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Oscillation and nonoscillation theorems for a class of second order
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ABSTRACT. The equation to be studied in this paper is

(A)

Under certain assumptions on / and g, classification of nonosillatory solutions of (A) is

given according to their asymptotic behavior as t— > oo. Criteria are obtained for the

existence and nonexistence of nonoscillatory solutions of (A). As a result one can

indicate a class of equations of the form (A) for which the situation for oscillations of

all solutions can be completely characterized.

0. Introduction

The purpose of this paper is to study the oscillatory and nonoscillatory

behavior of quasilinear functional differential equations of the type

(A) (i/wrV(o)'+/(',Xflf(0)) = o
for which the following conditions, collectively referred to as (H), are assumed

to hold:

(a) α is a positive constant;

(b) g(t) is a positive continuous function on [α, oo), a > 0, such that

lim^oo g ( t ) = oo;

(c) /(ί, y) is a continuous function on [α, oo) x R which is nondecreasing

in y and satisfies y/(ί, y) > 0, y φ 0, for each fixed t > a.

By a solution of (A) we mean a function ye Cl[Ty,ao),Ty > a, which has

the property that |/|α~V e Cl[Tyj oo) and satisfies the equation at all suffi-

ciently large t in [7^, oo). Our attention will be restricted to those solutions

y(t) of (A) which are nontrivial in the sense that sup{[y(f)| : t > T} > 0 for any

T > Ty. A solution is said to be oscillatory if it has an infinite sequence of

zeros clustering at f = oo; otherwise a solution is said to be nonoscillatory.

It can be shown that, as regards the asymptotic behavior of a non-

oscillatory solution y(t) of (A), the following three cases are possible:
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( I ) lim = const φ 0;
t— > oo t

v(t]
( II) lim ^-^ = 0, lim y(t) = +00 or -oo;

ί— > oo t t—> oo

(III) lim y(ή = const φ 0.
t— >oo

Solutions of the types (I), (II) and (III) are called, respectively, dominant,
intermediate and subdominant solutions. Our first task (Section 1) is to
investigate the existence of these three types of solutions for (A), showing that
necessary and sufficient conditions can be established for the existence of
dominant and subdominant solutions.

Our next task (Section 2) is to find criteria for oscillation of all solution of
(A). Additional restrictions on the nonlinearity of (A) are needed for this
purpose. It will be shown that there exists a class of equations of the form (A)
for which the oscillation situation can be completely characterized. An
example of such equations is

(B) (l/wrVW)' + q(t)\y(β(t))\β-ly(9(t)) = o,
where β is a positive constant and q(t) is a positive continuous function on
[α, oo).

In Section 3 we show that the results of Sections 1 and 2 can be extended
to equations of the form

(C) (

provided p(t) is a positive continuous function on [a, oo) satisfying

f°° dt

J. «^= "
Oscillation theory for the quasilinear ordinary differential equation

has been developed by several authors including Elbert and Kusano [1]. To
the best of the author's knowledge there is no previous work other than [3]
concerning the oscillation of quasilinear functional differential equations with
deviating arguments of the form (A) or (C).

1. Existence of nonoscillatory solutions

We begin with the existence of dominant solutions of (A).
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THEOREM 1.1. The equation (A) possesses a dominant solution if and only
if there exists a constant c ̂  0 such that

(1.1) Γ|/(ί,cβr(0)|A
Ja

00.

PROOF. (The "only if" part) Let y(t) be a dominant solution of (A). We
may assume that y(t) is eventually positive. Then, y(t) > 0 and y'(i) > 0 for
t > to, to > a being sufficiently large, and there exist positive constants c, c' and
T > tQ such that

(1.2) cg(t)<y(g(t))<c'g(t] fort>T.

By (A), we get

t < Γ,

which implies that

(1.3) 0< Γ f(s,y(g(s)))ds«x>.
JT

Using (1.2) in (1.3), we obtain

f°°
f(s,cg(s))ds<co.

JT

(The "if" part) Assume that (1.1) holds. Without loss of generality
the constant c therein may be supposed to be positive. Let ω > 0 be a
constant such that 2ω < c. Choose T > a large enough so that Γ* =

min{Γ, \nϊt>τg(i)} >a and that

Define

Y = {y e C[7;, oo) : ω(t - T)+ < y(t) < 2ω(t - Γ)+, t > Γ*},

where

( t _ τ ] =/ '- Γ ' ^Γ'
1 j+ \0, t<T.

Let J^ denote the mapping from Y to C[Γψ,oo) denoted by

ί
I / "ΐ> TUS. 12.1,

( (t / rΛ J ωα+ f(r^y(9(r})}d,
0 = < J r V J,

U
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It is a matter of routine calculations to verify that (i) 2F maps Y into itself; (ii)

& is a continuous mapping; and (iii) &(¥) is relatively compact in
C[Γ*, oo). Therefore, by the Schauder-Tychonoff iked point theorem, there
exists an element y e Y such that y = &y, which implies that the function
y = y(t) satisfies

y(ί) = £(ωα + jj /(r,Xflf(r)))dr) "ώ, ί > Γ.

Differentiating this integral equation, we see that y(t) is a positive solution

of (A) with the property that ]imt-+ao[y(t)/t] = ω, that is, y(t) is a desired
dominant solution of (A). This completes the proof of Theorem 1.1.

A characterization for the existence of subdominant solutions of (A) is
given in the following theorem.

THEOREM 1.2. The equation (A) possesses a subdominant solution if and

only if there exists a constant c φ 0 such that

i oo / poo \ 1/α

(1.4) \a (jt \f(s,c)\ds) Λ < o o .

PROOF. (The "only if" part) Assume the existence of a subdominant

solution y(t) of (A) which is eventually positive. Then, y(t) > 0 and y'(t) > 0
for sufficiently large t, say t>to>a, and there exist positive constants c, cf and
T > to such that

(1.5) c<y(g(t))<c' foτt>T.

We now integrate f ( s , y ( g ( s ) ) ) from t > T to oo. Noting that /(/) -> 0 as
t —> oo, we have

or

(1.6) y'(t) = ί f ( s , y ( g ( s ) ) ) d s ] , t>T.

Integrating the both sides of (1.6) from Γ to oo, we have

1/α

°< Γ (Γ
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which, combined with (1.5), yields

POO / i oo \ l/α

0< ί f(s,c)ds) dt< oo.

The case where y(t) is eventually negative can be treated similarly.
(The "if" part) Suppose that (1.4) holds for some c> 0. Take T > a so

large that Γ* = min{Γ,inf,>;r0(f)} > a and that

f(s,c)ds\ dt< |.

If we define

Z = |z e C[7;, oo) : ̂  < z(t) <c,t>T*

and

T; < t < r,

then it can be shown that ^ is a continuous mapping which sends Z into a

relatively compact subset of Z. Consequently, ^ has a fixed element z in
Z : z = ^z, which clearly satisfies the integral equation

') Λ,/(r,z(flf(r)))drj Λ, / > Γ .

It follows that z(t) is a positive solution of (A) with the property that

lim^oo z(t) = c, that is, z(t) is a subdominant solution of (A). Similarly, if
(1.4) holds for some c < 0, then one can prove in a similar manner the
existence of a subdominant solution which is eventually negative. This
completes the proof of Theorem 1.2.

A sufficient condition for the existence of an intermediate solution of (A) is
given in the next theorem.

THEOREM 1.3. Suppose that (1.1) holds for some c^Q. Suppose in
addition that

Λ/ϋLi oo / foo \ α

(1.7) Jα (J( \f(s,d)\dsj dt=ao

for all d ̂  0 with cd > 0. Then (A) has a nonoscillatory solution y(t) such that

lim^oo = ° and lim^oo = oo.
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PROOF. We may suppose that c> 0. Choose k such that 0 < k < c.

Let T be so large that Γ* = mm{T,mft>τg(t)} >a and that

Consider the set W c C[Γ*, oo) and the mapping 3tf : W -» C[Γ*, oo) defined
by

^ = {u> e C[7;, oo) : fc < w(t) < k(t + 1), ί > Γ*}

and

k,
< t <T.

Then, the Schauder-Tychonoff fixed point theorem is applicable, and there
exists an element w 6 W such that w — ̂ f w. This function w = w f satisfies

(1.8) w(t) = k + [Ύ Γ f(r, w(g(r)))dλ "ώ, ί > Γ,
J r V J j /

which implies that w(ί) is a positive solution of (A). From (1.8) we see that

w(t) / r°° \l/Λ

lim -̂  = lim w7(ί) - lim f(s, w(g(s)))ds = 0
t— > oo ί ί— > oo ί— »• oo V J ^ /

and

1/α

lim w(ί) > lim^oo ^^

which is a consequence of (1.7). This finishes the proof.

REMARK 1.1. It seems to be a very difficult question to find a necessary
and sufficient condition for the existence of an intermediate solution of (A) even
in the special case where g(t) = t.

EXAMPLE 1.1. An important special case of (A) is

(B) (iy(OΓV(0)' + q(i)\y(gmβ-λy(9(i)) = o,
where α and β are positive constants and q(t) is a positive continuous function
on [α, oo). Clearly, the hypothesis (H) is satisfied for this equation. It is easy
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to see that the conditions (1.1) and (1.4) reduce, respectively, to

< 00(1.9) Γ(g(t)}βq(ήdt
Ja

and
fco / pec \ 1/α

(1.10) M q(s)ds\ dt<ao.

It follows that
( i ) (B) has a dominant solution if and only if (1.9) holds;
(ii) (B) has a subdominant solution if and only if (1.10) holds;
(iii) (B) has an intermediate solution if

(1.11) [ (g(t))βq(t)dt<ao and [ ([ q(s)ds] dt=ao.
Ja Ja \Jt /

Suppose in particular that q(t) = t~ό;, where δ > 0 is a constant. As is
easily verified,

( i ) if g(t) = σt + τ, σ > 0, τ e R, then
(1.9) «=n$ > ι+# (UO)Φ=><5> 1 + α;

(l.l l)<ί=>α>jff and l+β<δ< 1 + α;
(ii) if g(ή = tθ, θ > 0, then

1+βθ; (1.10)*=*δ> 1 + α;
a > βθ and l+βθ<δ<> 1 + α;

(iii) if g(i) = log ί, then
(1.9) <=>δ > 1; (1.10) ̂ =^δ > 1 -h α;

2. Oscillation criteria

We are interested in obtaining conditions under which all solutions of (A)
are oscillatory.

LEMMA 2.1. Let y ε Cl[T, oo) be a function such that y(t) > 0, y'(t) > 0
and y'(t) is nonincreasing for t > T. Let g e C[T, oo) be a function such that
g(t) > 0 and lim^oo g(t) = oo. Then, for every A: e (0, 1) there exists Tk>T
such that

(2-1) y(9(t))>ky(t), t>Tk,

where

(2.2) 0.(0



456 WANG Jingfa

PROOF. This lemma is essentially due to Erbe [2]. Since y(t) is increasing
and yf(t) is nonincreasing, we have

), t>τ

and

y(t) - y(g*(t)) = f y'(s)ds < y'(g*(t))(t - ^(/)), / > g*(t) > Γ,
J0.M

from which it follows that

On the other hand,

y(g,(ή}-y(T)=Γ(t] y'(s)ds:.
JT

which implies that for each k e (0, 1) there exists T^>T such that

Combining (2.3) with (2.4), we find

which shows that (2.1) is true.
First we present a criterion for oscillation of all bounded solutions of (A).

THEOREM 2.1. All bounded solutions of (A) are oscillatory if

v l / «

dt = oo

0.

PROOF. Suppose to the contrary that (A) has a bounded nonoscillatory
solution y(t). With no loss of generality we may assume that y(i) is eventually
positive. Then, applying Lemma 2.1, we see that for every ke(Q,l)y(t)
satisfies (2.1) provided 7^ is sufficiently large. Since f(t,y) is nondecreasing in
y, we obtain the following inequality from (A):

(IXOΓV(O)'+/',* Xθ ^o, t > τk.
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From Lemma 1 of [3] it follows that there exists a function z(t) such that

0 < z(t) < y(t) and that

Thus z(i) is a bounded nonoscillatory solution (i.e. a subdominant solution) of
(2.6), and so application of Theorem 1.2 shows that

l/α

This contradicts (2.5) and the proof is complete.

COROLLARY 2.1. Suppose that

liminf^X).
f-K» ί

TΆew #// bounded solutions of (A) are oscillatory if and only if

rao / poo \ l / α

(2.7). I/MΛ A = o o
Jα \Jί /

/or α// c φ 0.

In order to establish a criterion for oscillation of all solutions of (A) a
further restriction on its nonlinearity is required.

THEOREM 2.2. Suppose that there exists a continuous function φ(u) on R
which is nondecreasing and satisfies uφ(ύ) > 0, u^Q,

±ι

and

(2.9) lim inf > k\f(t, ι>)|, t > α,

for some constant k > 0 αra/ α// 1; with \v\ < 1. T/" (2.5) holds, then all solutions
of (A) are oscillatory.

PROOF. Assume to the contrary that (A) has a nonoscillatory solution y(i)
which is eventually positive. Let δ, 0 < δ < 1, be fixed. Take TS large enough

so that

foτt>τδ.
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Then, we have

(i/wrV ox +/(*,<* ̂  xo) < o, t > T,,
so that, by Lemma 1 of [3], there exists a positive solution z(t) of the equation

(2.10) (|z'(OΓV(0)' +ftj z(/) =0, t > Tδ.

From Theorem 2.1 applied to (2.10) it follows that z(t) can not be bounded for
t > Tδ) i.e., lim^oo z(f) = oo. By (2.10), we obtain

and

/α

ds

Because of (2.9) we have the following inequality for the integrand of the last
integral in (2.11);

k ί g.(t)

- 't

where T>TS is taken sufficiently large. From (2.11) and (2.12) we get

which, after integration over [Γ, t], gives

/αrfW / fc\ 1 α f / f00 / g*(r)\ .
7ΓT - o /('>

>

H-L Z)Λ i)^(w) W J r V J , V »• / /
Letting t — > oo and using (2.8), we conclude that

which contradicts (2.5). This completes the proof.
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COROLLARY 2.2. Suppose that

lim inf ̂  > 0.
f-κjo t

Suppose moreover the existence of a function φ(u) with the properties as stated in
Theorem 2.2. Then, all solutions of (A) are oscillatory if and only if (2.7)
holds.

THEOREM 2.3. Suppose that there exists a continuous function ψ(u) on R
which is nondecreasing and satisfies u\l/(u) > 0, u φ 0,

and

for some k > 0 and all v with \v\ > 1. If

(2.15) f \f(t,cgt(t))\dt=ao

ybr α// c φ 0, ίA^π α// solutions of (A) are oscillatory.

PROOF. Let >>(/) be a nonoscillatory solution of (A). We may suppose
that y(t) is eventually positive. Since (2.15) implies

Γ|/(ί,cflf(0)|Λ=oo
Ja

for all c^O, (A) cannot possess dominant solutions by Theorem 1.1, so that
y(t) is either subdominant or intermediate. This means that limί_ooy(ί) =

= 0. Since y'(t) > 0 is decreasing, we have

y(t) - y(t0) = f y'(s}ds > y'(t)(t - /0), / > ίo,
Jto

which implies that, for a fixed 5, 0 < δ < 1,

XO > δty'(t), y(g.(t)) > δgt(t)y'(gf(t)), t > T,

provided T > to is taken sufficiently large. We then have

.(')) ̂  <MO/ (0, ' ̂
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and hence

(2.16) 2^ί|)>^(ί)) t>τ.

Let M > 0 be a constant such that 0 < /(ί) < M for t > T and define

dv(M

Ψ(u) =
Ju

0 < w < M.
Ju Ψ\P )

We observe that

(2.17) -A

where (2.16) has been used. In view of (2.14) T\ > T can be chosen so large
that δgf(t) > 1 for t > T\ and that

- Γl>

which, combined with (2.17), yields

(2.18)

This implies that

r

since it follows from (2.18) and (2.13) that for t> T\

k-\ f(s,δg*(s}}ds<
2 Jr,

dv (M dvdv [

<K»1/α) < Jo

This is a contradiction and completes the proof.

COROLLARY 2.3. Suppose the existence of a function \j/(u) with the
properties as stated in Theorem 2.3.
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(i) Suppose that g(t) <t for t > a. Then, all solutions of (A) are
oscillatory if and only if

(2.19) \ f ( t , c g ( t ) ) \ d t = oo

for all c^Q
(ii) Suppose that

l iminf^>0 and limsup^<oo.
'-><» t t-^ao t

Then, all solutions of (A) are oscillatory if and only if

J°V(ί,cί)|Λ=oo

for all cφ§.

REMARK 2.1. (i) The equation (A) is said to be super-half-linear if there
exists a constant β > α such that \f(t,y)\/\yf is nondecreasing in \y\ for each
fixed t > a. In this case, for any u,v with \u\ > 1, \v\ < 1, we have

(2.20) l/(f'"ϋ)l S

so that (2.9) holds with the choice φ(u) = \uf'Λ~lu which is increasing and
satisfies uφ(u) > 0, u φ 0, and (2.8).

(ii) The equation (A) is said to be sub-half-linear if there exists a positive

constant β < α such that l/ί^jOI/M^ is nonincreasing in \y\ for each fixed
t > a. In this case, we see that (2.20) holds for any u, v with \u\ < 1, |t?| > 1, so
that (2.14) holds with the choice \l/(ύ) = \uf~lu which is increasing and satisfies
uψ(u)>0, M / 0 , and (2.13).

EXAMPLE 2.1. Consider the equation (B) in which β is a positive con-
stant and q(t) and g(t) are positive continuous functions on [a, oo) with
lim^oo g(t) = oo. According to the above definitions, (B) is super-half-linear if
β > α and sub-half-linear if β < α.

(I) Let β > α. All solutions of (B) are oscillatory if

(2.21)

Suppose in addition that g(t) satisfies

lim inf > 0.
t— K30 /
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Then, all solutions of (B) are oscillatory if and only if

roo / roo \ 1/α

(2.22) M q(s)ds] dt=ao.

(II) Let β < α. All solutions of (B) are oscillatory if

(2.23) Γ q(t)(g.(t)fdt = oo.
Ja

Suppose in addition that g(t) <t for t>a. Then, all solutions of (B) are
oscillatory if and only if

(2.24) Γ q(t}(g(t)}βdt=n.
Ja

On the other hand, in case g(t) satisfies

l iminf^>0 and liminf^<oo,
f— K30 t f— >00 t

a necessary and sufficient condition for oscillation of all solutions of (B) is that

(2.25) Γ tPq(ήdt=az.
Ja

REMARK 2.2. Let α < β and consider the equation (B) in which g(i) is
continuously differentiate and satisfies g'(i) > 0 and g(t) < t for t > a. As
mentioned above, all solutions of this equation are oscillatory if (2.21) is
satisfied, that is,

f o o / f o o fa(s}\β Y/ α

(2.26, i (!««(«?)*) *—

On the other hand, a comparison theorem given in [3] (Corollary to Theorem
6) shows that the same conclusion holds for (B) if all solutions of the ordinary
differential equation

(2.27) a/wry (0)' +|
are oscillatory, where g ~ λ ( t ) denotes the inverse function of g ( t ) . It is known
[1] that such a situation holds for (2.27) if and only ,if
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which is equivalent to

r /r y/«
(2.28) q(s)ds\ dt=n.

Ja \Jg-l(t) J

Suppose, for example, that q(f) = Γ2 and g(t) = tγ, 0 < γ < 1. In this

case (2.26) holds if y>(β-* + \)/β, while (2.28) holds if γ > 1/α. This
shows that α must be larger than 1 and that (2.28) is better than (2.26).

3. Extensions

We will show that, by means of a simple change of variables, the results
for (A) can be carried over to more general equations of the form

(C) (XOI/WΓV (>))' +f(t,y(am = °>
where α and/(f,;>) are as in (A) and p(t) is a positive continuous function on
[Λ, oo ) satisfying

(3-D
ia (p(i))l'«

In fact, define the function P(t) by

(3.2) - / Λ f *

and introduce the change of variables (t,y) — > (τ, F) given by

(3.3) τ = P(ί), r(T)=XO-

Then the equation (C) is transformed into

(C') (I r(τ)!-1 r(τ)) + F(τ, Γ(G(τ))) = 0,

where a dot denotes differentiation with respect to τ,

(3-4) F(τ, Y) - (p(t))l/"f(t,y),

and

(3.5) G(τ)

P"1 designating the inverse function of P.
Since (C') is of the same type as (A), all the theorems of §§1-2 can be

applied to (C7), and the results thus obtained give rise to the corresponding
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oscillation and nonoscillation theorems for (C), some of which will be stated
below.

A nonoscillatory solution y(i) of (C) is called dominant if

lim^oo [y(t) /P(t)} = const φ 0 and subdominant if \imt->aoy(ή = const ^ 0.

THEOREM 3.1. Let f(t,y) be as in Theorems 1.1 and 1.2.
(i) (C) has a dominant solution if and only if

(3.6) Γ\f(t,cP(g(t)))\dt<oo
Ja

for some c ̂  0.
(ii) (C) has a subdominant solution if and only if

poo / i foo \ 1/α
(3 7) Usoί. "fc"1*) *< 0°

for some c ̂  0.

This nonoscillation theorem is an immediate consequence of Theorems 1.1
and 1.2.

Oscillation criteria for (C) follow from Theorems 2.2 and 2.3 by noting
that, for the function G = P o g o P~l ,

G,(τ) = min{τ, G(τ)} = P o ̂  o P~\τ),

where ^f* is defined by (2.2), and that

l/αi o o / i oo / ^ / \\ I \ α f°° / 1 f°
([ F(ff|C^w)L/σ) rfτ=f (_L

Jθ VJr V ° )\ ) L V P ( θ J »

Γ |F(T,cG,(T))|</T = Γ \f(t,cP(g,(t)))\Λ
Jo Jα

THEOREM 3.2. Let f(t,y) be as in Theorem 2.2. All solutions of (C) are
oscillatory if

/or 0// c 0.
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THEOREM 3.3. Let f(t,y) be as in Theorem 2.3. All solutions of (C) are
oscillatory if

I OO

(3.9) \f(t,cP(g*(t)))\dt= oo
Jα

for all cφ§.

We conclude with necessary and sufficient conditions for oscillation of all
solutions of the equation

where u.,β,q(t} and g(t) are as in (B), and/?(f) is a positive continuous function
on [α, oo) satisfying (3.1).

(I) Let β > α. Suppose that

,">« P(ή - -

Then, all solutions of (D) are oscillatory if and only if

vι/«
dt= oo.

(II) Let β <VL. Suppose that #(f) < / for t > a. Then, all solutions of
(D) are oscillatory if and only if

Γ q(t)(P(g(t)))βdt =
Ja

00.

On the other hand, in case g(t) satisfies

liminf«»>0 and limSUp«»<oo,
f->oo P(t) t—κ» •* (0

all solutions of (D) are oscillatory if and only if
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