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ABSTRACT. Comparison of some estimators and multi-sample tests about mean

directions for the Langevin distribution have been studied. Before displaying main

results, the background of directional statistics is briefly considered.

We derive the expectations and MSEs (mean square errors) of the MLEs

(Maximum Likelihood estimators) of concentration parameter, K and mean direction,

μ in the forms of asymptotic expansions. We also compare the marginal MLE of K

with the MLE. It is shown that the estimators so modified as to satisfy a higher

order asymptotic unbiasedness are the same in a higher order asymptotic sense.

Further, it is shown that those estimators have smaller MSEs than the original ones

when K is not so small, but for small K the MLE is preferable.

Next we consider some multi-sample tests for mean directions, μ,'s Two cases

are studied in detail. Namely, all μf's are on the same but unknown axis and μ/s

are in the given subspace.

1. Introduction

This paper is concerned primarily with the Langevin distribution for
directional data. In general, there are three basic approaches to directional
statistics, which are called embedding, wrapping and intrinsic approaches. For
a discussion of these approaches, see Jupp and Mardia [1989]. They are
usually used in different area, depending on their merits. In inferential
problems, the embedding approach is commonly used, i.e., we consider to
embed (p — l)-dimensional sphere Sf*~γ into p-dimensional Euclidean space
fflp. We also discuss a little more about this topic in the last section.

In section 2, we summarize some backgrounds of directional statistics,
especially related to the Langevin distribution with a little refinement or
improvement. Most of them are found in Mardia [1972] and Watson
[1983a]. Therefore we give only an outline without strict proofs. Those are
used in subsequent sections and will be helpful in understanding the rest of
this paper. Although we do not put importance on applications here, Fisher
et al. [1987] and Fisher [1993] have given a lot of examples.

1991 Mathematics Subject Classification. 62H11, 62F12, 62H15.

Key words and phrases. Asymptotic expansion, Embedding, Wrapping, Central limit theorem,

Langevin distribution, Marginal maximum likelihood estimator, Maximum likelihood estimator.



26 Yoko WATAMORI

A random vector x in Rp of its length ||x|| unity is said to have a
p-variates Langevin distribution Mp(/ι, K) if its probability density function is
given by

{ap(κ)}-^xp(κμ'x) (1.1)

on the (p - l)-dimensional unit sphere <9^-1 = {x|xe^p, ||x|| = (x'x)1/2 = 1},
where C denotes a transpose of a matrix C, || μ \\ = 1 and K > 0. The
normalizing constant is given by

where Iv(κ) is the modified Bessel function of the first kind of order v. The
parameters μ and K are called the mean direction vector and the concentration
parameter, respectively. This form of distributions was first introduced by
Watson and Williams [1956], but the distributions in the special cases p = 2
and p = 3 were first derived by von Mises [1918] and Fisher [1953],
respectively.

The Langevin distribution plays an important roll among distributions
on a sphere. It is a member of (curved-) exponential family, whose shape is
symmetric and unimodal. So it is one of the most common distributions for
directional data. For the special case p = 2, there is another common
distribution that is called wrapped normal distribution. These two distribu-
tions have quite similar properties, but there exist some differences between
them as discussed by Collett and Lewis [1981]. Though the normalizing
constant of the density (1.1) is complicated, it is relatively easy to carry out
asymptotic approximations or expansions. Therefore asymptotic theories have
been investigated.

The problems of estimating μ and K have been investigated by several
authors. For example, Best and Fisher [1981] noted that the MLE of K is
quite biased by a simulation study and they proposed a new estimator in the
case of von Mises or Fisher distributions, i.e., p — 2, 3. Ducharme and
Milasevic [1987, 1990] proposed to estimate K as well as μ based on the
spatial median. Fisher and Lewis [1983] considered estimating common mean
directions for a circle or a sphere. Watson [1986] discussed the optimality of
estimations about modal directions for the class of rotationally symmetric
distributions. Ronchetti [1992] has given optimal robust estimators for the
concentration parameter and proposed a general class of M-estimators for
directional data. Moreover, Bartels [1984] considered the case of bidirectional
mixture of von Mises distributions and Spurr and Koutbeiy [1991] compared
various methods for estimating parameters in this case.

In section 3, we consider the MLE K and the marginal MLE K of K. Then
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we derive the modified estimators of K and k which satisfy higher order
asymptotic unbiasedness in the case when the sample size n is large. It is
shown that these two modified estimators are the same as in a higher order
asymptotic sense. Further, it is shown that with relatively large n those
estimators have smaller MSEs than the original ones when K is not so
small. On the other hand, MLE is preferable for small K. We also consider
the case when K is large. The asymptotic distributions of these estimators
are different, according to the cases when n is large or K is large.

For various testing problems on mean directions and concentration
parameters, Watson [1983a, 1983b, 1984] obtained asymptotic distributions of
some test statistics. Watson [1983c] also extended large sample theory related
to these tests to a more general class of distributions with rotational
symmetries. Stephens [1969] studied multi-sample tests for the Fisher
distribution, i.e., p = 3 and derived a two-sample exact test for the equality
of modal vectors or of concentration parameters. Stephens [1972] also
investigated multi-sample tests for the von Mises distribution, i.e., p = 2. Higher
order asymptotic theories have been considered recently. Chou [1986] derived
asymptotic expansions of some statistics proposed by Watson [1983a] about
a mean direction and Hayakawa [1990] also derived those of some other test
statistics. Fujikoshi and Watamori [1992], Watamori [1992] studied some
related testing problems, too.

In sections 4 and 5, we consider two multi-sample hypotheses about mean
directions. One is that all mean directions are contained in a given subspace
of ^p~1. The other is that all mean directions are on the same but unknown
line. The latter one is an extention of the equality of mean directions studied
by Hayakawa [1992]. He also considered the equality of concentration
parameters. We derive asymptotic null and nonnull distributions of some test
statistics and compare these. Section 4 is concerned with the large sample
situation. On the other hand, section 5 is concerned with the highly
concentrated situation.

In section 6, we discuss more fundamental notions of directional
statistics. We proceed discussion on different stance from that of previous
sections. First we point out some weak points of embedding approaches.
Next some possibility of overcoming them is considered, based on a recent
work due to Watamori and Kakimizu [1994]. Some related topics and recent
trend are also discussed briefly.

2. Backgrounds

In directional statistics, we consider the case where data are on a unit
sphere. Some of them are directions and others are axial data. We
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distinguish directions from axial data by taking account of their signs. Because
spheres are compact and have non-zero curvature, we should proceed statistical
theories with special care. Distributions on a sphere can be regarded as a
kind of singular ones by embedding them into a Euclidean space. However,
the singular nature does not mean that all distributions on a sphere have
singular dispersion matrices, but that any distribution on a sphere has the
following moment relationship,

trΓ+||,ι| |2 = l, (2.1)

where tr Σ is the trace of the dispersion matrix and μ is the mean vector.
As one of the motivations why we study the distributions on a sphere,

it may be noted that there are three data sets mainly quoted. One is 'the
declinations and dips of remnant magnetization in nine specimens of Icelandic
lava flows of 1947-48' given in Fisher [1953]. The others are 'the vanishing
angles of 209 homing pigeons in a clock resetting experiment' (Mardia
[1972, p. 123]) and 'the direction of perihelia of 448 long period comets'
(Mardia [1975a]). We may extend the underlying space to a more general
manifold, however, there is no practical and natural data set suitable to other
manifold just like wind data corresponding to a circle. None the less,
statistical theories on a sphere have not got enough study and it seems that
they used to have been paid little attention by many statisticians.

2.1. Rotational symmetry

Let x be a random vector which takes values on ^p~1. It is said that
x has rotationally symmetric distribution about a given unit vector μe&'p~1

if its density depends only on μ'x. When we decompose x as

x = μμ'x + (Ip - μμ')x9

its density does not depend on the orthogonal complement of μ. More
generally, we call it rotational symmetry that the distribution is invariant under
any rotation in an s-dimensional subspace V. The Langevin distribution
satisfies this condition. Another example of this class is the Scheiddegger-
Watson distribution with density proportional to exp {κ(μ'x)2}. Let p > 3,
ί = μ'\ and dωp denotes the area element on £ f p ~ l . Then

Thus if x ~ Mp(μ, K) then its probability element is decomposed as follows :

1 exp κμ'x dωp = {αp(κ)}- V(l - ί2)'(P~3) dtdω,^

= ωp.ί{ap(κ)}^eκt(l-t2)2(P~3)dt{ωp.1}-ίdωp.1.

(2.2)
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Here, ω"1 = {2πp/2/Γ(p/2)}~1 is the density of a uniform distribution on
yp~l. From (2.2) we obtain the density of t as

^«<(i-t^-3), - ι < f < ι .
ap(κ) (2.3)

Integrating (2.3) about t from — 1 to 1, we get

Γ ^fd-ΐfi'-Vdt-L
J-iM*)

Thus

,_ι (2.4)

As another decomposition of x, consider

x = μt + (1 — t2γξ,

From the decomposition (2.2) of the probability element, we know that ξ has
a uniform distribution on <9^p~2, ί and ξ are independent and

£(«) = 0, D(ζ) = E(«0 = (I, - μμ')/(p - 1),

where E and D denote the expectation and the dispersion, respectively. Now
let

,2.5,

By differentiating both sides of (2.4) about K, it is shown that (dr/dκr)Ap(κ) =
A(

p\κ) is the (r + 1) th cumulant of t. Thus

= Ap(κ)9

Further, Ap(κ) is non-decreasing and convex on (0, oo), and takes its minimum
at K = 0 and maximum as K -» oo in the range [0, 1], i.e.,

0 < Ap(κ) < 1.

It is also known that Ap(κ) < 0, so Ap(κ) is non-increasing and takes its

minimum as K ->• oo and maximum at K = 0 in the range
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0<A'p(κ)<-.
P

These properties of Ap(κ) come from properties of Bessel functions. For a
general theory of Bessel functions, see, e.g., Watson [1980]. From the above
results we obtain

E(x) = μE(t)

= μE(t) (2.6)

= Ap(κ)μ,

and

D(x) = E(xx') - (£(t)}2μμ'

= μμ'E(t2) + E(l - t2)E(ξξ') - [E(t)}2μμ'

£(l-t2),

p-ί

A»

= Var (t)μμ' + \ ' (Ip - μμ') (2.7)

Σ, say. (2.8)
»v

Here we note that the equations (2.6) and (2.7) hold for any rotationally
symmetric distribution about μ. Further, the equation (2.8) is obtained from
the Ricatti equation, which is shown in section 2.3. Moreover, from the
equations (2.6) and (2.7) we have

trD(x) + ||E(x)||2 = Var(t) + £(1 - ί2) + E(t)2

= 1 + Var(t)- Var(t)

= 1,

which shows the moment relationship (2.1) as we mentioned before. The
moment relationship can be also proved by taking the expectations of both
sides of x'x = 1.

2.2. Distribution theory
Let xe^"1 and x = u(0) denote the polar coordinate transformation of

x, where

j-i
Uj(θ) = cos θj Yl sin Θk9 j = l, ,p, sin Θ0 = cos θp — 1,
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The subscript denotes the j th coordinate. Then the Jacobian Jp is given by

Jp(Q = Pϊl ^P~jθj-l9 J2(β) = i
j=2

Assume that each xf has identical and independent Langevin distribution (i.i.d.),
i.e.,

x1, ,xn-i.ϊ.ί/. Mp(μ9 K).

Let

x. = £xί9 R = ||x. ||, x = - £x; = - x.,
n n

and 0 denote the polar coordinates of x./||x.|| = x /# = */11*11 > *'•£•»

x. = R - u(0).

Then it is shown that

u ( f f ) \ R ~ M p ( μ , κ R ) , (2.9)

(see e.g., Mardia et al. [1979, p. 473] but by their notations, ap(κ) and cp are
corresponding to a~^(κ) and ω"1 here, respectively). We note that the
distribution of u(0) obviously depends on R. The exact distribution of R was
derived by Mardia [1975]. In particular, for p = 2 or 3, Mardia [1972] and
Fisher [1953] gave the density functions in more reduced forms. But these
distributions are too complicated and it seems that further reductions have
not been done yet.

When κ->0, it is shown that

lim ap(κ) = ωp9

and hence x has a uniform distribution on ίfp~l. Applying this to (2.9), we
have u(0) and R are independent when K tends to zero. Conversely, if u(0)
and R are independent, then xf has a uniform distribution on &p~l under
the assumption that xf has a density. This gives a characterization of a
uniform distribution. For other characterizations, see Mardia [1975b].

2.3. Maximum likelihood estimation and the normalizing constant

The maximum likelihood estimator (MLE) μ of μ is given by

(2.10)
x.11 1 1 x 1 1 '
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and the MLE K of K satisfies the following equation,

(2.11)

(Mardia et al [1979]). Both are consistent estimators. The Langevin
distribution is the only one that the MLE μ is given by (2.10) among all
rotationally symmetric distributions about μ with densities of the form
f(μ'\). This shows somewhat analogue of the normal distribution, i.e., it is
the only one that the sample mean is always the MLE of population mean
among all continuous distributions on @tp . The proof is given in Watson
[1983a, p. 89]. His proof needs the differentiability of f ( i ) about t and
measurability of /'//, but Bingham and Mardia [1975] proved a more strong
result by assuming only that f ( t ) is lower semi-continuous at t = 1.

In order to study asymptotic behaviors of μ and κ9 it is fundamental to
obtain asymptotic approximations or refinements of ap(κ)9 Ap(κ) and the inverse
function of Ap(κ) when κ;-> oo or /c-»0. First we consider ap(κ). From the
argument about the normalizing constant of t in section 2.1, we know that
it satisfies the integral equation (2.4). By differentiating both sides of (2.4),
we have

κaf;(κ) + (p - l)α» - κap(κ) = 0. (2.12)

Using this, it is shown (Fujikoshi and Watamori [1992]) that for κ-+ oo,

ap(κ) = W^'V^' VJl - ^-(p - l)(p - 3)
(̂  oK

(/c~3)J.

(2.13)

~ 3)(P - 5) + 0(/

Thus by taking logarithm of (2.13), we get

log ap(κ) = - (p - 1) log 2π + K - - (p - 1) log K (2.14)

<P- IMP-3) +

For κ->0, since

dr , ,, ) 0 r odd,

lί-i 2 > + 1 ,,ωp r: even,

ap(κ) is expanded in Taylor series as
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1

V -IT 0(κ*).

Next we consider Ap(κ) defined by (2.5). Differentiating both sides of
(2.5), we have

^ ap(κ) (ap(κ)^

Combining this with (2.12), it is shown that Ap(κ) satisfies the Ricatti equation

A'(κ) = 1 - Λ.(κ)2 -
p-1

AM. (2.15)

For K -> oo, we obtain that

2 o

and this is coincident with the result obtained by differentiating both sides of
(2.14). For κ-»0, we obtain that

A,(κ) = - K +
1 1

In studying properties of £, we need asymptotic approximations of the
inverse function of Ap(κ), K = Λ~1(y) for all y in [0, 1]. Using the equation
(2.15), we can find the asymptotic expansion of K for small y,

and when y is almost unity,

1 2

K p — 1
(i - y) +

p-l
(1->02 +

/5

(P-1)2
- y)3 + 0((l - y)4).

For more details about Ap(κ), see Watson [1983a, Appendix A.2. pp. 190-195].
Using the above limiting results we may approximate the MLE K in (2.11)

for the cases of K ->• oo and K -> 0 as

K =

p-1 «(P-1)

2 ( n - l l x . i l
K -

p| |x| |=-| |x. |
n

as
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Let L and η denote the likelihood function and the polar coordinates of
ji, respectively. Since

log L = — n log ap(κ) + κμ'\.

= const. — n log ap(κ) + Rκu'(η)u(θ),

we have

r aMogn
L δTcδf/i J

Hence, for large n, we can conclude that K, θί, ,θp_i are asymptotically
independent and normally distributed with means κ,η1, ,ηp-1 and

υar (θt) = - {κAp(κ) Π sin2 ηj}'1, i=l,-,p-l,
j=o

(Mardia et al. [1979, p. 439]).

2.4. Large sample theory (n -> oo)

When x ~ Mp(^, κ)9 the dispersion matrix of x is given by

A (κ\

see, (2.8). Then the determinant of Σ, detΓ is

From the discussion in section 2.1 we know that both Ap(κ) and Ap(κ) are
positive for non-zero /c, so det 27 > 0. Applying the central limit theorem, for
n-+ oo,

(x - Xp(ιc)/ι) ̂  Np9 (2.16)
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where Np denotes the p-dimensional normal distribution with mean 0 and
unit dispersion matrix Ip9 i.e., Np(Q, Ip). Multiplying μ' from the left and

noting that μ'Σ~1/2 = (l/^A'p(κ))μ', we have

Let us choose a p x (p — 1) matrix B^ that satisfies the following conditions

B1Bi = /p-/ι/1', B[B1 = /,_!,

i.e., a p x p matrix (μBj) is an element of O(p), the orthogonal group of

order p. Since B[μ = 0 and BΊΣ'1'2 = ^/K/A^BΊ, we obtain

where χp denotes a central chi-square distribution with p degrees of
freedom. For the unique solution K of (2.11), it holds that

It is also shown that

2nAp(κ)κ(\ - μ'μ) -+χp-ι.

We note that the above limiting results can be elaborated by deriving their
asymptotic expansions. Some of them are given in the rest of this paper. It
is fundamental to obtain a refinement of the result (2.16), which is discussed
in section 4.1.

Next we consider the testing problem that μ is in a given subspace
V. Without loss of generality, we may express V as

F={/ι |Aι = β 0ζ,Γζ=l}, (2.17)

where B0 is a given p x s matrix such that B^BQ = Is. In a special case
#o = A*o> the hypothesis becomes μ = μ0 or μ = — μθ9 and so slightly different
from the hypothesis μ = μ0, but we may think that these two hypotheses are
essentially the same. In fact the results of Watamori [1992] show Watson
statistics and the likelihood ratio criterion for the two hypotheses have the
same asymptotic expansions. In order to compare powers of these tests, we
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consider a sequence of the alternatives,

= (μ0 + n 2 5)(l+2n lλ) 2, (2.18)

where μ0 = B0ζ, B'0δ = 0 and A = £r£/2. Let Bs be a p x (p — s) matrix such
that (B0Bs)eO(p). Then

where χj (y) denotes a noncentral chi-square distribution with p degrees of
freedom and noncentrality parameter γ.

Most of the results in this section are found in Watson [1983a, §4.2, §4.4,
1983b] and Watamori [1992] gives an extended result of (2.19).

2.5. Approximations in highly concentrated case (K -> oo)

In this section we give an outline of asymptotic approximations for basic
distributions in a highly concentrated case (K -» oo). The limiting results are
found in Watson [1983a, §4.5, 1984]. Some refinements of these and other
distributions are obtained in subsequent sections.

Let U = 2κ;(l — ί), where t = μ'x. From the expansion (2.13) of ap(κ) we
can approximate ap(κ) for large K as

- - y - KK 2 eκ.

Substituting this approximation to (2.3), we obtain the density of 17 as

2

Since this is the density function of X p _ l 5

U^XΪ-^

Here we use the fact that

t = μ'x -» 1 (in prob.).

If we choose p x (p — 1) matrix Bj as in the previous section, then the
projection of x onto the orthogonal complement of the space spanned by μ0

is given by B1B'1x = (l- tψξ. So,
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where U and ξ are independent. By a characterization of the normal
distribution, it follows that

Multiplying B( from the left and noting B(Bl = / P _ l 9 we obtain

Applying this to μ'x. = ff'£x t = Σ/i'x, and B(x. = Bί£x£ = ΣBΊχi> il follows
that

2/c(n-μ'x.)->χ2

(p_1),

x. - > # _ ,

Next we consider to test the hypothesis that μ is in a given subspace V
when K is given, where Fis given by (2.17). As a sequence of the alternatives,
we consider now the one obtained from (2.18) by replacing n with K, i.e.,

where μ0, δ and λ are the same as in (2.18). Then

||^x.||2->χ2_sM), (2.20)

where Bs is the same as in (2.19). It is easily seen that ||x.||2 = ||5όx l l 2 +
ll^x.H 2 and ||x.||, ||l*όx l l ->n as /c-^oo. Therefore (2.20) is rewritten as

Further, when K is unknown, it is shown that under the hypothesis μ = μ0,

)

~* '-^-^-^

2.6. Explanatory notes

In the backgrounds mentioned above we collect mainly the results related
to the subsequent sections, and we restrict topics on the Langevin
distribution. In particular, sections 2.4 and 2.5 are the bases of our main
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results. Some of the characterization problems are given in sections 2.2 and
2.3. For other ones, Mardia [1975c] has proposed the characterizations by
maximum entropy and others in 2 or 3 dimension.

Though some higher dimmensional applications have been considered (see,
e.g., Stephens [1982]), the main applications have been restricted to 2 or 3
dimension in practice. This may be probably due to that y* and Zf2 are
so familiar with us and hence we cannot be free from them on the
contrary. On the other hand, most of the results for directional distributions
can be extended to higher dimensions. From this point of view, we hope
that useful higher dimensional applications will be appeared in the near future.

3. Parameter estimation

3.1. Primaries

We consider the problem of estimating μ and K, based on a random
sample x1, ,xw of size n from Mp(μ9 K). Let

x = -£xj, and Λ = n | |x | | .
n

Here R is the resultant length of sample vectors.
The MLE K and the marginal MLE K proposed by Schou [1978] can be

given as the solutions of the following equations:

Ap(κ)= \\x\\,

and

K = 0, if R < n*,

nAp(κ) = RAp(κR)9 if R > n*,

respectively. Schou [1978] has shown that Pr(κ = 0)->0, *Jn(κ — K) and

*Jn(κ - K:) are asymptotically Λf(0, I/A') as n -> oo.
The MLE of μ is given as follows:

1 - n _
II = X = — X.

l l x l l R

For simplicity we denote Ap(κ) and its derivatives about K as
A, A, A", A(3\ , respectively.

3.2. Large sample case

Watamori [1992] derived the asymptotic expansions of distributions of
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some test statistics for testing mean directions. The method is based on

expanding test statistics in the terms of a normalized statistic y = ^/nΣ~ί/2(x
— Aμ) and evaluating their characteristic functions. We will discuss the details
under a general setting in sections 4 and 5. The same method can be applied
for obtaining large sample approximations of K and K.

The estimators K and K are expanded in terms of y as

A"

A'2

2A3JA 6 A2

1A

1
S« 2A2 2 A K

A"

2A\Aκ

-I//2

2A*JA'

' 22A'jA'κ

The characteristic functions of ,/»•(£ — K) and ^Jn(κ — K) can be evaluated
in expanded forms, based on asymptotic expansions of the distribution of y,
which is given in section 4.1. Inverting the resultant characteristic function,
we have the following theorem.

THEOREM 3.1 Let /*(xι) and /κ(x2) be the density functions of x^ =

*Jn(κ — K) and x2 = ^/n(κ — K), respectively. Then /f(xι) and fz(Xz) can be
expanded for large n as follows:

A"

2A'
X

3

%A'κ2

(p-l)(p-3)

8κ2

4A'2κ

A"2

4A'κ 4A'
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ί(p-ί)A" ^ d^\ Λ^ J 0(n-|)]

V 6κ 6A' 8 / 1 18 Xiί ]'

I

ii \ 4^'κ2 24A'3 *Λ'2

p-ί A"2

where φ(x) = (l/v/2π) exp (- x2/2).

From Theorem 3.1 we can obtain expectations, MSEs and concentration
probabilities of K and /c. The expectations of K and K; are expanded as

κ] = K - - + 0(n~2).

The expansion of E[κ] is coincident with Schou's result. Note that the term
(p — l)/2A'κ in the coefficient of l/n is non negative and goes infinity as K
goes infinity, and — A" 1 2 A'2 is non-negative. This implies that the biases of
them are quite large when K is large. It is also shown that they have positive
biases and the l/n term of E[κ] is smaller than that of E[κ]. The variances
of them are given as follows:

-tnA

The MSEs of them are expanded as

3A'(p-l) UA"2 A™ \

_

Therefore it holds that
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l)(p-5) 3A"(p-ί)\ _3^

ΪV 2A^Γ\ + °(n }' J n2 (. 2X

The concentration probabilities of them are expanded for b > 0 as follows:

Pr (- ί>< Vn (/c - K) < ί>) =

J_Γ_f(p - l)(p - 3) A"(p - 1) 5^t"2

4NM'κ2 2A'JA'κ

^(3) ") f ^4"(p_n 2/1"2 /4<3) 1

4A\fA\ \ 3^/Aκ 9A' /A' 4^/A)

Pr (- b< n(κ -κ

where Φ(x) and φ(x) are the distribution and the density functions of the
standard normal distribution, respectively. These imply that

Pτ(-b< Jn(κ -κ)<b)-Pτ(-b<Jn(κ-κ)< b)

ι(p-l)(p-5) A"(p-l)

4JA'κ2 2A'jA'κ

Note that each coefficient of the differences of the MSEs and concentration
probabilities is non-negative when p > 4. For the cases p = 2 and p = 3, all
the coefficients of the differences are not always positive and we cannot
conclude which is smaller at a glance. The values of the coefficients of 1/n2

(for the MSEs) and l/n (for concentration probabilities) in some special cases
are given in Tables 1 and 2. The tables show that for small K the MSB of
K is smaller but for other cases K is preferable and the differences between
them become larger when K goes larger.

From the results on the expectations of K and K it is possible to modify
the estimators so that they satisfy higher order asymptotic unbiasedness.
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Table 1: The coefficients of ί/n2 of MSEs

K

0.1

0.5

1

5

10

p = 2

ύ Z £K K K<g

-96.910 200.820 201.516

1.434 10.678 9.919

14.288 12.699 5.578

1387.096 1194.199 221.954

5781.160 4943.107 940.131

P = 3

K K Keg

9.973 902.748 903.612

11.792 39.944 39.916

18.184 17.244 13.971

451.227 327.846 73.861

1849.974 1349.978 299.996

Table 2: The coefficients of l/n of concentration probabilities

coefficients of b

K

1

5
10

P = 2

K

-0.405

-0.274

-0.131

K

-1.133

-0.178

-0.092

difference

0.728

-0.096

-0.039

p = 3

K

-0.853

-0.436

-0.217

K

-2.077

-0.243

-0.117

difference

1.224

-0.193

-0.100

coefficients of b3

-0.183 -0.0575 -0.1256

0.00028 0.00481 -0.00453

-0.0000213 0.000481 -0.000502

-0.160 -0.0348 -0.125

-0.00617 0.00428 -0.0104

-0.000722 0.000611 -0.00133

coefficients of b5

1

5

10

-0.00939

-0.0000780

-0.00000183

-0.00205

-0.000136

-0.00000444

Such estimators are given by

= K H—

n\2A'p(κ)κ 2A'2(κ))'

1 Al(κ)

n 2Af(κ)

Then it is shown that the distributions of -^/ή(κv — K) and ^fn(κ<f — K) are
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coincident up to 0(n~l). Further

-.« -JL +nA

Therefore κ<# and κ<# are concluded to be quite similar. The values of the
MSEs up to the order n"2 in some special cases are also given in the Table
1. It is noted that each value for moderate K is smaller than the corresponding
value of K or /c. Note also that for the almost of all cases the MSEs of K
are middle and similar to those of either K or κ<#. When K is quite small K
is most preferable but for the usual values of K, κ<g is best of these three
estimators in the sense that the MSB is the smallest. It seems that it is better
to use κ<g instead of K when K is not so small.

We can express μ as μ = (Aμ + Σ1/2γ/^n)/\\Aμ + Σll2y/^/n\\. Therefore
the asymptotic exansions of the expectation and the MSB of μ are given as
follows :

n 2Aκ n

_^-i)(,,-4) ΛV-,,1 j
A2 3AA' J

and

E[(β — l*)(i* — I1)'] = Up ~ A*/*') "I" 0(n~2).
n AK

Note that the term of the coefficient of 1/n, (p — l)/(2Aκ) is quite large if K
is considered to be very small. It may be suggested to use

n 2Aκ

as a higher order asymptotic unbiased estimator.

3.3. Highly concentrated case
Next we consider the case when K is large. In addition to the notations

in section 3.2, we use the following notations:

ln: an n-dimensional vector with all elements unity,
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Pθ=~^n^n Pl=In~Pθ9
n

e,- : an n-dimensional unit vector with j th element unity and others 0,

£, = e,ej.

It may noted that Fujikoshi and Watamori [1992] have essentially obtained
an asymptotic expansion of the distribution of Z. We can obtain stochastic
expansions of K and K in terms of Z. The stochastic expansions of /c and K
are obtained as follows:

{(tr ZP0Z')2 + 2tr ZP0Z' tr ZP.Z'U ° ' ° 1K trZP tZ'

- n£ (tr Z£, Z')2} - + Op(κ~\

{ 2

' 2

Since the elements of Z are independently distributed as ΛΓ(0, 1) in the limiting
case, we can see that trZP1Z' and tτZP^Z' are asymptotically independent
and

Thus the limiting distributions of K and K; are proportional to
which is coincident with Schou [1978] who also pointed out Pr (/c = 0) -*• 0. It
is noted that neither K nor K are asymptotically unbiased for large K. These
estimators may be modified as

1 }κ and 1
n(p-l)J V (π

which are asymptotically unbiased for large κ;. The above stochastic
expansions will be useful in obtaining further refinements as in the large sample
case. However, the investigation is left as a future work.
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4. Multi-sample tests for mean directions (I)-large sample case

4.1. Primaries
As far as there seems not to be any confusion, we write Ap(κ) as A and

AP(KJ) as Aj for simplicity. We cosider the problems of testing

= vs. l: μl9μ2,-

H2 : /i/e V vs. K2 : μjφ V for some 7,

where C is a given k x (k - 1) matrix with rank fc — 1 and Fis an s-dimensional

subspace (s < p — 1) based on fc-random samples \jt of size HJ from Mp(μj9 KJ),

/=!,•••,«,., 7 = 1, ••-,&. Since all norms of /ι/s are unit, we may take

cί c2 •-
\ c? = l, f o r V Λ

without loss of generality. As in (2.17), we write V as V={μ\μ = B0ζ,

ζ'ζ= I } . So we can rewrite the hypotheses H1 and H2 as

H1 : μj = bjμ, bj = c^cj9 ck = - 1,

H2:μj = B0ζj9 llζ,. || = 1.

Consider a sequence of alternatives

(4.1)

where μ0j is equal to b^ for Ht or B0ζj for H2, λj = δjδj/2 and 5jμ0j = 0.

Choose a p x (p — 5) matrix Bs such that (B0 Bs)eO(p). Let

1 ̂  ^ - n j
Xj = - Σ xji' n = Σ nj and PJ = -ri i n

We assume that each p, is 0(1) as n-»oo, i.e., n7 ->oo as n-^oo. Under

these notations and assumptions we consider the distribution of

A
where Σj = A'^μ^] H — -(Ip — Af//f/) The characteristic function of y7 is given
by KJ

exp ~
where
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ω, =

Γ« 1 2 „ 1 f/ 1 1 \ .2 1
= κ, 1 + —— F=«J + -Ή ϊ ]&j +1 v/^ c,^' »,MK? w ^*Λ

and

= i2t;.t,.

Noting that

log ap(κ + x) = log flp(κ;) +
J-

(4.2)

where Aω = (dj/dκj)A denotes the th differential of A about ic and A(0) = A,
we obtain

where

and

log Ψiίti) = — βij j 2 J

;̂ . -f 7 -I-

£ι ?, = —

£n, = —



Then

where

Statistical inference of Langevin distribution for directional data

1 3 A', A'! A",A i A.J s±:
- — +

1

jKj 4A?

'Λ/'V

A'jKj 1

ΪΪΓ "2"'

e28j — ~~

= exp 1 β} Γl
2 / L

' ' 24A

47

(4.3)

-

Inverting (4.3), we have the following theorem.

THEOREM 4.1 Under the assumption of (4.1) the joint probability density

function of Y= (JΊ, y2, •••>¥*) can be asymptotically expanded as
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f(Y) = Π Φ
m

+ -4 Σ -4=/w(yj)

- Σ-/2;(y, ) + Σ

exp (- y'y/2),

- (p

2j. - (p

'jjj + βf3,(y;y7 )
2 + βfs

yjy,- + e13jμ'0jγj - δ'jyj -f

ϊj - (P

^ = ~

45
= y «ι 4)(p

(p - e22j - - 2{p
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# _ _ 15 2 _ 1 2

J 2 J 2

1 2

2 J J

Hayakawa [1992] derived an asymptotic expansion of the joint probability

density function of χA/x/ — Ap(κj)μj)9s. The above theorem can be also
obtained from his result by considering an appropriate transformation. We
note that our result has another merit since the limiting distribution is
Nkp(Q9 Ikp), though our formula is slightly complicated.

4.2. LR Tests of Ht

First we consider testing hypothesis H^ against K^ when κ/s are
known. Then the LR statistic TL11 is given as follows:

j

We are interested in studying the distribution of ΓL11 under the null hypothesis
H1 and under a sequence of the alternatives (4.1). In general, TL11 is expanded

in terms of y = (yί yfc)' as

TL11 = (y + δ)'(Ik - H)®(IP - M)(y + δ) + =

where

and ® denotes the Kronecker product. Here <?/ι(y) is a polynomial of the
first and the third degrees in the elements of y. The nonnull distribution is
given by

where A = {Σ^^A" ~ l l
Next we consider testing hypotheses H± when K! = κ2 = ••• = κk = K; but

K: is unknown. The MLE £ of K satisfies
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Further let K satisfy

and this is the MLE of K under the hypothesis Hί. Then LR statistic TL12

is given as follows:

ΓL12 = 2n{log ap(κ) - log ap(κ) - K ||£p;6;X;|| + *ΣPj l l ^ l l } -
j j

It is noted that the Taylor expansion of A~l(κ) is given by

i / . / , x ! A" 2 3A"2-VW» + x) = ic + -x - _χ* + - 6A/ . (4.4)

Using this and the expansion (4.2) about logαp(κ), TL12 is expanded in terms
of y under a sequence of alternatives (4.1) as

TL12 = (y + δf(Ik -H)® (I, - M)(y + δ) + 4= ίfι(y) + ̂ (n-1),
'n

where ^*(y) is a polynomial with the same property with ^(y) and

δ =

The nonnull distribution is given by

P(TLι2 Z x ) = P(χg,-ι)(k-i)W < x)

where λ = Aκ{Σjλj-\\Σj^jbjδj\\2/2}.

4.3. Test of //2 when the concentration parameters are known

In this section we consider testing hypothesis H2 against K2 based on
fe-random samples of size HJ from Mp(μj9 KJ) when /c/s are known. Then the
two statistics, Watson statistic TW2ί and LR statistic TL2\ are given as follows:

(i)

(ϋ) TL21=2nΣpjκj(\\Xj\\-\\B'0xj\\).
j

The limiting distributions of these statistics have been obtained by Watson
[1983a]. Our purpose is to obtain asymptotic expansions of these distribu-
tions by extending the results due to Watamori [1992] in a special case
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k = 1. Under a sequence of the alternatives (4.1), TW2ί and TL2ί are expanded
in terms of T as

TW2ί = q0(Y) + Op(n~%),

where

TL21 = q0(Y) + -
fn

(4.5)

'
= -Σ /— J /*o

= Σ - -
j Pj

where

flf(y i > > yfc) = i + —f= Σ -τ=/ι, (y, )

+ - ί Σ -ΛjW + Σ

Consider the transformation

1

= I
yJ -

1 V

Ί -lit

Thus the characteristic function of 7^2 1> ^VaiW is given by

^21 W = j ••• I Π l>χp ί^ooXy,-)} Φp(y, )] x 0(yι, ,y f c)Πdyj>

where

+

(46)

l-2ίt
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Then we obtain

0M*Z

-k(P-s)
2

1 - lit

- 2UΓ

where

d10 = 2A(21) + 6A(22) + 2(p - s)A(11) + (p _ S)(p - s + 2)p(

£/n = - 81(22) - 2(p - s)A(11) -2(p-s)(p-s + 2)pw,

4/l(22) - 2(p - s + 2μ(11) + (p - s)(p - s

where the expectation with respect to z,- is taken under ΛΓP(0, /p) and
λ = ΣjAjKjλj. After calculating the expectation in (4.7), we obtain

= 2(p - s + 2)1(11), d14 = 2A(21> - 2A(22),

Inverting this characteristic function, we have the following theorem.

THEOREM 4.2 Under a sequence of the alternatives (4.1) the distribution

function of TW2\ can be asymptotically expanded as

< x) = P(χ2

k(p-s}(λ) < x) + -1- Σ dίmP(χ2

k(p.s) + 2m(λ) < x) + 0(n"2),
4 n m = o

(4.9)

'̂  αr^ given by (4.8), αwrf χ/(^) denotes a noncentral χ2-variate with
f degrees of freedom and noncentrality parameter λ.

Letting δj = 0 in (4.9), we obtain an asymptotic expansion of the null

distribution of TW2ι,

P(TW2ι < x) = P(U(P-S) < x) + — (P ~ s)(p - s + 2)p(1) x (4.10)
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Next we consider the distribution of TL2ί under (4.1). Similarly the
characteristic function of ΓL21, ΨL2ί(t) can be expanded as

( 2it
2 exp - - —λ

\ 1 — 2ιt

x Γ1 + ̂  Σ *ι«(l - 2iίΓm + 0("~2)~l (4.11)
L 4n m =o J

where

Λ10 = 2λ(21) + 6λ(22) -2(p- s)λ* + (p - s)(p + s - 4)p*,

- s - iμ* - (p - s)(p + s - 4)p*,

- 2(p - iμ*, Λ1 3 = -

and /l(21) and /l(22) are given in (4.8). Inverting this characteristic function,
we have the following theorem.

THEOREM 4.3 Under a sequence of the alternatives (4.1) the distribution

function of TL2\ can be asymptotically expanded as

P(TL2ι < x) = P(χ2

k(P-s)W < x) (4.13)

+ -J- Σ hlmP(χ2

k(p.s)+2j(λ) < x) + 0(n\
4n m =o

vvΛ^r^ /ιlm'^ αr^ given by (4.12).

Letting 5,- = 0 in (4.13), we obtain an asymptotic expansion of the null
distribution of TL2ί,

P(TL2ι < x) = P(ά(P-s) < x) + — (P ~ s)(p + s - 4)p* (4.14)

{P(X2

k(P-s) < x) - P(X2

k(P-s) + 2 < x)} + 0(n\

This result implies that ΓL21 = (1 + (p + s - 4)p*/(2nk)}TL21 gives a better
χ2 -approximation, since

Let ^^21 and j5L2ι be the powers of TW21 and TL21 with a level of
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significance α. These α, β are different from those ones used in section
4.1. Then from (4.9) and (4.13) it is possible to obtain asymptotic expansions
for βW21

 and /?L2i A useful expression for such powers has been obtained
by Fujikoshi [1988]. Applying his result to (4.9) and (4.13), we obtain the
following theorem.

THEOREM 4.4. Under a sequence of the alternatives (4.1) the powers βW2ί

and βL2ί of TW21 and TL2l with a level of significance α are given by

βW2i = P(X2

k(P-s)W > *«) (4.15)

_ (p _ βμU>}Λ(p_l) + 2(χβ; λ)

(p_s)+4(xα; λ)

(4.16)

_ ^ _ s + 2μ*Λ(p.I)+4(xβ;

where XΛ is the upper α point of χl(p-s} and gf(xΛ; λ) is the probability density

function of Xf(λ).

Then taking the difference between (4.15) and (4.16),

1 Γ / Λ' K \
βW2i =0L2i +- -(p-s)(Z-rJ^)^(P-.) + 2(^;^

n\_ \ 7 Λ^ PJ /

j PJ 2 \ J AjPj
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It is interesting to derive further reductions for (4.17), which clarify the
difference of the powers.

4.4. Test of H2 when the common concentration parameters are unknown

First we consider testing hypotheses H2 against K2 when κί = κ2 = ••• =
κk = K but K is unknown. The MLE K of K satisfies

Ap(κ) = ΣPj \\Xj\\. (4.18)
j

Further let K satisfy

AP(κ) = Σpj\\B'oίj\\> (4.19)
j

and this is the MLE of K under the hypothesis H2. Then two statistics TW22

and TL22 are given as follows:

(i)
j Ap(K)

(ii) TL22 = 2n{log ap(κ) - log ap(κ) - κ^Pj \\B'0Xj\\ + κ^Pj \\Xj\\}.
j j

The statistic TW22 has been proposed by Watson [1983a] and TL22 is LR
statistic. Watamori [1992] has obtained asymptotic expansions of the null and
nonnull distributions for these statistics in a special case k = 1. The methods
used there can be extended directly to multi-sample case, i.e., k > 1. Using
(4.2) and (4.4), TW22 and TL22 are expanded in terms of Y under a sequence
of alternatives (4.1) as

TW22 = q0(Y) + 4=<?im + -q'2(Y) + Op(n\ (420)
'n n

τL22 = «o(r) + 4= <zί(y) + - «!(y)

where

1

Σ - /«ό



56 Yoko WATAMORI

A'κ

1 1 A! 1
- - 7 - Σ p j f ό j j j Σ — ^ r i a j ι 4 o o ι ( j ύ + -TZ Σ - O'όj y/

41(11 - (if? -π;)*(ϊ)?*>u<'>

+ 2^Aκδ'jij + 2,4/0,.,

The characteristic functions of TW22 and TL225 ^22(0
respectively can be obtained in a similar way. Then we obtain

-k(P-s)
2 exp

. 1 - lit

4

+ — Σ
4n m=o

and

ΨL22(t) = (1 - 2iί)""W^Jl

where λ = AK^jλj. The coefficients d2/
s an^ ^2/s are quite complicated and

omitted here. Inverting these characteristic functions, we have the following

theorem.

THEOREM 4.5 Under a sequence of the alternatives (4.1) the distribution

functions of TW22 and TL22 can be asymptotically expanded as
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*) = P(U(f-s)W < x) (4.22)

+ -!- Σ dϊnP(ιl(p^2m(λ) < x) + 0(n\
4 n m = o

P(TL22 < x) = P(χ2

k(p-s}(λ) Z x) (4.23)

+ -/- Σ Λ2mP(χf(p-s)+2m(A) < x)

Letting 5̂  = 0 in (4.22) and (4.23), we obtain asymptotic expansions of
the null distributions of Tr22 and Γx,^,

-ϊ ^ x) + -Γ- Σ ^

and

2J 2 - |

*ίp s )~ 4n w = 0

 2m *(p-*) + 2m-

where

*2i = -(P-S)(P-«+ 2)Ί( ~ - -J- JΣ^- + (- J-
^ ^T. >τ./v / / l/ \ yiΛ,

/I"
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- „ + 2) - - + ft - 2

and

A20 = ft? - A?,

*2i = - 2A? - AJ

A22 = A? + ΛJ,

p]

- (p - s){k(p - s) + 2} --Σ-7= + fc(P - s){Λ(p - s) + 2} — —,
κ

A? = fc2(p - s)(s - 1) -L - fe(p - s) ~
2 2

Now let ^22 and j5L22 be the powers of TW22 and TL22 with a level of
significance α. Then from (4.22) and (4.23) it is possible to obtain asymptotic
expansions for jV^ and /?L22. However, it is difficult to obtain their difference
in a simple form.

4.5. Test of //2 when the concentration parameters are unknown
Here we consider testing hypothesis H2 against K2 when K/S are

unknown. The MLE KJ of K satisfies

AP(KJ)=\\XJ ||. (4.24)

Further let ίίj satisfy

Ap(κj)=\\B'0Xj\\9 (4.25)
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and this is the MLE of κj under the hypothesis H2. Then two statistics TW23

and ΓL23 are given as follows:

(ϋ) TL23 = 2wX {p/ log ap(Kj) - PJ log ap(κj) — pfij \\ BQ\J|| + /?,./£,• || x7 ||}.
J

The statistic TW23 has been proposed by Watson [1983a] and TL23 is LR
statistic. 7V23 and TL23 are expanded in terms of Y under the sequence of
alternatives as

TW23 = <lo(γ) + —p q**(Y) + - <l2(γ) + Op(n 2), μ 26)
^/n n l }

1 1 ~-TL23 = «o(Γ) + -τ= «ί*(y) + ~ «ϊ*(y) + Op(n 2), (4.27)

where

= Σ
1 / 1
= 7

\jAjKj

q*2*(Y) =
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4o(^)> 4ooj(y, )> 4oι, (y/) and 421;(y, ) are the same as in (4.5). Similarly, the
characteristic functions of TW23 and TL23, Ψwι*(t) and ¥^23(0 are given by

^k(P-s)

* exp

χ | ι + - Σ «
1 4n«tΌ

MMV l - 2 ί f )

and

ΨL23(t)=(ί-2it) * e x p(_il_A

Γ1 + j- Σ
L 4n m = 0=o

respectively, where

d30 = 2A(21) + 6A(22) + (p - s)(p + 3s - 6)p(2) + (p - s)p(3),

</31 = - 4A(21) - 4A(22) + 4(s - 2)A(12) + 2A(13) - 4(p - s)(s - 2)p<2) - (p - s)p(3),

d32 = 2A<21) - 4A<22) + 2A(23) + 2(p - 3s + 6)A(12) - 2A(13) - (p - s)(p - s + 2)p(2),

d33 = 4A(22) - 4A(23) - 2(p - s + 2)A<12),

P<2) = Σ^ ί1/^ - ί/(A'jKj)}/(2KjPj), p<3' = X jAWΛfKjpj, (4.28)

A<21) and A<22) are the same as in (4.8) and

Λ30 = 2A<21) + 6A(22) + (p - s)(p + s - 4)p(2) + (p - s)p(3),

h31 = - 4λ(21> - 4A(22> + 2(s - 3)A(12) + 2A(13) - (p - s)(p + s - 4)p(2) - (p - s)p(3),

h32 = 2λ(21) - 4A(22> + 2λ(23) - 2(s - 3)/l(12) - 2A(13),

/ι33 = 2/l<22)-2/l(23). (4.29)

Inverting these characteristic functions, we have the following theorem.

THEOREM 4.6 Under a sequence of the alternatives (4.1) the distribution
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functions of Tr23 and TL23 can be asymptotically expanded as

P(TW23 < x) = P(χt(p-s}(λ) < x) (4.30)

+ 7- Σ d3mP(χ2

k(f-s}+2m(λ) Z x) + 0(n\
4n m =o

and

P(TL23 < x) = P(χ2

k(P-s)(λ) < x) (4.31)

+ f Σ

where d3m's and h3m's are given by (4.28) and (4.29), respectively.

Letting δ j = 0 in (4.30) and (4.31), we obtain asymptotic expansions of
the null distributions of T^s and ΓL23,

2 _3
< 2< x) 4- V

where

^30 = (P ~ S)(p + 35 - 6)p(2) + (P - S)p(3),

<Ϊ31 = - 4(p — s)(s - 2)p((2) — (p — s)p(3),

and

1 = JΌGk<p-.) < ̂ ) + — {(P -s)(p + s- 4)p(2) + (p -

x {P(χ2

(p_s) ^ x) - P(χfc

2

(p-s)+2 < x)} + O(n~).

This implies that the Bartlett correction factor for TL23 is given by

Now let βW23 and /?L23 be the powers of 7V23 and TL23 with a level of
significance α. Then from (4.30) and (4.31) it is possible to obtain asymptotic
expansions for βW23 and /?L23. By the same way as in Theorem 4.4, we
obtain the following theorem.

THEOREM 4.7 Under a sequence of the alternatives (4.1) the powers βW23

and βL23 of TW23 and TL23 with a level of significance α are coincident up to
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the order n~l. Further, βW23 (or βL23) is given by

(p - 5 + 2)A< 1 20 f c (,_ s ) + 4(x a; λ)

«;A)] + 0(n~2).

Theorem 4.7 shows that the differences between the powers of TW23 and

TL23 are very small when n is large and κj are unknown.

4.6. Explanatory notes
The differences between βW2j and βL2j can be numerically evaluated by

using their asymptotic expansion formulas or doing simulation experiments.

However, it will be difficult to state the differences as a simple rule. From

the point of practical use, we can say that Watson statistic is calculated more

easily while LR statistic has a better chi-square approximation. It may depend

on our purpose which statistic we use.

As we mentioned before, H^ is an extension of the hypothesis H0: μ^ =

μ2 = ... = μk where LR test has been studied by Hayakawa [1992]. If we

take Cj = — 1, then H1 is the same as H0. On the other hand, even if we

take s = 1 in H2, H2 is different from H0, and this fact is also clear from

our results. For one sample test, the procedures of testing μ = μ0 with given

μ0 and μ = B0ζ with p x 1 matrix B0 are essentially the same.

5. Multi-sample tests for mean directions (Π)-highly concentrated case

5.1. Primaries
In this section, we derive basic results on asymptotic expansions of various

statistics when each concentration parameter κ 3 is large and the sample size

Πj is fixed. Most of notations are the same as corresponding ones in previous

sections. However, our derivation process is slightly different, so the results

are not always corresponding to one another. Moreover, we use similar

notations to denote completely defferent things sometimes. Thus we will

attempt to explain our notations as possible as we can even if they are the

same in previous sections except in section 2.

Now, it is noted that most of methods to obtain asymptotic expansions

under large samples in sections 3 and 4 are basically based on Taylor

expansion. While, under a highly concentrated case, in addition to this, the
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differential equations (2.12), (2.15) for Ap(κ) and ap(κ) play key roles in our
derivation process. In fact we often use the expansion for the logarithm of
ap(κ), given in (2.14). Moreover we also note that this section heavily depends
on Fujikoshi and Watamori [1992].

We consider the problems of testing Hj against K j ( j = l , 2 ) given in
section 4.1 and the corresponding test statistics defined in sections 4.2 and
4.3. Since we are interesting in the situation where κ/s are large and n/s
are fixed, instead of (4.1), we take a sequence of alternatives

+ 2κ (5.1)

where μoj is equal to b μ for H^ or B0ζj for H2, λj = δ'jδj/2 and δjμoj = 0.
Choose a p x (p — s) matrix Bs and an s x (s — 1) matrix Θl} such that

and Iζjθrf e 0(s). Let

K-and PJ = — '
K

J^> co as /c-> oo. Then the

βi^i. (5.2)

1
*j = - Σ *//> n = Σ nj> K = ΣKJ

Πj i j j

We assume that each pj is 0(1) as jc-> oo, i.e.,
identity matrix /p is decomposed as

Ip = BSB'S + Bo^CjBό + B0

For / = 1, , Πj and j = 1, , fc, let

, ιι7I = 2κj(l - ζj

These are the standardized statistics in a highly concentrated case. Our test
statistics are functions of y ,̂ and w^, so we obtain asymptotic expansions of
the distributions of them by extending Fujikoshi and Watamori [1992] to
multi-sample case. The characteristic function of y^ and wjf is given by

where

2z
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1 2 / -2 / / / 2l'4/
^ U 1, 2, 2, l j s j κ2

Using the expansion (2.14) of the logarithm of ap(κ), we obtain

log Ψj(tlj9 ta/H |(i2tίjtu + ί2t2,t2,)

1

4

1 ....

Thus

ΪO(tw,t2/) = exp|l(i2ti^ + i2t;

and in particular,

\ v l_ . 7

+ 2(p - 1)̂  + 4(p - 1 +

where

Using (5.3) we obtain the following theorem.

THEOREM 5.1 Let y7 = ^fκ^n^B's( x,- — δj J . Under the assumption of

(5.1) the probability density function of Y = [yi, , yk] and W = [wt, , wk]
are asymptotically independent. Further, the probability density functions of Y
and W can be asymptotically expanded as follows, respectively.

fγ(Y) = *.iP-.(nΓl + ̂ b,(Y) + 0(ιc-2)l (5.4)

and

fw(W)=Φn,s_l(W) + 0(κ-^ (5.5)

where
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Σ-bsj(yj)
j PJ

2 WP - i) - (P -

n/ίjB.y,)2 + 4{n/p - 1) - (p - s + 2)

In order to derive asymptotic distributions of test statistics, we introduce
expansions of distributions of y/s and w/s in another form which are also

obtained by (5.3).

THEOREM 5.2 Let Yj = [yn , - , y .̂] and H$ = [w^ , , w^] . t//iέfer fλέ?

assumption of (5.1) YJ αwJ W^ are asymptotically independent. Further, the
probability density functions of Yj and Wj can be asymptotically expanded as

follows, respectively.

frj(Yj) = ΦB,,p_s

and

where

) = ~ [- Σ (fr WΊ YJ Yj)2 ~ 4Σ (tr tfl.j , ,

- 2(s - 3)tr YjYJ
ί

- 4(s - 3 + 2/1,.) X ίr e,£j£(y, + 8n^ + n^(p - s)(p + s - 4)]
I

and Cj w the n-dimensional column vector with I th element 1 and others 0.

Note that from the decomposition(5.2) of Ip, each xjt can be decomposed as

xji — BsB's
χji + Bo&ij&
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Since ||xj7|| = 1, by taking the norms of both sides, we have

uβ = (yβ + BW<jβ + B'sδj) + w>,, (5.7)

(y,7 + W(JOι + TO + WX*}2 + Op(κ] 2).

5.2. Test of H2 when the concentration parameters are known

Here we consider testing hypothesis H2 against K2 when κ/s are

known. Then two statistics, Watson statistic TW2 and LR statistic TL2 are

given by

(i) TW2 = κΣpj\\(Ip-B0Btixj\\2

9

j

(ii) TL2 = 2κΣPjnJ(\\xJ\\-\\B'0Xj\\).
j

TW2 was proposed by Watson [1983a]. TL2 is the same as TL21 but the

coefScient of TW2 is slightly different from that of TW21. Under a sequence

of alternatives (5.1), TW2 and TL2 are expanded in terms of Yj and Wj as

j

TL2 = Y q 0 i ( Y j ) + -YfluOT1, W,) -LiΔ / i ^HJJ\ Js / j T 1 I V J 7 J/

j K 3

where

qOJ(Yj) = tr (Yj + B'sδjl'n)P2j(Yj + B'sδjl'nj)' = tr YfP2JYf,

1J Pjl 4n,. } 2j J

+ — tr y,-*p2j.y;.*'(tr y/ y/' + tr
2n_,

and lπ is the n-dimensional column vector with all elements 1. Thus the

characteristic function of TW2, ΨW2(t) 1S given by

J
Π [exp {itqOJ(Yj)}

-
K J
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Consider the transformation

1 - lit

where

Then we obtain

¥WO = (1 - 2it) ^ exp ( ̂ ^ A ) (5.9)

1

where

The expectation with respect to Zj in (5.9) is taken under the normal random
matrix Z7 whose elements are independently distributed as JV(0, 1). After
calculating the expectation in (5.9), we obtain

-k(P-s)
2

1 - 2it

.1
(5.10)Γl + -1 £ dm(l - 2iί)-» + 0(/c-2)l,

L 4κ m =o J

where

do = 6λ<2> + 2(p - 1)A(1) - 2(p - s)A* + (p - s)(p - l)p - (p - s)(p - s + 2)p*.

2(p - s)A* - (p - s)(p - l)p + 2(p - s)(p - s + 2)p ,

- 2(p - 1)A(1) + 2(p - s + 2)λ* -(p-s)(p-s + 2)p*.

3 = - 2(p - s + 2)1*, <*4 =

Inverting this characteristic function, we have the following theorem.

THEOREM 5.3 Under a sequence of the alternatives (5.1) the distribution
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function of TW2 can be asymptotically expanded as

<x) = P(χ2

k(p.s)(λ)<x) (5.12)

+ ̂ - Σ

where dm's are given by (5.11), and χ2(λ) denotes a noncentral χ2-variate with
f degrees of freedom and noncentrality parameter λ.

Letting δ = 0 in (5.12), we obtain an asymptotic expansion of the null
distribution of TW2,

P(TW2 <x) = P(χ2

k(p-s) < x) + -1- Σ dmP(ti(P-S)+2j < x) + 0(κ~2),
4κ; m = o

where

d0 = (p- s)(p - l)ρ - (p - s)(p — s + 2)p*,

d^ = - (p - s)(p -l)p + (p- s)(p - s + 2)p*,

d2= _ (p_ s ) (p_ s + 2)p*.

Next we consider the distribution of TL2 under (5.1). Then the
characteristic function of TL29 ΨL2(t) is given by

ΨL2(t) = J- Jl

x Γl + -Σ{tolιffi
L K j

where

tr ΎfP2J r/'{tr Ύf Ύf + (s- l)(n - 1)}.

Considering the transformation (5.8), we obtain

ΨL2(t) = (1 - lit)-^ exp ( - r λ\ (5.13)
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After calculating the expectation in (5.13), we obtain

Σ Ml - 2/ίΓm + 0(κ-2), (5.14)

where

h0 = 6λ™ + 2(p- iμ(1) -2(p- s)λ* + (p-s)(p + s- 4)p*,

- 2(p - iμ(1) + 2(2p - s - 1)Λ* - (p - s)(p + s - 4)p*, (5.15)

- 2(p - 1)A*, h3= - 2λm.

Inverting this characteristic function, we have the following theorem.

THEOREM 5.4 Under a sequence of the alternatives (5.1) the distribution
function of TL2 can be asymptotically expanded as

P(TL2 <χ) = P(χϊ(P-s}(λ) < x) + -/- Σ /ιmP(χ2

(p_s)+2m(A) < *) + O(κ~2),
4κ m = o

(5.16)

where hm's are given by (5.15).

Letting δ — 0 in (5.16), we obtain an asymptotic expansion of the null
distribution of TL2,

P(TL2 < x) = P(ll(P-s) < x)

-s)(p + s-4) {P(χϊ(p-s} < x) -

+ 0(κ~2).

This implies that the Bartlett adjustment factor is given by

2ρ*kκ

and

P( U + —— (p + s-
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Let βW2 and βL2 be the powers of TW2 and TL2 with a level of significance
α. From (5.12) and (5.16) it is possible to obtain asymptotic expansions for

βW2 and βL2 as the same way as before. Then we obtain the following
theorem.

THEOREM 5.5 Under a sequence of the alternatives (5.1) the powers βW2

and βL2 of TW2 and TL2 with a level of significance α are coincident up to the

order κ~l. Further, βW2 (or βL2) is given by

(p - \)λ^ -(p- s)λ*}gk(p_s)+2(xΛ; λ)

where XΛ is the upper α point of χk(p-s) and gf(xΛ\ λ) is the probability density

function of χ}(λ).

Theorem 5.5 shows that the differences between the powers of TW2 and

TL2 are very small when K is large and n is fixed.

5.3. Explanatory notes
The LR statistic TL1 for testing hypothesis H^ against K^ is given as

follows :

TLί = 2 κ ( Σ p j n j \ \ x j \ \ - \ \ Σ p j n j b j x j \ \ ) .
3

Although we have not obtained its asymptotic expansion yet, it will be derived

by using Theorem 5.1. Since H1 corresponds to H2 when s = 1, we need

only the distributions of y, and Uj. The detail is also left as a future

study. Finally we note that the results in section 5 are multi-sample versions

of Fujikoshi and Watamori [1992] which can be obtained in a parallel

discussion.

6. Concluding remarks

In previous sections we derive asymptotic properties of some estimators

and test statistics in large sample or highly concentrated case. Most of the

results are obtained in the forms of asymptotic expansions. However, it is

noted that in these discussions, the moment relationship (2.1) does not so

influence the results, and the speciality that the sample space is a sphere does

not appear explicitly.
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As we mentioned before in first section, we regard a random vector x
on yp~^ as a random vector in 01? with unit norm ||x|| = 1. By this
embedding approach, we can apply many statistical theories in Euclidean space
to statistical distributions on a sphere. However, the dimension of x is not
p but p — 1, and this influences the structure of distriutions on ίfp~l.
Moreover, in &t*', we do not have to distinguish a mean (or an expectation)
from a barycenter. This means that we can use a mean as a representative
point for a data set. On the other hand, when x1, ,xπ have norm 1,
H ^ X j / n l l < 1 unless all x/s are the same point, i.e., the sample mean is no
longer a representative point on a sphere. Then we should think of what the
notion of 'mean' is.

Anyway, we may not be able to take account of nature of the space
entirely by the embedding approach. Therefore we need to consider another
approach and introduce a new notion of 'mean point.' Watamori and
Kakimizu [1994] have attempted to discuss these topics, though they consider
only about a circle. Some other measures of location have also been proposed
(see, e.g., Lenth [1981] for robust one).

In practical situation, we often need quasi-random vectors on ^p~i, and
for computer generations of uniform or Langevin random vectors, there are
some papers (see e.g., Ulrich [1984] and Wood [1987]). By recent
development of computers, some methods such as bootstrap have attracted
many statisticians in various area. Fisher and Hall [1989] have applied
bootstrap method for directional data and obtained confidence regions for
mean direction.

A correlation coefficient is another example that we need new notions for
directional data (or we need to extend notions in a Euclidean space to a
sphere). Since &p x &"* * &p+q in general, we can not treat x^e^, x2e^
in the same way as (xj, x'2)Έ^p+q. Fisher and Lee [1983] have defined a
correlation coefficient for circular data. Stephens [1979] considered it by
embedding approach.

Some other statistical methods have been considered for directional
data. These are nonparametric methods (see, e.g., Rao [1984]), time series
(see, e.g., Breckling [1989]) and so on. Bagch and Kadane [1991] have
applied Laplace approximations on the stance of Bayesian analysis. On the
other hand, Mardia [1989] has shown that directional techniques are applicable
to shape analysis. As we have seen above, it seems that there are many
problems to be solved in this area.
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