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ABSTRACT. Give a Brownian motion B = {B(t); te [0,1]}. For any linearly inde-

pendent system g = {#1,02, ,##} in L2[0,1], we construct a Brownian motion
Bg = {Bg(t)\t e [0,1]} which is noncanonical with respect to B. In detail, the
orthogonal complement of Ht(B%) in Ht(B] is the linear span of

{&g\(u)dB(u)^g2(u)dB(u),...,§gN(u)dB(u)}. As a special case, Levy's examples
of noncanonical representations of a Brownian motion are included. For the con-
struction of Bg, we use the theory of a partial isometry. A generalized Hardy
inequality is derived and applied as an important lemma.

0. Introduction.

The theory of canonical representation for a Gaussian process has been
presented for the first time by Levy [9] and later developed by Hida [5] and
Cramer [2]. Especially Hida has given a systematic method for the theory of
multiplicity of the canonical representation. The main results on the canonical
representation after their initial articles are referred to the book of Hida and
Hitsuda [6]. On the other hand, Levy [10] has given some nontrivial examples
of the noncanonical representations of a Brownian motion with respect to a
given Brownian motion which is used as a standard in order to emphasize the
importance of the canonical representation.

The aim of the present article is to give a general method so as to obtain a
noncanonical representation of a Brownian motion, which has its own interest
in connection with a generalized Hardy inequality in L2[0,1] or in L2[0, oo).

We give here a review of Levy [10] in connection with the present
problem. Let B= {B(t)\te [0,1]} be a Brownian motion. It is proved that
for each q > -1/2 and q ̂  0 a Gaussian process Bq = {Bq(t\, t G [0,1]} defined
by

(1) **(0 - Γ (~ ΐ - q-^]dB(u)

1991 Mathematics Subject Classification. 60G15, 60G25.
Key words and phrases, noncanonical representation, Brownian motion, Hardy's inequality,

partial isometry.



440 Yuji HIBINO et al.

is again a Brownian motion. In fact, the law of the Gaussian process Bq is
equal to the one of the Brownian motion. But the representation of the right-
hand side of (1) is not canonical with respect to B, because, for each t, the
random variable ^uqdB(u) is orthogonal to the linear span Ht(Bq) by
{Bq(u)]ue [0, t]}. Even in case of # — 0, we can give the noncanonical
representation of a Brownian motion SQ by

(2) 50(0 = l + log

It may be interesting that B(t) itself is orthogonal to the linear span Ht(Bo)
for each f e [ 0 , 1]. We note that for any q>—\/2 these examples are
expressed in the unified form by the use of an integral operator Kq defined by a
kernel kq\

(3) Bq(t) = B(t) - Γ Γ kq(s, u)dB(u)ds,
Jo Jo

where

In terms of white noise, (3) is informally written as in the form

(4) 5, = (/-A,)J,

with an initial condition Bq(Q) = 0. Though the exact meaning of the operator
Kq : L2[0,1] -> L2[0,1] and the adjoint one K* will be defined in Section 1 as a
much more general form, it should be noted that

( f ) = [ (I-IC9)lM(u)dB(u), r e [0,1],
JO

Bq

where I A denotes the indicator function of an interval A.
The idea above of Levy's construction will be generalized as in the

following method. For any natural number N and for any linearly inde-

pendent system g = {#1,02, ,0#} of L2[0,1], we will construct in Section 1 a
partial isometry / — Kg whose initial subspace is the orthogonal complement of
the linear span of {01,02, - - . ,0#} and whose final subspace is L2[0,1]. Then
the adjoint I - K^ is an isometry on L2[0,1]. In the course of defining the
operator Kg, we naturally need a generalized form of the Hardy inequality in
L2[0,1]. It may be worth pointing out that the operator Kq of the above
example of Levy is equal to Kg for N — 1 and g\(t) — tq.
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In Section 2, we will be able to construct a Brownian motion
Bg = {Bg(t)\t e [0, 1]} for the linearly independent system g such that the
orthogonal complement of Ht(Bg) in Ht(B) coincides with the linear span of

{/J gi (u)dB(u), J* g2(u)dB(u), . . . , J0' gN(u)dB(u)}. The Brownian motion Bg is
explicitly represented as in the form

= - /gi[o,,](")<W, f 6 [0,

in terms of the isometry / - K*.

1. The operator Kg and a generalized Hardy inequality.

In the beginning, let us define an operator Kg depending on a fixed finite

system g = {01,02,- .-,0#}, 0, eL2[0,l], / = 1,2,...,^. For the sake of
convenience, we use notations

(5) g(0 = τ(0ι(0,02(0,..

(6) G(t) = f g(n)τg(n) A = (( gi(u)gj(u)du]
Jθ \Jθ Λj=l,2,...7V

(7) Γ g(j)α(j)Λ = Y f 0ι W« WΛ, - - - , f 0Λr(ί)α(j)Λ>) ,
Jo \Jo Jo /

where τg means the transposed vector of a vertical vector g. Note that the
rank.R(ί) of the matrix G(t) is an integer-valued and nondecreasing function

which is left-continuous in t > 0. In the first stage, we assume the following.

ASSUMPTION A. The rank function R(t) is constant N:

R(ή =N, t>0.

REMARK 1. The assumption above is not essential. It will be easily
removed at the final theorem in the present section.

Theorem 1.1 below guarantees that it is permitted to define a bounded

operator Kg on L2[0, 1] by

(8) Agα(j) = τs(s)G(sΓl Γ g(«)«(«)Λ, <x e L2[0, 1],
Jo

though the right-hand side of (8) has a singularity at s — 0. Namely, the
operator Kg is regarded as an integral operator with kernel kg(t,s) =
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Denote Qε by

Qε = {α e L2[0, 1]; α(ί) - 0 for t < e},

for each ε > 0.

LEMMA 1.1 Under Assumption A, we have

(9) £ (τs(s)G(sΓl J* g(u)*(u)du^ ds < 4||α||2

/or α e βe,ε > 0.

PROOF. Let us note that G(/) - G(s) = (f* gi(u)gj(u)du) is nonnegative
definite, so the minimum eigenvalue λ(t) of G(f) is a nondecreasing function in
t. As a result, the maximum eigenvalue \/λ(t) of the inverse matrix G(t)~l of
G(/) is nonincreasing. The left-hand side of (9) is equal to the integral

Je (τ&(s)G(s)~l JJ g(u)a.(u)du)2 ds and this value is finite, because α is in Qε and
is finite. Thus the left-hand side of (9) can be rewritten as

1 Γ g(u)*(u)du}ds
J ε /

= ί- Γ^MαWΛGί*)-1 Γg(ιι)α(H)ΛT
I Jε Jε ]s=ε

+ 2 τg(s)G(s)~l g(u)a.(u)dua(s)ds (integration by parts).
Jε Jε

Since Jε

 τg(u)u(u)du G(l)~l Jε g(w)α(w)ί/w > 0, the last expression is less than

r \
W"1 gM«WΛ

Jo /

ε

1 / r \2 Ί1 / 2

ds
o

by the use of Schwarz's inequality. Thus we get the result (9). Π

THEOREM 1.1. For any α e L2[0,1], the function Kga defined by (8) belongs
to L2[0,1] and is evaluated by

(10) p:gα||<2||α||.

PROOF. For αeβ ε ,ε>0, the evaluation has been completed by the
preceding lemma. For αeL2[0,1], define ocn by

0, t<\/n,

α(ί), t > l/n.
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Then ocn belongs to Q\/n and Kgan belongs to L2[0, 1], satisfying ||AΓgαw|| <
2||απ||. Thus the sequence {αw} converges to α in L2[0, 1] and {Kgan} is a
Cauchy sequence in £2[0, 1], On the other hand, Kg(x.n(t) =
τg(t)G(t)~l fl/n g(s)a(s)ds converges to τg(t)G(t)~l J0' g(s)aι(s)ds for each
t € [0, 1]. As a result, we know that Kgu is well-defined and that Kg is
expressed as the integral operator (8). Π

REMARK 2. The inequality (10) is a generalization of the Hardy inequality
in L2[0, 1]. When N = 1 and g\(ή = 1, (10) becomes Hardy's one [3]; see also
Yor [11] discussing an innovation problem for a pinned Brownian motion (a
Brownian bridge). In Jeulin and Yor [8] as well as in Yor [11], some results
were obtained in connection with a stochastic linear differential equation.

In the next step, we will prove some essential properties of the integral
operator Kg and the adjoint operator K*.

LEMMA 1.2. The operator Kg is invariant under the selection of basis

{91,92,-", 9κ}- In other words, if the linear span of g coincides with the one

of g = (ii, g2, - - - , g;v)> then κg = κg-

PROOF. If the linear spans of g and of g are the same, then there exists a
regular N x Λf -matrix A so that g = Ag. Thus the result is clear. Π

LEMMA 1.3. The adjoint operator K* for Kg is expressed as

(11) Λςα(«) = 'g(ιι) G(sΓίs(s)«(s)ds, αeL2[0,l].

PROOF. The calculation as in the proof of Lemma 1.1 tells us that the
formal adjoint of Kg is indeed the adjoint operator. Π

REMARK 3. The kernel of K^ above is a Goursat kernel of order N.

THEOREM 1.2. Under Assumption A,
(I) For any αeL2[0,l],

(12) l l^-^αll^llαlp-^^GίlΓH^^ί^Hαll 2),

here the notation (α, g) means ((α, g \ ) , (α, #2), - , (α, ON)) far convenience' sake,
and

(13) Ker(I - Kg) = LS{gι,g2, . . . , <M

(//) For any αeL2[0,l],

(14) ||(/-A;)α|| = ||α||.
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PROOF. (7) For any αeL2[0, 1], we get

l l 2 = [- ΐτg(u)*(u)duG(Sr
l Γ *(u)*(u)du]

I Jo Jo Jo

ί1 Γ
+ 2 τg(s)oί(s)G(s)~'1 \ g(u)a(u)duds (integration by parts)

Jo Jo

Since ||(7 - #g)α||2 = ||α||2 - 2(a,ATga) + ||J^α||2, (12) is obtained.
Suppose α = c\g\ + c2#2 H ---- + cNgN. Then

τ ( x , g ) G ( l Γ l ( * , g ) = τcG(l)G(lΓlG(l)c = τcG(l)c = ||α||2,

where τc = (cι,C2,...,c^) So in this case, the right-hand side of (12) is
vanished. On the other hand, if α is orthogonal to the linear span of
{0ι, 02, . . . , QN}, then (α, g) = 0. The result follows.

(77) It is sufficient to prove that ||^*α||2 = 2(α,jKjJα). This is done by
the use of integration by parts as in the proof of (7):

= i f φrgwσw-'AGM f
LJu Ju

I (α(M)Tg(M) I G(sΓ}g(

lg(s)*(s)<ύ
J ι/=θ

+ 2

In the arguments above, we used the facts that g(u)τg(u) = (G(u))' and

Hi = o. D

REMARK 4. The operator 7 - Kg is a partial isometry and the initial
subspace is L2[0, 1] θ£«S{0ι,02, ,0#} and the final subspace is L2[0, 1] (see

In the remainder of this section, we state the same results as Theorem 1.2
without Assumption A. The notice has been given in the remark just after the
assumption. Here only the main outline is presented, since the essence is
already included in the arguments above and the method is very similar to the
preceding one.

The first task is to define an integral operator Kg for a given linearly
independent system g = {01,02, - - ,QN} in L2[0, 1]. Let the integer-valued
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function R(i) = rank(J0' gi(s)gj(s)ds) be

R(t) = Nk, tk-ι <t<tk,k = 1,2,...,L,

here 1 < Nk-\ < Nk> NL = N, t$ = 0 and IL = 1. Without loss of generality,

we can assume that, for any / e (fjt-i> &], the system {#ι, #2, - -,##*} is linearly
independent in L2[0, ί]. Thus the Gramian matrix

<?*(/)= if fc Mί/MΛ)
\Jθ JiJ=\,2,...

is regular for t e (tk-ι,tk], so it has the inverse matrix Gk(t) l. The operator
Kg : L2[0,1] -> L2[0,1] is defined by

-i Γ
g α ^ - g * . * Jo gfc w α M «, j

where τgfcO?) = (0ιOs)502( s), - - - ι9Nk(s))- Then the operator is well-defined and
has the properties of Lemma 1.1 and Theorem 1.2 (/). For the proofs of these

facts, we need to apply the method of integration by parts for each subinterval

(tk-\,tk\, k= 1,2, ...,L. As for the property of Lemma 1.2, we can justify
the analogous result after a slight modification of the statements. As a pre-

paratory result, we can obtain the next lemma.

LEMMA 1.4. The adjoint operator K* for Kg defined by (15) is given by

L rti

(16) JCα(κ) = Y]Tg, (κ) G/^pg^l^i^X^Λ, αeL2[0,l].
feί

 J'*-ι

According to the expression of K* in (16), we can get the same result as

Theorem 1.2 (II) without Assumption A.

THEOREM 1.3. For any linearly independent system g = {#1,02? ->9N} in
L2[0,1], the operator I — K* is isometric:

(17) | |(/-AJ)α|| = ||α||, αeL2[0,l].

2. Noncanonical representation of a Brownian motion.

The theorem below gives a general scheme of noncanonical representations

of a Brownian motion of Levy's type with respect to a given Brownian motion

*={*(/);*€ [0,1]}.
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THEOREM 2.1. For any linearly independent system g = {#1,02? >QN} in
L2[0, 1], the Gaussian process B% defined by

(18) Bs(t) = f (/ - K;)l[M(u)dB(u), t € [0, 1],
Jo

is a Brownίan motion having a property

(19) Ht(B%) = Ht(B)ΘLsW gi(u)dB(u)-J i = 1,2, . . . , N\,

where LS{ -} means the linear span of {•••}.

PROOF. We get

E[Bg(t)Bg(s)} = ((i-κ;)\M,(i-κ;)i[M) = (i[0,ΦιM) = / Λ J ,

by the use of (17). Thus 5g is a Brownian motion. The orthogonal property
(19), where we note that LS{£ gi(u)dB(u); i = 1,2, . . . ,JV} has dimension
R(t) = Nk if tk-ι < t < tk, is clear from the analogy of Theorem 1.2 (/). Π

The idea of the theorem above clearly includes a more general result on
the noncanonical representation as follows.

PROPOSITION 2.1. Let a Gaussian process X = {X(t\, t e [0, 1]} have the
canonical representation

(20) X(t) = f Ft(u)dB(u)
Jo

in the sense of Levy [9]. Then

(21) X
e
(t)

gives a noncanonical representation of X with respect to the Brownian motion B,
satisfying

(22) Ht(Xg)=Ht(B)Θ

REMARK 5. (/) In the theorem above, the noncanonical representation is
essentially unique. If B is a Brownian motion whose linear span Ht(S) is
given by the right-hand side of (19), then B is represented as

(23) B(t) = \ (I - κ;)l[M(u)dB(u), t e [0, 1],
JO

where B is a Brownian motion satisfying Ht(E) = Ht(B).



Construction of noncanonical representations of a Brownian motion 447

(//) The representation (18) is rewritten into the form

(24) Bg(ή = B(ή - £ Γ 1M M'fcMGibW"1 Γ gk(u)dB(u)ds.
k=\ Jtk-ι JOk=\

It has an informal meaning similar to (4):

(25)

with the initial condition 5g(0) = 0.

(///) Let us consider the transformation

X=(I- K}B, X(0) = 0,

associated with a Volterra operator K. The transformation has its own

interest in connection with the canonical representation of a Gaussian pro-

cess. If the kernel k(s,ύ) of K satisfies the condition jj JJ k(s,u)2duds < oo,
then / — K is invertible. Such a operator is useful to characterize the canonical

representation of a Gaussian process X = {X(t\, t e [0, 1]} which is equivalent
to a Brownian motion (see Hitsuda [7] or Hida and Hitsuda [6]). On the

contrary, the kernel k%(s,u) in (25) is not square integrable.

3. Concluding commentaries.

1. In Section 1 and Section 2, we have considered the noncanonical
representation of the Brownian motion Bg in time interval [0,1]. It is easy to

construct a noncanonical representation of a Brownian motion Bg in time

interval [0, oo). In the case of [0, oo), the function #z in the given independent

system g = {g\,gι, - . . ,QN} can be chosen from ^2

OC[0, oo) = {#; J0' g(u)2du <
oo, for any t e [0, oo)}. It is not so difficult to testify to validity of the results

in Section 1 and Section 2 after a slight modification of the arguments.
2. In this paper, we picked up only such a noncanonical representation

that the codimension of Ht(Bg) in Ht(B) is finite for each t. In their another

paper [4], the authors will give an example of the noncanonical representation
of a Brownian motion B with respect to B such that the codimension

Ht(B)QHt(B) is infinite.
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