On loosely self-similar sets

Satoshi Ikeda

(Received May 20, 1994)

1. Introduction

In [7], J. E. Hutchinson set up a theory of strictly self-similar set, which is defined as the unique compact set satisfying the following equality;

$$
K=\bigcup_{i=1}^{m} f_{i}(K)
$$

for a given finite set $\left\{f_{i}\right\}_{i=1}^{m}$ of contraction affine maps on a compact subset X of $\mathbb{R}^{N}(m \geq 2)$. Let r_{i} be the contraction rate of f_{i}, that is, $\left|f_{i}(x)-f_{i}(y)\right|=$ $r_{i}|x-y|$ for $x, y \in X, i=1,2, \cdots, m$, and let α be the unique solution of $\sum_{i=1}^{m} r_{i}^{\alpha}=1$. In his theory, a Borel probability measure v on \mathbb{R}^{N} satisfying $v\left(f_{i_{1}} \circ f_{i_{2}} \circ \cdots \circ f_{i_{n}}(X)\right)=\prod_{j=1}^{n} r_{i_{j}}^{\alpha}$ coincides with the α-dimensional Hausdorff measure on K up to constant, that is, there exists a positive constant C such that $v(A)=C^{\alpha}(A)$ for any Borel set $A \subseteq K$. Here H^{α} denotes the α-dimensional Hausdorff measure.

We now explain his result from the standpoint of Tricot. Tricot [13] showed that for any Borel set $E \subset \mathbb{R}^{N}$,

$$
\begin{equation*}
\mathrm{H}-\operatorname{dim}(E)=\sup _{\mu \in \mathcal{M}_{E}}\left\{\inf _{x \in E} \phi(\mu ; x)\right\} . \tag{1.1}
\end{equation*}
$$

Where $\mathscr{M}_{E}=\left\{\mu\right.$; positive finite Borel measure on \mathbb{R}^{N} with $\left.\mu(E)>0\right\}$ and for $\mu \in \mathscr{M}_{E}$

$$
\begin{equation*}
\phi(\mu ; x)=\liminf _{r \downarrow 0} \frac{\log \mu(E \cap B(x, r))}{\log r} . \tag{1.2}
\end{equation*}
$$

$H-\operatorname{dim}(E)$ denotes the Hausdorff dimension of $E, B(x, r)$ denotes the closed ball with radius r and center at x. We can easily see that the α-dimensional Hausdorff measure itself attains the supreme in the righthand side of (1.1) in Hutchinson's case. Let

$$
\begin{aligned}
& K\left(P_{1}, P_{2}, \cdots, P_{m}\right)= \\
& \quad\left\{x \in \bigcap_{n=1}^{\infty} f_{i_{1}} \circ f_{i_{2}} \circ \cdots \circ f_{i_{n}}(X) ; \#\left\{j ; i_{j}=k, j \leq n\right\} / n \rightarrow P_{k} \text { as } n \rightarrow \infty\right\},
\end{aligned}
$$

$\beta\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ denote the Hausdorff dimension of $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ and $v_{\left(P_{1}, P_{2}, \ldots, P_{m}\right)}$ be the Borel probability measure satisfying

$$
v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}\left(f_{i_{1}} \circ f_{i_{2}} \circ \cdots \circ f_{i_{n}}(X)\right)=\prod_{j=1}^{n} P_{i_{j}} .
$$

Billingsley [1] treated $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ instead of K. Since in Billingsley's cases, $v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}$ attains the supreme in the righthand side of (1.1), we analogically guess that $v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}$ is equivalent to $\beta\left(P_{1}, P_{2}, \cdots, P_{m}\right)$-dimensional Hausdorff measure like v for K. In this paper, however, readers will know that it is not so.

In this paper, we will introduce a loosely self-similar set K (see (2.4)) which is a Cantor set topologically isomorphic to $\{1,2, \cdots, m\}^{\mathbb{N}}$ but does not have strict self-similarity in the sense of Hutchinson's. We construct a Borel probability measure v (similar to the case of strictly self-similar set) and show that v and the α-dimensional Hausdorff measure are absolutely continuous to each other on K (see Theorem $1(\mathrm{~A})$) but they are not necessarily coincident up to constant (see section 4). Nevertheless in Hutchinson's case, they are coincident up to constant.

Moreover, we show that a Borel probability measure $v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}$ and $\beta\left(P_{1}, P_{2}, \cdots, P_{m}\right)$-dimensional Hausdorff measure are absolutely continuous to each other on $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ if and only if $\left(P_{1}, P_{2}, \cdots, P_{m}\right)=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$ (see Remark of Theorem 1).

Finally in this paper, we show that $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ and K are equivalent in the view of the box dimension (see Theorem 4) but not so in the view of the Hausdorff dimension (see Theorem 3 (G)(I)). More precisely if (P_{1}, P_{2}, \cdots, $\left.P_{m}\right) \neq\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$ then the Hausdorff dimension of $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ is less than α (see Theorem 3 (I)). The α-dimensional Hausdorff measure of $K \backslash K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$ equals to 0 (see Theorem 2 (E)). However $K \backslash K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots\right.$, r_{m}^{α}) and K are equivalent in the view of the Hausdorff dimension (see Theorem $3(\mathrm{H})$).

In section 2, we introduce a loosely self-similar set and claim the results in this paper. In section 3, we prove them. In section 4, we introduce two examples.

2. Results

Through the whole paper, H^{α} and λ_{N} denote the α-dimensional Hausdorff measure and the N -dimensional Lebesgue measure, respectively ($\alpha \geq 0, N \in \mathbb{N}$). H-dim, M-dim and. $\overline{\mathbf{M}-d i m}$ denote the Hausdorff dimension, the lower and the upper box dimensions, respectively, which are defined on the Euclidean space (\mathbb{R}^{N}, d) as follows; for any bounded set $E \subset \mathbb{R}^{N}$

$$
\mathrm{H}-\operatorname{dim}(E)=\inf \left\{\alpha ; \mathrm{H}^{\alpha}(E)=0\right\}=\sup \left\{\alpha ; \mathrm{H}^{\alpha}(E)=\infty\right\},
$$

$$
\underline{\mathrm{M}-\operatorname{dim}}(E)=\lim _{\varepsilon \downarrow 0} \inf ^{\log \left(\mathrm{N}_{\varepsilon}(E)\right)} \underset{\log 1 / \varepsilon}{\text { M-dim }}(E)=\lim _{\varepsilon \downarrow 0} \sup \frac{\log \left(\mathrm{~N}_{\varepsilon}(E)\right)}{\log 1 / \varepsilon},
$$

where

$$
\begin{aligned}
& \mathrm{H}^{\alpha}(E)=\lim _{\varepsilon \downarrow 0} \inf \left\{\sum_{i}\left|U_{i}\right|^{\alpha} ; E \subseteq \bigcup_{i} U_{i},\left|U_{i}\right| \leq \varepsilon\right\}, \\
& \mathrm{N}_{\varepsilon}(E)=\inf \#\left\{U_{i} ; E \subseteq \bigcup_{i} U_{i},\left|U_{i}\right| \leq \varepsilon\right\}
\end{aligned}
$$

and $|U|=\sup _{x, y \in U}|x-y|$. We know that $\mathrm{H}-\operatorname{dim}(E) \leq \underline{\mathrm{M}-\operatorname{dim}}(E) \leq \overline{\mathrm{M}-\operatorname{dim}}(E)$ in general.

Suppose that $\left\{\varphi_{i_{1} i_{2} \cdots i_{k}}:\left(i_{1}, i_{2}, \cdots, i_{k}\right) \in\{1,2, \cdots, m\}^{k}, k=1,2, \cdots\right\}(m \geq 2)$ is a sequence of mappings on a compact subset X of \mathbb{R}^{N} with $\lambda_{N}(X)>0$ such that

$$
\begin{gather*}
\varphi_{i_{1} i_{2} \cdots i_{k}}: X \rightarrow X, \quad i_{j} \in\{1,2, \cdots, m\}, \tag{2.1}\\
r_{i_{k}}|x-y|=\left|\varphi_{i_{1} i_{2} \cdots i_{k}}(x)-\varphi_{i_{1} i_{2} \cdots i_{k}}(y)\right| \quad \text { for all } x, y \in X, 0<r_{i_{k}}<1, \tag{2.2}\\
\varphi_{i_{1} i_{2} \cdots i_{k}-1 i_{k}}(X) \cap \varphi_{i_{1} i_{2} \cdots i_{k-1} i_{k}}(X)=\emptyset \quad\left(i_{k} \neq i_{k}^{\prime}\right) . \tag{2.3}
\end{gather*}
$$

Put

$$
\begin{align*}
& {\left[i_{1}, i_{2}, \cdots, i_{n}\right]=\varphi_{i_{1}} \circ \varphi_{i_{1} i_{2}} \circ \cdots \circ \varphi_{i_{1} i_{2} \cdots i_{n}}(X)} \\
& K=\bigcap_{n=1}^{\infty} \bigcup_{\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in\{1,2, \cdots, m\}^{n}}\left[i_{1}, i_{2}, \cdots, i_{n}\right] . \tag{2.4}
\end{align*}
$$

We say that K is a loosely self-similar set generated by $\left\{\varphi_{i_{1} i_{2} \cdots i_{k}}\right\}$.
Since $\bigcap_{n=1}^{\infty}\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]$ consists of a single point for any $\omega=\left(\omega_{1}, \omega_{2}, \cdots\right)$ $\in\{1,2, \cdots, m\}^{\mathbb{N}}$, we denote it by $\bigcap_{n=1}^{\infty}\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]$. Then we can define a bijection map φ from $\{1,2, \cdots, m\}^{N}$ to K by

$$
\begin{equation*}
\varphi: \omega=\left(\omega_{1}, \omega_{2}, \cdots\right) \in\{1,2, \cdots, m\}^{\mathbb{N}} \rightarrow \varphi(\omega)=\bigcap_{n=1}^{\infty}\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right] . \tag{2.5}
\end{equation*}
$$

Through the whole paper, we assume that $\left\{P_{i}\right\}_{i=1}^{m}$ satisfies the conditions

$$
\begin{equation*}
\sum_{i=1}^{m} P_{i}=1, \quad 0<P_{i}<1 \tag{2.6}
\end{equation*}
$$

and set

$$
K\left(P_{1}, P_{2}, \cdots, P_{m}\right)=\left\{\varphi(\omega) ; \frac{N_{i}(\omega, n)}{n} \rightarrow P_{i} \text { as } n \rightarrow \infty\right\}
$$

where

$$
N_{i}(\omega, n)=\#\left\{k ; 1 \leq k \leq n, \omega_{k}=i\right\} \quad \text { for } \omega=\left(\omega_{1}, \omega_{2}, \cdots\right) \in\{1,2, \cdots, m\}^{\mathbb{N}}
$$

$K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ is a Borel set but not a compact set and hence it is not a Cantor set. Let $v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}$ be the Borel probability measure on \mathbb{R}^{N} such that $v_{\left(P_{1}, P_{2}, \cdots, \boldsymbol{P}_{m}\right)}\left(\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)=\prod_{j=1}^{n} P_{\omega_{j}}$ for any $n, \omega_{1}, \omega_{2}, \cdots, \omega_{n}$. Since

$$
v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}(K)=v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}\left(K\left(P_{1}, P_{2}, \cdots, P_{m}\right)\right)=1,
$$

the probability measure $v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}$ is called the $\left(P_{1}, P_{2}, \cdots, P_{m}\right)$-Bernoulli measure on K.

We say that a (an outer) measure μ on \mathbb{R}^{N} is a Borel (outer) measure if any Borel set is μ-measurable. It is well-known that β-dimensional Hausdorff measure \mathbf{H}^{β} is a Borel outer measure, since it is a metric outer measure [5]. Two Borel (outer) measures v and μ on \mathbb{R}^{N} are said to be absolutely continuous to each other on a given Borel set F if $v(B)=0 \Leftrightarrow \mu(B)=0$ for any Borel set $B \subseteq F$.

Theorem 1. Assume that $\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ satisfies (2.6). Let $\beta\left(P_{1}, P_{2}, \cdots\right.$, $\left.P_{m}\right)=H-\operatorname{dim}\left(K\left(P_{1}, P_{2}, \cdots, P_{m}\right)\right)$ and α be the unique solution of $\sum_{i=1}^{m} r_{i}^{\alpha}=1$. Then
(A) $v_{\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)}$ and the α-dimensional Hausdorff measure are absolutely continuous to each other on K.
(B) There exists a Borel subset M of $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ such that $v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}(M)$
$=1$ and $H^{\beta\left(P_{1}, P_{2}, \cdots, P_{m}\right)}(M)=0$ unless $\left(P_{1}, P_{2}, \cdots, P_{m}\right)=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$.
Remark. Taking Theorem 2 (D) and the fact $v\left(K\left(P_{1}, P_{2}, \cdots, P_{m}\right)\right)=1$ into consideration, by Theorem 1 we see that the Hausdorff measure $\mathbf{H}^{\beta\left(P_{1}, P_{2}, \cdots, P_{m}\right)}$ and $v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}$ are absolutely continuous to each other on $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ if and only if $\left(P_{1}, P_{2}, \cdots, P_{m}\right)=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$. On the other hand, by using Bowen's results [3], K. Handa [6] has already acquired a similar result to (A) on \mathbb{R}^{1} under a different setting. Our idea of proof in this paper is different from his. It seems to us difficult that we generalize his proof to \mathbb{R}^{N}. Moreover we add the result (B) to his results in this paper.

The second theorem claims that the α-dimensional Hausdorff measure on K concentrates in $K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$.

Theorem 2. For α in Theorem 1,
(C) $\quad H-\operatorname{dim}(K)=\alpha$,
(D) $H^{\alpha}(K)=H^{\alpha}\left(K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right)$,
(E) $H^{\alpha}\left(K \backslash K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right)=0$,
(F) $0<H^{\alpha}(K)<\infty$.

The third theorem claims that the Hausdorff dimension of $K \backslash K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots\right.$,
$\left.r_{m}^{\alpha}\right)$ equals to the Hausdorff dimension of K itself. For a similar example, the Hausdorff dimensions of simply normal numbers and simply non-normal numbers on [0,1] both equal to 1 (c.f. [12]). Nevertheless the onedimensional Hausdorff measure of simply non-normal numbers equals to 0 . This is clear from the law of large number and the fact that the one-dimensional Hausdorff measure on $[0,1]$ coincides with the onedimensional Lebesgue measure.

Theorem 3. For α in Theorem 1,
(G) $\quad H-\operatorname{dim}\left(K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right)=H-\operatorname{dim}(K)=\alpha$,
(H) $\quad H-\operatorname{dim}\left(K \backslash K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right)=H-\operatorname{dim}(K)$,
(I) $\quad H-\operatorname{dim}\left(K\left(P_{1}, P_{2}, \cdots, P_{m}\right)\right)=\frac{\sum_{i=1}^{m} P_{i} \log P_{i}}{\sum_{i=1}^{m} P_{i} \log r_{i}} \leq \alpha$ for any $\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ satisfying (2.6) and the equality is attained only in the case of $\left(P_{1}, P_{2}, \cdots, P_{m}\right)=$ $\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$.

The fourth theorem claims that the box dimension of $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ equals to α for any $\left(P_{1}, P_{2}, \cdots, P_{m}\right)$. Together with (G), this fact implies that there is a gap between the Hausdorff dimension and the box dimension of $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ if $\left(P_{1}, P_{2}, \cdots, P_{m}\right) \neq\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$.

Theorem 4. For α in Theorem 1 and for any $\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ satisfying (2.6),
(J) $\quad \underline{M-\operatorname{dim}}\left(K\left(P_{1}, P_{2}, \cdots, P_{m}\right)\right)=\overline{M-\operatorname{dim}}\left(K\left(P_{1}, P_{2}, \cdots, P_{m}\right)\right)=\alpha$.

3. Proofs

For the proof of Theorem 1, the result of Theorem 3 (I) is needed. Therefore we will prove Theorem 3 (I) at first. Put

$$
\mathscr{R}_{n}=\left\{\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right] ;\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right) \in\{1,2, \cdots, m\}^{n}\right\}, \mathscr{R}=\bigcup_{n=1}^{\infty} \mathscr{R}_{n} .
$$

The following two propositions are proved under more general conditions [8]. Proposition 3.1 can be proved in accordance with Billingsley's method [1]. In this paper, we will give a brief proof of Proposition 3.2 for readers' convenience.

Proposition 3.1. Assume that μ is a positive finite Borel measure on \mathbb{R}^{N} such that

$$
\begin{equation*}
\mu\left(\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)>0 \quad \text { for any }\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right) \tag{3.1}
\end{equation*}
$$

If $E \subseteq K$ with $\mu^{*}(E)>0$ satisfies

$$
a \leq \lim _{n \rightarrow \infty} \inf \frac{\log \left(\mu\left(\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)\right)}{\log \left(\left[\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)\right.} \leq \lim _{n \rightarrow \infty} \sup \frac{\log \left(\mu\left(\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)\right)}{\log \left(\left[\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)\right.} \leq b
$$

for any $\bigcap_{n=1}^{\infty}\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right] \in E$, then

$$
a \leq H-\operatorname{dim}(E) \leq b,
$$

where μ^{*} is the outer measure induced from the measure μ.
Proposition 3.2. Assume that μ is a positive finite Borel measure on \mathbb{R}^{N} satisfying the condition (3.1). If

$$
a \leq \liminf _{n \rightarrow \infty} \frac{\mu\left(\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)}{\left|\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right|^{\delta}} \leq \limsup _{n \rightarrow \infty} \frac{\mu\left(\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)}{\left|\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right|^{\delta}} \leq b
$$

hold for any $\bigcap_{n=1}^{\infty}\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right] \in E$, then there exists a positive constant L depending only on $N, X, \lambda=1 / \min _{i} r_{i}>1$ such that

$$
b^{-1} \lambda^{-\delta} L^{-1} \mu^{*}(E) \leq H^{\delta}(E) \leq a^{-1} \mu^{*}(E) .
$$

Proof of Proposition 3.2. For $\rho>0, \varepsilon>0$, set

$$
\begin{gathered}
E_{\rho, \varepsilon}=\left\{x \in E ;(a-\varepsilon)|R|^{\delta} \leq \mu(R) \leq(b+\varepsilon)|R|^{\delta} \text { or }|R| \geq \lambda \rho\right. \\
\text { for any } R \in \mathscr{R} \text { such that } x \in R\} .
\end{gathered}
$$

Firstly we prove the lefthand side inequality of the proposition. Put $C=\lambda_{N}(X) /|X|^{N}, L=(2 \lambda)^{N} \Omega_{N} C^{-1}$ and $\Omega_{N}=\pi^{\frac{1}{2} N} / \Gamma(N / 2+1)$. Then $0<L<$ ∞, since $0<\lambda_{N}(X)<\infty$. For a given $U \subset \mathbb{R}^{N}$ and the integer n with $\lambda^{-n}<|U| \leq \lambda^{-n+1}, U \cap K$ can be covered by R 's less than L such that $R \in \mathscr{R}$, $\lambda^{-n}<|R| \leq \lambda^{-n+1}$. For any $\gamma>0,(0<) \rho^{\prime}<\rho$, let $\left\{U_{i}\right\}_{i}$ be a ρ^{\prime}-covering of $E_{\rho, \varepsilon}$ such that $\mathbf{H}_{\rho^{\prime}}^{\delta}\left(E_{\rho, \varepsilon}\right) \geq \sum_{i}\left|U_{i}\right|^{\delta}-\gamma$. Then we can find $\left\{R_{i j}\right\}_{j=1}^{m_{i}} \subset \mathscr{R}$ such that

$$
\begin{array}{r}
m_{i} \leq L, R_{i j} \cap E_{\rho, \varepsilon} \neq \emptyset, U_{i} \cap E_{\rho, \varepsilon} \subseteq \bigcup_{j=1}^{m_{i}} R_{i j}, \\
\lambda^{-1}\left|U_{i}\right| \leq\left|R_{i j}\right| \leq \lambda\left|U_{i}\right| \quad \text { for any } i, j .
\end{array}
$$

Then

$$
\sum_{i, j}\left|R_{i j}\right|^{\delta} \leq \lambda^{\delta} L \sum_{i}\left|U_{i}\right|^{\delta} \leq \lambda^{\delta} L\left(\mathbf{H}_{\rho^{\prime}}^{\delta}\left(E_{\rho, \varepsilon}\right)+\gamma\right) .
$$

By the definition of $E_{\rho, \varepsilon}$ and $\left|R_{i j}\right|<\lambda \rho$, we have $\mu\left(R_{i j}\right) \leq(b+\varepsilon)\left|R_{i j}\right|^{\delta}$ for any i, j. Therefore we have the following estimate

$$
\lambda^{\delta} L\left(\mathbf{H}^{\delta}(E)+\gamma\right) \geq \lambda^{\delta} L\left(\mathbf{H}_{\rho^{\prime}}^{\delta}\left(E_{\rho, \varepsilon}\right)+\gamma\right) \geq \sum_{i, j}\left|R_{i j}\right|^{\delta}
$$

$$
\geq(b+\varepsilon)^{-1} \sum_{i, j} \mu\left(R_{i j}\right) \geq(b+\varepsilon)^{-1} \mu^{*}\left(E_{\rho, \varepsilon}\right) .
$$

By letting $\gamma \downarrow 0$, we have

$$
(b+\varepsilon)^{-1} \mu^{*}\left(E_{\rho, \varepsilon}\right) \leq \lambda^{\delta} L H^{\delta}(E) .
$$

Since μ^{*} is an outer measure and $E_{\rho, \varepsilon} \uparrow E$ as $\rho \downarrow 0$, we have

$$
(b+\varepsilon)^{-1} \mu^{*}(E) \leq \lambda^{\delta} L H^{\delta}(E)
$$

Since $\varepsilon>0$ is arbitrary, we have the lefthand side inequality.
Secondly we prove the righthand side inequality. For $\gamma>0,(0<) \rho^{\prime}<\rho$, we can find $\left\{R_{i}\right\}_{i} \subset \mathscr{R}$ such that

$$
\begin{aligned}
\left|R_{i}\right|<\rho^{\prime}, E_{\rho, \varepsilon} & \subseteq \bigcup_{i} R_{i}, R_{i} \cap R_{j}=\emptyset(i \neq j), R_{i} \cap E_{\rho, \varepsilon} \neq \emptyset, \\
0 & \leq \sum_{i} \mu\left(R_{i}\right)-\mu^{*}\left(E_{\rho, \varepsilon}\right)<\gamma .
\end{aligned}
$$

Since $(a-\varepsilon)\left|R_{i}\right|^{\delta} \leq \mu\left(R_{i}\right)$ by the definition of $E_{\rho, \varepsilon}$ and $\left|R_{i}\right|<\lambda \rho$,

$$
\begin{aligned}
\mu^{*}(E) & \geq \mu^{*}\left(E_{\rho, \varepsilon}\right) \geq \sum_{i} \mu\left(R_{i}\right)-\gamma \\
& \geq(a-\varepsilon) \sum_{i}\left|R_{i}\right|^{\delta}-\gamma \geq(a-\varepsilon) \mathbf{H}_{\rho^{\prime}}^{\delta}\left(E_{\rho, \varepsilon}\right)-\gamma
\end{aligned}
$$

By letting $\rho^{\prime}, \gamma \downarrow 0$, we have

$$
\mathbf{H}^{\delta}\left(E_{\rho, \varepsilon}\right) \leq(a-\varepsilon)^{-1} \mu^{*}(E)
$$

Therefore we have the righthand side inequality.
Proof of Theorem 3 (I). By the definition of $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$, for all $\left(\omega_{1}, \omega_{2}, \cdots\right)$ such that $\bigcap_{n=1}^{\infty}\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right] \in K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\log v_{\left(\mathbf{P}_{1}, P_{2}, \cdots, P_{m}\right)}\left(\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)}{\log \left|\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right|} & =\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{m} N_{i}(\omega, n) \log P_{i}}{\sum_{i=1}^{m} N_{i}(\omega, n) \log r_{i}} \\
& =\frac{\sum_{i=1}^{m} P_{i} \log P_{i}}{\sum_{i=1}^{m} P_{i} \log r_{i}} .
\end{aligned}
$$

Since $\nu_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}\left(K\left(P_{1}, P_{2}, \cdots, P_{m}\right)\right)=1$, we have

$$
\mathrm{H}-\operatorname{dim}\left(K\left(P_{1}, P_{2}, \cdots, P_{m}\right)\right)=\frac{\sum_{i=1}^{m} P_{i} \log P_{i}}{\sum_{i=1}^{m} P_{i} \log r_{i}} \quad \text { for any }\left(P_{1}, P_{2}, \cdots, P_{m}\right)
$$

by Proposition 3.1. Since $\frac{\sum_{i=1}^{m} P_{i} \log P_{i}}{\sum_{i=1}^{m} P_{i} \log r_{i}} \leq \alpha$ and the equality holds if and
only if $P_{i}=r_{i}^{\alpha}, i=1,2, \cdots, m$, we have (I).
Proposition 3.3. Assume that $\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ satisfies (2.6). Put $H-\operatorname{dim}\left(K\left(P_{1}, P_{2}, \cdots, P_{m}\right)\right)=\beta\left(P_{1}, P_{2}, \cdots, P_{m}\right) . \quad$ For $\omega=\left(\omega_{1}, \omega_{2}, \cdots\right) \in\{1,2, \cdots, m\}^{N}$, set

$$
d_{n}(\omega)=\frac{v_{\left(\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \cdots, \boldsymbol{P}_{m}\right)}\left(\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)}{\left|\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right|^{\beta\left(\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \cdots, \boldsymbol{P}_{m}\right)}}
$$

and define

$$
B=\left\{\varphi(\omega) ; \lim _{n \rightarrow \infty} \sup _{n}(\omega)=\infty, \lim _{n \rightarrow \infty} \frac{N_{i}(\omega, n)}{n}=P_{i} i=1,2, \cdots, m\right\}
$$

Then we see that
(a) $v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}(B)=1$ unless $\left(P_{1}, P_{2}, \cdots, P_{m}\right)=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$,
(b) $H^{\beta}(B)=0$ unless $\left(P_{1}, P_{2}, \cdots, P_{m}\right)=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$.

Proof of (a). Put $P=v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)} \circ \varphi, \beta=\beta\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ and $X_{n}(\omega)=$ $\log \frac{P_{\omega_{n}}}{r_{\omega_{n}}^{\beta}}$, then $\left\{X_{n}\right\}$ is independent, identically distributed random variables $\underset{\text { with }}{r_{\omega_{n}}}$ respect to P. Since $\beta=\frac{\sum_{i=1}^{m} P_{i} \log P_{i}}{\sum_{i=1}^{m} P_{i} \log r_{i}}$ by (I), we see that

$$
E_{P}\left[X_{n}\right]=\sum_{i=1}^{m} P_{i}\left(\log P_{i}-\log r_{i}^{\beta}\right)=0 .
$$

By the uniqueness of $\alpha, \mathrm{P}_{i}=r_{i}^{\beta}$ for $i=1,2, \cdots, m$ if and only if $\left(P_{1}, P_{2}, \cdots, P_{m}\right)=$ $\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$. Since $\left(P_{1}, P_{2}, \cdots, P_{m}\right) \neq\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$ by the assumption, we have

$$
0<E_{P}\left[X_{n}^{2}\right]=\sum_{i=1}^{m} P_{i}\left(\log P_{i}-\log r_{i}^{\beta}\right)^{2}<\infty .
$$

Since $\log d_{n}(\omega)=\sum_{j=1}^{n} X_{j}(\omega)$, by the law of iterated logarithm [2], we see that

$$
v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}\left(\left\{\varphi(\omega) ; \limsup _{n \rightarrow \infty} \log d_{n}(\omega)=\infty\right\}\right)=1 .
$$

This implies $v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}(B)=1$.
Proof of (b). Put
$\mathscr{R}_{n}(\eta)=\left\{\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right] ; d_{n}(\omega)>\eta, \omega=\left(\omega_{1}, \omega_{2}, \cdots\right) \in\{1,2, \cdots, m\}^{N}\right\}, \mathscr{R}(\eta)=$ $\bigcup_{n=1}^{\infty} \mathscr{R}_{n}(\eta)$. Then we can choose $\left\{R_{i}^{\eta}\right\}_{i}$ for any $\rho>0$ and $\eta>0$, such that

$$
B \subseteq \bigcup_{i} R_{i}^{\eta},\left|R_{i}^{\eta}\right|<\rho, R_{i}^{\eta} \in \mathscr{R}(\eta), v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}\left(R_{i}^{\eta}\right)>\eta\left|R_{i}^{\eta}\right|^{\beta}, R_{i}^{\eta} \cap R_{j}^{\eta}=\emptyset(i \neq j) .
$$

By the definition of H^{β}, we have

$$
\mathbf{H}_{\rho}^{\beta}(B) \leq \sum_{i}\left|R_{i}^{\eta}\right|^{\beta}<\frac{1}{\eta} \sum_{i} v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}\left(R_{i}^{\eta}\right) \leq \frac{1}{\eta} \quad \text { for any } \rho>0 .
$$

Therefore, by letting $\eta \rightarrow \infty$, we see

$$
\mathrm{H}_{\rho}^{\beta}(B)=0 \quad \text { for any } \rho>0
$$

This implies $\mathrm{H}^{\beta}(B)=0$.

Now we prove Theorem 1.

Proof of Theorem 1. (B) is clear from Proposition 3.3. Let α be the positive number which satisfies $\sum_{i=1}^{m} r_{i}^{\alpha}=1$. Let us assume that ($P_{1}, P_{2}, \cdots, P_{m}$) $=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)$. Then we have for all $\omega \in\{1,2, \cdots, m\}^{\mathbb{N}}$ and $n \in \mathbb{N}$,

$$
\begin{equation*}
\frac{v_{\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{r}^{\alpha}\right)}\left(\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)}{\left|\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right|^{\alpha}}=\frac{\prod_{i=1}^{m} r_{i}^{\alpha N_{i}(\omega, n)}}{\prod_{i=1}^{m} r_{i}^{\alpha i_{i}(\omega, n)}|X|^{\alpha}}=|X|^{-\alpha} . \tag{3.2}
\end{equation*}
$$

Since $v_{\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)}\left(\left[\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right]\right)>0$ for any $\omega_{1}, \omega_{2}, \cdots, \omega_{n}, n$ by the condition (2.6), the condition (3.1) of Proposition 3.2 is satisfied. Therefore by Proposition 3.2, we have

$$
\begin{equation*}
\lambda^{-\alpha} L_{N, \lambda, c}^{-1}|X|^{\alpha} v_{\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)}(B) \leq H^{\alpha}(K \cap B) \leq|X|^{\alpha} v_{\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)}(B) \tag{3.3}
\end{equation*}
$$

for any Borel set $B \subseteq K$. Therefore we have Theorem $1(\mathrm{~A})$.
Proof of Theorem 2. By the definition of $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$, we see that $K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ is a Borel set for any $\left(P_{1}, P_{2}, \cdots, P_{m}\right)$. Since

$$
v_{\left(P_{1}, P_{2}, \cdots, P_{m}\right)}\left(K \backslash K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right)=0,
$$

we see (E) $\mathrm{H}^{\alpha}\left(K \backslash K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right)=0$ by (3.3). Since H^{α} is an outer measure,

$$
\begin{align*}
\mathrm{H}^{\alpha}\left(K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right) & \leq \mathrm{H}^{\alpha}(K) \\
& \leq \mathrm{H}^{\alpha}\left(K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right)+\mathrm{H}^{\alpha}\left(K \backslash K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right) \tag{3.4}\\
& =\mathrm{H}^{\alpha}\left(K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right) .
\end{align*}
$$

Therefore we have (D) $\mathrm{H}^{\alpha}(K)=\mathrm{H}^{\alpha}\left(K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right.$). On the other hand, by (3.3) and $v_{\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)}\left(K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right)=1$, we see that (F) $0<\mathrm{H}^{\alpha}\left(K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right)$ $<\infty$. Therefore together with (D), we have (G) $\mathrm{H}-\operatorname{dim}(K)=\mathrm{H}-\operatorname{dim}\left(K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots\right.\right.$, $\left.r_{m}^{\alpha}\right)=\alpha$.
(I) has been already proved and (C) is clear from Theorem 3 (G). Therefore we have to prove only (H) and (J).

Proof of Theorem 3 (H). Suppose that $\left\{P_{i, k}\right\}_{i=1}^{m}, k=1,2,3, \cdots$ is a sequence of probability vectors such that

$$
0<P_{i, k}<1, \sum_{i=1}^{m} P_{i, k}=1, \lim _{k \rightarrow \infty} P_{i, k}=r_{i}^{\alpha},\left(P_{1, k}, P_{2, k}, \cdots, P_{m, k}\right) \neq\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right) .
$$

Then by (I), we see

$$
\begin{aligned}
\alpha \geq \mathrm{H}-\operatorname{dim}\left(K \backslash K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right) & \geq \mathrm{H}-\operatorname{dim}\left(K\left(P_{1, k}, P_{2, k}, \cdots, P_{m, k}\right)\right) \\
& =\frac{\sum_{i=1}^{m} P_{i, k} \log P_{i, k}}{\sum_{i=1}^{m} P_{i, k} \log r_{i}}
\end{aligned}
$$

for any k. Letting $k \rightarrow \infty$, we have

$$
\alpha=\mathrm{H}-\operatorname{dim}\left(K \backslash K\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)\right) .
$$

Therefore we have (H).
Finally, we will prove Theorem $4(\mathrm{~J})$. It is showed by the next proposition.

Proposition 3.4. Assume that M is a Borel subset of K and μ is a positive finite Borel measure on \mathbb{R}^{N}. Put $\mathscr{R}^{(n)}=\left\{R \in \mathscr{R} ; \lambda^{-n}<|R| \leq \lambda^{-n+1}\right\}$ and

$$
C_{1}(\alpha, n)=\min _{R \in \mathscr{R}^{(n)}, R \cap M \neq \varnothing} \frac{\mu(R)}{|R|^{\alpha}}, \quad C_{2}(\alpha, n)=\max _{R \in \mathscr{R}^{(n)}, R \cap M \neq \varnothing} \frac{\mu(R)}{|R|^{\alpha}} .
$$

If

$$
\begin{equation*}
\mu\left(\bigcup_{R \in \mathscr{R}(n), R \cap M \neq \emptyset} R\right)=\mu\left(\mathbb{R}^{N}\right) \quad \text { for all } n \in \mathbb{N} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \left(C_{1}(\alpha, n)\right)}{n}=\lim _{n \rightarrow \infty} \frac{\log \left(C_{2}(\alpha, n)\right)}{n}=0, \tag{3.6}
\end{equation*}
$$

then we have

$$
\underline{M-\operatorname{dim}}(M)=\overline{M-d i m}(M)=\alpha .
$$

Proof of Proposition 3.4. For any $\varepsilon>0$, we can find n such that $\lambda^{-n}<\varepsilon \leq \lambda^{-n+1}$. Let $\left\{U_{i}\right\}_{i}$ be an ε-covering of M such that $\#\left\{U_{i}\right\}=\mathrm{N}_{\varepsilon}(M)$. Here $\mathrm{N}_{\varepsilon}(M)=\min _{\left\{U_{i}\right\}} \#\left\{U_{i} ; M \subseteq \bigcup_{i} U_{i},\left|U_{i}\right| \leq \varepsilon\right\}$. Then there exists a positive constant L^{\prime} not depending on $\varepsilon>0$ such that

$$
1 \leq \#\left\{R_{i, j}^{n} \in \mathscr{R}^{(n)} ; R_{i, j}^{n} \cap U_{i} \neq \emptyset, U_{i} \cap M \subseteq \bigcup_{j} R_{i, j}^{n}, R_{i, j}^{n} \cap R_{i, j^{\prime}}^{n} \neq \emptyset\left(j \neq j^{\prime}\right)\right\} \leq L^{\prime}
$$

for any i. Therefore we have

$$
\begin{equation*}
L^{\prime-1} \mathrm{~N}_{\varepsilon}^{\mathscr{Q}}(M) \leq \mathrm{N}_{\varepsilon}(M) \leq \mathrm{N}_{\varepsilon}^{\mathscr{Q}}(M) \tag{3.7}
\end{equation*}
$$

where $\mathrm{N}_{\varepsilon}^{\mathscr{R}}(M)=\min _{\left\{R_{i}\right\}} \#\left\{R_{i} ; M \subseteq \bigcup_{i} R_{i},\left|R_{i}\right| \leq \varepsilon, R_{i} \in \mathscr{R}\right\}$. Since

$$
\frac{\mu\left(\mathbb{R}^{N}\right)}{\max _{R \in \mathscr{G}(n), R \cap M \neq \emptyset} \mu(R)} \leq \mathrm{N}_{\varepsilon}^{\mathscr{R}}(M) \leq \frac{\mu\left(\mathbb{R}^{N}\right)}{\min _{R \in \mathscr{G}(n), R \cap M \neq \emptyset} \mu(R)}
$$

by (3.5), we see by (3.7) that

$$
\mu\left(\mathbb{R}^{N}\right) \lambda^{-\alpha} L^{\prime-1} C_{2}^{-1}(\alpha, n) \lambda^{\alpha n} \leq \mathrm{N}_{\varepsilon}(M) \leq \mu\left(\mathbb{R}^{N}\right) C_{1}^{-1}(\alpha, n) \lambda^{\alpha n} .
$$

By (3.6), we have

$$
\lim _{\varepsilon \downarrow 0} \frac{\log \left(\mathrm{~N}_{\varepsilon}(M)\right)}{\log 1 / \varepsilon}=\alpha
$$

This implies that

$$
\underline{\mathrm{M}-\operatorname{dim}}(M)=\overline{\mathrm{M}-\operatorname{dim}}(M)=\alpha
$$

Proof of Theorem 4 (J). In Proposition 3.4, put $M=K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ and $\mu=v_{\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)}$. Then we see by (3.2) that

$$
C_{1}(\alpha, n)=C_{2}(\alpha, n)=|X|^{-\alpha} .
$$

Therefore we can easily see that $\mu=v_{\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \cdots, r_{m}^{\alpha}\right)}$ and $M=K\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ satisfy the conditions (3.5) and (3.6). Therefore we have

$$
\underline{\mathrm{M}-\operatorname{dim}}(M)=\overline{\mathrm{M}-\operatorname{dim}}(M)=\alpha \quad \text { for any }\left(P_{1}, P_{2}, \cdots, P_{m}\right)
$$

4. Examples

Example 4.1. Let us define two sequences of contraction maps $\left\{\varphi_{i_{1} i_{2} \cdots i_{n}}\right\}$ and $\left\{\psi_{i_{1} i_{2} \cdots i_{n}}\right\}$ for $\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in\{1,2\}^{n}, n=1,2, \cdots$. Put $X=[0,1]^{2}$. Suppose that

$$
\begin{aligned}
& \varphi_{i}, \psi_{i}: X \rightarrow X, i=1,2, \\
& \varphi_{1}=\psi_{1}:(x, y) \rightarrow\left(\frac{1}{3} x, \frac{1}{3} y\right), \\
& \varphi_{2}:(x, y) \rightarrow\left(\frac{1}{3} x+\frac{2}{3}, \frac{1}{3} y\right), \\
& \psi_{2}:(x, y) \rightarrow\left(\frac{1}{3} x+\frac{2}{3}, \frac{1}{3} y+\frac{2}{3}\right) .
\end{aligned}
$$

Then define

$$
\left\{\begin{array}{l}
\varphi_{i_{1} i_{2} \cdots i_{n}}=\varphi_{i_{n}}, \\
\psi_{i_{1} i_{2} \cdots i_{n}}= \begin{cases}\psi_{i_{n}} & n=1, \\
\varphi_{i_{n}} & i_{1}=1, n \geq 2 \\
\psi_{i_{n}} & i_{1}=2, n \geq 2\end{cases}
\end{array}\right.
$$

Put

$$
\begin{aligned}
& K_{\varphi}=\bigcap_{n=1}^{\infty} \bigcup_{\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in\{1,2\}^{n}} \varphi_{i_{1}} \circ \varphi_{i_{1} i_{2}} \circ \cdots \circ \varphi_{i_{1} i_{2} \cdots i_{n}}(X), \\
& K_{\psi}=\bigcap_{n=1}^{\infty} \bigcup_{\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in\{1,2\}^{n}} \psi_{i_{1}} \circ \psi_{i_{1} i_{2}} \circ \cdots \circ \psi_{i_{1} i_{2} \cdots i_{n}}(X) .
\end{aligned}
$$

Then we see that K_{φ} is Cantor's ternary set C on [0, 1] and $K_{\psi}=\{(x, f(x))$; $x \in C\}$. Here $f:[0,1] \rightarrow[0,1]$ such that

$$
f(x)= \begin{cases}0 & 0 \leq x \leq 1 / 2 \\ x & 1 / 2<x \leq 1\end{cases}
$$

By the Theorem 1, $\mathrm{H}-\mathrm{dim}\left(K_{\varphi}\right)=\mathrm{H}-\operatorname{dim}\left(K_{\psi}\right)=\log 2 / \log 3=\alpha$, and H^{α} on K_{φ} (resp. K_{ψ}) the $\left(\frac{1}{2}, \frac{1}{2}\right)$-Bernoulli measure on K_{φ} (resp. K_{ψ}) are absolutely continuous to each other.

In fact, for any Borel set B,

$$
\begin{aligned}
& \mathrm{H}^{\alpha}\left(B \cap K_{\varphi}\right)=\int_{B} d v_{\left(\frac{1}{2}, \frac{1}{2}\right.}^{\varphi}(\omega), \\
& \mathrm{H}^{\alpha}\left(B \cap K_{\psi}\right)=\int_{B}\left(I_{[1] \psi}(\omega)+I_{[2] \psi}(\omega) \cdot 2^{\frac{1}{2} \alpha}\right) d v_{\left(\frac{1}{2}, \frac{1}{2}\right.}^{\psi}(\omega),
\end{aligned}
$$

where I_{A} is the indicator function of $A,[1]_{\psi}=\psi_{1}(X)$ and $[2]_{\psi}=\psi_{2}(X) . \quad v_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{\varphi}$ and $v_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{\psi}$ denote $\left(\frac{1}{2}, \frac{1}{2}\right)$-Bernoulli measure on K_{φ} and K_{ψ}, respectively. That is to say, H^{α} and $v_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{\varphi}$ are coincident but H^{α} and $v_{\left(\frac{(2,2}{2}\right)}^{\psi}$ are not coincident up to constant.

Example 4.2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a Lipschitz continuous function such that

$$
\begin{equation*}
|f(x)-f(y)| \leq Q|x-y| \quad \text { for any } x, y \in[0,1] \text { and } f(0)=0 \tag{4.1}
\end{equation*}
$$

with some positive constant Q. Now we will construct a Cantor set on $\{(x, f(x)) ; x \in[0,1]\}$ by our method. Put $X=[0,1] \times[-Q, Q]$. Define a sequence of functions $\left\{\varphi_{i_{1} i_{2} \cdots i_{n}} ;\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in\{1,2\}^{n}, n=1,2, \cdots\right\}$ such that for any $i_{1}, i_{2}, \cdots, i_{n}, n$,

$$
\varphi_{i_{1} i_{2} \cdots i_{n}}: X \rightarrow X
$$

$$
\varphi_{i_{1}} \circ \varphi_{i_{1} i_{2}} \circ \cdots \circ \varphi_{i_{1} i_{2} \cdots i_{n}}:(x, y) \rightarrow\left(x / 3^{n}+\sum_{j=1}^{n} \varepsilon\left(i_{j}\right) / 3^{j}, y / 3^{n}+f\left(\sum_{j=1}^{n} \varepsilon\left(i_{j}\right) / 3^{j}\right)\right)
$$

where $\varepsilon:\{1,2\} \rightarrow\{0,2\}$ such that $\varepsilon(1)=0, \varepsilon(2)=2$. Then we can see that

$$
\left|\varphi_{i_{1} i_{2} \cdots i_{n}}(x)-\varphi_{i_{1} i_{2} \cdots i_{n}}(y)\right|=\frac{1}{3}|x-y| \quad \text { for any } x, y \in X \text { and } i_{1}, i_{2}, \cdots, i_{n}, n
$$

Put

$$
K=\bigcap_{n=1}^{\infty} \bigcup_{\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in\{1,2\}^{n}} \varphi_{i_{1}} \circ \varphi_{i_{1} i_{2}} \circ \cdots \circ \varphi_{i_{1} i_{2} \cdots i_{n}}(X) .
$$

Then we see that $K=\{(x, f(x)) ; x \in C\}$, where C is Cantor's ternary set, $\mathrm{H}-\operatorname{dim}(K)=\log 2 / \log 3(=\alpha)$ and that by Theorem $1, \mathrm{H}^{\alpha}$ and $v_{\left(\frac{1}{2}, \frac{1}{2}\right)}$ are absolutely continuous to each other on K. Furthermore if f is differentiable on $(0,1)$, then we can easily see that

$$
\begin{equation*}
\mathrm{H}^{\alpha}(B \cap K)=\int_{B}\left(1+\left(f^{\prime} \circ \pi(\omega)\right)^{)^{2}\right)^{\frac{1}{\alpha} \alpha}} d v_{\left(\frac{1}{2}, \frac{1}{2}\right)}(\omega) \quad \text { for any Borel set } B \subseteq K .\right. \tag{4.2}
\end{equation*}
$$

Here π is the projection, that is, $\pi((x, y))=x$.
For any Cantor set $C^{\prime} \subseteq[0,1]$ constructed by Hutchinson or our method, we can construct $\left\{(x, f(x)) ; x \in C^{\prime}\right\}$ by using our method and have a similar formula to (4.2).

Acknowledgements

I am much indebted to Professor I. Kubo and Dr. M. Nakamura for their invaluable advices and hearty encouragements.

References

[1] P. Billingsley, Ergodic theory and information. John Willy and Sons, Inc., New York, London, Sydney (1965).
[2] P. Billingsley, Probability and measure. Wiley, New York (1979).
[3] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture note in Mathematics, no. 470. Berlin, springer (1975).
[4] H. G. Eggleston, The fractal dimension of a set defined by decimal properties, Quart. J. Math. Oxford Ser., 20 (1949), 31-36.
[5] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, (1985).
[6] K. Handa, Hausdorff Dimension of Nonlinear Cantor Sets. To appear.
[7] J. E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J., 30 (1981), 713-747.
[8] S. Ikeda, On the Billingsley Dimension on \mathbb{R}^{N}. Hiroshima Math. J. 25 (1995), 123-142.
[9] B. B. Mandelbrot, Fractals: Form, Chance, and Dimension. San Francisco: W. H. Freeman \& Co. (1977).
[10] B. B. Mandelbrot, The Fractal Geometry of Nature. San Francisco: W. H. Freeman \& Co. (1983).
[11] C. McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J., 96 (1984), 1-9.
[12] K. Nagasaka, On Hausdorff dimension of non-normal sets, Annals of Institute of Statistical Math., 23 (1971), 515-521.
[13] C. Tricot, Two definitions of fractal dimension. Math. Proc. Camb. Phil. Soc, 91 (1982), 57-74.
[14] S. J. Taylor and C. Tricot, Packing measure and its evaluation for a Brownian path. Trans. Amer. Math. Soc., 288 (1985), 679-699.
[15] M. Urbański, The Hausdorff dimension of the graphs of continuous self-affine function. Proc. Amer. Math. Soc., 108 (1990), 921-930.
[16] L. S. Young, Dimension, entropy and Lyapunov exponents. Ergodic Theory Dyn. Syst., 2 (1982), 109-124.

Information Engineering
Graduate School of Engineering
Hiroshima University
Higashi-Hiroshima, 739 Japan

