(t)+2 p(t) x^{(n-3)}(t) x^{(n-1)}(t) \\
& +2 p(t)\left[x^{(n-2)}(t)\right]^{2}+2 p^{\prime}(t) x^{(n-3)}(t) x^{(n-2)}(t)-2 p^{\prime}(t) x^{(n-3)}(t) x^{(n-2)}(t) \\
& -p^{\prime \prime}(t)\left[x^{(n-3)}(t)\right]^{2}-2 x^{(n-2)}(t) x^{(n-1)}(t) \\
< & 2 p(t)\left[x^{(n-2)}(t)\right]^{2}-p^{\prime \prime}(t)\left[x^{(n-3)}(t)\right]^{2} \\
\leq & \text { for all } t \geq t_{5} .
\end{aligned}
$$

Thus, $F_{1}(x(t))<0$ for all $t>t_{5}$. But now, since $p(t) \leq 0, p^{\prime}(t) \leq 0$ and F_{1} is decreasing we have that

$$
-\left[x^{(n-2)}(t)\right]^{2}<F_{1}(x(t)) \leq F_{1}\left(x\left(t_{6}\right)\right)<0
$$

for $t \geq t_{6} \geq t_{5}$. So, in view of this and the fact that $x^{(n-2)}(t)$ is decreasing and positive, there exists $m>0$ such that $\lim _{t \rightarrow \infty} x^{(n-2)}(t)=m>0$. This implies that $x^{(n-3)}(t)$ tends to $+\infty$ as t goes to $+\infty$, which is a contradiction. Hence, $F_{1}(x(t))>0$ for all $t \geq t_{7} \geq t_{4}$.

Theorem 3.2. Suppose that n is odd, $p(t) \geq 0, q(t) \leq 0$, and $p(t) q(t)+$ $q^{\prime}(t) \geq 0$, eventually, and let

$$
F_{2}(x(t))=\left[\exp \int_{t_{0}}^{t} p(s) d s\right]\left[2 x^{(n-3)}(t) x^{(n-1)}(t)-\left[x^{(n-2)}(t)\right]^{2}-q(t)\left[x^{(n-3)}(t)\right]^{2}\right] .
$$

for some $t_{0}>0$. If $x(t)$ is a bounded and eventually positive solution of (*), then either
(a) $x^{(n-2)}(t) \leq 0$, or
(b) $x^{(n-1)}(t)<0$ and $F_{2}(x(t))>0$ eventually.

Proof. Suppose that all the assumptions on functions p and q are satisfied and that $x(t)>0$ is a bounded solution of (*) for $t \geq t_{1} \geq t_{0}$. Also, there exists $t_{2} \geq t_{1}$ such that $x^{(n-2)}(t) \leq 0$ or $x^{(n-2)}(t)>0$ for all $t \geq t_{2}$. If $x^{(n-2)}(t) \leq 0$, then there is nothing to prove. Therefore, we assume that $x^{(n-2)}(t)>0$ and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.
Case 3. Suppose that $x^{(n-1)}(t)<0$ for $t \geq t_{3} \geq t_{2}$. Since $x(t)$ is bounded and positive and n is odd, by Lemma 2.1 there exists $t_{4} \geq t_{3}$ such that $x^{(n-3)}(t)<0$ and $x^{\prime}(t)>0$ for all $t \geq t_{4}$. Now we consider the nonlinear functional $F_{2}(x(t))$ as defined in the statement of this theorem. We will prove that $F_{2}(x(t))>0$ eventually by assuming to the contrary. So, let $t_{5} \geq t_{4}$ be such that $F_{2}\left(x\left(t_{5}\right)\right) \leq 0$. Again, we drop the last two terms in the equation $(*)$ to obtain $x^{(n)}(t)>-p(t) x^{(n-1)}(t)$. Therefore, using this inequality when differentiating $F_{2}(x(t))$ on $\left[t_{5}, \infty\right)$ we obtain

$$
\begin{aligned}
\frac{\frac{d}{d t} F_{2}(x(t))}{K}= & {\left[\exp \int_{t_{5}}^{t} p(s) d s\right]\left[2 x^{(n-3)}(t) x^{(n)}(t)+2 x^{(n-2)}(t) x^{(n-1)}(t)\right.} \\
& \left.-2 x^{(n-2)}(t) x^{(n-1)}(t)-2 q(t) x^{(n-3)}(t) x^{(n-2)}(t)-q^{\prime}(t)\left[x^{(n-3)}(t)\right]^{2}\right] \\
& +p(t)\left[\exp \int_{t_{5}}^{t} p(s) d s\right]\left[2 x^{(n-3)}(t) x^{(n-1)}(t)\right. \\
& \left.-\left[x^{(n-2)}(t)\right]^{2}-q(t)\left[x^{(n-3)}(t)\right]^{2}\right] \\
< & {\left[\exp \int_{t_{5}}^{t} p(s) d s\right]\left[-q(t) x^{(n-3)}(t) x^{(n-2)}(t)-p(t)\left[x^{(n-2)}(t)\right]^{2}\right.} \\
\leq & \left.\quad-\left(p(t) q(t)+q^{\prime}(t)\right)\left[x^{(n-3)}(t)\right]^{2}\right] \\
\leq & \text { for all } t \geq t_{5},
\end{aligned}
$$

where $K=\exp \int_{t_{0}}^{t_{5}} p(s) d s$. Thus, $F_{2}(x(t))<0$ for all $t>t_{5}$. Also,

$$
-\left[x^{(n-2)}(t)\right]^{2}\left[\exp \int_{t_{0}}^{t} p(s) d s\right]<F_{2}(x(t)) \leq F_{2}\left(x\left(t_{6}\right)\right)<0
$$

for $t \geq t_{6} \geq t_{5}$. So, in view of this and the fact that $x^{(n-2)}(t)$ is decreasing and positive, there exists $m>0$ such that $\lim _{t \rightarrow \infty} x^{(n-2)}(t)=m>0$. This implies that $\lim _{t \rightarrow \infty} x^{(n-3)}(t)=+\infty$, which is a contradiction. Hence, $F_{2}(x(t))>0$ for all $t \geq t_{7} \geq t_{4}$.

Remark 3.3. Functions $p(t)=\frac{1}{t^{2}}$ and $q(t)=\frac{-1}{t^{3}}$ satisfy all the conditions in Theorem 3.2.

Remark 3.4. Suppose that in Theorem 3.2 we further assume that $\int^{\infty} H(t, k) d t=-\infty$ for any positive constant k. Then, if $x(t)$ is a bounded and eventually positive solution of $(*)$, then $x^{(n-2)}(t) \leq 0$.

Proof. Suppose that all the assumptions on functions p and q are satisfied and that $x(t)>0$ is a bounded solution of (*) for $t \geq t_{0} \geq 0$. By Lemma 2.1, there exists $t_{1} \geq t_{0}$ such that $x^{(n-2)}(t) \leq 0$ or $x^{(n-2)}(t)>0$ for all $t \geq t_{1}$. If $x^{(n-2)}(t) \leq 0$, then there is nothing to prove. Therefore, we assume that $x^{(n-2)}(t)>0$ and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.
Case 3. Suppose that $x^{(n-1)}(t)<0$ for $t \geq t_{3} \geq t_{1}$. Observe that the differential equation (*) can be written as

$$
\begin{aligned}
& \left\{x^{(n-1)}(t) \exp \left[\int_{t_{3}}^{t} p(s) d s\right]\right\}^{\prime}+q(t) x^{(n-2)}(t) \exp \left[\int_{t_{3}}^{t} p(s) d s\right] \\
& \quad+H(t, x(t)) \exp \left[\int_{t_{3}}^{t} p(s) d s\right]=0
\end{aligned}
$$

Dropping the second term we get

$$
\left\{x^{(n-1)}(t) \exp \left[\int_{t_{3}}^{t} p(s) d s\right]\right\}^{\prime}+H(t, x(t)) \exp \left[\int_{t_{3}}^{t} p(s) d s\right] \geq 0
$$

Since $x^{\prime}(t)>0$ we have $0<k \equiv x\left(t_{3}\right) \leq x(t)$ for all $t \geq t_{3}$, and the above line can be rewritten as

$$
\left\{x^{(n-1)}(t) \exp \left[\int_{t_{3}}^{t} p(s) d s\right]\right\}^{\prime}+H(t, k) \exp \left[\int_{t_{3}}^{t} p(s) d s\right] \geq 0
$$

Integrating this inequality from t_{3} to $t, t \geq t_{3}$, we get

$$
-x^{(n-1)}(t) \exp \left[\int_{t_{3}}^{t} p(s) d s\right] \leq-x^{(n-1)}\left(t_{3}\right)+\int_{t_{3}}^{t}\left[H(s, k) \exp \left(\int_{t_{3}}^{s} p(u) d u\right)\right] d s
$$

Due to the integral condition on H, the right hand side tends to $-\infty$, and thus, so does the left-hand side. Therefore, $\lim _{t \rightarrow \infty} x^{(n-1)}(t)=+\infty$, which contradicts the fact that $x^{(n-1)}(t)<0$. Hence, $x^{(n-2)}(t)>0$ eventually prevents $x^{(n-1)}(t)$ from existing. This proves Remark 3.4.

Theorem 3.5. Suppose that n is odd, $p(t) \leq 0, q(t) \leq 0$, and

$$
\begin{equation*}
q(t) \leq p^{\prime}(t) \tag{3}
\end{equation*}
$$

eventually, and suppose that

$$
\int^{\infty} H(t, k) d t=-\infty
$$

for any positive constant k. If $x(t)$ is a bounded and eventually positive solution of $(*)$, then $x^{(n-2)}(t) \leq 0$ eventually.

Note that condition (3) implies condition (1) but condition (3) is not implied by condition (1). For example, two eventually nonpositive functions p and q with $p^{\prime}(t)=\frac{-2}{t}$ and $q(t)=\frac{-3}{2 t}$ satisfy condition (1) but not condition (3).

Proof. Suppose that all the assumptions on functions p and q are satisfied and that $x(t)>0$ is a bounded solution of $(*)$ for $t \geq t_{0}$. By Lemma
2.1, there exists $t_{1} \geq t_{0}$ such that $x^{(n-2)}(t) \leq 0$ or $x^{(n-2)}(t)>0$ for all $t \geq t_{1}$. If $x^{(n-2)}(t) \leq 0$, then there is nothing to prove. Therefore, we assume that $x^{(n-2)}(t)>0$ and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.
Case 3. Suppose that $x^{(n-1)}(t)<0$ for $t \geq t_{3} \geq t_{1}$. Since n is odd, $x^{\prime}(t)>0$ for all $t \geq t_{4} \geq t_{3}$ and so $k \equiv x\left(t_{4}\right) \leq x(t)$ for all $t \geq t_{4}$. Now we integrate (*) from t_{4} to $t, t \geq t_{4}$, to get

$$
\begin{aligned}
x^{(n-1)}(t)+p(t) x^{(n-2)}(t)= & x^{(n-1)}\left(t_{4}\right)+p\left(t_{4}\right) x^{(n-2)}\left(t_{4}\right) \\
& +\int_{t_{4}}^{t}\left[p^{\prime}(s)-q(s)\right] x^{(n-2)}(s) d s-\int_{t_{4}}^{t} H(s, x(s)) d s \\
= & M+f(t)-\int_{t_{4}}^{t} H(s, x(s)) d s,
\end{aligned}
$$

where M is a constant and $f(t)$ is the first integral in the above expression. If $z(t)=x^{(n-2)}(t)$, then z satisfies a first-order linear differential equation and thus can be written as

$$
\begin{aligned}
z(t)= & \exp \left[-\int_{t_{4}}^{t} p(s) d s\right]\left\{z\left(t_{4}\right)+\int_{t_{4}}^{t}\left[\exp \int_{t_{4}}^{s} p(r) d s\right]\right. \\
& \left.\cdot\left[M+f(s)-\int_{t_{4}}^{s} H(r, x(r)) d r\right] d s\right\} .
\end{aligned}
$$

Since $f(t) \geq 0$ and $x(t) \geq k>0$, the above equality can be written as

$$
z(t) \geq \int_{t_{4}}^{t}\left[\exp \left(-\int_{s}^{t} p(r) d r\right)\right]\left[M-\int_{t_{4}}^{s} H(r, k) d r\right] d s
$$

Due to the integral assumption on H, there exists $s_{0} \in \mathfrak{R}^{+}$such that

$$
\int_{t_{4}}^{s_{0}} H(t, k) d t \leq M-1
$$

Therefore,

$$
\begin{aligned}
z(t) & \geq \int_{t_{4}}^{t}\left[\exp \left(-\int_{s}^{t} p(r) d r\right)\right][M-(M-1)] d s \\
& =\int_{t_{4}}^{t} \exp \left(-\int_{s}^{t} p(r) d r\right) d s \\
& \geq \int_{t_{4}}^{t} 1 d s=t-t_{4} \rightarrow+\infty \text { as } t \rightarrow+\infty
\end{aligned}
$$

Thus, $\lim _{t \rightarrow \infty} x^{(n-2)}(t)=+\infty$ which contradicts the fact that $x(t)$ is bounded. Hence, $x^{(n-2)}(t) \leq 0$ eventually.

References

[1] L. Erbe, Oscillation, nonoscillation and asymptotic behaviour for third order nonlinear differential equations, Ann. Mat. Pura Appl., 110 (1976), 373-391.
[2] J. W. Heidel, Qualitative behaviour of solutions of a third order nonlinear differential equations, Pacific J. Math., 27 (1968), 507-526.
[3] A. G. Kartsatos, The oscillation of a forced equation implies the oscillation of the unforced equation-small forcings, J. Math. Anal. Appl., 76 (1980), 98-106.
[4] A. G. Kartsatos and W. A. Kosmala, The behaviour of an n th-order equation with two middle terms, J. Math. Anal. Appl., 88 (1982), 642-664.
[5] W. A. Kosmala, Properties of solutions of the higher order differential equations, Diff. Eq. Appl., 2 (1989), 29-34.
[6] W. A. Kosmala, Properties of solutions of $n^{\text {th }}$ order equations, Ordinary and Delay Differential Equations, Pitman, 1992, 101-105.
[7] W. A. Kosmala, Oscillation of a forced higher order equation, Ann. Polonici Math, to appear.

Department of Mathematical Sciences
Appalachian State University
Boone, North Carolina 28608, USA

[^0]: * Paper written during author's sabbatical at the University of Saskatchewan, Saskatoon, Canada, S7N 0W0.

