A note on the existence of nonoscillatory solutions of neutral differential equations

Yūki Naito

(Received May 12, 1994)

1. Introduction and the statement of results

In this note we consider the neutral differential equation

(1.1)
$$\frac{d^n}{dt^n} [y(t) - p(t)y(t-\tau)] + f(t, y(\sigma(t))) = 0,$$

where $n \ge 1$ and the following conditions are assumed:

- (a) $p \in C[a, \infty)$, $p(t) \ge 0$ for $t \ge a > 0$ and τ is a positive constant;
- (b) $f \in C([a, \infty) \times R)$, and

$$|f(t, u)| \leq F(t, |u|), \qquad (t, u) \in [a, \infty) \times R,$$

for some continuous function F(t, u) on $[a, \infty) \times [0, \infty)$ which is nondecreasing in u for each fixed $t \ge a$;

(c) $\sigma \in C[a, \infty)$, $\lim_{t\to\infty} \sigma(t) = \infty$.

By a solution of (1.1) we mean a function $y \in C[T_y, \infty)$ for some $T_y \ge a$ such that $y(t) - p(t)y(t - \tau)$ is *n*-times continuously defierentiable on $[T_y, \infty)$ and that (1.1) is satisfied for $t \ge T_y$. A solution of (1.1) is called nonoscillatory if it is eventually positive or eventually negative.

Recently there has been a lot of study concerning the existence of nonoscillatory solutions of neutral differential equations. For the case where p(t) is a constant coefficient we refer to [2, 4, 5, 9–12, 16, 18, 20, 21]. For the case where p(t) is a variable coefficient, we refer to [1, 3, 6–8, 13–15, 17, 19, 22]. Most of the existence results obtained so far, however, are established by imposing restrictive conditions on the variable coefficient p(t) in (1.1) such as

(1.2)
$$0 \le p(t) \le p_0 < 1$$
 for $t \ge a$, where p_0 is a constant.

In this note we investigate the existence and asymptotic behavior of nonoscillatory solutions of (1.1) with the variable coefficient p(t) satisfying

(1.3)
$$0 \le p_0 \le p(t) \le p_1$$
 for $t \ge a$, where p_0 and p_1 are constants.

Our result is the following:

Yūki Naito

THEOREM. Assume that (1.3) is satisfied. Let k be an integer with $0 \le k \le n-1$. Define $u(t; k, p_i)$, i = 0, 1, by

(1.4)
$$u(t; k, p_i) = \begin{cases} t^k & \text{if } 0 \le p_i < 1, \\ t^{k+1} & \text{if } p_i = 1, \\ p_i^{t/\tau} & \text{if } p_i > 1. \end{cases}$$

If

(1.5)
$$\int_{-\infty}^{\infty} s^{n-k-1} F(s, cu(\sigma(s); k, p_1)) ds < \infty$$

for some c > 0, then (1.1) has an eventually positive solution y satisfying

(1.6)
$$\lim_{t\to\infty}\inf\frac{y(t)}{u(t;\,k,\,p_0)}>0 \quad and \quad \limsup_{t\to\infty}\frac{y(t)}{u(t;\,k,\,p_1)}<\infty.$$

Consider the case where the coefficient p(t) satisfies (1.2). We obtain the following corollary.

COROLLARY 1. Assume that (1.2) is satisfied. Let k be an integer with $0 \le k \le n-1$. If

$$\int_{0}^{\infty} s^{n-k-1} F(s, c[\sigma(s)]^{k}) ds < \infty$$

for some c > 0, then (1.1) has an eventually positive solution y satisfying

$$0 < \liminf_{t \to \infty} \frac{y(t)}{t^k} \le \limsup_{t \to \infty} \frac{y(t)}{t^k} < \infty.$$

REMARK 1. Similar results are obtained in [6, Theorem 3.1], [7, Theorem 1], [15, Theorems 4.1 and 4.2], [18, Theorems 2 and 4] and [20, Theorem 2].

Next we consider the case $p(t) \equiv p_0$, where p_0 is a positive constant, that is, we consider the following neutral differential equation

(1.7)
$$\frac{d^n}{dt^n} [y(t) - p_0 y(t-\tau)] + f(t, y(\sigma(t))) = 0.$$

We have the following corollary.

COROLLARY 2: Consider equation (1.7). Let k be an integer with $0 \le k \le n-1$. Define $u(t; k, p_0)$ by (1.4). If

$$\int_{0}^{\infty} s^{n-k-1} F(s, \, cu(\sigma(s); \, k, \, p_0)) ds < \infty$$

for some c > 0, then (1.7) has an eventually positive solution y satisfying

$$0 < \liminf_{t \to \infty} \frac{y(t)}{u(t; k, p_0)} \leq \limsup_{t \to \infty} \frac{y(t)}{u(t; k, p_0)} < \infty.$$

REMARK 2. A similar result is obtained in [17, Corollary 2.2]. Recently, Kitamura and Kusano [10] and Kitamure, Kusano and Lalli [11, 12] have obtained some sufficient conditions for equation (1.7) to have nonoscillatory solutions satisfying more precise asymptotic behavior.

2. Proof of Theorem

The proof of Theorem is based on the following lemma which can be easily derived through a slight modification of Theorem 2.1 of Naito [17].

LEMMA 1. Let k be an integer with $0 \le k \le n-1$ and let u_k be a positive continuous function satisfying

$$(2.1) \qquad 0 < \liminf_{t \to \infty} \frac{u_k(t) - p(t)u_k(t-\tau)}{t^k} \le \limsup_{t \to \infty} \frac{u_k(t) - p(t)u_k(t-\tau)}{t^k} < \infty.$$

If

(2.2)
$$\int_{0}^{\infty} s^{n-k-1} F(s, cu_{k}(\sigma(s))) ds < \infty$$

for some c > 0, then (1.1) has an eventually positive solution y satisfying

(2.3)
$$0 < \liminf_{t \to \infty} \frac{y(t)}{u_k(t)} \le \limsup_{t \to \infty} \frac{y(t)}{u_k(t)} < \infty.$$

We notice that there always exists a positive continuous function u_k satisfying (2.1). (See [17, Remark 2.1].)

For the proof of Theorem we investigate the asymptotic properties of the function u_k in the statement of Lemma 1 under condition (1.3). We have the following lemma.

LEMMA 2. Assume that p(t) satisfies (1.3). Let k be an integer with $0 \le k \le n-1$, and define $u(t; k, p_i)$, i = 0, 1, by (1.4). Let u_k be a positive continuous function satisfying (2.1). Then we have

(2.4)
$$\liminf_{t\to\infty}\frac{u_k(t)}{u(t;k,p_0)}>0 \quad and \quad \limsup_{t\to\infty}\frac{u_k(t)}{u(t;k,p_1)}<\infty.$$

Before we prove Lemma 2, we prove Theorem.

PROOF OF THEOREM. Let u_k be a positive continuous function satisfying (2.1). From Lemma 2, we have (2.4). Then, the integral condition (1.5) implies (2.2) for some c > 0. From Lemma 1, there exists a positive solution y of (1.1) satisfying (2.3). By virtue of (2.4), we obtain (1.6). This completes the proof of Theorem.

To prove Lemma 2, we prepare the following lemma.

LEMMA 3. Assume that
$$u, v \in C[a - \tau, \infty)$$
 satisfy

$$\begin{cases}
u(t) - p(t)u(t - \tau) \ge v(t) - p(t)v(t - \tau), & t \ge a, \\
u(t) \ge v(t), & a - \tau \le t \le a
\end{cases}$$

Then

$$u(t) \ge v(t), \qquad t \ge a - \tau.$$

PROOF. Let $w(t) \equiv u(t) - v(t)$ for $t \ge a - \tau$. We have

$$\begin{cases} w(t) - p(t)w(t - \tau) \ge 0, & t \ge a, \\ w(t) \ge 0, & a - \tau \le t \le a. \end{cases}$$

Define $\{T_i\}_{i=0}^{\infty}$ by $T_i = a + (i-1)\tau$ for i = 0, 1, 2, ... Then we see that $[a - \tau, \infty) = \bigcup_{i=0}^{\infty} [T_i, T_{i+1}]$. By the assumption, if $t \in [T_0, T_1] = [a - \tau, a]$, then $w(t) \ge 0$. If $w(t) \ge 0$ is true on the interval $[T_i, T_{i+1}]$ for some i = 0, 1, 2, ..., then

$$w(t) \ge p(t)w(t-\tau) \ge 0$$

on the next interval $[T_{i+1}, T_{i+2})$. By induction on *i*, we conclude that $w(t) \ge 0$ for $t \ge a - \tau$, which implies $u(t) \ge v(t)$ for $t \ge a - \tau$. This completes the proof.

PROOF OF LEMMA 2. Define $v_{i(k)}$, i = 0, 1, by

$$v_{i(k)}(t) = \begin{cases} t^k & \text{if } 0 \le p_i < 1, \\ t^{k+1} & \text{if } p_i = 1, \\ p_i^{t/\tau} - t^k & \text{if } p_i > 1. \end{cases}$$

We observe that, for i = 0, 1,

$$\lim_{t \to \infty} \frac{v_{i(k)}(t) - p_i v_{i(k)}(t - \tau)}{t^k} = \begin{cases} 1 - p_i > 0 & \text{if } 0 \le p_i < 1, \\ (k+1)\tau > 0 & \text{if } p_i = 1, \\ p_i - 1 > 0 & \text{if } p_i > 1. \end{cases}$$

Then we can choose a sufficiently large $T \ge a$, a sufficiently small $c_* > 0$ and a sufficiently large $c^* > 0$ such that

neutral differential equations

$$c_* \frac{v_{0(k)}(t) - p_0 v_{0(k)}(t-\tau)}{t^k} \le \frac{u_k(t) - p(t)u_k(t-\tau)}{t^k}, \quad t \ge T,$$
$$\frac{u_k(t) - p(t)u_k(t-\tau)}{t^k} \le c^* \frac{v_{1(k)}(t) - p_1 v_{1(k)}(t-\tau)}{t^k}, \quad t \ge T,$$

and

$$c_* v_{0(k)}(t) \le u_k(t) \le c^* v_{1(k)}(t), \qquad T - \tau \le t \le T.$$

It follows that

(2.5)
$$c_* v_{0(k)}(t) - p_0 c_* v_{0(k)}(t-\tau) \le u_k(t) - p(t) u_k(t-\tau), \quad t \ge T,$$

and

(2.6)
$$u_k(t) - p(t)u_k(t-\tau) \le c^* v_{1(k)}(t) - p_1 c^* v_{1(k)}(t-\tau), \qquad t \ge T.$$

Because u_k is positive, we obtain

(2.7)

$$u_k(t) - p_1 u_k(t-\tau) \le u_k(t) - p(t) u_k(t-\tau) \le u_k(t) - p_0 u_k(t-\tau), \quad t \ge T.$$

From (2.5), (2.6) and (2.7), we have

$$c_* v_{0(k)}(t) - p_0 c_* v_{0(k)}(t-\tau) \le u_k(t) - p_0 u_k(t-\tau), \quad t \ge T_{t-1}$$

and

$$u_k(t) - p_1 u_k(t-\tau) \le c^* v_{1(k)}(t) - p_1 c^* v_{1(k)}(t-\tau), \qquad t \ge T.$$

Applying Lemma 3 with u and v replaced by u_k and $c_*v_{0(k)}$, respectively, we obtain $c_*v_{0(k)}(t) \le u_k(t)$ for $t \ge T - \tau$. In a similar fashion, we get $u_k(t) \le c^*v_{1(k)}(t)$ for $t \ge T - \tau$. Therefore we have

$$\liminf_{t\to\infty}\frac{u_k(t)}{v_{0(k)}(t)}>0 \quad \text{and} \quad \limsup_{t\to\infty}\frac{u_k(t)}{v_{1(k)}(t)}<\infty$$

Since

$$\lim_{t\to\infty}\frac{u(t\,;\,k,\,p_i)}{v_{i(k)}(t)}=1,$$

we conclude that (2.4) holds. This completes the proof.

References

- [1] Chen, S. and Huang, Q., Asymptotic behavior of solutions to neutral functional differential equations, Bull. Austral. Math. Soc., 40 (1989), 345-355.
- [2] Chen, Y., Existence of nonoscillatory solutions of nth order neutral delay differential

Yūki Naito

equations, Funkcial. Ekvac., 35 (1992), 557-570.

- [3] Gopalsamy, K., Oscillation and nonoscillation in neutral differential equations with variable parameters, J. Math. Phys. Sci., 21 (1987), 593-611.
- [4] Gopalsamy, K. and Zhang, B. G., Oscillation and nonoscillation in first order neutral differential equations, J. Math. Anal. Appl., 151 (1990), 42-57.
- [5] Grove, E. A., Kulenović, M. R. S. and Ladas, G., Sufficient conditions for oscillation and nonoscillation of neutral equations, J. Differential Equations, 68 (1987), 373–382.
- [6] Jaroš, J. and Kusano, T., Oscillation theory of higher order linear functional differential equations of neutral type, Hiroshima Math. J., 18 (1988), 509-532.
- [7] Jaroš, J. and Kusano, T., Asymptotic behavior of nonoscillatory solutions of nonlinear functional differential equations of neutral type, Funkcial. Ekvac., 32 (1989), 251–263.
- [8] Jaroš, J. and Kusano, T., On a class of first order nonlinear functional differential equations, Czechoslovak Math. J., 40 (1990), 475–490.
- [9] Kitamura, Y. and Kusano, T., Oscillation and asymptotic behavior of solutions of first-order functional differential equations of neutral type, Funkcial. Ekvac., 33 (1990), 325-343.
- [10] Kitamura, Y. and Kusano, T., Existence theorems for a neutral functional differential equation where leading part contains a difference operator of higher degree, Hiroshima Math. J., 25 (1995), 53-82.
- [11] Kitamura, Y., Kusano, T. and Lalli, B. S., Existence theorems for nonlinear functional differential equations of neutral type, Georgian Math. J. (to appear).
- [12] Kitamura, Y., Kusano, T. and Lalli, B. S., Existence of oscillatory and nonoscillatory solutions for a class of neutral functional differential equations, Mathematica Bohemica 120 (1995), 57-69.
- [13] Ladas, G. and Qian, C., Linearized oscillations for odd-order neutral delay differential equations, J. Differential Equations, 88 (1990), 238-247.
- [14] Ladas, G. and Qian, C., Linearized oscillations for even-order neutral differential equations, J. Math. Anal. Appl., 159 (1991), 237-250.
- [15] Naito, Y., Nonoscillatory solutions of neutral differential euations, Hiroshima Math. J., 20 (1990), 231-258.
- [16] Naito, Y., Asymptotic behavior of decaying nonoscillatory solutions of neutral differential equations, Funkcial. Ekvac., 35 (1992), 95–110.
- [17] Naito, Y., Existence and asymptotic behavior of positive solutions of neutral differential equations, J. Math. Anal. Appl., 188 (1994), 227-244.
- [18] Ruan, J., Types and criteria of nonoscillatory solutions for second order linear neutral differential equations, Chinese Ann. Math. Ser. A, 8 (1987), 114–124. (Chinese)
- [19] Wudu, L., Existence of nonoscillatory solutions of first order nonlinear neutral equations, J. Austral. Math. Soc. Ser. B, 32 (1990), 180-192.
- [20] Yu, J., Wang, Z. and Qian, C., Oscillation of neutral differential equations, Bull. Austral. Math. Soc., 45 (1992), 195–200.
- [21] Zhang, B. G. and Yu, J. S., On the existence of asymptotic decaying positive solutions of second order neutral differential equations, J. Math. Anal. Appl., 166 (1992), 1-11.
- [22] Zhang, B. G. and Yu, J. S., Oscillation and nonoscillation for neutral differential equations, J. Math. Anal. Appl., 172 (1993), 11–23.

Department of Mathematics Faculty of Science Hiroshima University

518