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ABSTRACT. This paper is devoted to the functional analytic approach to the problem

of construction of Feller semigroups with VentceΓ (Wentzell) boundary conditions in

probability theory, generalizing the previous work. In this paper we construct a

Feller semigroup corresponding to such a diffusion phenomenon that a Markovian

particle moves both by jumps and continuously in the state space until it "dies" at

the time when it reaches the set where the particle is definitely absorbed.

0. Introduction and results

Let D be a bounded domain of Euclidean space RN with smooth boundary
dD, and let C(D) be the space of real-valued, continuous functions on the
closure D = D U dD. We equip the space C(D) with the topology of uniform
convergence on the whole D; hence it is a Banach space with the maximum
norm

11/11 = max |/(x)|.
xeD

A strongly continuous semigroup {Tt}t>0 on the space C(D) is called a
Feller semigroup on D if it is non-negative and contractive on C(D):

fεC(D), 0 < / < 1 on D=>0< T;/< 1 on D.

It is known (cf. [8]) that if Tt is a Feller semigroup on D, then there exists
a unique Markov transition function pt on D such that

-J,TJ(x) = pt(x,dy)f(y), feC(D).
JD

It can be shown that the function pt is the transition function of some strong
Markov process; hence the value pt(x9 E) expresses the transition probability
that a Markovian particle starting at position x will be found in the set E
at time t.
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Furthermore it is known (cf. [1], [8]) that the infinitesimal generator 91

of a Feller semigroup {Tt}t>0 is described analytically by a Waldenfels operator
W and a VentceP boundary condition L, which we formulate precisely.

Let W be a second-order elliptic integro-differential operator with real
coefficients such that

Wu(x) = Pu(x) +

N
:=t.Σ/^ _,_.

Γ Γ f £ Su \Ί
+ s(x, j;) w(y) - σ(x, y){ u(x) + £ (^ - x )^—W \dy,

JD [_ \ ;=ι dx,. /J

where
(1) αy e C°°(/?N), 0°' = α" and there exists a constant α0 > 0 such that

N

(3) c G C°°(/?*) and c < 0 in D.
(4) The integral kernel s(x, y) is the distribution kernel of a properly

supported pseudo-differential operator 5 G L\~Q(RN)9 K > 0, which has the
transmission property with respect to the boundary dD (see Subsection 2.2),

and s(x, y) > 0 off the diagonal {(x, x): x G RN} in RN x RN. The measure dy
is the Lebesgue measure on RN.

(5) The function σ(x, y) is a non-negative smooth function on D x D
such that σ(x, y) = 1 in a neighborhood of the diagonal {(x, x): x G D} in
D x D. The function σ(x, y) depends on the shape of the domain D. More
precisely it depends on a family of local charts on D in each of which the
Taylor expansion is valid for functions u. For example, if D is convex, one

may take σ(x, y) = 1 on D x D.

(6) Wl(x) = c(x) + s(x, 3θ[l - σ(x, y)]dy < 0 in D.

The operator W is called a second-order Waldenfels operator. The
differential operator P describes analytically a strong Markov process with
continuous paths (diffusion process) in the interior D. The integro-differential
operator Sr is supposed to correspond to the jump phenomenon in the interior
D. Therefore the Waldenfels operator W is supposed to correspond to such
a diffusion phenomenon that a Markovian particle moves both by jumps and
continuously in the state space D.

We remark that the integro-differential operator Sr is a "regularization"
of 5, since the integrand is absolutely convergent. Indeed it suffices to note
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(see [5, Chapitre IV, Proposition 1]) that, for any compact K a RN

9 there
exists a constant Cκ > 0 such that the distribution kernel s(x, y) of S satisfies
the estimate

The intuitive meaning of condition (6) is that the jump phenomenon from
a point x e D to the outside of a neighborhood of x in D is "dominated"
by the absorption phenomenon at x. In particular, if c(x) = 0 in D, condition
(6) implies that any Markovian particle does not move by jumps from x e D
to the outside of a neighborhood V(x) of x in the interior D, since we have

ί.ID
and so by conditions (4) and (5)

s(x,y) = 0, yeD\V(x).

Let L be a second-order boundary condition such that in local coordinates

(xl9x29...,xN-ι) on dD

Lw(x') = Qu(x') + μ(x')fV) - δ(x')Wu(x') + Γu(x')
en

N-ί ^2 N-i Q

- Σ=ι «V)^^^) + Σ β^Ί^Ί + 7(xW)

Γ , , αΓ , ,Λ , , J . „ "v, >, ,Λ~L ,+ r(x , y ) u(y ) — σ(x , y ) w(x ) + > (y. — x/)^— (x ) \dy
JdD L V M s*j ) \

Γ , , Γ / λ / , / 7 / χ »-ι Λ δ W / \1
+ H^ j y) "ί}7) — σ(^ , V) w(x ) + > (y/ — x,)^^(x ) αy,

JD L V A 3xj /J

where:
(1) The operator Q is a second-order degenerate elliptic differential opera-

tor on 3D with non-positive principal symbol. In other words the αί j are
/2\

the components of a smooth symmetric contravariant tensor of type ( I on
\ /

dD satisfying
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*Σ *V(x'KU > 0, x' E dD9 ξ' = "Σ ξjdxj 6 Tf(dD).
U=ι .7=1

Here T£(dD) is the cotangent space of dD at x'.
(2) ρi = 7 e C°°(dD) and y < 0 on dD.
(3) μ e C°°(δD) and μ > 0 on dD.
(4) 5 e C°°(dZ>) and δ > 0 on dD.
(5) n = (nl9 n 2,..., nN) is the unit interior normal to the boundary dD.
(6) The integral kernel r(x', y') is the distribution kernel of a pseudo-

differential operator RεL\~^(dD\ κl>0 and r(x', y') > 0 off the diagonal
AdD = { ( x ' , x ' ) : x f ε dD} in dD x dD. The density d/ is a strictly positive
density on dD.

(7) The integral kernel ί(x, y) is the distribution kernel of a properly
supported, pseudo-differential operator TεL\~ξ2(RN\ κ2 > 0, which has the
transmission property with respect to the boundary dD, and ί(x, y) > 0 off
the diagonal {(x, x): x e RN} in RN x RN.

(8) The operator Γ is a boundary operator of order 2 — min(κl9 κ2\
and satisfies the condition

7Ί(x')= f r(x',y')ll-σ(x',y'
J dD

JD X ' y σ X ' y
x'ε dD.

The boundary condition L is called a second-order VentceΓ boundary
condition. The six terms of L

flu

du
γ(x')u(x')9 μ(x')^n(x'l δ(x')Wu(x'\

Γ Γ / N-l £M \ Ί

Φ', /) «(/) - σ(x', /) ιι(x') + Σ (Λ - x^^-ίx') U/,
JdD L \ J=l ^XJ / J

Γ Γ / N - l ^w \ Ί

ί(x', y) ιι(y) - σ(x', y)(u(x') + Σ (̂  ~ ̂  H*') ^
J/> L V j=ι ĵ /J

are supposed to correspond to the diffusion along the boundary, the absorp-
tion phenomenon, the reflection phenomenon, the viscosity phenomenon and
the jump phenomenon on the boundary, and the inward jump phenomenon
from the boundary, respectively.
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The intuitive meaning of condition (8) is that any Markovian particle
does not move by jumps from x' e dD to the outside of a neighborhood

W(x') of x' in the closure D = DUdD, since we have

*', y') = 0, y1 6 dD\(W(x'} Π dD);

t(x',y) = 09 yeD\(W(x')nD).

This paper is devoted to the functional analytic approach to the problem
of construction of Feller semigroups with VentceP boundary conditions. More
precisely we consider the following problem:

PROBLEM. Conversely, given analytic data (W9 L), can we construct a Feller
semigroup {Tt}t>0 whose infinitesimal generator 91 is characterized by (W, L)?

We say that the boundary condition L is transversal on the boundary
dD if it satisfies the condition

Iί(x', y)dy = +00 if μ(x') = δ(x') = 0.

Intuitively the transversality condition implies that a Markovian particle jumps
away "instantaneously" from the points x' e dD where neither reflection nor
viscosity phenomenon occurs.

The next theorem asserts that there exists a Feller semigroup on D
corresponding to such a diffusion phenomenon that one of the reflection

phenomenon, the viscosity phenomenon and the inward instantaneously jump
phenomenon from the boundary occurs at each point of the boundary:

THEOREM 1. We define a linear operator 91 from the space C(D) into
itself as follows:

(a) The domain of definition D(9l) of 91 is the set

D(9I) = {UG C(D): Wu e C(D), Lu = 0}.

(b) 9ϊw = Wu, u e D(9I).
Here Wu and Lu are taken in the sense of distributions.

Assume that the boundary condition L is transversal on the boundary dD.
Then the operator 91 generates a Feller semigroup {Tt}t>0 on D.

Theorem 1 was proved by [9, Theorem 1], and also by [3, Theoreme 3.2].

We remark that Takanobu-Watanabe [11] proved a probabilistic version of
Theorem 1 in the case where the domain D is the half space R+. On the
other hand, Taira [10] studied the case where the differential operator P is
degenerate and the integro-differential operator Sr vanishes identically in D.

The purpose of this paper is to generalize Theorem 1 to the non-
transversal case, improving [9, Theorem 2], which we state precisely.
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First we assume that
(H) there exists a second-order VentceΓ boundary condition Lv such that

Lu = mLvu + yw, (0.1)

where

(3') m e C°°(3D) and m > 0 on dD,

and the boundary condition Lv is given in local coordinates (x1? x2,..., XN-I)
by the formula

Lvu(x') = Qu(x') + μ(x')ί(*') - δ(x')Wu(x') + Γu(x')
Cn

δu
μ(x')-(x')-δ(x')Wu(x')

on

Γ Γ / N-l PM \ Ί

r(x'9 y')\ u(y') - σ(x'9 y')(u(x') + Σ (Vj ~ Xj)j-(x') W
JdD \_ \ J=l OXj /J

ί t(xf

9y)\u(y)-σ(xf

9y)(u(x') + N^(yJ-xJ)^^
JD \_ \ j=ι oxj /J

and satisfies the conditions

Ja

+ I t(x', y)[1 - σ(x', y)~]dy = 0, x' e dD, (0.2)

and

t(x', y)dy = +00 if μ(x') = δ(x') = 0. (0,3)
Jo

We let

M = \x'edD: μ(x') = (5(xr) = 0, ί(x', y)rf); < oo > .
I JD J

Then, by condition (0.3) it follows that

M = {x' e dD : m(x') = 0},
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since we have μ(x') = m(x')μ(x'\ δ(x') = m(x')δ(x')9 and ί(x', y) = m(x')ί(x', y).
Hence we find that the boundary condition L is not transversal on dD.

Furthermore we assume that
(A) m(x') - γ(x') > 0 on dD.

Intuitively conditions (H) and (A) imply that a Markovian particle does
not stay on dD for any period of time until it "dies" at the time when it
reaches the set M where the particle is definitely absorbed.

Now we introduce a subspace of C(D) which is associated with the
boundary condition L.

By condition (A), we find that the boundary condition

Lu = mLvu + yu = 0 on dD

includes the condition

u = 0 on M.

With this fact in mind, we let

C0(Z)\M) = {u e C(D): u = 0 on M}.

The space C0(D\M) is a closed subspace of C(D); hence it is a Banach space.
A strongly continuous semigroup {Tt}t>0 on the space C0(Z)\M) is called

a Feller semigroup on D\M if it is non-negative and contractive on C0(D\M):

feCQ(D\M\ 0 < / < 1 on D\M=>0<7;/< 1 on D\M.

We define a linear operator SOΪ from C0(D\M) into itself as follows:
(a) The domain of definition D(9K) of SR is the set

D(2R) = {u e C0(D\M): Wu e CQ(D\M\ Lu = 0}. (0.4)

(b) Wu = Wu9 u e D(m).
The next theorem is a generalization of Theorem 1 to the non-transversal

case, and is an improvement on [9, Theorem 2] which only treated the case
where μ = 1 on dD\

THEOREM 2. If conditions (H) and (A) are satisfied, then the operator 901
defined by formula (0.4) generates a Feller semigroup {Tt}t>0 on D\M.

Theorem 2 asserts that there exists a Feller semigroup on D\M corre-
sponding to such a diffusion phenomenon that a Markovian particle moves
both by jumps and continuously in the state space D\M until it "dies" at
the time when it reaches the set M where the particle is definitely absorbed.

Theorems 1 and 2 solve from the viewpoint of functional analysis the
problem of construction of Feller semigroups with VentceP boundary condi-
tions for elliptic Waldenfels operators.
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The rest of this paper is organized as follows.
Sections 1 and 2 provide a review of basic results about Feller semigroups

and pseudo-differential operators which will be used in the subsequent sections.
In Section 3 we give a general existence theorem for Feller semigroups

in terms of boundary value problems. We reduce the problem of construction
of Feller semigroups to the problem of unique solvability for the boundary
value problem

(α -W)u=f in D,

Lu = φ on dD,

where α is a positive parameter.
Section 4 is devoted to the proof of Theorem 2. The idea of our ap-

proach is essentially the same as that of [9], although the proof is a little
more complicated and difficult.

First, applying Theorem 1 to the transversal boundary condition Lv we
can solve uniquely the following boundary value problem:

(α -W)v=f in A

Lvυ = 0 on dD.

We let

The operator G* is a generalization of the classical Green operator. Then
it follows that a function u is a solution of the problem

\x-W)u=f in D,

Lu = mLvu + yu = 0 on dD

if and only if the function w = u — v is a solution of the problem

(α - W)w = 0 in A

Lw = — Lv = —yv on dD.

However we know that every solution w of the homogeneous equation
(α — VF)w = 0 in D can be expressed as follows:

w = HΛψ.

The operator Ha is a generalization of the classical harmonic (Poisson) opera-
tor. Thus, by using the operators GV

Λ and HΛ one can reduce the study of
problem (*) to that of the equation

LHΛψ = -LGVJ = -yv on dD.
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We find that if S e L2^(RN) and Te L\~S2(R") have the transmission property,
then the operator LHa is a pseudo-differential operator of second order on
the boundary dD. Thus we can reduce the study of problem (*) to that of
the pseudo-differential equation

LHΛψ= -yGlf on dD.

By using the Holder space theory of psuedo-differential operators, we
can show that if condition (A) is satisfied, then the operator LHΛ is bίjective
in the framework of Holder spaces.

Therefore we find that a unique solution u of problem (*) can be expressed
in the following form (see formula (4.5)):

u = Gϊf-HΛ((LHΛΓ
l(LGϊf)).

This formula allows us to verify all the conditions of the generation theorem
of Feller semigroups.

The author would like to thank Kόhei Uchiyama for his helpful sugges-
tions on the formulation of conditions (H) and (A) in Theorem 2 from the
viewpoint of probability theory.

1. Theory of Feller semigroups

This section provides a brief description of basic results about Feller
semigroups, which forms a functional analytic background for the proof of
Theorem 2.

If K is a locally compact, separable metric space, then we add a point
d to K as the point at infinity if K is not compact, and as an isolated point
if K is compact; so the space Kd = K ( J { d } is compact.

Let C(K) be the space of real-valued, bounded continuous functions on
K. The space C(K) is a Banach space with the supremum norm

11/11 = sup |/(x)|.
xeK

We say that a function / e C(K) converges to zero as x -»d if, for each
ε > 0, there exists a compact subset E of K such that |/(x)| < ε, xe K\E;
we then write lim*^ /(x) = 0. It is easy to see that

C0(K) := {/ e C(K): lim /(x) = 0 j = {/ e C(Kd): f(d) = 0}.
I *-*a J

The space C0(K) is a closed subspace of C(X); hence it is a Banach space.
A family {Tt}t>0 of bounded linear operators acting on C0(K) is called

a Feller semigroup on K if it satisfies the following three conditions:
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(i) Tt+s = T, Ts, t, s>0; T0 = 7.
(ii) The family {T,} is strongly continuous in t for t > 0:

lim||T ( + s/-T,/||=0, feC0(K).
s4θ

(iii) The family {Tt} is non-negative and contractive on C0(X):

feC0(K), 0 < / < 1 on K=>Q<TJ<1 on X.

If {Tt}t>0 is a Feller semigroup on X, we define its infinitesimal generator
91 by the formula

9lκ = lim T'U ~ U, (1.1)
ί4θ t

provided that the limit (1.1) exists in the space C0(K).
The next theorem is a version of the Hille-Yosida theorem adapted to

the present context (cf. [8, Theorem 9.3.1 and Corollary 9.3.2]):

THEOREM 1.1. (i) Let {Tt}t>0 be a Feller semigroup on K and 91 its
infinitesimal generator. Then we have the following:

(a) The domain D(9l) is everywhere dense in the space C0(K).
(b) For each α > 0, the equation (α/ — 21) w = / has a unique solution

u in D(9ϊ) for any f e C0(K). Hence, for each α > 0, the Green operator
(α/ - SI)'1: C0(K) -> C0(K) can be defined by the formula

u = (α/ - βl)-1/, /eC0(X).

(c) For each α > 0, the operator (α/ — 9I)"1 is non-negative on the space
C0(K):

/eC0(K), />0 on X^ίαi-SlΓY^O on K.

(d) For eαc/i α > 0, the operator (α/ — 9I)-1 is bounded on the space
C0(K) with norm

(ii) Conversely, if 21 is α /wear operator from the space C0(K) into itself
satisfying condition (a) and if there exists a constant α0 > 0 such that, for all
α > α0, conditions (b) through (d) are satisfied, then 91 is ί/ie infinitesimal genera-
tor of some Feller semigroup {Tt}t>0 on K.

COROLLARY 1.2. Let K be a compact metric space and let 91 be the
infinitesimal generator of a Feller semigroup on K. Assume that the constant
function 1 belongs to the domain D(9I) of 91 and that we have for some con-
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slant c

9T1 < -c on K.

Then the operator 21' = 91 + cl is the infinitesimal generator of some Feller

semigroup on K.

2. Theory of pseudo-differential operators

In this section we present a brief description of basic concepts and results

of the Holder space theory of pseudo-differential operators which will be used

in the subsequent sections. For detailed studies of pseudo-differential opera-

tors, the reader is referred to Chazarain-Piriou [4], Hόrmander [6] and

Rempel-Schulze [7].

2.1. Holder spaces

Let Ω be an open subset of Euclidean space Rn. If m is a non-negative

integer, we let

Cm(Ω) = the space of functions of class Cm in Ω,

and

Cm(Ω) = the space of functions in Cm(Ω) all of whose derivatives

of order <m have continuous extensions to the closure Ω.

If Ω is bounded, then Cm(Ω) is a Banach space with the norm

\d*u(x)\.
xeΩ
|α|<m

If m is a non-negative integer and 0 < θ < 1, we define the Holder spaces

Cm+θ(Ω) = the space of functions in Cm(Ω) all of whose m-th order

derivatives are locally Holder continuous with exponent θ

in Ω,

and

Cm+θ(Ω) = the space of functions in Cm(Ω) all of whose m-th order

derivatives are Holder continuous with exponent θ

on Ω.

If Ω is bounded, then the Holder space Cm+θ(Ω) is a Banach space with the
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norm

\d*u(x) - d*u(y)\
II llcwι"'"^ίΩ) — II llcm(Ω) *~ niax sup j ~n

|oc|=Fiι χ,yeΩ I J\

If M is an n-dimensional compact smooth manifold without boundary,

then the Holder space Cm+θ(M) is defined to be locally the Holder space

Cm+θ(Rn), upon using local coordinate systems flattening out M, together with

a partition of unity. The norm of Cm+θ(M) will be denoted by || HC^M)-

2.2. Pseudo-differential operators

If m e R and 0 < δ < p < 1, we let

S™δ(Ω x RN) = the set of all functions a e C°°(Ω x RN) with the property

that, for any compact K c Ω and any multi-indices α, /?,

there exists a constant Cκ Λjβ > 0 such that we have for all

x e K and θ e RN

0)| < CKtΛtβ(l

The elements of S™δ(Ω x /?N) are called symbols of order m.

A psuedo-differential operator of order m on Ω is a Fourier integral

operator of the form

Au(x) = ί ί e«*-» *a(x, Λ
J J ΩxRn

with some α e S£5(ί2 x Ω x /?"). Here the integral is taken in the sense of

oscillatory integrals.

We let

Lm

p,δ(Ω) = the set of all pseudo-differential operators of order m on Ω.

Now we formulate the notion of transmission property essentially due

to Boutet de Monvel [2], which is a condition about symbols in the normal

direction at the boundary.

We let

L7,0(^+) = the space of pseudo-differential operators in L™t0(Rn+) which can
be extended to a pseudo-differential operator in L™>0(Rn).

A pseudo-differential operator A e L™j0(Rn+) is said to have the transmission

property with respect to the boundary R"'1 if the restriction of A(u°) to Rn+

has a C°° extension to Rn for every u E Qj° (/?+), where u° is the extension of

u to Rn by 0 outside R^.
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We remark that the notion of transmission property may be transferred

to manifolds. Indeed, if Ω is a relatively compact open subset of an n-

dimensional paracompact smooth manifold M without boundary, then the

notion of transmission property can be extended to the class L™t0(M), upon

using local coordinate systems flattening out the boundary dΩ.

Then we have the following results (cf. [2], [7]):

(I) If a pseudo-differential operator AεL™j0(M) has the transmission

property with respect to the boundary dΩ, then the operator

u ̂  A(u*)\Ω

maps C°°(ί2) continuously into itself, where w° is the extension of M to M by

0 outside Ω.

(II) If a pseudo-differential operator AeL™t0(M) has the transmission

property, then the operator AΩ maps Ck+θ(Ω) continuously into Ck~m+θ(Ω)

for any integer k > m and 0 < θ < 1.

2.3. A unique solvability theorem for pseudo-differential operators

The next result will play an essential role in the construction of Feller

semigroups in Section 4 (cf. [9, Theorem 2.1]):

THEOREM 2.1. Let T be a classical pseudo-differential operator of second

order on an n-dimensional compact smooth manifold M without boundary such

that

T = P + S,

where:

(a) The operator P is a second-order degenerate elliptic differential opera-

tor on M with non-positive principal symbol, and PI < 0 on M.

(b) The operator S is a classical pseudo-differential operator of order

2 — K, K > 0, on M and its distribution kernel s(x, y) is non-negative off the

diagonal AM = {(x, x) : x e M} in M x M.

(c) Tl = PI + 51 < 0 on M.
Then, for each integer k > 1, there exists a constant λ = λ(k) > 0 such

that, for any f e Ck+θ(M\ one can find a function φ E Ck+θ(M) satisfying

(T-λI)φ=f on M,

and

Here Ck+θ(λ) > 0 is a constant independent of f.
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3. A general existence theorem for Feller semigroups

The purpose of this section is to give a general existence theorem for
Feller semigroups in terms of boundary value problems (cf. [1], [8]).

First we consider the following Dirichlet problem:

*-W)u=f in D,

= φ on dD,

where α is a positive parameter.
The next theorem summarizes the basic facts about problem (D) in the

framework of Holder spaces (see [1, Theoreme XV]):

THEOREM 3.1. Let k be an arbitrary non-negative integer and 0 < θ < 1.
For any feCk+θ(D) and any φ e Ck+2+θ(dD), problem (D) has a unique solution
u in Ck+2+θ(D).

Theorem 3.1 with fc = 0 tells us that problem (D) has a unique solution
u e C2+Θ(D) for any / e CΘ(D) and any φ e C2+θ(dD) with 0 < θ < 1. Therefore
we can introduce linear operators

(j : c/ (D) —^ C/ \D), oc ^ U?

and

HΛ: C2+θ(dD) -> C2+Θ(D), α > 0,

as follows.
(a) For any feCθ(D), the function Gα°/e C2+Θ(D) is the unique solution

of the problem

= / in D,
Gα°/ = 0 on dD. ( J

(b) For any φ e C2+θ(dD\ the function Haφ e C2+Θ(D) is the unique solu-
tion of the problem

= n D,

HΛφ = φ on dD.

Then we have the following results (see [1, Proposition III. 1.6]):

THEOREM 3.2. (i) The operator G° can be uniquely extended to a non-
negative, bounded linear operator on C(D) into itself, denoted again G£, with
norm ||G°|| < 1/α for any α > 0.

(ii) The operator HΛ can be uniquely extended to a non-negative, bounded
linear operator on C(dD) into C(D\ denoted again HΛ9 with norm \\HΛ\\ < 1 for
any α > 0.
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Now we consider the boundary value problem (*) in the framework of
the spaces of continuous functions:

(a-W)u=f in D,

Lu = 0 on dD. W

To do so, we introduce three operators associated with problem (*).
(I) First we introduce a linear operator

as follows.
(a) The domain D(W) of W is the space C2+Θ(D).
(b) Wu = Pu + Sru, u e D(W).

Then we have the following (cf. [8, Lemma 9.6.5]):

LEMMA 3.3. The operator W has its minimal closed extension W in the
space C(D).

The extended operators G°: C(D) -> C(D) and HΛ: C(dD) -> C(D) still satisfy
formulas (3.1) and (3.2) respectively in the following sense (cf. [8, Lemma 9.6.7
and Corollary 9.6.8]):

LEMMA 3.4. (i) For any f e C(D\ we have

\

Sf = f in D.

(ii) For any φ e C(dD\ we have

HΛφ €D(W\
(α/ - W)HΛφ = 0 in D.

Here D(W) is the domain of the closed extension W.

COROLLARY 3.5. Every function u e D(W) can be written in the following
form:

u = G>/ - W)u) + H.(U\»D\ « > 0.

(II) Secondly we introduce a linear operator

LG°: C(D) -» C(dD\ α > 0,

as follows.
(a) The domain D(LGα°) of LGα° is the space CΘ(D).

(b) LG°/ = L(Gα°/), / e D(LGα°).
Then we have the following (cf. [8, Lemma 9.6.9]):
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LEMMA 3.6. The operator LG° can be uniquely extended to a non-negative,
bounded linear operator LG°: C(D) -> C(dD) for any α > 0.

(Ill) Finally we introduce a linear operator

LHa: C(dD) -» C(dD\ α > 0,

as follows.
(a) The domain D(LHa) of LHΛ is the space C2+θ(dD).
(b) LHΛψ = L(HM φeD(LHΛ).
Then we have the following (cf. [8, Lemmas 9.6.11 and 9.6.13]):

LEMMA 3.7. The operator LHΛ has its minimal closed extension LHΛ in
the space C(dD) for any α > 0. Moreover the domain D(LHΛ) of LHΛ does
not depend on α > 0.

Now we can give a general existence theorem for Feller semigroups on
dD in terms of boundary value problems (cf. [8, Theorem 9.6.15]):

THEOREM 3.8. (i) // the operator LHΛ is the infinitesimal generator of a
Feller semigroup on dD, then, for each constant λ > 0, the boundary value
problem

- W)u = 0 in D,

(λ — L)u = φ on dD

has a solution u in C2+Θ(D\ 0 < θ < 1, for any φ in some dense subset of C(dD).

(ii) Conversely, if, for some constant λ > 0, problem (*') has a solution u
in C2+Θ(D) for any φ in some dense subset of C(dD), then the operator LHΛ

is the infinitesimal generator of some Feller semigroup on dD.

We conclude this section by giving a precise meaning to the boundary
conditions Lu for functions ueD(W).

We let

D(L) = {ueD(W):u\dDE@},

where 2 is the common domain of the operators LHΛ, α > 0. Corollary 3.5
tells us that every function u e D(L) c D(W) can be written in the form

u = Gα°((α/ - W)u) + HΛ(u\6D\ « > 0. (3-3)

Then we define

Lu = LG°(α/ - W)u) + LHΛ(u\8D\ (3.4)

The next lemma justifies definition (3.4) of Lu for all weD(L) (cf. [8,
Lemma 9.6.16]):
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LEMMA 3.9. The right-hand side of formula (3.4) depends only on u, not

on the choice of expression (3.3).

4. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. In the proof we
make essential use of the unique solvability theorem for pseudo-differential
operators (Theorem 2.1) and the general existence theorem for Feller semi-
groups in terms of boundary value problems (Theorem 3.8).

4.1. The space C0(D\M)

First we consider a one-point compactification Kδ = K ( J { d } of the space
K = D\M, where

M = \x' e dD : μ(x') = δ(x') = 0, | t(x'9 y)dy < oo 1
( JD }

= {*' e dD : m(x') = 0}.

We say that two points x and y of D are equivalent modulo M if x = y
or x, y e M; we then write x ~ y. We denote by D/M the totality of equiva-
lence classes modulo M. On the set D/M, we define the quotient topology
induced by the projection q:D-+D/M. It is easy to see that the topological
space D/M is a one-point compactification of the space D\M and that the
point at infinity d corresponds to the set M:

Furthermore we have the following isomorphism:

C(Kd) ^{ue C(D) : u is constant on M}. (4.1)

Now we introduce a closed subspace of C(Kd) as in Section 1:

Then we have by assertion (4.1) the isomorphism

C0(K) £ C0(D\M) = {u e C(D) : u = 0 on M}. (4.2)

4.2. Proof of Theorem 2

We shall apply part (ii) of Theorem 1.1 to the operator SDΪ defined by
formula (0.4).
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First we simplify the boundary condition L given by formula (0.1). If
conditions (A) and (H) are satisfied, then one may assume that the boundary
condition L is of the form

Lu = mLvu + (m - l)u = 0 on dD, (4.3)

with

0 < m < 1 on dD.

Indeed it suffices to note that the boundary condition (0.1) is equivalent to
the boundary condition

/ γ

Lvu + [—ί—)w = 0 on dD.
\m -yj \m-

Therefore the next theorem proves Theorem 2:

THEOREM 4.1. We define a linear operator

as follows.
(a) The domain D(Wl) of SR is the set

= {ue C0(D\M) : Wu e CQ(D\M\ Lu = 0}. (4.4)

(b) Wlu = Wu,ue
Assume that the following condition (A') is satisfied:

(A') 0 < m(x') < 1 on dD.

Then the operator 501 is the infinitesimal generator of some Feller semigroup

ί>o on D\M, and the Green operator Gα = (α/ — SOI)"1, α > 0, is given by
the following formula:

GJ = Glf - HΛ(LHΛ-\LGlf)\ f e C0(D\M). (4.5)

Here GJ is the Green operator for the boundary condition Lv given by the
formula

Glf = GSf - HX(LVHX-*(L,G.°/)λ / 6 C(D). (4.6)

PROOF. We apply part (ii) of Theorem 1.1 to the operator 9K defined
by formula (4.4). The proof is divided into several steps.

(1) First we prove that

for all α > 0, the operator LHΛ generates a Feller semigroup on dD.
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By virtue of the transmission property of S e L?70

K(/?N) and Tε L\~S2(RN)>
we find (cf. [2], [7, Chapter 3]) that the operator LHΛ is the sum of a
degenerate elliptic differential operator of second order and a classical pseudo-
differential operator of order 2 — mm(κί9 κ2)'

LHΛφ(*Ί

= m(x')LvHΛφ(x') + (w(x') — l)φ(x')

+ ί m(X')r(x'9 y')\φ(yr) - σ(x'9 y')(φ(xf) + Y (>!/ ~ Xj)^(x'
JdD L \ J=l ^j

Γ Γ / JV-i Pω \Ί
+ mίx')^', y)\ HΛφ(y) ~ σ(x'9 y)( φ(x') + Σ (^ - x,-)/(x') Uy.

JD L \ j=ι ^xj /J

Furthermore it follows from an application of the boundary point lemma (see
Appendix, Theorem A.2) that

—(//αl)<0 on dD. (4.7)
dn

This implies that

L#αl(x')<0 on dD.

Thus, applying Theorem 2.1 to the operator LHΛ we obtain that

if λ > 0 is sufficiently large, then the range R(LHa — λl)
contains the space C2+θ(dD). (4.8)

This implies that the range R(LHΛ — λl) is a dense subset of C(dD). Therefore,
applying part (ii) of Theorem 3.8 to the operator L we obtain that the
operator LHΛ is the infinitesimal generator of some Feller semigroup on dD,
for all α > 0.

(2) Next we prove that

if condition (A') is satisfied, then the equation
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has a unique solution ψ in D(LHΛ) for any φ e C(dD); hence the inverse
LH^1 of LHa can be defined on the whole space C(dD).

Further the operator —LHΛ~^ is non-negative and bounded on C(dD).
(4.9)

By inequality (4.7) and conditions (0.2) and (0.3), it follows that

LHβl(x') = m(x')LvHΛl(xr) + (m(x') - 1)

\
- (m(x') - 1)

')( \ f(x', /)[! - σ(x', /)]<// + ί f(x', y)[l - σ(x'9

\JdD JD

') ! t(x',
JD

m(x') I t(xf

9y)lHΛl(y)-l]dy

)^-(HΛl)(x') - uδ(x')} + (m(x') -
dn

c') ί f(x',
JD

< 0 on

so that

fcα = _ sup LHαl(x') > 0.
x'edD

Here we remark that the constants fcα are increasing in α > 0:

α > β > 0 => feα > fe^.

Moreover, using Corollary 1.2 with K = dD, 9ί = L Hα and c = feα we obtain
that the operator LHa + kj is the infinitesimal generator of some Feller
semigroup on dD. Therefore, since feα > 0, it follows from an application of
part (i) of Theorem 1.1 with 91 = LHΛ + kj that the equation

-LϊΓaψ = (kj - (LHΛ + fcα/))<A = φ

has a unique solution ψ e D(LHΛ) for any φ E C(dD\ and further that the
operator —LHΛ~

l = (kj — (LHΛ + fcα/))~1 is non-negative and bounded on the
space C(dD) with norm

1!! = \\(kj - (LHΛ + kJ)Γ\\ < (4 1Q)
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(3) By assertion (4.9), we can define the operator Gα by formula (4.5)
for all α > 0. We prove that

G. = (α/ - SWΓ1, α>0. (4.11)

By formulas (4.5) and (4.6), it follows that we have for all / e C0(D\M)

and

WGJ=«GJ-f.

Furthermore we have

LGJ = LGlf - LHΛ(LH -\LGlf)) = 0 on 3D, (4.12)

or equivalently,

mLv(GJ) + (m - l)GJ = 0 on dD. (4.12')

This implies that

GJ = 0 on M = {xr e dD : m(x') = 0},

and so

WGJ=aGJ-f = Q on M.

Summing up, we have proved that

GJ e D(SW) = (u e C0(D\M) : Wu e C0(D\M), Lu = 0},

and

(α/-5»ί)Gα/ = /, /6C0(D\Af),

that is,

(α/ - 9K)Gα = / on C0(5\M).

Therefore, in order to prove formula (4.11) it suffices to show the injec-
tivity of the operator α/ — 9JZ for α > 0.

Assume that

u e D(SW) and (α/ - 9H)w = 0.

Then, by formula (3.3) it follows that the function u can be written as

u = HΛ(u\dD), u\dDe@

Thus we have by definition (3.4)
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LHΛ(u\dD) = Lu = 0.

In view of assertion (4.9), this implies that

U\8D = 0,

so that

u = HΛ(u\8D) = 0 in D.

(4) Now we prove the following three assertions:
(i) The operator Gα is non-negative on the space C0(D\M):

/ e C0(0\M), / > 0 on D\M => GJ > 0 on D\M.

(ii) The operator Gα is bounded on the space C0(5\M) with norm

I|GJ<-, α>0. (4.13)
Of.

(in) The domain D(9K) is everywhere dense in the space C0(D\M).

PROOF OF ASSERTION (i). Recall that the Dirichlet problem

(α -W)u = f in r>9

u = φ on dD

is uniquely solvable in the framework of the spaces of continuous functions.
Hence it follows that

Gαy=Hα(G;/U) + G°/ on 5. (4.14)

Indeed it suffices to note that the both sides have the same boundary values
Glf\dD and satisfy the same equation: (α — W)u =/ in D.

Thus, applying the boundary operator L to the both sides of formula
(4.14) we obtain that

Since the operators —LHΛ

 1 and LG° are non-negative, it follows that

> -G«/U on dD.

Therefore, by the non-negativity of HΛ and G° we find that

GJ = Gϊf + H.(-Γ~

= G°/ > 0 on D.
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PROOF OF ASSERTION (ii). It suffices to show that

/ e C0(£\M), / > 0 on D => ocGJ < max / on D, (4.13r)
D

since Gα is non-negative on the space C(D).
We remark (see formula (4.3)) that

LGlί = mLvGα

v/ + (m - l)Gα

v/ = (m- l)Gα

v/ on dD,

so that

= G J + HΛ(-LHa-
l((m -

Therefore, by the non-negativity of HΛ and —LHx~
l it follows that

GJ = G;/ + HA-LΪΓ-^m - 1)G;/|3D)) < GVJ <-maxf on D,
& D

since (m-l)G α

v /<0 on dD and ||G J|| < 1/α. This proves assertion (4.13r)
and hence assertion (4.13).

PROOF OF ASSERTION (iii). In view of formula (4.11), it suffices to show
that

lim ||αGβ/ - f\\ = 0, fe C0(D\M) Π C"(D). (4.15)
a-+ + oo

We remark that

*GJ -f = ΛGlf -f- aHΛ(LH -\LGlf))

= (ΛGlf -f) + H.CUT.-^l - m)GvJ\aD)). (4Λ6)

We estimate the two terms in the last line of formula (4.16).
(iii-1) First, applying Theorem 1 to the boundary condition Lv we find

that the first term tends to 0 (cf. [9, assertion (3.22)]):

lim ||αGα

v/-/||=0. (4.17)
α-» + oo

(iii-2) To estimate the second term, we decompose it into the following
form:

+ HΛ(LHΛ'
l((i - m)(αGα

v/ -

However we have by assertions (4.10) and (4.17)
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-m)(αGβY-. I-LH-1! -m)(αGβY-

. 1

"k~i
asα^+oo.

(4.18)

Here we have used the fact that

kί = — sup LH1l(x') < ka = — sup LHal(%') for all α > 1.
x' GdD x'e dD

Thus we are reduced to the study of the term

Hu(LHΛ-
l((l-m)f\dD)).

To do so, we need a lemma on the behavior of the function l/(-Lv#αl)
as α-> +00 (cf. [1, Proposition III. 1.6]):

LEMMA 4.2. // the boundary condition Lv is transversal on the boundary
dD, then we have

1
lim = 0.

Now, for any given ε > 0, one can find a function h e Cx(dD) such that

h = 0 near M = {*' 6 dD: m(x') = 0},

1 - m)/U - Λ| | < ε

Then we have for all α > 1

\\HΛ(LHΛ~\(\ - m)/U) - Hu \-LH - m)f\9D - h\\

Since ε is arbitrary, this proves that

lim \\Hu(LHΛ-
l((l-m)f\dD)-. = 0. (4.19)

On the other hand one can find a function χ e C£(dD) such that

χ = 1 near M,
(1 -χ)h = h on dD.
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Then we have

Λ(x') = (1 - χ(x'))h(x')

Since the operator —LHΛ~
l is non-negative on C(dD\ it follows that

_
-LH~lh < sup on 3D,

and so

\\Ha(LH~lh)\\ < II -LH.-1*!! < sup ( * *!*V) \\h\\. (4.20)
x'edD \ — Lfίal(X )J

However, there exists a constant c0 > 0 such that

Co, X'€8D,
m(x')

so that

- χ(χ') i - *(*')
-Lff«l(x') JV» (x')(-Lvf

1

-L,f/.l

ί«l(x')) + (1 - m(x')\

In view of Lemma 4.2, this implies that

Hence we have by inequality (4.20)

Jim Hf/ΛLf/;-1*)!! = 0.

Therefore we obtain from inequalities (4.19) and (4.21) that

lim sup \\H,(LH-\(\ - m)/U)|| = 0.

(4.21)

(4.22)

Finally, combining assertions (4.18) and (4.22) we find that the second
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term in the last line of formula (4.16) also tends to 0:

lim \\HΛ(LH-\*(\ - m)GβVU))ll = 0.
α~* + oo

This completes the proof of assertion (4.15) and hence that of assertion

(5) Summing up, we have proved that the operator SPΐ, defined by for-
mula (4.4), satisfies conditions (a) through (d) in Theorem 1.1. Hence, in view
of assertion (4.2) it follows from an application of part (ii) of the same theorem
that the operator SDΪ is the infinitesimal generator of some Feller semigroup
fτ\ on Π\ Λ/f1 ί / ί > 0 *J** U \ -LT-L .

The proof of Theorem 4.1 and hence that of Theorem 2 is now complete.

D

Appendix: The maximum principle

In this appendix, following [1] we formulate two useful maximum prin-
ciples for second-order elliptic Waldenfels operators.

First we state the strong maximum principle (see [1, Theoreme VII]):

THEOREM A.I. Let W be a second-order elliptic Waldenfels operator.

Assume that a function u e C2(D) satisfies Wu > 0 in D and C = max^w > 0.
// the function u takes its maximum C at some point x0 e D, then u = C in
the connected component containing x0.

Next we consider the interior normal derivative (du)/(dn) at a boundary
point where the function u e C2(D) takes its non-negative maximum.

The boundary point lemma reads as follows (see [1, Theoreme VIII]):

THEOREM A.2 (The boundary point lemma). Let W be a second-order
elliptic Waldenfels operator. Assume that a function u e C2(D) satisfies Wu > 0

in D, and that there exists a point x'0 of dD such that

U(XQ) = max5 u(x) > 0,

u(x) < U(XQ\ xe D.

Then we have

du, „ Λ
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