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ABSTRACT. This paper gives a classification of complete nonnegative Ricci curvature

stable hypersurfaces with constant mean curvature in a Riemannian manifold. This

theorem partially proves Do Carmo's conjecture that a complete noncompact stable

hypersurface in Rn+ί with constant mean curvature is minimal.1

1. Introduction

Every manifold in this paper will be orietable. Ever since Barbosa and
do Carmo [1, 2] generlized the definition of stable minimal hyprersurfaces to
stable hypersurfaces with constant mean curvature, much research has been
done to classify these kinds of hypersurfaces. Compact hypersurfaces with
constant mean curvature in a Riemannian manifold, if they are stable, were
classified by Barbosa-do Carmo [2] as geodesic spheres. For noncompact
stable surfaces in a 3-dimensional manifold, da Silveira [6] gave a complete
classification. For the higher dimensional case, Do Carmo [3] made the
following conjecture based on Chern's paper [5] on classification of graphics
in Rn and da Silveira theorem:

CONJECTURE 1.1. A complete noncompact stable hypersurface X: Mn <->
Rn+i with constant mean curvature is minimal.

By the following theorem we get an affirmative answer to the conjecture when
M has nonnegative Ricci curvature:

THEOREM 1.1. Let X: Mn -̂> Nn+l(c) be a complete noncompact stable
hypersurface with constant mean curvature, and Nπ+1(c) be an (n+1)-
dimensional Riemannian manifold whose sectional curvature is c,

(1) // c = 0 and Ricci(M) > 0, then M must be a plane.
(2) // c = 1, it is impossible that Ricci(M) > 0.

REMARK: Any convex hypersurfaces in an Euclidean space must have
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nonnegative Ricci curvature so that the product of the standard sphere Sn and
Rm as hypersurfaces in βn+m+1 cannot be stable since they are convex hyper-
surfaces of constant mean curvature. This corollary to our theorem is a
generalization of the case n = m—l proved in [1].

We define a kind of eigenvalue £(M) in §2 and then estimate it. The
author want to express his thanks to Mr. Hou, Peng and all the members in
GANG UMass. Also he would like to thank the referees for many valuable
suggesetions.

2. Definitions and estimates of £(M)

An immersed hypersurface Mn with constant mean curvature in N^n+i^ is
called stable if for every compact subdomain D in M and any / e J(D) we
have

- \
J

2

where J(D) = {/: D -* R, f\dD = 0, JD / = 0}, Δf is the Laplacian of / in the
metric on M induced by the immersion, \\B\\ is the norm of the second fund-

mental form B, H = -tτace(B) is the mean curvature, R = nRic(en+\), for a
n

globally defined normal vector field en+\ along the immersion.
From the above definition it follows that a stable minimal hypersuface

must be a stable hypersurface with constant mean curvature H — 0. However
not all stable hypersurfaces with zero mean curvature are stable minimal
hypersurfaces. For example an equator of S3 is a stable surface as a zero
constant mean curvature surface but not stable as a minimal surface.

For any Riemannian manifold M, we define

E(M) = inf inf - _ „
D fej(D) \Df2

where D ranges through all the compact subdomains of M.

THEOREM 2.1. (1) IfD\, D2 are compact manifolds D\ c D2, then E(D2) <
E(Dί).

(2) For any compact Riemannian manifold D, E(D) < λ\(D] + λ2(D}.

(3) IfM is a compact n-dimensional Riemannian manifold with Ricci(M) >

( / A \\ / / // \\
v(fe) 2"))+ Al ( v( f c > ?))' Moreover>

ifk = Q then E(M) < -£,
d*
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i f k = l then E(M) < ̂ ,̂
a2-

i f k < 0 then E(M) < - " .
4 a2-

(4) // M is a complete noncompact n-dimensional Riemannian manifold
with Ricci(M) > 0, then E(M) = 0.

Here λ\ < λi are the first two eigenvalues of the Dirichlet boundary value
problem, d is the diameter of M, F(fe, d) is the geodesic ball with radius d and
constant sectional curvature fc, and cn is a constant which depends only on n.

REMARK: (1) JB(M ) = lim^α, E(B(r)) if M is complete.
(2) If D compact, 0 < λι(D) < E(D) < λι(D) + λ2(D).

. (3) If M is complete and O(M) < 2, then E(M) = 0. Here the order of
V(r]

M, 0(M), is the smallest number k such that limr_oo — V- < oo, where V(r)
rκ

denotes the volume of the geodesic ball whose radius is r. See [7].

PROOF. (1) It is obvious, since J(Dι) £1
(2) Let /i, /2 be the two eigenfunctions corresponding to the first two

eigenvalues λι(D),λ2(D) satisfying

/2 = 1
D JD

and

We may assume that JD /2 Φ 0; Otherwise /2 e J(D) and £(D) < λ2(D). Hence
there exists a number a such that

JD

Then /i — 0/2 e J(D) which implies that

a2|F/2|
2

1+a2
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1 + α2

= λi(D)+λ2(D)

(3) The eigenvalues with Dirichlet boundary condition for subdomains
are estimated in Cheng's paper [4]. In Cheng's paper he first concluded the
eigenvalues to the eigenvalues of geodesic spheres and then estimated the
eigenvalues of the spheres and got the kind of constants as stated in the above
theorem. With these estimates we can easily get the results by using (2).

(4) Since M is complete and noncompact, we can take geodesic balls
with arbitraryily large diameters. Hence we get the desired result from (3).

3. Proof of the main theorem

When c = 0 and c = 1, we have R = 0 and R = n(n — 1), respectively.
For any / e J(D) with any compact subdomain D of M, we have

>inf {\\B\\2 + R}
ΛDJ

by the integration by parts on the stability condition. So

0 = E(M)>mf {\\B\\2 + R}

Since ||5||2 > nH2, and H = constant, c=\ leads to a contradiction. Also
c = 0 implies H = 0. Let βi, . . . , en be n orthonormal frame of M and let en+\
be the normal vector to M , so that

Let B(eι,ej) = hyen+ι, then by Gauss equation,

<Λ(βi, βj}ek, eΐ> = -hβhik

Note that X)"=1 hu — nH = 0. Hence the Ricci curvature of M is given by

Since A = (hy) is a symmetric matrix, there exists an orthogonal matrix C such
that A = CDC'1, for a diagonal matrix D = {αi, . . . , αn}.

So A2 = CD2C~i and trace A2 = £)"=1 α? < 0 because Ricci(M) > 0.
Hence α, = 0, i.e. A — 0 and M must be a plane.
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