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On a geometric approach to distributions on a circle
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ABSTRACT. In this paper we aim to discuss a natural measure for means of the

distributions on a circle, which plays a role similar to that of a usual mean in a

Euclidean space. Because a circle is compact and not flat, it may be noted that we

cannot define mean or expectation naturally by the same way as in a Euclidean space.

We introduce a measure of location without embedding the circle into a Euclidean

plane. This measure is shown to be an extention of some other measures, the mean

direction and the median direction. We also derive some properties of our measure

by the use of the geometric nature of a circle.

1. Introduction

There are three basic approaches to directional statistics, (i) embedding,
(ii) wrapping and (iii) intrinsic approaches. For a discussion of these ap-
proaches, see Jupp and Mardia [1989]. These are usually used in different
areas, depending on their own merits. For examples, the embedding approach
is mainly used for inferential problems, see Watson [1983]. This is because
the embedding approach is comparatively easy to carry out various calcula-
tions. But this approach possesses an outer space in a sense that the dimen-
sion of the space considered is higher than that of the original space, and
hence in some cases the results contradict our intuition. That is why we try
to define a natural measure corresponding to the 'mean' intrinsically. For
applications of distributions on ^^ see Fisher [1993].

Throughout this paper we identify the unit circle ̂  = {(x, y)e$2\x2 +
y2 = 1} with a quotient space ^/2πJΓ, and consider the quotient map

q: m -> &1 = &/2π& ,

where 3fc and S£ denote the sets of real numbers and integers, respectively.
For θ e ϊ f 1 and 5 e ̂ , we define a real number x£s) as a unique point such
that q(x0s)) = θ, and x^s) e (s — π, s + π] c ̂ . Then we can define the function
r ^-^O^π] c 3t as
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r(θ) = xjπ).

It is easily seen that q o γ is the identity map of &*1.
We note that for any x, y e ^2, the point (x -I- y)/2 is the barycenter. On

the contrary, that is not true on £f^. Moreover, for θ € £fί, a usual product
a x θ for a real number a does not make a sense.

In §2 we consider backgrounds of statistics on if1 and some measures of
location. Most of them are found in Mardia's book [1972] but the notations
are slightly different. In §3 we give the definition of 'Mean point' with
preparation of some notations. In § 4 we derive some properties of the Mean
point in the case, that the metric function is the geodesic, by the use of the
geometric nature of &*1.

2. Basic concepts and measures of location

Let Θ be a random variable which takes values on t?1. The distribution
function F of Θ is defined by the equation

F(θ) = Pr (0 < <9 < θ), 0 < θ < 2π ,

and F(0) = 0. If F is absolutely continuous, it has a pdf /: Sf* -> & such that

ί'Jα

f(θ)dθ = F(β) - F(α), 0 < α < β < 2π .

As a periodic function introduced from /, we consider

For any function g: ίf^:-+0t, let

"g(θ)f(θ)dθ.=
Jo

As we mentioned before, a usual multiplication does not make a sense on
y1, and hence, in general, E[Θ~\ is no longer appropriate as the expectation
of Θ.

In order to overcome these difficulties, some devices have been done,
which are summarized in the following. The Population Median direction
ξ0 is defined as a point such that (a) ξ0 is any solution of

ί
r(ξ0)+n Γr(ξ0)+2π i

f(x)dx = f(x)dx = - ,
•(£o) Jr(ξ0)+π L

and (b) f(r(ζ0)) > f ( r ( ξ 0 ) + π). This is also a point at which δ0 attains its
minimum, where
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50(«) = π-E[|π-|r(β)-r(α)||]

= \ r(θ)dF(θ + α) + I Λ (2π - r(θ))dF(θ + α) .
JO Jπ

Let 01} ..., θn be a random sample of &. The Sample Median direction
P is any point with the following properties:

(a) half of the sample points are on each side of the diameter PQ through

P,
(b) the majority of the sample points are nearer to P than Q.

If P exists, then it is a point at which d0 attains its minimum, where

<*o(α) = Σ yt/n = π - Σ Iπ - \xt\\/n

= π-Σlπ- |r(θ)-r(α) | |/n,

and X; = (r(0f) — r(α)) mod 2π, yt = min(xf, 2π - xf).
If E[cos (0)] 7^ 0, the Population Mean direction μ0 is the solution of

two equations,

cos (μ0) = E[cos (θft/R , sin (μ0) = E[sin (<9)]/K ,

where R denotes the resultant length,

R2 = {E[cos (6>)]}2 + {E[sin (Θ)]}2 .

This is also a point at which

F(v)= 1 -E[cos(<9-v)]

attains its minimum.
Where Σ cos (fy) ^ 0, the Sample Mean direction θ is defined as any

solution of two equations:

cos (θ) = Σ cos (θt)/R , sin (θ) = Σ sin (Θ^/R ,

where R2 = {Σcos(^)}2 + {Σsin(θf)}2. The Sample Mean direction θ has
the following properties:

(i) Σ s in(0i-5) = °
(2) Let

D(α)=l-Σoos(β l -α)/n,

then D(α) attains its minimum at α = θ and the minimum is given as
follows,

S0 = 1 - Σ cos (0f - 5)/n = 1 - R/n .

(3) 0 is the direction of the barycenter of (cos Θi9 sin 0f) in ffl2.
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3. Definitions of the Mean point

Now we consider a general measure of location on ^, based on the
intrinsic approach. Let p(θ, v): £?*• x Sf^ -+$ be any metric function on ί f l .
Consider a Dispersion function, F:e9

?1-^^>0, which is defined as

F(v) = E[p(<9,v)2].

Then it is natural to define the Population Mean point η0 as the point of
satisfying

V(η0) = min V(v).
ve &1

Here we note that these include the Median and Mean directions. Because if

P(θ, v) = Jπ-\π-\r(θ)-r(v)\\

or

p(θ, v) = v/1 - cos (θ - v),

then the Mean point is equal to the Median direction or the Mean direction,
respectively.

By choosing an appropriate metric function p9 we shall see that such
a η0 has some nice properties. In studying these properties, the following
notions are fundamental. For each s e $ we define a density function /(s)

on ,̂ as follows:

[0 (otherwise).

f(s) is the distribution function on the tangent line at s e $ and /(s) =
/|(S-π,s+π] Further, we use a periodic function defined from the dispersion
function V9

Suppose that a random variable Θ:Ω-+yl has pdf/. Corresponding
to Θ and any real number 5, we consider a random variable X($: Ω^>$
whose pdf is f(s\ where X(^(ω) = A'(J)

(ω). Then we can apply the theory of
distributions on & to /(s) and the theory of the Fourier transformation on
the corresponding periodic function.

Similarly we can define the Sample Mean point 90. Let Θl9 Θ2, ..., θn e
έ?1 be a sample of θ. Consider a function W— Wιθ.\: ̂  -+$>0 as



Mean on a circle 95

and the corresponding periodic function W = Wo q\ ^->^?>0. Then we

define the Sample Mean point as the point at which W attains its minimum,

S({0J)=min

4. Properties of the Mean point when p is the geodesic

In this section we consider the case that p is the geodesic, so

p(θ, v) = the length of minimum arc between θ and v .

Then we have

p(0,v) = π-|π-k(0)-r(v) | | .

First we consider the population case.

4.1. Population space

We assume that the pdf of Θ is continuous and that its density is always
positive. Let

σ2(/) = min V(v) .
ve ̂

Then it is easily seen that

V(t) = I (ί - x)2f(x)dx .

Let

Λί+π

I = (t - x)2/(>

Jί-π

VM= ί (t - χ)2f(s\*)dχ = (M+π

J# Js-π

We can regard Vs(t) as a function

By using fundamental properties of the ordinal mean in ,̂ it is shown that

fs+π

σ 2 ( f ( s } ) = x2f(x)d:
J s—π

/—/ 0 \\2

= min Vs(t),
te 3t
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ί
s+π

,-«'-
xf(x)dx.

LEMMA 4.1.1. The fallowings hold for any s.

(i) μ(s + 2π) = μ(s) + 2π ,

(ii) σ2(/(s+2π)) = (72(/(s)).

PROOF, (i) It is easy seen that

fs+3π Γs+π

JI(s + 2π) = xf(x)dx = (x + 2π)f(x)dx .
Js+π Js—π

(ii) Similarly we have

*«>)= ίs+3π

Js+π

x2f(x)dx-(μ(s

x2f(x)dx + 4πμ(s) + (2π)2 - 2π)2 .

From Lemma 4.1.1, two function μ:&>1-+&'1 and v ι-*σ2(/) = <r2(/(s))
(v = ή[(s)) are induced, where μ(g(s)) = q(μ(s)). That is, the following diagrams
are commutative.

® —ί—» ^ s i > σ2(/(s))

Note that these two functions are continuously differentiable.

THEOREM 4.1.2. The fallowings hold.
( i ) γ(t) = min Vs(t).

(ii) σ 2 ( f ) ="mm σ2(f).

(iii) If q(s) is a mean point of /, then μ(s) = s and σ2(/) = σ2(/(s)).

PROOF, (i) We fix ί e ̂ . Since / is continuous, we have

ds

d (Cs+π Cs~π ΐ
Vs(t) = ̂ <\ (t- x)2f(x)dx - \ (t- x)2f(x)dx }•

ds Uo Jo J

= (t - s - π)2f(s + π)-(t-s + π)2f(s - π)

= 4π(s - t)f(s + π).



Mean on a circle 97

Note that / > 0, the sign of dVs(t)/ds is coincident with the sign of s — t.
Hence the minimum of Vs(t) with respect to s is attained at s = ί, and the
minimum is given by

Λr+π

vt(t) = (t -
Jί-π

Vt(t) = (t - x)2f(x)dx = V(t).
Jί-π

(ii) The second result follows from that

σ2(f) = min V(v) = min V(t)

= min min Vs(t) = min min Vs(t)
te & se & se £ te £

= minσ2(/(s))= min σ2(/).

(iii) Note that

Λs+π / fs+π

σ2(f(s)\= χ2f(χ\dx — \ xf(x)i<* U ) x J(X)ax i xj(xμ
Js-π \Js-π

it is shown that

^-σ2(/(s>) = (s + π)2/(s + π) - (s - π)2/(s - π)

xf(x)dx {(s + π)f(s + π) - (s - π)f(s - π)}

- Γ"xf(x)dx\
Js-π /

So dσ2(f(s})/ds = 0 if and only if s = μ(s), since /> 0. Therefore,

σ2(f) = min σ2(/(s>), and

V(q(s)) = V(s) = (s- Γ* xf(x)dx]2

\ Js-π /

This proves the third result.

4.2. Sample space

In this case we can give a more precise representation of W9
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»^>n is defined as follows:For each se&, a function Ws(t): $ -»

ws(t] = Σ (ί - *ίs))2 -
Then we obtain that Ws(t) attains its minimum at ί = Σ *is\ and that the
minimum is given as

S(s; ft}) = min Ws(t) = Σ (x$)2 - (X x$)> .

LEMMA 4.2.1. The fallowings hold for any s.
(i) x(

θ

s+2π) = x<*> + 2π,
(ii) Σ4Γ2π)/" = Σ4> + 2π,
(iii) S(s + 2π; (0J) = S(s;

From Lemma 4.2.1 the function φ:^1-^^1 with φ(q(s)) =
is induced and the correspondence v h-»Sv({0J) = S(s; (ΘJ) (v =
defined. That is, the following diagrams are commutative.

can be

S(s; {0,})

THEOREM 4.2.2. The fallowings hold.
( i ) W(t) = min Ws(t).

(ii) S({0J) = min SV({0J).
ve if1

(iii) If q(s) is the mean point of (0J then φ(v) = v i.e.,

PROOF, (i) It is easily seen that

w s ( i ) - w t ( t ) = Σ ( t - χ β J i Ϋ - Σ ( t -
i

= 5.

Since ί - π < x$ < ί + π and x$ - x f̂ = 2feπ (k € %\ we have that

if x$ > x^ then x$ < ί - π so xβ + x$ < (ί - π) + (ί + π) = 2ί ,

if x^ < x$ then x^ > ί - π so x$ + x^ > (ί + π) H- (ί - π) = 2ί .

Therefore,
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(ii) The second result follows from

S({0,}) = min W(t) = mίn min Ws(t)
te £ te dt se Λ

= min min Ws(t) = min S(s; {0J)
se # ίe# se 4

= min SV({0J).

(iii) Note that

+ S({θt}).

Hence, W(t) attains its minimum at ί = ΣiX(β\/n. This proves the third result.
Now we consider conditions that the mean point of {0J is equal to q(t)

for some t e 31.

PROPOSITION 4.2.3. Let ut = x$, and assume

— π<uί<u2< "<uk<0< uk+ι <"- <un<π .

The mean point is q(0) if and only if the following three conditions are satisfied.

(i) Σ«. = °>

n (ft _ j \ j

(ii) Σ ui^' - ~π ( fc<V;<«- l ) ,

PROOF. From Theorem 4.2.2, q(0) is the mean point of {θf}, if and only if

-t«ι = 0, and S(0, {6>J) < S(s, {θ(}) (VseΛ).
n i=ι

Hence,

'+ Σ (ui-=ι i=ι i=j+ι

ί=ι ί=ι ί=j+ι

This proves the proposition.
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From Proposition 4.2.3, we obtain the necessary and sufficient condition
for q(t) to be the mean point. Let

(n—j)j (n—j)j

1 < Y; < n - 1

and for te&

Then we have the following theorem.

THEOREM 4.2.4. For t e & and {0J, q(t) is the mean point of {0J, if and
only if

and

It is left as a future problem to study inferential problems based on our
sample mean points. For a practical use, we also need to solve a numerical
problem. On the other hand, in general, it is important to extend the central
limit theorem in $ to the one on ί f 1 . We can expect that our approach
will be also useful in this problem. In the following paper, Kakimizu and
Watamori [1994], we derive the laws of large numbers on this mean point.
Further, our approach will be useful in introducing the mean point on a
general Riemannian manifold with an appropriate metric function. We can
regard this mean point as a kind of extention of the "mean" in the usual
notion.
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