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1. Introduction and the statement of results

In this note we consider the neutral differential equation

(1-1) [y(0 ~ P(t)y(t - τ)] + f(t, y(σ(t))) = 0,

where n > 1 and the following conditions are assumed :
(a) peC[a, oo), p(t) > 0 for t > a > 0 and τ is a positive constant;
(b) /eC([α, oo) x Λ), and

|/(ί, w)| < F(f, M), (t, ιι)6[α, oo) x R,

for some continuous function F(ί, w) on [α, oo) x [0, oo) which is
nondecreasing in u for each fixed t > a

(c) σeC[α, oo), lirn,^ σ(ί) = GO.
By a solution of (1.1) we mean a function yeC[Γy, oo) for some Ty > a

such that y(t) — p(t)y(t — τ) is n-times continuously defferentiable on [Ty9 oo)
and that (1.1) is satisfied for t > Ty. A solution of (1.1) is called nonoscillatory
if it is eventually positive or eventually negative.

Recently there has been a lot of study concerning the existence of
nonoscillatory solutions of neutral differential equations. For the case where
p(t) is a constant coefficient we refer to [2, 4, 5, 9-12, 16, 18, 20, 21]. For the
case where p(t) is a variable coefficient, we refer to [1, 3, 6-8, 13-15, 17, 19, 22].
Most of the existence results obtained so far, however, are established by
imposing restrictive conditions on the variable coefficient p(i) in (1.1) such as

(1.2) 0 < p(t) < PO < 1 for t > a, where p0 is a constant.

In this note we investigate the existence and asymptotic behavior of
nonoscillatory solutions of (1.1) with the variable coefficient p(t) satisfying

(1.3) 0 < p0 < p(i) < PI for ί > α, where p0 and px are constants.

Our result is the following:
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THEOREM. Assume that (1.3) is satisfied. Let k be an integer with
0 < k < n - 1. Define w(ί; fc, Pί), ί = 0, 1, by

tk if 0 < Pl < 1,

(1.4) ιι(ί;fc,P j)=

Γ00 » ,i f,n K i IT*/cI o J^ Iι3, i

J
(1.5) s"-*'1^, cιι(σ(s); fc, Pl))ώ < oo

for some c > 0, /Λe« (1.1) λαs #« eventually positive solution y satisfying

(1.6) lim inf — — — > 0 and lim sup — — — < oo.
'-"» w(ί;fe, Po) ί-» ιι(ί;k,Pl)

Consider the case where the coefficient P(ί) satisfies (1.2). We obtain the
following corollary.

COROLLARY 1. Assume that (1.2) is satisfied. Let k be an integer with
0 < f c < n - l . I f

Γ oo

/or some c > 0, /λe« (1.1) λαs #« eventually positive solution y satisfying

v(t] v(t)
0 < lim inf ̂  < ϋm sup ^V < oo.

ί-^oo fk ί-»oo JΛ

REMARK 1. Similar results are obtained in [6, Theorem 3.1], [7, Theorem
1], [15, Theorems 4.1 and 4.2], [18, Theorems 2 and 4] and [20, Theorem 2].

Next we consider the case p(t) = Po, where Po is a positive constant, that
is, we consider the following neutral differential equation

(1-7) ^ [y(ί) - Po)>(' - τ)] + /(ί, 3>(σ(ί))) = 0.

We have the following corollary.

COROLLARY 2: Consider equation (1.7). Let k be an integer with
0 < f c < n - l . Define u(t;k, Po) 6y (1.4). //

Γ oo
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for some c > 0, then (1.7) has an eventually positive solution y satisfying

v(t) vίt)
0 < lim inf — — — < lim sup — — — < GO.

'->«> u(t;k, PO) '->» tt(f;fc, p0)

REMARK 2. A similar result is obtained in [17, Corollary 2.2]. Recently,
Kitamura and Kusano [10] and Kitamure, Kusano and Lalli [11, 12] have
obtained some sufficient conditions for equation (1.7) to have nonoscillatory
solutions satisfying more precise asymptotic behavior.

2. Proof of Theorem

The proof of Theorem is based on the following lemma which can be
easily derived through a slight modification of Theorem 2.1 of Naito [17].

LEMMA 1. Let k be an integer with 0 < k < n — 1 and let uk be a positive
continuous function satisfying

(2.1) 0 < lim fafT) < lim sup »M - P(t)uk(t - r) < ̂
f-»oo lk t->oo lk

if
Γ°°

(2.2) f-k~lF(s9 cuk(σ(s)))ds < oo

for some c > 0, then (1.1) has an eventually positive solution y satisfying

v(ί)(2.3) 0 < lim inf— < lim sup - < oo.
'-*00 uk(t) '̂  uk(t)

We notice that there always exists a positive continuous function uk

satisfying (2.1). (See [17, Remark 2.1].)
For the proof of Theorem we investigate the asymptotic properties of the

function uk in the statement of Lemma 1 under condition (1.3). We have the
following lemma.

LEMMA 2. Assume that p(t) satisfies (1.3). Let k be an integer with
0 < k < n — 1, and define u(t; fe, pf), i = 0, 1, by (1.4). Let uk be a positive
continuous function satisfying (2.1). Then we have

(2.4) lim inf "fc(Γ) > 0 and lim sup k < oo.

Before we prove Lemma 2, we prove Theorem.



516 Yΰki NAITO

PROOF OF THEOREM. Let uk be a positive continuous function satisfying
(2.1). From Lemma 2, we have (2.4). Then, the integral condition (1.5)
implies (2.2) for some c > 0. From Lemma 1, there exists a positive solution
y of (1.1) satisfying (2.3). By virtue of (2.4), we obtain (1.6). This completes
the proof of Theorem.

To prove Lemma 2, we prepare the following lemma.

LEMMA 3. Assume that u, veC[_a — τ, oo) satisfy

\ u(t) - p(t)u(t - τ) > v(t) - p(t)v(t - τ), t > a,

u(i) > ι (ί), a - τ < t < a.

Then

u(i) > v(t)9 t>a — τ.

PROOF. Let w(ί) = u(i) - v(t) for t > a - τ. We have

w(ί) - p(i)w(ί - τ) > 0, t > α,

w(ί) > 0, a - τ < t < a.

Define {Tj?°=0 by Tf = α + (i - l)τ for i = 0, 1, 2,.... Then we see that [α - τ,

oo)= U£o[7i> 7ί+ι) By the assumption, if ίe[T0, TJ = [a - τ, α), then
w(ί) > 0. If w(ί) > 0 is true on the interval [7], Tί+1) for some i = 0, 1, 2,...,
then

w(ί) > p(t)w(t — τ) > 0

on the next interval [Ti+1, Tί+2). By induction on ί, we conclude that w(ί) > 0
for t > a — τ, which implies u(t) > v(t) for t > a — τ. This completes the proof.

PROOF OF LEMMA 2. Define vi(k}9 i = 0, 1, by

tk if 0 < Pi < 1,

- f c + 1 if Λ = l ,

_ . τ - ί* if Λ > 1.

We observe that, for i = 0, 1,

if 0 < Pi < 1,

if Pi = 1,

if pf > 1.

Then we can choose a sufficiently large T > α, a sufficiently small c^ > 0 and
a sufficiently large c* > 0 such that
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— τ) Mt(ί) — p(t)uk(t — τ)
/ ^ _ » w ^wjcv ^ t^^

ί* t* ' - >

and

c*WO ̂  MO ^ c*ι;1(k)(ί), T- τ < ί < T.

It follows that

(2.5) cφι?o(k)(f) - Po^owC - ^ < uk(ί) - p(t)uk(t - τ), ί > T,

and

(2.6) uk(t) - p(t)uk(t - τ) < c*ι?lw(ί) - Pic*ι;1(k)(ί - τ), ί > T.

Because wfc is positive, we obtain

(2.7)

WfcW - Pι«*(ί - τ) < Mk(ί) - p(t)uk(t - τ) < ιιk(ί) - Pouk(t - τ), ί > T.

From (2.5), (2.6) and (2.7), we have

c*t>o(*)(0 ~ Poc*ϋ0(fc)(ί ~ τ) ̂  w*(0 - PoWfc(ί - τ), ί > T,

and

(ί - τ), ί > T.

Applying Lemma 3 with u and v replaced by uk and cs|cι;0(fc), respectively, we

obtain c^v0(k)(t) < uk(t) for ί > T— τ. In a similar fashion, we get wk(ί) <

c*ι;1(fc)(ί) for t > T— τ. Therefore we have

lim inf > 0 and lim sup < oo.
"

Since

lim —9—L-L = 1?

we conclude that (2.4) holds. This completes the proof.
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