An integral representation and fine limits at infinity for functions whose Laplacians iterated \boldsymbol{m} times are measures

Yoshihiro Mizuta

(Received July 30, 1996)

Abstract

Our aim in this paper is to discuss the behavior at infinity of functions u for which $\Delta^{m} u \geqq 0$ on \mathbf{R}^{n} in the weak sense. For this purpose we give a representation of u by means of modified Riesz kernels of order $2 m$.

1. Statement of results

A function u is called polyharmonic of order m in an open set $G \subset \mathbf{R}^{n}$ if $\Delta^{m} u=0$ on G, where Δ denotes the Laplace operator, or Laplacian.

We study the existence of fine limits at infinity for functions u on \mathbf{R}^{n} such that $\Delta^{m} u$ is a nonnegative measure. To do so, we first consider a condition for polyharmonic functions to be polynomials, and establish an integral representation for u, as a generalization of Riesz decomposition theorem for superharmonic functions.

For a multi-index $j=\left(j_{1}, \ldots, j_{n}\right)$ and a point $x=\left(x_{1}, \ldots, x_{n}\right)$, we follow the usual notation:

$$
\begin{aligned}
|j| & =j_{1}+\cdots+j_{n}, \\
j! & =j_{1}!\times \cdots \times j_{n}!, \\
x^{j} & =x_{1}^{j_{1}} \times \cdots \times x_{n}^{j_{n}}
\end{aligned}
$$

and

$$
D^{j}=\left(\frac{\partial}{\partial x}\right)^{j}=\left(\frac{\partial}{\partial x_{1}}\right)^{j_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{j_{n}} .
$$

Consider the Riesz kernel of order $2 m$

$$
R_{2 m}(x)= \begin{cases}|x|^{2 m-n} & \text { if } 2 m<n \text { or if } 2 m-n \text { is a positive odd integer }, \\ |x|^{2 m-n} \log (1 /|x|) & \text { if } 2 m-n \text { is a nonnegative even integer }\end{cases}
$$

[^0]and its remainder term of Taylor's expansion
$$
R_{2 m, t}(x, y)=R_{2 m}(x-y)-\sum_{\mid j \leqq \leqq} \frac{x^{j}}{j!}\left[D^{j} R_{2 m}\right](-y)
$$
where ℓ is a nonnegative integer. Letting $B(x, r)$ denote the open ball centered at x with radius r, we consider the function
\[

K_{m, \ell}(x)= $$
\begin{cases}R_{2 m}(x-y) & \text { when } y \in B(0,1), \\ R_{2 m, t}(x, y) & \text { when } y \in \mathbf{R}^{n}-B(0,1)\end{cases}
$$
\]

(cf. Hayman-Kennedy [3]).
Here note that $R_{2 m}$ is polyharmonic of order m outside the origin and

$$
\begin{equation*}
\Delta^{m} R_{2 m}=c^{-1} \delta_{0} \tag{1}
\end{equation*}
$$

with the Dirac measure δ_{x} at x and a constant $c \neq 0$. As will be seen later, $K_{m, t}(\cdot, y)$ is also polyharmonic of order m outside y for any fixed $y \in \mathbf{R}^{n}$.

For a nonnegative measure μ on \mathbf{R}^{n}, we define

$$
K_{m, \ell} \mu(x)=\int_{\mathbf{R}^{n}} K_{m, \ell}(x, y) d \mu(y) .
$$

We first give a condition for this potential to have a meaning.
Theorem 1. Let μ be a nonnegative measure on \mathbf{R}^{n} and ℓ be a nonnegative integer such that $\ell \geqq 2 m-n$. If

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}(1+|y|)^{2 m-n-\ell-1} d \mu(y)<\infty \tag{2}
\end{equation*}
$$

holds, then

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}\left|K_{m, \ell}(x, y)\right| d \mu(y) \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right) . \tag{3}
\end{equation*}
$$

Moreover, in case $2 m \leqq n$, (2) is equivalent to (3).
Next we give an integral representation for functions u such that $\Delta^{m} u$ is a positive measure on \mathbf{R}^{n}, as a generalization of Riesz decomposition theorem.

Theorem 2. Let u be a function on \mathbf{R}^{n} such that $\mu=\Delta^{m} u \geqq 0$ in the weak sense. If there exists a nonnegative integer ℓ such that $\ell \geqq 2 m-n$ and

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} r^{-\ell-n} \int_{B(0, r)}|u(x)| d x<\infty \tag{4}
\end{equation*}
$$

then u is of the form

$$
u(x)=c \int_{\mathbf{R}^{n}} K_{m, t}(x, y) d \mu(y)+P(x)
$$

where c is the constant in (1) and P is a polynomial of degree at most ℓ.
In case $2 m<n$, we consider the usual Riesz capacity of order $2 m$, which is defined by

$$
C_{2 m}(E)=\inf \mu\left(\mathbf{R}^{n}\right)
$$

for a set $E \subset \mathbf{R}^{n}$, where the infimum is taken over all nonnegative measures μ on \mathbf{R}^{n} such that

$$
R_{2 m} \mu(x)=\int R_{2 m}(x-y) d \mu(y) \geqq 1 \quad \text { whenever } x \in E
$$

In case $2 m=n$, we define the logarithmic capacity

$$
C_{n}(E)=\inf \mu(B(0,1))
$$

for a set $E \subset B(0,1)$, where the infimum is taken over all nonnegative measures μ on $B(0,1)$ such that

$$
\int \log \frac{2}{|x-y|} d \mu(y) \geqq 1 \quad \text { whenever } x \in E
$$

Finally we are concerned with the fine limits at infinity for the generalized potentials $K_{m, \ell} \mu$.

THEOREM 3. Let ℓ be a nonnegative integer, $2 m \leqq n$ and $0<a \leqq 1$. If μ is a nonnegative measure on \mathbf{R}^{n} satisfying

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}(1+|y|)^{2 m-n-\ell-a} d \mu(y)<\infty \tag{5}
\end{equation*}
$$

then there exists a set $E \subset \mathbf{R}^{n}$ such that

$$
\lim _{|x| \rightarrow \infty, x \in \mathbf{R}^{n}-E}|x|^{-\ell-a} K_{m, \ell} \mu(x)=0
$$

and E is $2 m$-thin at infinity, that is,

$$
\begin{equation*}
\sum_{i=1}^{\infty} C_{2 m}\left(E_{i}^{\prime}\right)<\infty \tag{6}
\end{equation*}
$$

where $E_{i}^{\prime}=\left\{x: 2^{-2} \leqq|x|<2^{-1}, 2^{i+2} x \in E\right\}$.
The case $m=1$ was proved in [4, Theorem 1].

Remark 1. In case $2 m<n$, (6) may be replaced by

$$
\sum_{i=1}^{\infty} 2^{-i(n-2 m)} C_{2 m}\left(E_{i}\right)<\infty,
$$

where $E_{i}=\left\{x \in E: 2^{i} \leqq|x|<2^{i+1}\right\}$.

2. Polyharmonic functions

Let us begin with a condition under which polyharmonic functions are polynomials. In fact we show the following result.

Theorem 4. Let u be a polyharmonic function of order m on \mathbf{R}^{n}. If there exists $a \geqq 0$ for which

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\liminf r^{-a-n}} \int_{B(0, r)} u^{+}(x) d x=0, \tag{7}
\end{equation*}
$$

then u is a polynomial, where u^{+}denotes the positive part of u, that is, $u^{+}(x)=$ $\max \{u(x), 0\}$.

For the harmonic case, see the book of Hayman-Kennedy [3]. If u satisfies two sided inequalities:

$$
|u(x)| \leqq M(1+|x|)^{a},
$$

then the conclusion of Theorem 4 is clearly true by considering the Fourier transform of $\Delta^{m} u$. We also note that Theorem 4 was essentially proved by Armitage [1]; in fact, his theorem states that a polyharmonic function u is a polynomial if

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{-a-n+1} \int_{S(0, r)} u^{+}(x) d S(x)=0 \tag{8}
\end{equation*}
$$

for some $a \geqq 0$, where $S(0, r)$ denotes the spherical surface $\partial B(0, r)$.
In this paper, we use the symbol M to denote an absolute positive constant whose value is unimportant and may change from line to line.

Remark 2. If (8) holds, then

$$
\lim _{r \rightarrow \infty} r^{-a-n} \int_{B(0, r)} u^{+}(x) d x=0 .
$$

We know a mean-value inequality for polyharmonic functions:
Lemma 1 (cf. [6, Lemma 2]). If u is polyharmonic of order m in $B(x, r)$, then

$$
\left|\nabla^{k} u(x)\right| \leqq M r^{-k-n} \int_{B(x, r)}|u(y)| d y,
$$

where $M=M(k, m)$ is a positive constant independent of x and r, and ∇^{k} denotes the gradient iterated k times.

Lemma 2. If u is polyharmonic of order m in \mathbf{R}^{n}, then

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{-n-k} \int_{B(0, r)} u(y) d y=0 \tag{9}
\end{equation*}
$$

whenever $k>2 m-2$.
This is an easy consequence of finite Almansi expansion (cf. [2, Proposition 1.3]), which states that u is written as

$$
u(x)=\sum_{i=1}^{m}|x|^{2 i-2} u_{i}(x)
$$

with harmonic functions u_{i}. By the mean value property, we have

$$
\begin{aligned}
\int_{B(0, r)} u(x) d x & =\int_{0}^{r}\left(\int_{\partial B(0,1)} u(t \Theta) d \Theta\right) t^{n-1} d t \\
& =\sum_{i=1}^{m} \int_{0}^{r}\left(\int_{\partial B(0,1)} u_{i}(t \Theta) d \Theta\right) t^{2 i-2+n-1} d t \\
& =\sum_{i=1}^{m}\left[M u_{i}(0)\right] \int_{0}^{r} t^{2 i-2+n-1} d t \\
& =\sum_{i=1}^{m} M_{i} u_{i}(0) r^{2 i-2+n},
\end{aligned}
$$

which proves (9).
Proof of Theorem 4. Since $|u|=2 u^{+}-u$, Lemma 1 gives

$$
\begin{aligned}
\left|\nabla^{k} u(x)\right| & \leqq M r^{-n-k} \int_{B(x, r)}|u(y)| d y \\
& \leqq M r^{-n-k} \int_{B(0,2 r)}|u(y)| d y \\
& =2 M r^{-n-k} \int_{B(0,2 r)} u^{+}(y) d y-M r^{-n-k} \int_{B(0,2 r)} u(y) d y \\
& =I_{1}-I_{2}
\end{aligned}
$$

for $x \in B(0, r)$. By our assumption,

$$
\liminf _{r \rightarrow \infty} I_{1}=0
$$

for $k \geqq a$. On the other hand, in view of Lemma 2,

$$
\lim _{r \rightarrow \infty} I_{2}=0
$$

when $k>2 m-2$. Thus, if $k>a+2 m-2$, then

$$
\left|\nabla^{k} u(x)\right|=0 \quad \text { for any } x \in \mathbf{R}^{n}
$$

which implies that u is a polynomial.
Remark 3. In view of Lemma 2, (7) may be replaced by

$$
\underset{r \rightarrow \infty}{\liminf r^{-a-n}} \int_{B(0, r)}|u(x)| d x=0 .
$$

Remark 4. Professor Suita kindly informed the author that Theorem 4 can be proved by the use of the expansion into spherical harmonics, instead of our Lemma 1 .

3. Proof of Theorem 1

First we prepare some lemmas, as generalizations of the corresponding lemmas in [4] concerning the case $m=1$.

Lemma 3. For $r>0, R_{2 m, \ell}(r x, r y)=r^{2 m-n} R_{2 m, \ell}(x, y)$.
Lemma 4. If T is a rotation about the origin, then

$$
K_{m, \ell}(T x, T y)=K_{m, \ell}(x, y) .
$$

Proof. For $t>0$, let $f(t)=R_{2 m}(t x-y)$. Then note that

$$
R_{2 m, \ell}(x, y)=f(1)-f(0)-\cdots-(\ell!)^{-1} f^{(\ell)}(0) .
$$

If T is a rotation about the origin, then $|t T x-T y|=|t x-y|$, so that

$$
R_{2 m}(t T x-T y)=R_{2 m}(t x-y) .
$$

Hence it follows that $R_{2 m, \ell}(T x, T y)=R_{2 m, \ell}(x, y)$. Now the required assertion is proved.

Lemma 5. If $2 m \leqq n$, then there exists $\delta>0$ such that

$$
A=\liminf _{r \rightarrow \infty}\left(\inf _{y \in B(x, \delta)} r^{n-2 m+\ell+1}\left|K_{m, \ell}(x, r y)\right|\right)>0
$$

for any $x \in \mathbf{R}^{n}$ with $|x|=1$, where A does not depend on x.

Proof. Let $x \in \mathbf{R}^{n}$ with $|x|=1$ be fixed. For $t>0$ and $y \in \mathbf{R}^{n}$, let $f(t)=$ $f(t ; y)=R_{2 m}(t x-y)$. Then we have by Lemma 3

$$
\begin{aligned}
t^{2 m-n-\ell-1} R_{2 m, \ell}\left(x, t^{-1} y\right) & =t^{-\ell-1} R_{2 m, \ell}(t x, y) \\
& =t^{-\ell-1}\left[f(t)-f(0)-\cdots-(\ell!)^{-1} t^{\ell} f^{(\ell)}(0)\right] \\
& \rightarrow[(\ell+1)!]^{-1} f^{(\ell+1)}(0)
\end{aligned}
$$

uniformly for $y \in B(x, 1 / 2)$ as $t \rightarrow 0$. Note that $f(t ; x)=R_{2 m}(t x-x)=|1-t|^{2 m-n}$ when $2 m<n$ and $f(t ; x)=-\log |1-t|$ when $2 m=n$. Hence we see that

$$
\lim _{t \rightarrow 0} t^{2 m-n-\ell-1} R_{2 m, \ell}\left(x, t^{-1} x\right)
$$

is a non-zero constant. Therefore there exists $\delta>0$ such that

$$
A=\liminf _{r \rightarrow \infty}\left(\inf _{y \in B(x, \delta)} r^{n-2 m+\ell+1}\left|R_{2 m, \ell}(x, r y)\right|\right)>0
$$

In view of Lemma 4, we see that A does not depend on x, and the required assertion now follows.

The following lemma can be derived by the use of mean value theorem (cf. [4] and [5]).

Lemma 6. Let $\ell \geqq 2 m-n$. If $|y| \geqq 1$ and $|y| \geqq 2|x|$, then

$$
\left|K_{m, \ell}(x, y)\right| \leqq M|x|^{\ell+1}|y|^{2 m-n-\ell-1}
$$

Proof of Theorem 1. First suppose (2) holds. For $R>1$, write

$$
\begin{aligned}
\left|K_{m, \ell}\right| \mu(x) & =\int_{\mathbf{R}^{n}-\boldsymbol{B}(0,2 R)}\left|K_{m, \ell}(x, y)\right| d \mu(y)+\int_{B(0,2 R)}\left|K_{m, \ell}(x, y)\right| d \mu(y) \\
& =u_{\mathbf{R}}(x)+v_{R}(x) .
\end{aligned}
$$

In view of Lemma 6, $u_{R}(x)$ is bounded on $B(0, R)$. On the other hand, since

$$
v_{R}(x) \leqq \int_{B(0,2 R)}\left|R_{2 m}(x-y)\right| d \mu(y)+\sum_{\mid j \leqq!}\left|\frac{x^{j}}{j!}\right| \int_{B(0,2 R)-B(0,1)}\left|\left[D^{j} R_{2 m}\right](-y)\right| d \mu(y),
$$

we see that v_{R} is locally integrable on \mathbf{R}^{n}. Thus $\left|K_{m, \ell}\right| \mu$ is integrable on $B(0, R)$. Since R is arbitrary, (3) follows.

Next let $2 m \leqq n$ and suppose (3) holds. Then there exists $x_{0} \neq 0$ such that

$$
\int_{\mathbf{R}^{n}}\left|K_{m, \ell}\left(x_{0}, y\right)\right| d \mu(y)<\infty .
$$

In view of Lemma 5 , we can find $\delta>0$ and $R>1$ such that

$$
\left|K_{m, \ell}(x, y)\right| \geqq M|y|^{2 m-n-\ell-1} \quad \text { whenever }|x|=1,|y|>R \text { and } y /|y| \in B(x, \delta),
$$

so that Lemma 3 gives

$$
\left|K_{m, \ell}\left(x_{0}, y\right)\right|=\left|x_{0}\right|^{2 m-n}\left|K_{m, \ell}\left(x_{0} /\left|x_{0}\right|, y /\left|x_{0}\right|\right)\right| \geqq M\left|x_{0}\right|^{\ell+1}|y|^{2 m-n-\ell-1}
$$

whenever $|y|>R\left|x_{0}\right|$ and $\left|y /|y|-x_{0} /\left|x_{0}\right|\right|<\delta$. Hence we have

$$
\begin{aligned}
\infty & >\int_{\Gamma\left(x_{0}, \delta\right)-B\left(0, R \mid x_{0}\right)}\left|K_{m, \ell}\left(x_{0}, y\right)\right| d \mu(y) \\
& \geqq M\left|x_{0}\right|^{\ell+1} \int_{\Gamma\left(x_{0}, \delta\right)-B\left(0, R\left|x_{0}\right|\right)}|y|^{2 m-n-\ell-1} d \mu(y),
\end{aligned}
$$

so that

$$
\int_{\Gamma\left(x_{0}, \delta\right)-B\left(0, R \mid x_{0}\right)}|y|^{2 m-n-\ell-1} d \mu(y)<\infty
$$

where $\Gamma\left(x_{0}, \delta\right)=\left\{y:\left|y /|y|-x_{0} /\left|x_{0}\right|\right|<\delta\right\}$. Since $K_{m, \ell} \mu$ is finite almost everywhere on $B(0,2)-B(0,1)$, we can find a finite family $\left\{x_{j}\right\} \subset B(0,2)-B(0,1)$ such that

$$
\partial B(0,1) \subset \bigcup_{j} B\left(x_{j} /\left|x_{j}\right|, \delta\right)
$$

and

$$
\int_{\Gamma\left(x_{j}, \delta\right)-B(0,2 R)}|y|^{2 m-n-\ell-1} d \mu(y)<\infty
$$

Thus (2) is seen to hold.

4. Proof of Theorem 2

We need the following properties of $K_{m, \ell}$, which are found in [5, Lemmas 1 and 3].

Lemma 7. For each $y \in \mathbf{R}^{n}$, the function $x \rightarrow K_{m, \ell}(x, y)$ is polyharmonic of order m in $\mathbf{R}^{n}-\{y\}$; in fact,

$$
\Delta^{m} K_{m, \ell}(\cdot, y)=\Delta^{m} R_{2 m}(\cdot-y)=c^{-1} \delta_{y}
$$

with the constant c in (1).
For this, it suffices to note that

$$
f^{(k)}(0)=\sum_{|j|=k} \frac{x^{j}}{j!}\left[D^{j} R_{2 m}\right](-y) \quad \text { with } f(t)=R_{2 m}(t x-y)
$$

is a polyharmonic polynomial for any nonnegative integer k and any fixed $y \neq 0$ (cf. [3, Lemma 4.4.1]).

Lemma 8. Let $\ell \geqq 2 m-n$. If $1 \leqq|y|<2|x|$ and $|x-y| \geqq 2^{-1}|x|$, then

$$
\left|K_{m, t}(x, y)\right| \leqq M|x|^{\ell}|y|^{2 m-n-\ell} \log (4|x| /|y|) .
$$

Lemma 9. If $|y| \geqq 1$ and $|x-y|<2^{-1}|x|$, then

$$
\begin{array}{ll}
\left|K_{m, \ell}(x, y)\right| \leqq M|x-y|^{2 m-n} & \text { in case } 2 m<n, \\
\left|K_{m, \ell}(x, y)\right| \leqq M\left[|x|^{2 m-n}+|x-y|^{2 m-n} \log (|x| /|x-y|)\right] & \text { in case } 2 m \geqq n .
\end{array}
$$

Suppose $\mu=\Delta^{m} u$ is a nonnegative measure on \mathbf{R}^{n} and (4) holds. Let φ be a nonnegative function in $C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ such that $\varphi=1$ on $B(0,1)$ and $\varphi=0$ outside $B(0,2)$. For $r>0$, set $\varphi_{r}(x)=\varphi\left(r^{-1} x\right)$. If r is large enough, then we have

$$
\begin{aligned}
\mu(B(0, r)) & \leqq \int \varphi_{r}(x) d \mu(x) \\
& =\int u(x) \Delta^{m} \varphi_{r}(x) d x \\
& \leqq M r^{-2 m} \int_{B(0,2 r)}|u(x)| d x \\
& \leqq M r^{-2 m+\ell+n},
\end{aligned}
$$

so that

$$
\int_{\mathbf{R}^{n}}(1+|y|)^{2 m-n-\ell-1} d \mu(y)=\int_{0}^{\infty} \mu(B(0, r)) d\left(-(1+r)^{2 m-n-\ell-1}\right)<\infty .
$$

Thus (2) is satisfied, and hence we can consider the potential $K_{m, \ell} \mu$. For $R>0$, write

$$
\begin{aligned}
K_{m, \ell} \mu(x) & =\int_{B(0,2 R)} K_{m, \ell}(x, y) d \mu(y)+\int_{\mathbf{R}^{n}-\boldsymbol{B}(0,2 R)} K_{m, \ell}(x, y) d \mu(y) \\
& =k_{1}(x)+k_{2}(x) .
\end{aligned}
$$

Then, in view of Lemmas 6 and 7, k_{2} is absolutely convergent in $B(0, R)$ and

$$
\Delta^{m} k_{2}=0 \quad \text { in } B(0, R)
$$

By Lemma 7, we have

$$
\Delta^{m} k_{1}=c^{-1} \mu \quad \text { in } B(0, R)
$$

Hence it follows that $\Delta^{m} K_{m, \ell} \mu=c^{-1} \mu$. Now, letting

$$
P(x)=u(x)-c K_{m, \ell} \mu(x),
$$

we see that

$$
\Delta^{m} P=\Delta^{m} u-\mu=0
$$

which implies that P is polyharmonic of order m in \mathbf{R}^{n}.
Let $r>2$. We have by Lemma 6

$$
\int_{B(0, r) \cap B(0,|y| / 2)}\left|K_{m, \ell}(x, y)\right| d x \leqq M|y|^{2 m-n-\ell-1} \min \left\{r^{n+\ell+1},|y|^{n+\ell+1}\right\}
$$

when $|y| \geqq 1$. If $1 \leqq|y|<2 r$, then it follows from Lemmas 8 and 9 that

$$
\int_{B(0, r)-B(0,|y| / 2)-B(y,|y|)}\left|K_{m, \ell}(x, y)\right| d x \leqq M r^{n+\ell}|y|^{2 m-n-\ell} \log \frac{4 r}{|y|}
$$

and

$$
\begin{aligned}
\int_{B(y,|y|)}\left|K_{m, \ell}(x, y)\right| d x & \leqq M \int_{B(y,|y|)}\left(|x|^{2 m-n}+|x-y|^{2 m-n} \log \frac{2|y|}{|x-y|}\right) d x \\
& \leqq M|y|^{2 m}
\end{aligned}
$$

since $\left|K_{m, \ell}(x, y)\right| \leqq M|x|^{2 m-n}$ when $|y| \geqq 1$ and $2^{-1}|x| \leqq|x-y|<|y|$ on account of Lemmas 6 and 8. Hence we establish

$$
\int_{B(0, r)}\left|K_{m, \ell}(x, y)\right| d x \leqq M r^{n+\ell+1}|y|^{2 m-n-\ell-1}
$$

when $|y| \geqq 2 r$, and

$$
\int_{B(0, r)}\left|K_{m, \ell}(x, y)\right| d x \leqq M r^{n+\ell}|y|^{2 m-n-\ell} \log \frac{4 r}{|y|}
$$

when $1 \leqq|y|<2 r$. If $|y|<1$, then

$$
\int_{B(0, r)}\left|K_{m, \ell}(x, y)\right| d x \leqq \int_{B(0, r)}|x-y|^{2 m-n}(1+|\log | x-y| |) d x \leqq M r^{2 m} \log r .
$$

Consequently we derive

$$
\begin{aligned}
\int_{B(0, r)}\left|K_{m, \ell} \mu(x)\right| d x \leqq & \int\left(\int_{B(0, r)}\left|K_{m, \ell}(x, y)\right| d x\right) d \mu(y) \\
\leqq & M r^{n+\ell+1} \int_{\mathbf{R}^{n-B(0,2 r)}}|y|^{2 m-n-\ell-1} d \mu(y) \\
& +M r^{n+\ell} \int_{B(0,2 r)-B(0,1)}|y|^{2 m-n-\ell} \log \frac{4 r}{|y|} d \mu(y) \\
& +M\left[r^{2 m} \log r\right] \mu(B(0,1))
\end{aligned}
$$

so that (2) implies that

$$
\lim _{r \rightarrow \infty} r^{-\ell-1-n} \int_{B(0, r)}\left|K_{m, \ell} \mu(x)\right| d x=0
$$

because $2 m-n-\ell-1<0$. Using assumption (4), we establish

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{-\ell-1-n} \int_{B(0, r)}|P(x)| d x=0 \tag{10}
\end{equation*}
$$

Now Theorem 4 implies that P is a polynomial. We also see from (10) that the degree of P is at most ℓ.

Remark 5. In view of Lemma 1, (10) implies that

$$
\lim _{|x| \rightarrow \infty}|x|^{-\ell-1}|P(x)| d x=0
$$

5. Proof of Theorem 3

For $|x|>1$, write

$$
\begin{aligned}
K_{m, \ell} \mu(x)= & \int_{\mathbf{R}^{n}-B(0,2|x|)} K_{m, \ell}(x, y) d \mu(y) \\
& +\int_{B(0,2|x|)-B(x,|x| 2)} K_{m, \ell}(x, y) d \mu(y) \\
& +\int_{B(x,|x| 2)} K_{m, \ell}(x, y) d \mu(y) \\
= & U_{1}(x)+U_{2}(x)+U_{3}(x) .
\end{aligned}
$$

By Lemma 6, we have

$$
\left|U_{1}(x)\right| \leqq M|x|^{\ell+1} \int_{\mathbf{R}^{n}-B(0,2|x|)}|y|^{2 m-n-\ell-1} d \mu(y)
$$

which together with (5) gives

$$
\lim _{|x| \rightarrow \infty}|x|^{-\ell-a} U_{1}(x)=0
$$

By Lemma 8, we find

$$
\begin{aligned}
\left|U_{2}(x)\right| \leqq & M|x|^{2 m-n}[1+\log |x|] \mu(B(0,1)) \\
& +M|x|^{\ell} \int_{B(0,2|x|)-B(0,1)}|y|^{2 m-n-\ell} \log (|x| /|y|) d \mu(y) .
\end{aligned}
$$

Since $a>0$, we derive for $|x|>R>1$,

$$
\begin{aligned}
\left|U_{2}(x)\right| \leqq & M\left[|x|^{2 m-n} \log |x|\right] \mu(B(0,1)) \\
& +M|x|^{\ell} \int_{B(0, R)-B(0,1)}|y|^{2 m-n-\ell} \log (|x| /|y|) d \mu(y) \\
& +M|x|^{\ell+a} \int_{B(0,2|x|)-B(0, R)}|y|^{2 m-n-\ell-a} d \mu(y) .
\end{aligned}
$$

Consequently it follows that

$$
\underset{|x| \rightarrow \infty}{\lim \sup }|x|^{-\ell-a}\left|U_{2}(x)\right| \leqq M \int_{\mathbf{R}^{n-B(0, R)}}|y|^{2 m-n-\ell-a} d \mu(y),
$$

which proves

$$
\lim _{|x| \rightarrow \infty}|x|^{-\ell-a} U_{2}(x)=0
$$

Finally we are concerned with the fine limit of U_{3} at infinity. For this purpose, note from Lemma 9 that

$$
\begin{array}{ll}
\left|U_{3}(x)\right| \leqq M \int_{B(x,|x| / 2)}|x-y|^{2 m-n} d \mu(y) & \text { in case } 2 m<n, \\
\left|U_{3}(x)\right| \leqq M \int_{B(x,|x| / 2)} \log (|x| /|x-y|) d \mu(y) & \text { in case } 2 m=n
\end{array}
$$

for $|x| \geqq 1$. By (5) we can find a sequence $\left\{a_{i}\right\}$ of positive numbers such that $\lim _{i \rightarrow \infty} a_{i}=\infty$ and

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i} 2^{-i(n-2 m+\ell+a)} \mu\left(B_{i}\right)<\infty, \tag{11}
\end{equation*}
$$

where $B_{i}=\left\{x: 2^{i-1}<|x|<2^{i+2}\right\}$. Consider

$$
E_{i}=\left\{x: 2^{i} \leqq|x|<2^{i+1},\left|U_{3}(x)\right|>a_{i}^{-1} 2^{i(\ell+a)}\right\} .
$$

In what follows, we treat the case $2 m=n$ only, because the case $2 m<n$ can be treated similarly. If $x \in E_{i}$, then $B(x,|x| / 2) \subset B_{i}$, so that

$$
\begin{aligned}
a_{i}^{-1} 2^{i(\ell+a)}<\left|U_{3}(x)\right| & \leqq M \int_{B_{i}} \log \left(2^{i+3} /|x-y|\right) d \mu(y) \\
& =M \int_{B_{i}} \log \left(2 /\left|2^{-i-2} x-2^{-i-2} y\right|\right) d \mu(y) .
\end{aligned}
$$

Hence, setting $E_{i}^{\prime}=2^{-i-2} E_{i}$, we have

$$
C_{2 m}\left(E_{i}^{\prime}\right) \leqq M a_{i} 2^{-i(\ell+a)} \mu\left(B_{i}\right),
$$

which together with (11) gives

$$
\sum_{i=1}^{\infty} C_{2 m}\left(E_{i}^{\prime}\right)<\infty .
$$

If we set

$$
E=\bigcup_{i=1}^{\infty} E_{i},
$$

then E is seen to have all the required properties.

References

[1] D. H. Armitage, A polyharmonic generalization of a theorem on harmonic functions, J. London Math. Soc. (2) 7 (1973), 251-258.
[2] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic functions, Clarendon Press, Oxford, 1983.
[3] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, London, 1976.
[4] Y. Mizuta, On the behaviour at infinity of superharmonic functions, J. London Math. Soc. (2) 27 (1983), 97-105.
[5] Y. Mizuta, Integral representations of Beppo Levi functions and the existence of limits at infinity, Hiroshima Math. J. 19 (1989), 259-279.
[6] Y. Mizuta, A theorem of Hardy-Littlewood and removability for polyharmonic functions satisfying Hölder's condition, Hiroshima Math. J. 25 (1995), 315-326.

The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739, Japan

[^0]: 1991 Mathematics Subject Classification. Primary 31B30
 Key words and phrases. Polyharmonic functions, Riesz decomposition theorem, capacity, fine limits at infinity.

