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ABSTRACT. A new entropy criterion (maximal dissipation condition) for the quasilinear

wave equation with generally nonmonotone nonlinearity is introduced and tested on

self-similar solutions of the corresponding Riemann problem. It is shown that the

maximally dissipating solution exists and it is uniquely determined. The relation

between the maximal dissipation principle and other entropy criteria is discussed.

Introduction

Introducing hysteresis into hyperbolic equations makes the problem easier.
This fact has already been recognized recently [13, 14]. The present paper
is based on another point of view: we do not assume any a priori hysteretic
structure in a quasilinear wave equation and we show that nevertheless,
convex hysteresis appears as a natural consequence of the maximal dissipation
principle.

It is well known that systems of hyperbolic conservation laws of the type

(i) Wί + /(t4 = 0, xeR\ f > 0 ,

where u(x, t) is the vector (M1(X, £),..., un(x, ί)), n e N , and f:Rn-*Rn is a
given function, do not admit in general global regular solutions satisfying a
given initial condition M(X, 0) = uo(x) even if the data are smooth, and that
weak solutions may be multiple if / is nonlinear, unless additional criteria
are fulfilled [17]. These criteria (usually called entropy conditions) have been
tested on the well-known Riemann problem for equation (i) which consists
in choosing initial data

r \ < m ίU~ f θ Γ X < °'
(n) u(x, 0) := <
1 ' ι ' K for x > 0,

where w_, u+ e Rn are given constant vectors.
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When listing the existing entropy conditions, we must remind at least
the following ones:
(iii) Lax' shock condition [17],
(iv ) condition η(u\ + q(u)x < 0 with a given entropy pair (η, q) [16, 18],
( v ) viscosity admissibility criterion [21],
( vi) Liu's shock admissibility criterion [22],
(vii) maximal entropy rate criteron [5],
(viii) viscosity-capillarity criterion [24].

Under various assumptions on / and/or u_, M+, existence and uniqueness
for the problem (i), (ii) has been established. For a survey of the results see
e.g. [3] and the references cited there. While for n = 1 the theory is fairly
complete, starting from n = 2 considerable difficulties can appear. This has
been many times demonstrated on the so-called p-system (e.g. [25])

(ix) fw,+ />(»), = 0,

Here, the hyperbolicity is implied by p'(i ) < 0 and the complication begins
when p is not convex (concave) or even monotone in the whole range of
v. The Riemann problem for (ix) in the case of nonconvex p has been treated
under various entropy conditions and various assumptions on p [19, 20, 26,
27 etc.].

In this paper we concentrate our attention to the equation

W utt - g(ux)x = 0

arising from (ix) for g = — p by a formal elimination of v and w. In fact,
all what is assumed about g is that it is locally Lipschitz continuous.

We find a general uniqueness condition based on the maximal dissipation
principle which yields a unique solution of the Riemann problem for (x) in
the class of regulated self-similar solutions. Our approach is close to that
of Dafermos [5] and Leibovich [19]. We apply the maximal dissipation
principle locally in space, while Dafermos requires that the admissible solution
maximizes the total entropy rate. It appears that maximally dissipating
solutions are those which minimize the L2-norm. Geometrically, shocks are
allowed only along the boundary of the convex hull of the graph of g similarly
as in [19]. Maximal dissipation principle thus imposes a convex hysteretic
behavior to the equation (x). This also explains, why equation (x), where a
single-valued function g is replaced by a convex hysteresis operator, admits
regular solutions [13, 14].

An important feature of the technique developed below is that it fits also
to the case where g is not monotone, which corresponds to the nonstrictly
hyperbolic case studied e.g. in [8], [9], [10], [23], [24]. Keyfitz [10] replaces
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the one-valued constitutive relation by a hysteretic one, while Shearer [23]
applies Liu's criterion or a so-called viscosity-capillarity criterion [24]. The
viscosity-capillarity approach is also applied in [8] to obtain a unique solution
of the Riemann problem with g nonmonotone. Dafermos maximal entropy
rate criterion is applied in [9] to a special class of solutions. In what follows
we enlarge results of this kind by constructing a unique minimal solution of
the Riemann problem according to our minimality condition (see Definition
4.3 below).

Our paper is organized as follows. In Sect. 1 we present general well-
known facts about self-similar solutions in order to preserve the self-consis-
tency. In Sect. 2 we show how to construct a continuum of piecewise constant
self-similar solutions of the Riemann problem for equation (x). Sect. 3 is
then devoted to the correspondence between intervals of monotonicity of
self-similar solutions and convex (concave) trajectories along the graph of the
constitutive function g. In Sect. 4 the maximal dissipation principle is applied
to the set of self-similar solutions to derive the ZΛminimality condition. The
aim of Sect. 5 is to show that our minimality condition ensures existence
and uniqueness of solutions to the Riemann problem and provide an explicit
construction of the minimal solution. In Sect. 6 it is shown that this minimal
solution always satisfies the entropy condition (iv) above. In the convex
(concave) case, both criteria are equivalent. In Sect. 7 we prove that the
minimal solution is a pointwise limit of viscous solutions. Finally in Sect.
8, the L2-minimality criterion is compared with entropy conditions (iii), (vi),
(vii). The question of relationship between the minimality and viscosity-
capillarity criteria is open.

Acknowledgement

A large part of this work was done during the first author's stay at
the University of Kaiserslautern under the support of the Alexander von
Humboldt Foundation in Bonn. The authors are indebted to Martin Brokate
for stimulating discussions and encouragement.

1. Self-similar solutions

In this section we introduce the problem, reformulate it for self-similar
solutions and derive some well-known facts related to the Riemann problem.

ASSUMPTION 1.1. We are given a function g:(U_9 U+)-+ R1 which is locally

Lipschitz continuous and such that G_ := g(U_ + ) < g(u) < g(U+ —) =: G+ for

all u e ([/_, l/+) where IL, G_ e R1 U {-oo}, U+9 G+ e R1 U{oo}. For an arbi-
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trary compact set K c( ί/_, t/+) we define

\ (1)

Throughout the paper, this will be the only assumption concerning g (except

for some technical auxiliary lemmas and part of Sect. 6).

DEFINITION 1.2. A function u.R1 x [0, T] -• R1 is called a weak solution

to the equation

utt - g(ux)x = 0, (2)

if u is continuous in R1 x [0, Γ], ut9 M X G L 0 0 ( K 1 X (0, T))ΠC([0, Γ]; LlJR1)),

ux(x, t) belongs to a compact subset of ([/_, U+) for a.e. (x, t)e R1 x (0, T) and

the identity

I I (utφt-g(ux)φx)dxdt = 0 (3)
Jo J -oo

holds for every φ e ^{R1 x (0, T)), where Q)(Q) denotes the set of C00 functions

with a compact support in Ω.

DEFINITION 1.3. A weak solution u to equation (2) is called self-similar,

if there exists a function f.R^^^R1 such that

(4)

for every (x,t)eRί x (0, T).

PROPOSITION 1.4. Let u be a weak self-similar solution to (2). Then f

is absolutely continuous, v(z) = f'(z) belongs to a compact subset of (C/_, 17+),

the function zi—• z2v(z) — g(v(z)) is equal to an absolutely continuous function

almost everywhere and the equation

(z2v(z) - g(υ(z))Y = 2zv(z) (5)

is satisfied almost everywhere.

PROOF. The function / is absolutely continuous, since u(,t) is absolutely

continuous for almost all t. On the other hand, we have f'(z) = ux(zt, t),

hence υ = f belongs to L™(RX\ and ut{zt, t) = f(z) — zf\z). We can rewrite

identity (3) in the form

IT
JO J-o

[(/(z) - zf'(z))tφ,(zt, t) - g(f'(z))tφx(zt, i)\άzάt = 0
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for all φ e ^(R1 x (0, Γ)). The function ψ(z91) := φ(zt, t) belongs also to
9(Rι x (0, T)), hence the identity

Γ Γ(z/(z) - z2f\z) + g{f'(z)))(Γ ψz(z, ήdλ

- (f(z) - zf'(z)) (Γ tψt(z9 ήdtjl dz = 0

holds for any ψ e Q)(R> x (0, T)).
Putting η(z) = §lψ(z, ήdt we obtain

ί: i(2f(z) - z2f'(z) + g(f'(z)))η'(z) + (f(z) - zf'(z))η(zKdz = 0 (6)

for any η e
Identity (6) entails that the function z\-^zf(z) — z2f'(z) + g(f'(z)) is equal

to an absolutely continuous function almost everywhere and its derivative is
equal to -f(z) + zf'(z) a.e. Since / is absolutely continuous, we obtain easily
the assertion. •

LEMMA 1.5 (Rankine-Hugoniot condition). Let v satisfy equation (5) and
let us assume that there exist ZQER1 and sequences z{"] -• z0, z(

2

n)-»z0 such
that v(z\n))->vh i = 1, 2, vγ Φ v2. Then we have

V2-V1

PROOF. We just notice that (7) is a necessary and sufficient condition
for the continuity of the function zi—>z2ι;(z) — g(v(z)) at the point z — z0. •

REMARK 1.6. We always assume that the values of v(z) are chosen in
such a way that the function z\-+z2υ(z) — g(v(z)) is absolutely continuous.

PROPOSITION 1.7. Let K a (£/_, U+) be a compact interval and let v be
a solution of equation (5) such that v(z) e K a.e. Then there exist constants
V+9 V. e K, b > 0, Go e (G_, G+) such that g(v(0 + )) = g(v(0-)) = g(v(0)) = Go

and

v- /"*<->/* ( 8 )

PROOF. Put b := Lκ, where Lκ is given by (1). Assume that ε > 0 is
arbitrarily chosen and put z0 = yjb 4- ε. For every z > z0 (5) entails
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z2(v(z) - »(z0)) - (g(v(z)) - g(v(z0))) = f * 2ξ(v(ξ) - v(zo))dξ.

The assumption \g(v(z)) - g(v(zo))\ < b\v(z) — v(zo)\ implies

ε\v(z)-v(zo)\< \Z 2ξ\v(ξ)-v(zo)\dξ
z0

and GronwalΓs lemma yields v(z) = v(zo\ hence v is constant in (y/b, oo). The

same argument works in (—00, —y/b). The continuity at 0 follows from

Lemma 1.5 and Remark 1.6. •

Identity (5) is a necessary condition for u given by (4) to be a weak

self-similar solution to (2). We will see that this condition is also sufficient.

THEOREM 1.8. Let v satisfy the hypotheses of Proposition 1.7. Put V :=

J ^ (v(z) — PQ{z))dz, where Po is the function

h' Z" J (9)
z < 0,

and F_, V+ are as in (8). Then the function u(x, t) given by (4), where f is

defined by the formula

f(z):= \gv(ξ)dξ+ Π (Ό(ξ)-P0(ξ))dξ + K
Jo J-αo

with an arbitrary constant K e R1, is a weak solution to equation (2) in

R1 x (0, 00) and satisfies the initial conditions

V+x for x > 0 (D+ for x > 0

F_x for x < 0' M^X > °̂  = [D. for x < 0' * *

where D+= K + V, D. = K.

PROOF. We only have to verify that the integrals
Λoo Λoo

\ut{x,t)-ut(x,0)\2dx, \ux(x,t)-ux(x,0)\2dx
J -00 J -00

tend to 0 as t -> 0 + . Then u( , t) -• u( , 0) locally uniformly as t -• 0 + , since

\u(x91) - u(x, 0)| < |ιι(0, t) - w(0, 0)| + [ \ux(ξ, t) - ux(ξ9 O)\dξ
J o

α \l/2

\ux(ξ9t)-ux(ξ90)\2dξ)
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By Proposition 1.7, we have ux(x, t) = ux(x, 0) = V+ for x > ty/b and ux(x, t) =

ux(x, 0) = F_ for x < — ty/b, hence

|iι,(x, ί) - ux(x, 0)\2dx = |Mjc(x, ί) - i#x(x, 0)|2dx
J-oo J-ίv/fc

b\v&-v+\2dz+\° JΦ)-^-I 2

and similarly for ut. Π

CONCLUSION 1.9. The problem of finding weak self-similar solutions to

equation (2) satisfying initial conditions (10) (the so-called Riemann problem)

is equivalent to the problem of solving equation (5) with conditions

where D = D+ — D_ and Po is given by (9).

2. Piecewise constant solutions

We devote this section to an important class of piecewise constant solu-

tions. We start with a well-known result.

PROPOSITION 2.1. Let zx <- <zN be a given sequence and let v0, vί9

. . ., % e ( L L , 17+) be given. Then the piecewise constant function

{ v0 for z<zl9

vk for ze(zk9zk+ί)9 fe=l,...,ΛΓ-l, (12)

vN for z>zN

can be extended to a solution of equation (5) if and only if z\ — — ^~
vk ~ Vk-ί

for all k e {1,..., N} such that vk Φ vk-x.

PROOF. The assertion is an immediate consequence of Lemma 1.5, since

any constant function satisfies equation (5). •

The following statements show that piecewise constant solutions always

exist and that they are not uniquely determined by the Cauchy data.

THEOREM 2.2. Let g be a nonlinear function satisfying Assumption 1.1

and let V+ = F_ ε (IL, 17+) and D+ = D_ e R1 be given. Then there exist

infinitely many distinct piecewise constant solutions to (5), (11).
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For proving Theorem 2.2 we need some auxiliary results. Let us first
mention the following elementary identity.

LEMMA 2.3. For all distinct real numbers p, q9 r we have

g(p)-9(4) g(q)-g(r)^p-rίθ(p)-9(<ϊ) G(P)-g(r)\
p-q q-r q - r\ p-q p-r ) '

We prove the following lemma.

LEMMA 2.4. Let (ί?_, U+)9 (G_,G+) be given open intervals such that Oe
(t/_, t/+)Π(G_, G+). Let ό:(ϋ-9 U+)^(G.9 G+) be a nonlinear function such
that c)(r)r > 0 for all r Φ 0. Then we have either

(i) 3 , < 0 < p ; WefcO]
p-q p-r

or (14)

(ii) 3 « < 0 < P ; W e [ 0 > P ) m m j i ) mp-q r-q

PROOF OF LEMMA 2.4. Suppose that for every q < 0 < p there exist rx e
(q, 0] and r2 e [0, p) such that

U(P) - ύ(ri) 0(P) - §(q) < 6(r2) -

p-q " p-rγ ' p-q " r2 - q

For a fixed pair (p, q) put

and

We obviously have f1 = r2 = 0, hence

dip)-

P-« P

Identity (13) for r = 0 then entails

0 ^(P) ^(g) ^(g) < 0

' PQ 1

p-q p q

which contradicts the assumption that g is nonlinear. •
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REMARK 2.5. If g is nonlinear, then there exist in fact infinitely many

pairs (/?, q) satisfying (i) or (ii) of Lemma 2.4. Let us assume for instance

that (i) holds for some q < 0 < p. Then the function y(r) := — — — is
p-r

continuous for r e \_q, 0] and satisfies y(r) < y(q) Vr e (q, 0].
For each c e (y(0), y(q)) we can put qc := max {r e (q, 0); y(r) = c}. Then

(i) holds for all pairs (p, qc).

PROOF OF THEOREM 2.2. First, by Proposition 2.1 it is clear that the

function (12) is a solution of the problem (5), (11) if and only if the following
conditions are fulfilled
( i ) v1 = F_, vN = F+;

(ϋ)

(iii)

zt = •

k=l

(15)

.x - vk) = D+- D_.

Put K : = F + = F_, §(r) := g(r + V) - g(V) for r e(α, β) := (t/_ - F, t/+ - V).

We distinguish four cases (see Fig. 1).

A. c)(r)r > 0 for r e (α, β)\{0} and (14)(i) holds for some α < < ? < 0 < p <

β. For some r e (q, 0) which will be specified later we define

z2:= -
p-q

- §(r)

p - r

(16)

and

V

V •

V

V

V

q

p

r

for z <

for z G I

for z G j

for zGl

for z >

(17)

Lemma 2.4 ensures that we have zx < z2 < z3 < z 4 and v defined by (17) is

a solution to (5), (11) provided that the condition (15) (iii) holds. Here it reads

- ό(r))(p ~ r) - = 0. (18)

Let us denote by h(r) the left-hand side of equation (18). We have h(0) > 0,

h(q) < 0, hence (18) is satisfied for a suitable r G (q, 0).

B. c)(r)r > 0 for r G (α, β)\{0} and (14)(ii) holds for some α < g < 0 < p <

β. Analogously as above we define for s e (0, p)
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qr O

r0 Q

y = §(u)

p u

y = gW

B

Fig. 1

O

D

/y = g(u)

S p

s p u

WP)

and

v(z) :=

p-q
"> * 3

V for z<zu

V + p for ze(zl9:

V + q for z e (z2,

F + s for z G (z3,.

K for z > z4.

s-q
z 4 : =

(19)

(20)

Similarly as in the case A we check that v solves (5), (11) provided s e (0, p) is a
solution of the equation
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~ U(q))iP - «) + y/(§(s) - U(q))(s - q) + y/tf{s) = 0. (21)

Denoting by ίί(s) the left-hand side of equation (21) we easily obtain h(0) < 0,

h(p) > 0, hence (21) holds for some 5 e (0, p).

C. There exists p > 0 such that #(/?) = 0. We then put r0 := min {r < 0;

$(r) > 0} and fix some q0 e (α, r0).

For an arbitrary y e I 0, — ) pUt ^ : = m a χ \re[q0, r 0 ] ; = y}.
\ Ίo-Pj I r-p J

By Proposition 2.1, the function t; defined by (16), (17) for some re(q,r0) is

a solution to (5), (11) provided that the condition (18) holds. For the auxiliary

function h(r) as above we have h(r0) > 0, h(q) < 0 with the same conclusion

as above.

D. There exists q < 0 such that g(q) = 0. We put s0 := max {r > 0;

§{r) < 0} and fix some p0 e (s0, β). For an arbitrary y e 0, I put

p := min <se [s0, p 0 ] ; = y }. For s e (s0, p) we define the function v by

I s-4 J
formulas (19), (20). Similarly as in the previous cases we choose s such that

the equation (21) is satisfied.

It remains to check that there exist in fact infinitely many solutions of

the form above. This is obvious in the cases C and D, where for each y

we obtain a different solution; cases A, B follow from Remark 2.5. •

REMARK 2.6. The unique solution of (5), (11) for g linear has the form

(12) with N ^ 2. Such solutions exist indeed for all g and all data in the

domain of g.

3. Locally monotone solutions

In this section we identify locally monotone solutions to equation (5)

with their trajectories along the graph of the constitutive function g. We

introduce the concept of convex (concave) path along g which corresponds

to intervals where the solution increases (decreases, respectively).

Taking Proposition 1.7 into account, it is convenient to investigate the

equation (5) separately for z > 0 and z < 0. In fact, putting for s > 0

w+(s) := viy/sl w.(s) := υ(-y/s)9 (22)

we see that both w+ and w_ satisfy the equation

(sw(s) - g(w(s))Y = w(s) for a.e. s > 0 (23)

with boundary conditions
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g(w(O)) = Q, w(s) = V for s large, (24)

where Q = g(v(0)) and V = V+ or V_ respectively.

Let us start with an auxiliary lemma.

LEMMA 3.1. Let w: [ s l 5 s 2 ] - • K 1 be a monotone function, w(s1) = v1,

w(s2) = v2 and let its inverse w"1 be defined by the formula

_! Γsup Γ_(u) for M e f e D j if w is nonincreasing,

[sup Γ+(u) for UE[V1,V2~\ if w is nondecreasing,

where Γ± := {s e [ s l 9 s 2 ] ; ±w(s) < ±u}. Then we have

(ii) ]s

s

2

iw
2(s)ds + 2j^Mw~1(w)dM = s2ι;2 — s^f.

PROOF. Both assertions follow from Fubini's theorem. We consider just

the case of w nondecreasing (otherwise we pass from w to -w).

Let K be the rectangle [sl9 s 2 ] x [v1, v2~\. We define the maximal mono-

tone graph Γx := {(s, u) e K; w(s—) < u < w(s + )}, where we put w(sx —) :=

w(sx), w(s2-\-) : = w(s2), and the sets A1:= {(s^u)^ K;v1 <u <w(s—)}, Bx:=
{(s,u)e K;w(s+) <u<v2}. The function w"1 is nondecreasing in Oi , t ; 2 ]

and we have Bx = {(s,u)eK;s1 <s< w'^u-)}, K^Γ^A^B^ A1Γ)B1 =

0, meas (Γγ) — 0, hence

(s2-
JA1 JBι

= (w(s) - vjds 4- (w 1{u) - sjdu
J Si JVi

and (26) (i) follows easily.

To prove (26) (ii) we consider the cylinder in cylindrical coordinates

C := {(r, φ, s); r e [0, v2 - v{], φ e [0, 2π], s e [ s l 9 s 2 ]} ,

we define the sets

Γ2 := {(r, φ, s) e C; (s, r + t J e Γ t}

^2 •= {(r> <P> s) 6 C; (s, r + v^eA^

B2 := {(r, φ, s) e C; (s, r + v^eB^

and argue as above. •

Formulas (26) enable us to identify monotone solutions of (23) with their

trajectories in the phase plane. This will be done in the next three lemmas.
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LEMMA 3.2. Let Ke([/_, U+) and βe(G_, G+) be given and let w be

a solution of (23), (24) which is monotone in (0, oo), w(0 + ) =: Fo e g~x{Q\

w(+oo)= V. Let w"1 be the inverse of w according to formula (25). For

v e [min {Fo, F}, max {Fo, F}] put

g*(v) :=Q+\ wί ,-i (27)

/or 0.

PROOF. By Lemma 3.1 and equation (23) we have for each s > 0

Γw(s) fs

w^ζujdu = sw(s) — w(σ)dσ — g(w(s)) — Q,
JVQ J O

hence g*(w(s)) = g(w(s)) by definition of g*. D

The function y = g*(v) describes the trajectory of the solution w along

the strain-stress diagram y = g(v) (see Fig. 2). From Lemma 3.2 we immedi-

ately derive two important properties, namely

(i) g* is convex and increasing in [Fo, V~\ if w is nondecreasing

and concave and increasing in [Fo, F] if w is nonincreasing,

(ii) if g*(v) φ g(v) for some v e (min {Fo, F}, max {Fo, F}),

then gf* is affine in a neighborhood of v.

The proof of the converse of Lemma 3.2 is slightly more complicated.

(28)

LEMMA 3.3. (i) Let Fo, Fe(l/_, U+) be given such that Vo < F, g(V0) <

g(V), and let g*: [Fo, F] ^(G_, G+) be α cont βx increasing function such

that g*(V0) = gf(F0), gf*(F) = g(V) and the implication (28)(ii) holds. Put s :=

g*\V-\ w*(s) := inf {w e [Fo, F]; gf*'(ι;) > 5} for s e (0, s), w*(s) := F /or s > s.

Then w* is α nondecreasing solution of (23) wiί/i Q = g(V0), w*(0 + ) = Fo and

its trajectory g** defined according to Lemma 3.2 by the formula

Fig. 2
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J
g**(v) : = g(v0) + I w* (u)du for v e [Fo, F] (29)

coincides with g*.

(ii) Let Fo, Ve{U.9 U+) be given such that Fo > F, g{V0) > g{V\ and let

g* : [F, Vo~\ -• (G_, G+) fee α concave increasing function such that g*(V0) = g(V0),

g*(V) = g(V) and the implication (28)(ii) holds. Put s : = # * ' ( F + ) , w*(s):=

sup {v G [F, F o]; g*(v) > s} for s e (0, s), w*(s) := V for s> s. Then w* is a

nonincreasing solution of (23) with Q = g(V0), w*(0-f-)= Fo and its trajectory

g** defined by formula (29) coincides with g*.

PROOF. It suffices to prove the first part. The statement concerning the

concave case is then obtained by passing from g(v) to —g(—v).

The definition of w* ensures that w* is nondecreasing and

g*(w*(s)) - g*(v) < s(w*(s) - v) for all s > 0 and v e [Fo, F], (30)

hence

Sl(w*(s2) - w*(Sl)) < g*(w*(s2)) - g*(w*(Sl)) < s2(w*(s2) - w*(sx))

for all s2> sx> 0. This yields

w*(si)(s2 — s j < s2w*(s2) — g*(w*(s2)) — s^is^ + ^*(w*(s!))

< w*(s2)(s2 - s j ,

therefore the function VΓ*(s) := sw*(s) — g*{w*(s)) is Lipschitz in (0, oo), W*'(s) =

w*(s) a.e. To prove that w* solves (23) it suffices to check that g*(w*(s)) =

g(w*(s)) for all s > 0. Assume to the contrary gf*(w*(s)) ^ g(w*(s)) for some

s > 0. Then g* is affine in a neighborhood of w*(s), say gf* (w*(s) — δ) =

g* (w*(s) H- δ) = s, which contradicts to the definition of w*. It remains to

verify that g** = g*. In fact, we prove more, namely g*'(u + ) = w*~\u) for

all u E (Fo, F). Indeed, for an arbitrary s > w*~ι(u) we have by (25) u < w*(s)

and the definition of w*(s) entails g* (w + ) < 5, hence g* (w + ) < w*^!/) for all

u G (Fo, F). Conversely, for s > #* (M + ) there exists δ > 0 such that w*(s) >

M + <5, hence s > w*~ι(u). Consequently, W*~1(M) = g* (M + ) and Lemma 3.3 is

proved. •

For (s, ϋ) e [0, oo) x Λ1 we next define the function

E(s,v):=^sv2 + G(v)-vg(v), (31)

where G(v) := \v

Vog{u)du for a fixed I ; O G ( I L , U+).
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PROPOSITION 3.4. Let w be a solution to (23) in (sl9 s2) (0 < sx < s2) with

j = vl9 w(s2) = v2. If w is monotone and g* given by (27) then we have

l CS2 C"2

- w2(s)ds = E(s2, v2) - E(su Vl) + (32)

PROOF. We infer from Lemma 3.2

uw~^(u)du = v2g(v2) — ViQiPi) — I g*(ύ)du.

Combining this last identity with Lemma 3.1(ii) we obtain the assertion. •

4. Energy

It is well known ([25]) and we will see in the sequel that weak solutions

of equation (2) do not necessarily satisfy the formal Energy Conservation Law

Q M ί

2 (x, t) + G(ux(x9 t))J - (utg(ux))x = 0

in the sense of distributions.

The Second Principle of Thermodynamics requires the dissipation rate

to be nonnegative. This leads to the entropy condition ([18])

l-u2{x, t) + G(ux(x, t))J - (utg(ux))x < 0 (33)

in the sense of distributions. Rewriting condition (33) in terms of self-similar

solutions we obtain the following statement.

PROPOSITION 4.1. Let u be a weak self-similar solution to equation (2)

and let v be the corresponding solution of (5) defined in Proposition 1.4. Let

us define functions w+, w_ by the relations (22). Then u satisfies the entropy

condition (33) if and only if the function (cf (31))

D(w)(s) := E(s, w(s)) - - w2(σ)dσ (34)
z Jo

is nondecreasing in [0, oo) for both w = w+ and w = w_.

Before proving Proposition 4.1 we start with an easy lemma.

LEMMA 4.2. Let [α, /?] a R1 be a closed interval and let heL1^^) be

a given function. Then h is nondecreasing in (α, β) if and only if

f
Ja.

h(s)pf(s)ds < 0 Vp e Φ(α, β\ p > 0. (35)
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PROOF OF LEMMA 4.2. a) Let ft be nondecreasing and let p e @(oc, β) be

given, supp p = [ά, /?] <= (α, β). For each integer n we define the function hn

on [α, β) as the solution of the equation -h'n + hn = ft, ftπ(α) = ft(α-). Then

n

hn is absolutely continuous and nondecreasing, ftπ < ft in (α, β) and hn -* ft in

//(a,/?) as n->oo. Inequality (35) holds for each ftw, n = 1, 2, ... and it

suffices to pass to the limit.

b) Let (35) hold, and let sl9 s2e (α, β) be Lebesgue points of ft, sx < s2.

By continuity, (35) holds for Lipschitz continuous functions p = pε, where for

ε > 0 sufficiently small we put

— for s e (s1 - ε, sx + ε),

—— for se(s2 — ε, s2 + ε),
2ε

0 otherwise.

I Γsι+ε i Γs2+ε

This yields — h(s)ds < — h(s)ds, hence ft(sx) < h(s2) and Lemma 4.2
2εJ S l _ ε 2εJ S 2_ ε

is proved. •

PROOF OF PROPOSITION 4.1. Using the representation (4) with v = / ' we

rewrite the condition (33) in the form

ί °
( / " z v ) 2

Vφ 6 Q)(β} >

A computation analogous

r
for

< \Uf - zv)2 + zG(v)
oo i L ^

< 0

every η e ^(R1), η > 0.

The identities

c (0, T)), (̂

to the proof

+ (/ - zυ)g(v)

> 0, where z =

of Proposition 1.4

X

t'

gives

(36)

Γ00 -f(z2v-g(v))η'dz= Γ lv(z2v-g(v)
J-oo J-oo
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enable us to rewrite (36) in the form

f °° Γ̂ G(i7) - vg(Ό) + jv2\zη(z)y + z2v2η{z)\dz < 0

Vf/e^K1), η>0. (37)

Inequality (37) is equivalent to the system

Vg(v) + Ύv2)ξ'+{z) + zv2ξ+

G(v) - vg(v) + -v2 ξL(z) + zυ2ξ_{z) \dz>0
J-oo l_\ 2 / J

V£+ e ^(0, oo), V£_ G 0 ( - o o , 0) ξ+ > 0, £_ > 0. (38)

Substituting in (38) z = y/s in (0, oo) and z = — y/s in (—oo, 0) for 5 G (0, oo),
we infer that system (38) has the form

s9 w(s))ρ'(s) + -w2(s)ρ(s) \ds<0 Vp G ̂ ( 0 , oo), p > 0 (39)

for each of the functions w = vv+, w = w_, and Proposition 4.1 follows from

Lemma 4.2. •

Function D(w) introduced in (34) can be interpreted as the total energy

density of the system. Notice that the entropy condition (33) requires D{w)

to decrease at each space point xe R1 when t increases (i.e. positive dissipation).

It enables us to exclude "nonphysical" solutions of the Riemann problem.

Nevertheless, in the general case it does not ensure the uniqueness of solutions

unless g is globally convex or concave (see Section 6 below). Therefore, we

propose a stronger "entropy" condition which covers the general case of

Assumption 1.1 (the fact that it is stronger will also be proved in Section 6).

We first observe that solutions w = w+, w = w_ of (23), (24) are indepen-

dent of each other for every choice of boundary conditions F_, VQ, V+. We

therefore formulate our condition separately for w+ and w_.

DEFINITION 4.3. A solution w to (23) with boundary conditions (24) is

called minimal, if

(w2(s) - w2{s))ds < 0 (40)
Jo

for each solution ti to (23), (24).

Note that integral (40) is meaningful, since by (24), w = w in a neighbor-

hood of oo, so we integrate bounded functions over a finite interval.
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Condition (40) can be interpreted as a maximal dissipation principle.

Indeed, the total dissipation difference of two solutions w and vv with the

same initial value w(0) = ti(0)eg~1(Q) is

Λ(w, vv) := D(w)(oo) - D(vv)(oo). (41)

So vv dissipates maximally if A(w9 vv) is nonnegative for any solution vv.

Theorem 5.1 below shows that the minimal solution is unique independently

of the concrete choice of the initial condition w^eg^iQ).

5. Minimal solutions

The aim of this section is to show that our minimality condition (40)

ensures existence and uniqueness to the Riemann problem (5), (11) and to

provide an explicit construction of the minimal solution. This is concentrated

in the following two theorems.

THEOREM 5.1. For every Ve(U-,U+) and β e ( G _ , G+) there exists a

unique minimal solution vv* of (23) with boundary conditions (24).

THEOREM 5.2. Let F_, V+ e(LL, U+) be given. Then there exists an inter-

val (A, B) a R1 such that for every D e (A, B) there exists a unique Q e (G_, G+)

and a unique solution to (5), (11) for D+ — D_ = D such that each of the

functions w+, vv_ defined by formula (22) is a minimal solution of (23) with

boundary conditions g(w+(0)) = #(w_(0)) = β, w+(+oo) = V+9 w_(+oo) = V_.

Moreover, if G_ = —oo, then A = —oo and if G+ = +oo, then B = +oo.

Lemma 3.1 enables us to express the value of the integral ί o ( w i ( s ) —

w%(s))ds for two monotone solutions w1? w2 of (23) in terms of their convex

(concave) trajectories #*, 0* We first observe that integrating equation (23)

we obtain

-c-f
Jo

g(V)-Q=\ (V-w(s))ds (42)
Jo

for each solution vv of (23), (24). If moreover we assume that vv is monotone,

then vv is nondecreasing if Q < g(V\ nonincreasing if Q > g(V) and constant

if Q = g(V). Let now w1? vv2 be two monotone solutions of (23) for given

conditions Ve(U_, U+) and β e ( G _ , G+). We distinguish two cases.

A. Q < g(V). Then both vvx and vv2 are nondecreasing.

Assume for instance w1(0 + ) =: V1 < V2 := w2(0 + ) < V9 g(Vx) = g(V2) = Q.

The convex trajectories g%, g\ corresponding to wl9 w2 are given by a formula

analogous to (27) and satisfy gf\u) = w^(u) for a.e. u e (Vh V\ i = 1, 2. Iden-

tity (26) (ii) yields
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V2)ds + 2 I ugf\u)du = 0, i = 1, 2,
Vi

and integrating by parts we obtain

325

f°° (w?(s) - V2)ds + 2 Γ
Jo Jκf

1 f °° (wίCs) - wf(s))ds = Γ 2
 (^*(M) - β)dw + Γ (<rf(W) - ^ ( u

2 J 0 J Ki J F2

(43)

B 6 > G(V)- Then both wx and w2 are nonincreasing.

Assume ^ ( 0 + ) =: Vx > V2 := w2(0 + ) > F, ^(Kx) = flf(F2) = β. For the

corresponding concave trajectories g\, g% we have analogously as above

\ Γ (wϊ(s) - wi(s))ds = Γ (Q - gΐ(u))du + P (flfj(ιι) - fff(iι))dιι.
2 Jo Jκ2 Jv

(44)

We see that the minimization problem (40) in the class of monotone solu-

tions consists in finding the minimal convex trajectory in the case A and

the maximal concave trajectory in the case B. This suggests the following

definition (cf. Fig. 3)

DEFINITION 5.3. Let Ve(U-,U+) and Qe{G_,G+) be given. Put

Γmaxto- 1(β)Π(l7_,F)) if Q < 0(V)9

VQ := J min ( ^ ( β ) Π (V9 U+)) if Q> g{V\

[v jfQ = g(n

Ω(Q, V) := Conv {(tι, 3;) e [F Q , 7 ] x (G_, G+); y = g(u)} with the convention

\YQ> V\ = [K ^Q]» where Conv denotes the convex hull. Then the function

θ* : LVQ, K] -• (G_, G+) defined for u e [VQi K] by the formula

Fig. 3
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Γmin {y e (G_, G+); (u, y) e Ω(Q9 V)} if Q < g(V),

g*(u) := J max {y e (G_, G+); (u, y) e Ω(Q, V)} if Q> g{V\ (45)

[g(u) if Q = g(V),

is called the minimal trajectory from Q to V.

We immediately see that the minimal trajectory satisfies the hypotheses

of Lemma 3.3. From the identities (43), (44) we easily conclude that the

solution w* of (23), (24) associated to g* by Lemma 3.3 is minimal with

respect to all monotone solutions. We now prove that it is minimal in the

sense of Definition 4.3.

PROOF OF THEOREM 5.1. Theorem 5.1 will be proved in the following

form.

PROPOSITION 5.4. Let Ve(U-,U+) and βe(G_, G+) be given and let g*

be the minimal trajectory from Q to V. Let w* be the solution associated to

g* by Lemma 3.3 in the case Qφ g{V\ w* = V if Q = g(V). Then for every

solution w Φw* of (23), (24) we have

Γ
Jo

(w*\s) - w2(s))ds < 0. (46)

This fact is less obvious. Its original proof in [15] is relatively compli-

cated. We present here a simple and elegant proof which has been communi-

cated to us by V. Lovicar in private discussion. It consists of two steps

(Lemmas 5.5-5.6).

We first observe that the case Q = g(V) follows trivially from identity

(42) which entails for every solution w φ V of (23), (24)

Γ (w2(s) - V2)ds = Γ (w(s) - V)2ds + 2V I {w(s) - V)ds
Jo Jo Jo

-Γ
Jo

- V)2ds > 0.

On the other hand, passing from w* to — w* and from g(v) to — g( — v) we

see that the cases Q > g(V) and Q < g(V) are equivalent. For the sake of

definiteness we assume in the sequel Q < g(V).

Let us suppose now that there exists a solution w φ w* of (23), (24). We

introduce the functions
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Both W and W* are Lipschitz, W = w, W* = w* a.e., W* is convex and

there exists L > 0 such that W(s) = W*(s) = sV - g(V) for s>L, W(0 + ) =

= -Q. We define the sets

o := {5 > 0; W*(s) = W(s)},

M+ := {5 > 0; W*(s) > W(s)}, (48)

M_ := {s > 0; W*(s)

We have [L, +00) c: Mo, hence both M+ and M_ are open bounded sets.

They have the form M + = U?=iK + , A+λ Af. = U?-i(«*, A"λ with α±, β± e

M o, provided we include the case α^ = 0.

For almost all s e Mo we have w*(s) = w(s), hence

ί (w*\s) - w2(s))ds = 0. (49)
Mo

LEMMA 5.5. For all fceN we have

(w*\s) - w2(s))ds < 0. (50)

PROOF. We have W*(s) > W(s) for all s e (αk

+, &+), W*(ocϊ) =

W*{βΐ) = W(βΐ), hence

ί
fit

r(s)(w(s) - w*(s))ds > 0

for each bounded nondecreasing function r:(α^, β£)-*R}. Indeed, this follows

trivially from the integration by parts provided r is smooth. In the general

case we approximate r by a pointwise convergent sequence rn^>r of smooth

nondecreasing functions and pass to the limit.

This yields

/»0+ /• 0+ /• 0+

0 < * (w*(s) - w(s))2ds = k (w2(s) - w*2(s))ds - 2 " w*(s)(w(s) - xv*(s))ds

(w2(s) - w*\s))ds

and Lemma 5.5 is proved. Π

LEMMA 5.6. For all fceN we have

Γ βk

J«k

(w*\s) - w2(s))ds < 0. (51)



328 Pavel KREjόί and Ivan STRASKRABA

PROOF. Lemmas 3.3, 3.2 and inequality (30) yield

sw*(s) — g(w*(s)) >sv — g*(v) >sv — g(v) (52)

for all s > 0 and v e [FQ, F]. On the other hand, for s e (α^, j?k") we have by

hypothesis sw*(s) - g(w*(s)) < sw(s) — g(w(s)), hence w(s) φ [VQ, F] for s e (α^, ft").

Put i+:={s€(αk-,/ίk-);w(s)>F}, A. := {se(αk", ft"); w(s) < VQ}. We have
l_ and

(w{s) - w*(s))ds,I ( w 2 ( s ) - w * 2 ( 5 ) ) d 5 > (VQ + V ) \

I (w\s) - w*\s))ds > (VQ + V) I (w(5) -
JA+ JA+

therefore

Γ (w2(s) - w*2(s))ds > (VQ + K)(^(jSfc-) - »y (/ς-) - W(αjD + ^*(αk")) = 0,

and inequality (51) is proved. •

To finish the proof of Proposition 5.4 which in turn implies Theorem

5.1, it suffices to combine Lemmas 5.5, 5.6 and identity (49).

Let us state now two easy lemmas which enable us to prove Theorem 5.2.

LEMMA 5.7. Let Qu Q2e(G-,G+) and Fe(l/_,ί/+) be given such that

6 i < 62 < β(V)' According to Definition 5.3 put V-x := VQ. and gf(u) := min {y e

(G_, G+); (11, y) e Ω(Qi9 V)} for u e [Vi9 F], i = 1, 2. Then g*(u) < g*2{u) for all

u e [V29 F] and gf(u) > gf(u) for a.e. u e (F2, F).

PROOF. We obviously have Ω(Q2, V) a Ω{Ql9 V) and V>V2> Vl9 hence

g* ^ g* i n Ĉ 2» ^ ] Let us assume now g* (u) < g2(u) for some Lebesgue

point u e (F2, V) of both gf and gfJ'. Then g\(u) < g^(u) < g(u\ hence g\ is

affine in a neighborhood of w. Put ΰ := min {t; € (u, F); gf(t ) = g*(v)}. The
points (M, gf(w)) and (u, ̂ f(w)) belong to β ( β 2 ? V), hence for all α e (0,1) we have

gi(aΰ + (1 - α)iι)

or equivalently

flff(M + α(ΰ - u)) - gϊju) ^ g(U) -

α(w — u) ~~ ΰ — u

Passing to the limit as α -• 0 + we obtain
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which is a contradiction. •

LEMMA 5.8. Let Ke([/_, U+) and G_ < Qx < Q2 < G+ be given. Let wf,

wf be the minimal solutions of (23), (24) for Q = Ql9 Q = Q2, respectively.

Then w^s) < w2{s) for all s > 0.

PROOF. The cases Qί < g(V) < Q2 or Qx < g{V) < Q2 are obvious. We

may therefore assume Qx < Q2 < g(V) (the opposite situation g(V) < Qί < Q2

is again covered by the usual transformation g{v)y-+ — g( — v)). By Lemma

3.3 we have for all s > 0

Hf(s) = inf {u e \Vt9 F ] ; gf\u) > 5}, i = 1, 2,

where l^, gf are as in Lemma 5.7. For all s > 0 and u e [F 2 , F ] such that

M < wf(s) we have by Lemma 5.7 0* (M + ) < # f (M + ) < «• This entails M <

wf (5), hence wf (5) < wf (5). Π

PROOF OF THEOREM 5.2. For an arbitrary β e (G_, G+) we denote by

w£ w9 the minimal solutions of (23) with boundary conditions g(w$φ)) =

g(w?(0)) = Q, w£(+oo) = F+, w^(+oo) = F_, and put

β(z2) f o r z < 0.

By Lemma 1.5, vQ{z) solves (5) together with the condition uQ(±oo) = F ± for

all β G (G_, G+) (cf. (11)). To handle the second condition in (11) we introduce

the function

1 : = (vQ(z) - Po

J — 00

φ(Q)-=\ (vQ{z) - P0(z))dz (53)

with the intention to put

A := φ(G_), B := φ(G+). (54)

The proof of Theorem 5.2 will be complete as soon as we prove that the

function φ defined by (53) is continuous and increasing and the implications

G_ = -00 => A = -00, G+ = +00 => B = +00 (55)

hold.

The fact that φ is increasing follows immediately from Lemma 5.8. To

prove the continuity, we fix an arbitrary compact interval [c, d~] a (G_, G+)

such that g(V+), g(V_)e(c,d). Put a := min {v e (l/_, 17+); g(v) > c}9 b:=



330

max {v 6 (LL, U+); g(v) < d}, L := sup

Pavel KREjύί and Ivan STRASKRABA

g{u) - g(υ)

u — υ
;a<v <u<b> < +00.

From Proposition 1.7 we infer that vQ(z) = P0(z) for all \z\> y/L and

all β 6 [c, d]. Integrating equation (5) J</L dz and J^ypdz we obtain for all

β e [c, d]

L'F+ - g(V+) + Q =

-LΎ_ + g{V.) -Q =
-} (56)

hence

ί L \z\(vQi(z) - vQ2(z))dz = Γ |z |(» β l (z)-» β 2 ( ;
i-Jΰ J - o o

z))dz = β 1 -

for all Ql9 Q2 e [c, d], β i > β2- N o t e t h a t by Lemma 5.8 we have vQι(z)

VQ2(Z) for a.e. z e R1. Using the estimates

φ(Qi) - φ(Q2) = \ (vQι(z) - vQ2(z))dz
J —00

z|(i;Ql(z)-i;Q2(z))dz

we conclude that φ is locally ^-Holder continuous in (G_, G+).

It is now clear that for every De(A,B) the Riemann problem (5), (11)

with D+ — D_ = D has a unique solution satisfying the requirements of Theo-

rem 5.2. It remains to prove one of the implications (55), the other is analo-

gous. Assume for instance G+ = +00, V+ > K_, and put

We distinguish two cases.

A. L < +00. Then for every β > g(V+) the slope of the minimal trajec-

tory (45) from β to V+ does not exceed the value of L, and therefore vQ(z) = V+

for z > y/L. Using formula (56) for L = L we obtain

φ(Q) ί L> ί L

Jo
ί 7

2y/L (57)
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B. L = H-oo. Put L := lim sup — — — - < +00. For λ > L we define
υ^V+ V-V+

Vλ : = min | ι ; e (V+9 U+);

The minimal trajectory g* from Q λ to V+ is then affine, namely g*(u) = g{V+) +

λ(u - V+) for if e [K+, F J . This yields

{ + for

Vλ forzG(0,

^(z 2 ) > V. for z < 0,
therefore ί

Jo

" G(V+))(Vλ - V+). (58)

In both cases (57), (58) we obtain φ(Q)-+ +00 as Q -• +00. Theorem 5.2 is

proved. •

REMARK 5.9. We observe an interesting phenomenon if the condition

limM_>±00 φ(u) = + 0 0 is not satisfied. For g(u) = eu — 1, V+ = F_ = 0 we have

for instance A — — 4, B = +00, so for D < — 4 no minimal solution exists.

Since g is convex, we see from Theorem 6.2 below and Section 2 that this

problem admits only solutions which violate the entropy condition (34)!

6. Entropy condition

We first show that the entropy condition (34) for solutions of (23), (24)

is a consequence of the minimality condition.

PROPOSITION 6.1. For every K e ( l L , (7+) and Q e ( G _ , G+) the minimal

solution w* of (23), (24) fulfils the dissipation condition (34).

PROOF. By Lemmas 3.1, 3.3 we have for all 5 > 0, (cf. Definition 5.3)

- w*2(σ)dσ = -sw*(s) — uw*~ι(u)du
2 Jo 2 JvQ

= l-sw*(s) - w*(s)g*(w*(s)) + VQg*(VQ) + Γ ^ g*(u)du.
1 JvQ

The function D(w*) in (34) has therefore the form
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D(w*)(s) = (g(u) - g*(u))du + G(VQ) - QVQ.
JvQ

For Q < g(V) we have g(u) > g*(u) for all u e [F Q , K] and w* is nondecreasing,

for Q > g(V) we have g(u) < g*(u) for all ue[_V, VQ~\ and w* is nonincreasing,

for Q = g(V) the solution w* is constant, hence in all cases condition (34)

holds. •

THEOREM 6.2. Let g be convex and let Fe( ί/_, £/+), Qe(G_,G+) be

given. Let w be a solution of (23), (24) satisfying the dissipation condition (34)

let w* he ί/ie minimal solution of (23), (24). 77ιen w = w* a.e.

In the proof we make use of an auxiliary lemma. Notice that a convex

function satisfying Assumption 1.1 is increasing, hence every solution w of

(23), (24) can be continuously extended to s = 0.

LEMMA 6.3. Let the hypotheses of Theorem 6.2 hold. Assume that there

exist Lebesgue points su s2 of w such that 0 < st < s2 and w(sι) =: vλ < v2 :=

w(s2). Then s2 > g'{v2-\ sx < gf(vx +), w(s) = inf {u e \vu v2~]\ gf(u) > s} for

a.e. se[su gf(v2-)), w(s) = v2 for s e (g'(v2-)9 s 2 ] .

PROOF OF LEMMA 6.3. The function w 0: [0, oo)-•([/_, U+) defined as

wo(s) := w(s) for s e (su s2% wo(s) := vι for s e [0, s j , wo(s) := v2 for s e [s2, +oo)

solves (23), (24) with V = v2, Q = g{vχ). The minimal convex trajectory g%

from ^(i J to v2 coincides with g and the corresponding minimal solution

w$ is given by the formula (cf. Lemma 3.3) wξ(s) = inf {u e [vl9 v2\ g\u) > s)

for 5 G [0, g\v2~)\ w${s) = v2 for s > g\v2~\ w$~\u) = g'{u) for a.e. u e (t;l51;2).

By (34) we have D(w)(s ) > D(w)(sί\ hence

l Γ S 2 CV2 l l
- w2(s)ds < - ug\u)du + -s2v% - -2

Lemma 3.1 yields -γ^ug\u)du = iί£(w£ 2(s) - v2

2)ds, therefore i j g ^ w ^ s ) -

wί2(s))rfs < 0.

By Proposition 5.4, the last inequality implies w0 = vt# a.e. and Lemma

6.3 follows. •

PROOF OF THEOREM 6.2. The assertion is an immediate consequence of

Lemma 6.3 if Q < g(V) (we simply put sί = 0 and let s2 tend to +oo). The

case Q > g(V) is slightly more complicated. In fact, it suffices to prove that

w is nonincreasing in [0, +oo), since the only concave trajectory from Q to

V in this case is the minimal one which is affine.

Let us suppose to the contrary that there exist Lebesgue points sl9 s2

of w such that 0 < sx < s2 and w ^ ) := vx < v2 := w(s2). We distinguish 2

cases.
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A. g(vx) < Q. Put v := sup ess {w(s); s e [0, s j } . Then v > g'^Q) > vx

and there exists a sequence {σn} c [0, s x ] of Lebesgue points of w such

that σn-*s<sl9 w(σn)^v. Passing to the limit as n->oo in the identity

fonw(s)ds = s1v1 - g(vx) - σπw(σπ) + g(w(σH)) we obtain 0 > J*-1 (w(s) - v)ds =

g{v) — g(Vί) — s^v — Vi\ hence s1 > — = — > g'(v1 -h), which is in contra-

v — v i

diction with Lemma 6.3.

B. givj > Q. Then v2 > V and analogously as above we put v :=

inf ess {w(s); s e [s 2, +oo)}. We have v<V and w(s) = V for sufficiently large,

therefore there exists a convergent sequence {σn} a [s 2, +oo) of Lebesgue

points of w such that σ w - » s > s 2 , w(σn)->V. a s ^ ^ ° o Passing to the

limit in the identity jζnw(s)ds = σnw(σn) — s2v2 — g(w(σn)) + g(vi) yields 0 <

jf2(w(s) - v)ds = g(v2) - g(υ) - s2(v2 - v) hence s2 <

which again contradicts to Lemma 6.3.

Φl)" f(g

G

We now present another negative result showing that the dissipation

condition (34) does not guarantee the uniqueness of solutions of (5), (11) even

in the "regular" case when g is increasing and smooth.

PROPOSITION 6.4. Let g :(l/_, £/+)-• (G_, G+) be an increasing smooth

function which has an inflection point qoe(U-, U+). Then there exist V+9

K_ e (C/_, £/+), D+, D_ e R1 such that problem (5), (11) has infinitely many

distinct solutions.

PROOF. We choose an interval (q0 — kl9 q0 + k2) c= (L/_, U+) such that

one of the situations

(i) g" > 0 in (q0 - ku qo)9 g" < 0 in (qθ9 q0 + fe2),

(ii) g" < 0 in (q0 - kl9 q0), g" > 0 in (qθ9 q0 + k2),

occurs. The construction will be different in each case (see Fig. 4)

(i) We fix some numbers q0 — k1 < V_ < q0 < p0 < r0 < V+ < q0 + k2

such that

y = g(u) y = g(u)

v_ Qo Po γ_ q0 Po u

Fig. 4
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ί,r° g{υ)dv < i ( r 0 - V_)(g(r0) + g{V_)\ (59)
V- *

r0 -Po r 0 - V_

and we define v(z) by the formula

'_ for z < zl9

-g(Po) ^ f l f ( r o ) - & v - , , 6 Q x

r for Z G ( Z 1 S Z 2 ) ,
(61)

p for z G (z2, z3),

K+ for z > z3,

g(r) - g(p) _ g(V+) - g(p)

r-p ' Z 3 = V F + -p ( 6 2 )

for each (r, p) in a small neighborhood of (r0, p 0) such that (59), (60) hold

for (r, p). We put D_ := 0, D+ := fc(p0, r0), and

HP, r) := V(g(r) - g(V_))(r - V_) - V(g(r) - g(p))(r - p)

+ - p).

By Proposition 2.1, i; is a solution of (5), (11) if and only if h(p, r) = h(p0, r0).

We obviously have ^-h(p, r) > 0 and by the Implicit Function Theorem there
dp

exists a function p(r) defined in a neighborhood of r0 such that h(p(r), r) =

h(Po>ro) which determines a one-parametric family of solutions of (5), (11)

satisfying condition (34).

(ii) Similarly as above, we fix some numbers q0 — fcx < r0 < F_ < q0 <

V+ < p0 < q0 + k2 such that the inequalities (60) and

ΓPO i

g(v)dv < - ( p 0 - ro)(g(po) + g(r0)) (63)

hold. We put here D_ := h(p0, r0), D + := 0. We easily check that the argu-

ment of (i) remains valid for the function v defined by (61), (62). •

7. Vanishing viscosity

We show here that the maximal dissipation selection rule described above

gives the same result as the vanishing viscosity method (see e.g. [21]) which

consists in considering the equation
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t*tt - g(ux)x - ^tuxxt = 0 for v > 0 (64)

with the intention to pass to the limit as v->0+ as in [6]. It is also
convenient to regularize the function g in (64) by means of the parameter
v. So we replace (64) by the equation

ul-gv,κ{<)x-\tulxt = ̂  (65)

where gvK€C1((U., 17+)) is a regularization of the function g that we briefly
describe here.

Let g satisfy Assumption 1.1. For a fixed compact set K c (LL, U+) and
a number v > 0 put

Γ M 1
_e(v~u)/v

J»κV

9v,κ(») '= eiu-Uκ)/vg(uκ) + 7/
v-^g(v)dv for u e (£/_, L7+), (66)

Ju

where uκ := min K. The identity

< * ( " ) = g(u) - gVtK(u) Vu G (17., U+) (67)

has the following immediate consequences (the proof is left to the reader).

LEMMA 7.1. Let K c (C7_, 17+) fce a compact set and let Lκ be given by

(1). Then for every v > 0 the function gvK is continuously dijferentiable in

(LL, 17+) and for every ueK we have

(i) \g(u) - gVfK(u)\ < vLκ,

(ϋ) Kκ(u)\^Lκ.

In terms of self-similar solutions, approximating equation (2) by (65) corre-
sponds to the approximation of problem (23), (24) by the equation

v(sw:(s)Y = wv(s) - (swv(s) - gv,κ(wv(s))ϊ (68)

for a suitable choice of boundary conditions and of the compact set K. This

can be done in the following way.

Let β, V be given data in (24) and let us define VQ as in Definition

5.3. We can assume for the sake of definiteness that Q < g(V) leaving the

other cases to the reader. We fix an open bounded interval J => [FQ, 7 ] ,

J c= (LL, 17+) and put K:=J. For an arbitrary β > Lκ we prescribe boundary

conditions

wv(v) = VQ, wv(β) = V. (69)

We first verify that problem (68), (69) cannot have multiple solutions.
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LEMMA 7.2. Let 0 < δ < st < s2 be given and let w, w be two solutions

of (68) in the interval (s1 — δ, s2 + δ). Assume w(Si) = w(Si) for i = 1, 2. Then

w(s) = w(s) for all s e (sx — δ, s2 + δ).

PROOF. If the set B := {s e [sl9 s 2 ]; w(s) = w(s)} is infinite, then it contains

a convergent sequence and its limit point s satisfies w(s) = w(s), w'(5) = w'(s).

The general theory of ordinary differential equations then yields w = w.

Assume that B is finite. We choose two consecutive points σί9 σ2eB,

so that for instance w(σf) = w(^) for i = 1, 2, w(s) > w(s) for sG(σ l 5 σ 2 ) .

Integrating \σ

σ\ds the identity

(v5(w' — w'))' = (w — w) — (s(w — vv) — gf(vv) + g(w))'

we obtain

vίσ2(W'(σ2) — w'(σ2)) — σl(w'(σl) — W'(GI)Ώ = ( w ~~ w)ds > 0,

hence either w'(σ2) > w'(σ2) or w'(σχ) < w ' ^ ) , which is a contradiction. •

For a fixed v > 0 we have the following existence result.

THEOREM 7.3. Problem (68), (69) has a unique classical solution wv. More-

over, there exists v0 > 0 such that for v < v0 the solution wv can be extended

to an interval (αv, +oo) for some αv e (0, v), it is twice continuously dijferentiable

and increasing in its domain of definition.

PROOF. We define recursively for s e [v, β~\ a sequence {w(n)(s); n e ΛΠJ

{0}} by the formula

where

We immediately see that {w(w)} c C2([v, /}]) is a sequence of increasing func-

tions satisfying boundary conditions (69) and that there exists a constant M v

independent of n such that 0 < c(π) < M v, |w(π)'(s)| < M v for all s ε (v, β).

From the Arzela-Ascoli theorem it follows that there exist convergent

subsequences of {cin)} and {w(π)} such that the limits cv := lim c(n\ wv := lim w(n)
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satisfy

-e1/v j v [9vA™viσ))- ήdσdτ, (70)

hence wv is a solution of (68), (69).

The function wv can be extended to a maximal solution of (68) wv:

(αv, /?v)-•(£/_, U+) for some αv < v, βx>β. Identity (70) remains valid for

5 6 (αv, j8v), hence wv is twice continuously differentiable and increasing in its

maximal domain of definition. Lemma 7.2 then entails that this solution is

unique.

It remains to prove that βv = +oo for v sufficiently small. Put

γv := sup {5 e (αv, βv); wv(s) e K},

We have yv> β and the identity

combined with Lemma 7.1(ii) entails for se(Lκ + δ,yv)

(swϊ(s)Y < - δ swM (72)

v(Lκ + o)

Integrating the last equation we obtain

eps/vsw^(s) < ept/vtw^(t) for Lκ + δ < t < s < γv9

where we denote p :— > 0.
Lκ + δ

We now integrate \L

L

κ^.2

δ

δdt the inequality epφw'v{s) < epφw'v{i) and for

5 G (Lκ + 2δ9 γv) this yields

δepφw'v{s) < e

p(L*+2δφ(V - VQ\

hence

wv(5) < wv(Lκ + 3(5) + V ( F " VQ\-^ for S 6 ( L X + 35, yv). (73)
δp

For v > 0 sufficiently small, say v < v0, we thus have wv(s) e K for all 5 e (αv, βv\

hence jSv = -foo. This completes the proof of Theorem 7.3. •
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We now pass to the limit as v->0 + . The following Theorem states

that the solution obtained by the vanishing viscosity selection rule coincides

with the minimal solution defined in Sect. 5.

THEOREM 7.4. Let Qe(G_,G+) and Fe( ί/_, 17+) be given and let wv be

the solution of (68), (69) for v e (0, v0). Let w* be the minimal solution of

(23), (24). Then wv(s) -• w*(s) as v -> 0 + for all s > 0.

PROOF. For v < v0 we define auxiliary functions

It suffices to assume Q < g(V) (Q > g(V) is analogous and Q = g(V) is triv-

ial). By (73), the system {wv; v < v0} converges uniformly to the constant V

on [/? — <5, +oo) as v -• 0 + . On [0, /?], {$v; v > 0} is an equibounded system

of continuous nondecreasing functions, and from Helly's Selection Principle

([11]) we deduce the existence of a nondecreasing function vv: [0, β~] -• [F Q , F ]

and of a sequence vfc -• 0 + as k -* oo such that

Ak(s) -+ vv(s) V S E [ O , 0 ] as fe-^oo. (75)

Let φ e <3(0, oo) be arbitrarily chosen. For k sufficiently large we have

Γ [(*wVk(s) - g^K^WWis) + wVk(s)φ(s)^ds = vk f °° wVk(s)(φ\s) + sφ"(s))ds
Jo Jo

and passing to the limit as k -> oo we obtain

- g(w(s)))φ'(s) + vv(s)φ(s)]d.s = 0.Γ
Jo

Consequently, w is a nondecreasing solution of (23), (24) with w(s) = V for

s > β and ϊv(0+) = F e [KQ, F ] .

For each v > 0 and s > v we have

v2v*αv) = vsw:(s) + swv(s) - vVQ - gv,κ(wv(s)) + 0V >K(*Q) - Γ wv(σ)dσ (76)

and integrating the last identity tfds we obtain

(β - v)v2w:(v) = vϊβV- vVQ - l" wv(s)ds\

+ Γ (sύv(s) - 0,.*(*,(s)) + Q.AVQ) - Γ Ai<y)
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For v = vk we pass to the limit as k -• oo. This yields

β lim vfc

2w;(vfc) = (sw(s) - g(w(s)) + g(VQ) - w(σ)dσ)ds
fc-°o Jo \ JO /

= Γ g(vQ) - g(V)ds = β(g(vQ) - g(V)) < o.

Jo

We conclude
V=VQ, lim ifcXte) = 0. (77)

fc-+oo

According to Lemma 3.2, we define the convex trajectory g* of the solution

w by the formula

f W
JvQ

g*(u):=Q+
JvQ

analogous to (27). We are done if we prove

g(u)>g*(u) VuεlVQ,Vl (78)

Indeed, then g* is the minimal trajectory from Q to V and by Proposition

5.4, vv is the minimal solution of (23), (24). The limit function w is then

independent of the choice of the sequence {vk}, so the assertion of Theorem

7.4 holds.

To prove (78), we choose an arbitrary u e (VQ, V) and find s > 0 such

that u e [w(s—), w(s+)]. Following Lemma 3.2 we have g*(w(s±)) = g(w(s±)),

hence it remains to consider the case.

w(s-) <u < w(s + ). (79)

Let {sk} be the sequence such that wVk(sk) = u for all k e N and let us assume

that a subsequence (denoted again by sk) converges to some s φ s. For s> s

and σ e (s, s) we have w(s + ) < w(σ) = lim wv(σ) < u, which is a contradic-

tion. The case s < s is analogous, so sk^s as k-> oo.

Put A = g(u) — g*(u). Lemma 3.1 entails

A = g(u) - g(V0) - su + w(σ)dσ
Jo

Γsk

= Gvk,κ(wvk(
sk)) - 9vk,κ(vo) - skWvk(h) + vfcF0 + wVk(σ)dσ + Ik, where

Jv k

h :=

(w(σ) - ^(σ))dσ +
Jo Js

wVk(σ)dσ.
s
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We have lim 4 = 0 and identity (76) yields Δ = vkskw^k(sk) — vkw^k(vk) + Ik.
fc->oo

From (77) we conclude

Δ = lim vkskwϊk(sk) > 0
fc->oo

which is nothing but inequality (78). Theorem 7.4 is proved. •

8. Other admissibility conditions

In this section we compare our minimality criterion with other entropy

conditions, namely with those of Lax [17], Liu [22] and Dafermos [5]. We

consider only solutions to equation (5) which belong to the space 0t of

regulated functions (cf. [2]), i.e. functions v: R1 -• JR1 such that for every z e R1

there exist both limits v(z—\ v(z + ) and the limits V± := lim p{z) exist and
z-> ±00

are finite.

A. Lax' condition. [17] The following definition is the classical Lax's shock

condition for systems of conservation laws adapted to our special situation.

DEFINITION 8.1. Let us assume g'e0t. A solution υe0t to (5) is said

to satisfy Lax' entropy condition at a point zeR1, if one of the following

situations occurs:

(i) φ - ) = φ + ),
(ii) v(z-) < φ + ), zg'(v(z-) + ) > z3 > zgf(v(z + )-),

(iii) v(z-)> v(z + ), zg'(v(z-)~) > z3 > zg'(v(z + ) + ).

The fact that the minimal solution defined in Lemma 3.3(i) follows the minimal

convex (maximal concave) trajectory along g implies immediately the following

result:

PROPOSITION 8.2. Let v be the minimal solution to the Riemann problem

(5), (11) and assume g' e0t. Then v satisfies Lax' entropy condition at each

point z e R1.

Example 8.3 below shows that the in general, the converse is not true.

EXAMPLE 8.3. Let g:(U_, U+)-+(G_,G+) be an increasing smooth func-

tion and let there exist numbers a<V-<q<V+<s<b such that

(i) g" > 0 in (K_, q)\J(V+, s), g" < 0 in (q, V+)9

(ii) there exists t e (q, V+) such that
t — V_ s — κ_

[Q(U)-Q(V.) ,„ J .
= max-
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V_ t V+ rPs

Fig. 5

We fix some r e (V+9 s) such that jr

v_g(u)du < J(r - V.)(g(r) + g(V_)) and

put

for

for

fnr

z < —

'•(-.

Iθir)

1 r
- g(v.)

- v_ '
ι - g(V.)
•-V-

g(v+)

g(r)-g(V+)
(80)

r-V+

Then D is a solution of (5), (11) with

D+ - D_ = (r - V.) +

For p G [r, s) we further define

'w*(z2) f o r z < 0 ,

(81)

(82)

for z >

where w* is the minimal solution of (23), (24) with V = K_, Q = #(p) and we

check that the value of p can be chosen in such a way that vp satisfies (5),

(11) with D+ — D- given by (81). Using Lemmas 3.1, 3.3 we obtain

I (vJz) - P0(z))dz = Γ ty
J-oo

-J.
*(z2) - V_)dz - g(V+)){p - V+)

V

V-

- g(V+))(p - V+),
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where g* is the minimal (concave) trajectory from g(p) to F_. Put

h(p) := Γ y/gjΊμ)du + J(g(p) - g(V+))(p -
J
- y/(g(r) - g(V-))(r - V.) - J(g(r) - g(V+))(r - V+).

We claim that p e [r, 5) can be chosen in such a way that h(p) = 0. Indeed,
we have

h(s) = ̂ (s) - g(V.))(s - V.) + J(g(s) - g(V+)){s -

~ g(V-))(r - V.) - J{g{r) - g(V+))(r - V+) > 0,

and Holder's inequality yields

ί; /g*Ίμ)du < y/(g(r) - g(V.))(r - V.

hence h(r) < 0. The function h is continuous in [r, s), hence h(p) = 0 for
some pe[r,s). We thus dispose of two solutions v, vp of problem (5), (11)
with D+ — D_ given by formula (81). Both v and vp satisfy the Lax condition
and the dissipation condition. To check that v Φ vp we notice that g*(t) = g(t),

hence g*{p) " g*(t) = g{p) ~ g{t) < g{s) " g{t) = g{t) " g{V-] = g*{t) " g*{V-]

p-t p-t s-t t-V_ t-V_ '

This implies that g* is not affine, consequently the solutions v, vp are distinct.
We can mention a positive result, namely

PROPOSITION 8.4. Let g' be monotone and let v be a piecewise constant

solution to equation (5) satisfying Lax9 entropy condition at each point z e R1.

Then v is monotone in each interval (—00,0), (0, +00).

PROOF. Let v be given by (12) and let us fix for instance 0 < zk < zk+i <
yjb. Assume that vk > max {vk_l9 vk+1}. Then Definition 8.1 yields

0'fak-i +) > zl > g'{υk-) > zl+1 > g'(vk+ί+\

which is a contradiction. The cases zk < zk+1 < 0 and vk < min {tVi> vk+i}
are quite analogous. •

B. Liu's condition [22, §3]

DEFINITION 8.5. A solution v to (15) is said to satisfy Liu's shock admissi-
bility criterion at a point z e R1 if v(z + )φv(z — ) and the inequality

g(v)-g(υ(z-))
v-v(z-) φ

holds for all v between v(z — ) and υ(z + ).
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It is obvious that the minimal solution of (5), (11) defined in Theorem

5.2 satisfies condition (83) at each point of discontinuity. The converse is

true in the class of regulated functions.

PROPOSITION 8.6. Let the problem (5), (11) admit a solution ve0ί such

that condition (83) holds at each point z e R1 of discontinuity of v. Then v

is minimal in the sense of Theorem 5.2.

PROOF. Let us first assume for instance that v is nondecreasing in (0, oo).

Let w+(s) := υ(y/s) be the corresponding solution of (23), (24) and let g* be

its trajectory according to Lemma 3.2. If for some we(t;(0 + ), V+) we have

g(u) φ g*(u), then by Lemma 3.2 there exists s > 0 such that u e (w(s—), w(5-h))

and g*(u) = g(w(s-)) + (H - w ( s - ) ) ^ ( W ^ + )j ^ ( w ( 5 ) )

? and condition (83)

w(s + ) — w(s —)

entails g(u) > g*(u). Consequently, g* is the minimal trajectory. The same

argument works for v nonincreasing and for the interval (—oo,0).

On the other hand, condition (83) excludes nonmonotonicities of v in

(—oo,0) and (0, oo). This can be seen again by considering just the interval

(0, oo) only. Let us assume for instance that there exist z 3 > zx > 0 and

z2 G [z l 9 z 3 ] such that the values vx := v(z1—\ v3 := v(z3 + ), v2 := inf {v(z);

z E [z l 9 z 3 ]} satisfy v2 <vί < v3, v2 = v(z2+) or v2 = v(z2 — \ v(z) e [υ2, v±~] for

ze\_z1, z 2 ] , v(z) e [v2, v3~] for z e [z2, z 3 ] (the other cases, namely v2 < v3 < vί9
V2 > vi > ϋ3» V2 > V3 > vi a r e analogous).

It is more convenient to work with the solution w of (23), (24) defined

by the formula w(s) := v(y/s) for s > 0. Put sf := zf for i = 1, 2, 3, A :=

{se(s29s3);w(s + ) = vί or w(s—) = υ1} and

_ J if AΦ09
SA : ~ \s2 if A = 0.

Integrating equation (23) we obtain

Γ*2

s2(v2 - v,) - g(v2) +. g{Όl) = (w(s) - Vl)ds < 0, (84)

g(v2) = {w(s) - vx)ds. (85)

Put s := inf {s e [s 2, 5 3]; w(s + ) > t^}. We have either s = s2 or s > s2. In

the latter case it follows from (84), (85) that [s 2, s] Π ,4 = 0, hence in both cases

we obtain w(s —) < υί < w(s + ). Put i; := w(s —) e [r 2 , v^). The hypotheses

(83) and Lemma 1.5 then entail

5. (86)
— t?
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This yields

Γ (w(s) - Όl)ds = s(v -v,) - g(v) + g(Όl) > 0. (87)

By construction, we have J*1(w(s) — vjds < 0, which is a contradiction. Prop-

osition 8.6 is proved. •

C. Dafermos' condition

DEFINITION 8.7. A weak solution to (2), (10) is said to satisfy Dafermos

maximal entropy rate criterion, if for every weak solution ύ to (2), (10) we have

-uf + G(ux) - -uf - G(ux) (x, ήdx < 0 (88)

in the sense of distributions.

Introducing the expression

S(v) := G(v) - vg(v) + ̂ z V (89)

for veLao(Ri) we can rewrite condition (88) in the following form.

PROPOSITION 8.8. A self-similar solution u to (2), (10) satisfies condition

(88) with respect to all self-similar solutions ύ to (2), (10) if and only if

- £{v))dz < 0 (90)

where v, v are solutions to (5), (11) associated to u, ϋ, respectively, according

to Proposition 1.4.

The proof of Proposition 8.8 is a simple exercise based on integration-

by-parts formulae

J -
= - f z(vf-vf)dz,

J

Γ 2z(vf - vf)dz =-\ [_v{z2v - g{v)) - v{z2v - g{v))ldz. D
J —oo J —oo

Comparison of the maximum principles (90) and (40)

Let us first consider the case of piecewise constant solutions given by

(12). We have seen (as a consequence of formula (32)) that condition (40)
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consists in maximizing separately the expressions

(i) Σ2i> (91)

(ϋ) " Σ Z ί < ) faJ M fa )]
with an unknown intermediate condition g(v(0)) = Q. On the other hand, a

straightforward computation shows that S(v) in (90) is minimal if we maximize

an expression different from (91), namely the sum

ivd - Gfa-i) - ^to-x) + fl

over all discontinuities z {e(—oo, oo).

Open problem. Let g be monotone. Prove or disprove: A solution v

to (5), (11) satisfies minimality criterion (40) if and only if it satisfies Dafermos'

maximal entropy rate criterion (90)! On the other hand, one can construct

examples of nonmonotone functions g such that these criteria are not equiva-

lent (see [12]).
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