
HIROSHIMA MATH. J.

28 (1998), 149-168

The Dirichlet problem for the dissipative Helmholtz equation in a

plane domain bounded by closed and open curves

P. A. KRUTITSKΠ

(Received October 18, 1996)

(Revised February 19, 1997)

ABSTRACT. The Dirichlet problem for the dissipative Helmholtz equation in a connected

plane region bounded by closed and open curves is studied. The existence of a classical

solution is proved by potential theory. The problem is reduced to a Fredholm equation

of the second kind, which is uniquely solvable. Our approach holds for both internal

and external domains. Moreover, domains bounded by closed curves and exterior

of open curves in a plane are particular cases of our problem. In case of strongly

dissipative Helmholtz equation, the problem is studied under weakened assumptions.

1. Introduction

The boundary value problems in arbitrary plane domains bounded by
closed and open curves were not studied in the theory of partial differential
equations before. Problems outside open curves in a plane and problems in
domains bounded by closed curves have been studied separately, because
different methods for their analysis were used.

The 2-dimensional Dirichlet boundary value problem for the Helmholtz
equation in a multiply connected domain bounded by closed curves is con-
sidered in text books on mathematical physics, for instance, in [1], [11]. The
reveiw on studies of the Dirichlet problem for this equation in the exterior of
open curves is given in [4]. The present note is an attempt to join these
problems together and to consider domains bounded by closed and open
curves. From practical stand-point such domains have great significance,
because open curves model cracks, screens or wings in physical problems.

The approach proposed in the present paper can be applied to other
elliptic boundary value problems in domains bounded by closed and open
curves. In particular, the Neumann problem for the dissipative Helmholtz
equation is studied in [6]. The external Dirichlet problem for the propagative
Helmholtz equation is considered in [8]. The Neumann problem for the
Laplace equation, describing the flow of an ideal fluid over several obstacles,

Key words. Helmholtz equation, boundary value problem, cracks, screens, wings.

AMS: 35J05, 35J25, 31A25, 45E05, 73D25, 76Q05, 78A45



150 P. A. KRUTITSKΠ

including wings, is investigated in [7]. The case of the nonlinear stratified flow
is treated in [5].

2. Formulation of the problem

By a simple open curve we mean a non-closed smooth arc of finite length
without self-intersections [9].

Let γ be a set of curves, which may be closed and open. We say that
y e C2>λ (or γ e Cl>λ) if curves γ are of class C 2 ) λ (or C1>λ) with the Holder
exponent λ e (0, 1].

In the plane x = (x\,X2) e R2 we consider the multiply connected domain
bounded by simple open curves JΓ] 1 , . . . , /^ e C 2 ^ and simple closed curves
7]2, .. . ,/^2 e C2'A, λ e (0, 1], so that the curves do not have points in com-
mon. We will consider both the case of an external domain and the case of an
internal domain, when the curve Γ2 encloses all others. We put

Γl=\JΓn

l, Γ2=(JΓ2, Γ = Γ1UΓ2.
n=\ n=l

The connected domain bounded by Γ2 will be called 2. We assume that each
curve Γ* is parametricized by the arc length s:

,x2(S)),Se[an,b}}, ι ι = l , . . . , # * , * = 1 , 2 ,

so that

a\ < b\ < - - - < al

Nl < bl

Nι < a2 < b2 < - - < 4 2 < ^

and the domain & is to the right when the parameter s increases on Γ2.
Therefore points x e Γ and values of the parameter s are in one-to-one
correspondence except a2, b2, which correspond to the same point x for
n = 1, . . . ,7V2. Below the sets of the intervals on the Os axis

UM, UM, U Otf,*fl
n=\ n=\ k=\ n=\

will be denoted by the same symbols, as corresponding sets of curves, that is,
by Γ 1 , Γ2 and Γ respectively.

We put Ck'(Γ2) = (&(s) : &(s] e C*'[*2, b2},
m = Q,k}, k = 0,1, r e [0,1] and

ck'(r2) = 0 ck'(r2).
n=\
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Figure 1. An internal domain

Figure 2. An external domain

The tangent vector to Γ at the point x(s) we denote by τx = (cosα(^),
sinα(^)), where cosα(^) = x{(s), sinα(,s) = x'2(s). Let nx = (sinα(^), — cosα(^))
be a normal vector to Γ at x(s). The direction of nx is chosen such that it will
coincide with the direction of τx if n* is rotated anticlockwise through an angle
of π/2.

We say, that a function w(x) belongs to the smoothness class K if

2) VWE C°(@\Γl\X), where X is a point-set, consisting of the end-
points of -Γ1:

3) in the neighbourhood of any point x(d) e X for some constants <? > 0,
ε > — 1 the inequality holds

(1) \Vw\Z V\x-x(d)\'t

where x — > x(d) and d = al

n or d = b\, n = 1 , . . . , N\ .
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In the definition of the class K, we consider Γl as a set of cuts. In
particular, by C°(@\Γl\X) we denote a class of functions, which are con-
tinuously extended on Γl\X from the left and right, but their values on Γl\X
from the left and right can be different, so that these functions may have a
jump across Γl\X.

Let us formulate the Dirichlet problem for the dissipative Helmholtz
equation in the domain @\Γl.

Problem U. To find a function w(x) of the class K which satisfies the
Helmholtz equation

(2a) WM (x) + wX2X2 (x) + β2w(x) = 0, x e @\Γl, β = const, Imβ > 0,

and the boundary condition

(2b) W(x(S))\Γ=f(s).

If 2 is an external domain, then we add the following condition at infinity

(2c) w = *( |*Γ 1 / 2 ), I ^ W I = 0(W~1/2)> \χ\ =

All conditions of the problem U must be satisfied in the classical sense.
On the basis of the energy equalities we can easily prove the following

assertion.

THEOREM 1. If Γ e C2'A, λ e (0,1], then the problem U has at most one
solution.

The theorem holds for both internal and external domain ®.

3. Integral equations at the boundary

Below we assume that f(s) in (2b) is an arbitrary function in the Banach
space C M (Γ), where the Holder exponent λ e (0,1] and C M (Γ) = C1 'λ(Γ1) ®
C^λ(Γ2).

If $\(Γl), $2(Γ2} are Banach spaces of functions given on 7"1 and Γ2,
then for functions given on Γ we introduce the Banach space 38\(Γλ) φ &2(Γ2}

with the norm || - Hj^/Ίje^Γ2) = II ' l l^r 1 ) + II ' Il#2(r2)
Let us construct a solution of the problem U. This solution can be

obtained with the help of potential theory for the Helmholtz equation (2a).
We seek a solution of the problem in the form of the sum of a single-layer
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potential on 7"1 and a double-layer potential on Γ2

(3)

r2

where ^\z) is the Hankel function of the first kind (see [10])

-J ι(σ)) 2 + (x2 -J 2 (σ)) 2 , and
is an unknown density.

By \Γt dσ we mean

Σ ^

We will seek μ(s) in the Banach space C^(Γ') φ C°(Γ 2), ω e (0, 1],

? e [0, 1) with the norm || \\e.(Γi)9c (i*) = II ' llc^ir1) + II llc»(r2)- W e s a y
that μ(s) 6 C-(Γ») if

μWUls-atfls-btf
n=\

where C0>ω(7"1) is a Holder space with the exponent ω and

It can be checked directly [4] that for such μ(s) the function H>ι[μ](;c)
belongs to the class K and meets all conditions of the problem U except the
boundary condition (2b). In particular, the inequality (1) holds with ε = — q if
q e (0,1). The potential w2[μ](x) obeys equation (2a) and belongs to C°(^) φ
C 2 (^). In the case of the external domain Q the function (3) meets the
condition (2c) at infinity.
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To satisfy the boundary condition we put (3) in (2b) and arrive at the
integral equation for the density μ(s):

(4) l- ί μ(σ)X$l\β\x(s) - y(σ)\) dσ + ±δ(s)μ(s)

** j Sny °

where

\1, ifseΓ2

Let us show that any integrable on 7"1 and continuous on Γ2 solution
of equation (4) belongs to Cljλ/2(Γ2). Indeed, there exists a derivative of
the integral term from (4) in s on Γ2, because Γ2 ε C2>λ. This derivative is
represented in the form of an improper integral and belongs to CQ>λ/2(Γ2)
in s. Since/(j) e Cl>λ(Γ2), the solution μ(s) of (4) belongs to Cl^2(Γ2). Con-
sequently, the potential M>2[μ](x) can be integrated by parts and written in the
form of an angular potential [4] with the density μ'(s) e C®>λ/2(Γ2). It follows
from the properties of the angular potential [4] that Fw2[μ](x) e C°(^) and so,
W2[μ](x) belongs to the class K.

Thus, if μ(s) is a solution of equation (4) in the space C%'(Γl) ® C°(Γ2),
ωe(0, l ] , qe [0,1), then μ(s) e C%(Γl) ® C M / 2 (Γ 2 ) and the potential (3)
satisfies all conditions of the problem U.

The following theorem holds.

THEOREM 2. Let Γ e C2 'λ, f(s) e Cl^(Γ)9 λ e (0,1]. If equation (4) has a
solution μ(s) in the Banach space C™(Γ1}10 C°(Γ2) for some ω e (0,1] and
q E [0,1), then the function (3) is a solution of the problem U.

If s e Γ2, then (4) is an equation of the second kind. If s e Γ1, then (4) is
an equation of the first kind and its kernel has the logarithmic singularity,
because

where h(z) is a smooth function [10]. Indeed, as z - * 0 + 0

h(z) = const + 0(z2 Inz), H(z) = O(zlnz), h"(z) = O(lnz).
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Our further treatment will aim at the proof of the solvability of (4) in
the Banach space C™(Γl) 0 C°(Γ2). Moreover, we reduce (4) to a Fredholm
equation of the second kind, which can be easily computed by classical methods.

By differentiating (4) on Γl we reduce it to the following singular integral
equation on 7"1

f* \ S r i/ / \\ 1 ί / ^s™φQ(x(s),y(σ))
(6a) - * M W , ) ) = - J μ(σ) lχ(s)_y(σ}l da

rl

μ(σ)^h(β\X(s)-y(σ)\)dσ

rl

+5 1 M^^^O^W-
Γ 2

= / ( * ) , sεΓ1,

where the function h(z) is defined by (5), and φ$(x,y) is the angle between the
vector xy and the direction of the normal n*. The angle ΨQ(X, y) is taken to be
positive if it is measured anticlockwise from nx and negative if it is measured
clockwise from nx. Besides, φ$(x,y) is continuous in x,yeΓ if x Φy.

We rewrite equation (4) on Γ2 in the form

(6b) μ(s) + I μ(σ)A2(s, σ) dσ = 2f(s), s e Γ2,

r

where

x Γ).

REMARK. Evidently, f(c^)=f(b^) and A2(a^σ) = Aι(b2

n ,σ) for any
σeΓ (n = 1,. . . ,^2). Hence, if μ(s) is a solution of equation (6b) from

N2

C°[ U ^ Λ ^ Λ ) )' t*ιeιl» according to the equality (6b), μ(s) automatically sat-

isfies matching conditions μ(a%) = μ(62) for n = 1, . . . ,ΛΓ2 and therefore belongs
to C°(Γ2). This observation is true for equation (4) also and can be helpful
for finding numerical solutions, since we may abandon matching conditions
μ(a2) = μ(b2) (n = 1, ... ,^2), which are fulfilled automatically.

We note that equation (6a) is equivalent to (4) on 7"1 if and only if (6a) is
accompanied by the following additional conditions

(7)
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The system (6), (7) is equivalent to the equation (4).
It can be easily proved that

__
\x(s)-y(σ)\ σ-s

(see [4], [9] for details). Therefore we can rewrite (6a) in the form

(8) 2 j - W[μ}(X(s)) = l~l μ(σ) ^ + J μ(°) Y(s, <*) do = 2f'(s), sεΓ1,

where

e<J^°(Γl xΓ),

Po = λ if 0 < λ < 1 and p0 = 1 - ε0 for any β0 e (0,1) if λ = 1.

4. The Fredholm integral equation and the solution of the problem

Inverting the singular integral operator in (8), we arrive at the following
integral equation of the second kind [9]:

(9)

where

(10) Al(s,σ)= -

Nl

~ S

and . , ^ - ! are arbitrary constants.
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It can be shown using the properties of singular integrals [2], [9] that Φ\(s))

A\(s,σ) are Holder functions if seΓ1, σeΓ. Consequently, any solution of
(9) belongs to C™,2(Γl) and below we look for μ(s) on 7"1 in this space.

We put

Q(s) = (l-δ(s))Qι(s)+δ(s), seΓ.

Instead of μ(s) e C^,2(Γl) φ C°(Γ2) we introduce a new unknown function
μ+(s) = μ(s)Q(s) e C**°(Γl) Θ C°(Γ2) and rewrite (9), (6b) in the form of one
equation

(11) >Λ*(s) + lμ*(σ)QΓl(σ)A(s,σ)dσ+(l-δ(s)) £ Gnf = Φ(s), seΓ,

where

A(s,σ) = (l-δ(s))Aι(s,σ) + δ(s)A2(s,σ),

φ(s) = (1 - δ(s))Φι(s) -f 2δ(s)f(s).

To derive equations for GO, . . . , G^-i, we substitute μ(s) from (9), (6b)
into the conditions (7), then in terms of μ*(s) we obtain

Nι-1
f

(12) QΓl(ξ)μ*(ξ)ln
JΓ

where

(13)

By we denote the variable of integration in the potential (3).
Thus, the system of equations (7), (6) for μ(s) has been reduced to the

system (11), (12) for the function μ^(s) and constants GO, . . . , G^-i- It is clear
from our consideration that any solution of system (11), (12) gives a solution of
system (7), (6).

As noted above, Φ\(s) and A\(s,σ) are Holder functions if seΓl

9

σeΓ. More precisely (see [9]), Φι(s) e C0 '^(Γ1), p = min{l/2,λ} and A\(s,σ)
belongs to C°'p(Γl) in j-uniformly with respect to σ e Γ .

We arrive at the following assertion.
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LEMMA 1. Let Γ e C2'A, λ e (0, 1] and Φ(s) e C ^ Γ 1 ) ® C°(Γ2)5 where
p = min{/l, 1/2}. If μ^(s) e CQ(Γ) is a solution of equation (11),

C ^ Γ 1 ) ® C°(Γ2).

The condition Φ(s) e C°^(Γl) φ C°(Γ2) holds if f(s) e Cl>λ(Γ). Hence
below we will seek μ+(s) in C°(Γ).

Since A(s,σ] e CQ(Γ x 7"), the integral operator in (11):

is a compact operator mapping C°(7") into itself.
We rewrite (11) in the operator form

(14) (7 + A K + P G = Φ,

where P is the operator multiplying the row P = (1 — δ(s))(s®,... j^ 1 "" 1 ) by the
column G = (Go,..., G^-i)7^. The operator P is finite-dimensional from EN{

into C°(7") and so compact.
Now we rewrite equations (12) in the form

(15) INlG + Lμ* + (B-INl)G = H,

where H = (H\,... ,^ΓjvJΓ is a column of Â i elements, 7^ is an identity
operator in JSV,, B is an N I x N\ matrix consisting of the elements Bnm from
(13). The operator L maps CQ(Γ) into £#,, so that Lμ* = (L\μ+,... ,LN^+)T,

where

The operators (B — 7^,), 7, are finite-dimensional and so compact.
/ μ Λ ~ / Φ \

We consider the columns μ = l \ , Φ = l \ m the Banach space

C°(Γ) x ENl with the norm \\β\\c*(nxElfι = \\μ*\\c«(D + I
We write system (14), (15) in the form of one equation

/A P \
(16) (I + R)μ = Φ, R = ,

\L B-INlJ

where I is an identity operator in the space CQ(Γ) x E^. It is clear that R
is a compact operator mapping CQ(Γ) x EN{ into itself. Therefore, (16) is a
Fredholm equation in this space.

Let us show that the homogeneous equation (16) has only a trivial solu-
tion. Then, according to Fredholm's theorems, the inhomogeneous equation
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(16) has a unique solution for any Φ. We will prove this by a contradic-

tion
/ //> \

ion. Let μ° = I * 1 e C°(.Γ) x E^ be a non-trivial solution of the homo-
/ »o \

geneous equation (16). According to Lemma 1: μ° = ί μ*Q J e C^p(Γl) 0

C°(Γ2) x ENl, p = min{A, 1/2}. Therefore the function / ( s ) = μl(s)Qrλ(s) e
Cξj2(Γl) φ C°(Γ2) and the column G° convert the homogeneous equations (9),
(6b), (12) into identities. For instance, (6b) takes the form

(17a) lim w[//0](x) = 0, x e ®.

Using the homogeneous identities (9), (6b), we check that the homogeneous
identities (12) are equivalent to

Besides, acting on the homogeneous identity (9) with a singular operator with
the kernel (s— t)~l, we find that μQ(s) satisfies the homogeneous equation (8):

(17c) -5-w[/ι°](jc(j)) = 0 .
ds Γι

It follows from (17) that μ®(s) satisfies the homogeneous equation (4). On the
basis of Theorem 2, w[//°](x) is a solution of the homogeneous problem U.
According to Theorem 1: w[μ°](x) = 0, xε@. Using the limit formulas for
normal derivatives of a single-layer potential on Γl, we have

lim — wϊyU ](x) — lim — w\μ ](x) — μ \S) = 0, s ε Γ .
x—*x(s} e (Γ^}+ dϊlχ x—>x(s) e(Γl}~ ^^x

By (Γ1)* we denote the side of Γl, which is on the left as a parameter s
increases, and by (Γl)~ we denote the other side.

Hence, w[ff](x) = w2[//0](;c) Ξ 0, x e ^ , and μ°(s) satisfies (17a), which
can be written as

(18) ° M + μ\σ}β\x(s}-y(σ)\)dσ = ^ seΓ2.

r2

Equation (18) has only the trivial solution /f(s) = 0 in C°(Γ2). This is
true for both internal and external domain 2. The detailed proof is presented
in the section 5.

Consequently, if s e Γ, then /f(s)=09 /£(s) = μQ(s)Q~l(s) = 0 and it
follows from the homogeneous identity (9) for μ°(s) and (5$,..., G ^ ^ that
G° = (GQ, . . . , GNI_I)

T = 0. Hence, μQ = 0 and we arrive at a contradiction to
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the assumption that μ° is a non-trivial solution of the homogeneous equation
(16). Thus, the homogeneous Fredholm equation (16) has only a trivial
solution in C°(Γ) x ENl.

We have proved the following assertion.

THEOREM 3. If Γ e C2'A, λ e (0,1], then (16) is a Fredholm equation of the
second kind in the space CQ(Γ) x E^. Moreover, equation (16) has a unique

solution μ=ίμΛe C°(Γ) x ENl for any Φ = ί^\ e C°(Γ) x ENl.

As a consequence of Theorem 3 and Lemma 1 we obtain the following
corollary.

COROLLARY. If Γ e C2>λ, λ e (0,1], then equation (16) has a unique solu-

tion μ=(μΛε CQ>P(Γl) 0 C°(Γ2) x ENl for any Φ = ( ^

C°(Γ 2) x ENl, where p = min{A, 1/2}.

We recall that Φ belongs to the class of smoothness required in the
corollary if f(s) e Cl>λ(Γ). Besides, equation (16) is equivalent to the system
(11), (12). As mentioned above, if μ+(s) e CQ^(Γl) 0 C°(Γ2), Gb,..., G^-i
is a solution of System (11), (12), then μ(s) = μ^(s)QΓl(s) e Cf/^Γ1) Θ C°(Γ2)
is a solution of system (7), (6) and so μ(s) satisfies equation (4). We obtain the
following assertion.

THEOREM 4. If Γ e C2>λ, f(s) e C1>A(Γ), λ e (0,1], then equation (4) has a
solution μ(s) in Cp

l/2(Γl) 0 C°(Γ2), p = min{l/2, λ}. This solution is expressed
by the formula μ(s) = μ^s)Q~l(s), where μ*(s) e CQ>?(Γl) 0 C°(Γ2) is found by
solving the Fredholm equation (16), which is uniquely solvable.

REMARK. The solution of equation (4) ensured by Theorem 4 is unique in
the space Cf/°2(Γ1) 0 C°(Γ2) for any p0 e (0,;?]. The proof can be given by
a contradiction to the assumption that the homogeneous equation (4) has a
nontrivial solution in this space. The proof is almost the same as the proof
of Theorem 3. Consequently, the numerical solution of equation (4) can be
obtained by the direct numerical inversion of the integral operator from (4).
In doing so, Holder functions can be approximated by continuous piecewise
linear functions, which also obey Holder inequality. The simplification for
numerical solving equation (4) is suggested in the remark to the equation (6b)
in the section 3.

Recall that if Theorem 4 holds, then the solution of equation (4) ensured
by Theorem 4 belongs to Cζ/2(Γl) ® C M / 2 (Γ 2 ) . On the basis of Theorem 2
we arrive at the final result.
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THEOREM 5. If Γ e C2>\ f(s) e Cl>λ(Γ), λ e (0, 1], then the solution of the

problem U exists and is given by (3), where μ(s) is a solution of equation (4) in
C?/2(Γl) 0 C°(Γ2), p = min{l/2, λ} ensured by Theorem 4. More precisely,

It can be checked directly that the solution of the problem U satisfies
condition (1) with ε = —1/2. Explicit expressions for singularities of the solution
gradient at the end-points of the open curves can be easily obtained with the
help of formulas presented in [4].

Theorem 5 ensures the existence of a classical solution of the problem U
when Γ e C2jλ, f(s) e Cl>λ(Γ). The uniqueness of the classical solution follows
from Theorem 1 . On the basis of our consideration we suggest the following
scheme for solving the problem U. First, we find the unique solution of
the Fredholm equation (16) in CQ(Γ) x E^. This solution automatically
belongs to C^p(Γl) 0 C°(Γ2) x ENί, p = min{A, 1/2}. Second, we con-
struct the solution of equation (4) in Cξ/2(Γl) 0 C°(Γ2) by the formula
μ(s) = μ*(s)Q~l(s). This solution automatically belongs to Cf/2(7"1) 0
Cl*λ/2(Γ2). Finally, putting μ(s) in (3) we obtain the solution of the problem U.
In accordance with the remark to Theorem 4, the unique solution of equation (4)
in Cζj2(Γl) © C°(Γ2), po e (0,p] can be also found directly.

5. Analysis of equation (18)

Equation (18) is well-known in classical mathematical physics. We arrive
at (18) when solving the Dirichlet problem for the Helmholtz equation (2a) in
the domain 2 by a double layer potential. We give analysis of equation (18)
in weaker conditions on Γ2 than in the sections 2-4. Namely, we suppose
that Γ 2 e C !'A, λ e (0, 1] instead of Γ 2 e C2>λ. If Γ2 e C1*, then the kernel of
the integral term in (18) can be expressed in the form

where /i (j, σ) e C°>λ/2(Γ2 x Γ2), 70(j, σ) e C°'A(Γ2 x Γ 2) and 70(j, s) = 0.
From [9, Sect. 5.7] we obtain

where h(s,σ) e C°'A/2(Γ2 x Γ 2). On the basis of this representation one can
conclude [9, Sect. 51.1] that if μ°(s) e C°(Γ2), then the integral term in (18)
belongs to C M / 2 ( Γ 2 ) in s. Therefore any solution of (18) in C°(Γ2) auto-
matically belongs to C°'λ / 2(Γ2). Besides, in accordance with [11, Sect. 18.5],
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equation (18) is a Fredholm equation of the second kind in C°(Γ2), because
the integral operator in (18) is a compact operator mapping C°(Γ2) into itself.

Our aim is to prove the following assertion.

LEMMA 2. If Γ2 e Cl>λ, λ e (0, 1], then there is only the trivial solution of

the homogeneous Fredholm equation (18) in C°( JΓ
2).

According to Fredholm alternative, Lemma 2 is proved, if we show that
the homogeneous adjoint integral equation has only the trivial solution in
C°(Γ2). The adjoint equation to equation (18) is

(19) C°W- ζ\σ)--^(2\β\x(s)-y(σ)\)dσ = ̂  sεΓ2.

r2

Here β = Re/? — ilmβ and J^Q \z) is the Hankel function of the second kind
[10]. We used the fact [10] that the Hankel functions of the first kind and the
second kind are complex conjugate, so that J^Q(Z) = J^Q\Z) and an overline
denotes the complex conjugation. In our assumptions the kernel of the integral
term in (19) can be represented in the form

- X®(β\x(S) - y(σ)\) =

where I3(s,σ) e CQ>λ/2(Γ2 x Γ2) and 74(j,σ) e C°'λ/2(Γ2 x Γ 2 ). It follows
from this representation [9, Sect. 51.1] that if f°(j) e C°(Γ2), then the integral
term in (19) belongs to C°'A/2(Γ2) in s. Consequently, any solution of (19)
in C°(Γ2) automatically belongs to C°'λ/2(/72). Now we prove that equation
(19) has only the trivial solution in C°(7"2). We give a proof by a contra-
diction. Suppose that equation (19) has a nontrivial solution ζ®(s) e C°(JΓ

2),
which converts (19) into identity. As mentioned above, C°(̂ ) automatically
belongs to C M / 2 ( Γ 2 ) . We put ^ 0 = ̂ 2 \ ( ^ U Γ 2 ) and consider a single layer
potential

(20) t7[C°](*) = - ?(σ)X®(β\x(s) - y(σ)\) dσ

r2

2 2 2
e c2(R2\r2) n c°(tf2) n

satisfying the following Helmholtz equation

(21) υxιxι(x) + vX2X2 (x) +j?v(x) = 0, xe R2\Γ2.

REMARK. Potential (20) belongs to Cl(@) and to Cl(&o), since its density
ζQ(s) is a Holder function, as shown above.
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Note that potential (20) meets condition (2c) at infinity owing to properties
of Hankel functions [10] and owing to Imβ < 0. Moreover, potential (20)
satisfies the homogeneous Neumann boundary condition

lim 0C°*° = 0,

because it is equivalent to the identity (19).
Thus, potential (20) is a solution of the homogeneous Neumann problem

for the dissipative Helmholtz equation (21) in a domain ^ 0 If ^o is an external
domain, then potential (20) meets condition (2c) at infinity. This homogeneous
Neumann problem has only the trivial solution in C2(^o) Π Cλ(Q>o) thanks to
the energy equality for equation (21) in the domain ^o

O or β2 = -\β\\

where we keep in mind condition (2c) if £̂ o is an external domain.
Consequently,

(22) f>[C°] (*) = <>, x e ^ o

Since potential (20) is continuous across Γ2, we obtain that it satisfies the
homogeneous Dirichlet boundary condition

lim ι;[C0](*°)=0.
L U '

Hence, potential (20) is a solution of a homogeneous Dirichlet problem for the
equation (21) in a domain <&. If Q) is an external domain, potential (20) meets
condition (2c) at infinity. This homogeneous Dirichlet problem has only the
trivial solution in C2(@)Γ\Cl(@) thanks to the energy equality for equation
(21) in the domain &

*0 or = - ,

r2

where we keep in mind condition (2c) if 2 is an external domain. Therefore,

Together with (22) we have

ϋ[C°]W=0, xeR2
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Using the jump relation [1], [4], [11] for the normal derivative of a single layer
potential on Γ2, we obtain

lim 4- v[ζQ](x°) - lim / - t;[ί0](*0) = C°(j) = 0.LS JV ' LS n ' v '

We arrive at a contradiction to the assumption, that ζQ(s) is a nontrivial
solution of equation (19). Thus, equation (19) has only the trivial solution in
C°(Γ). According to Fredholm alternative, equation (18) also has only the
trivial solution in C°(Γ). Lemma 2 is proved.

As a consequence of Lemma 2 we obtain the corollary.

COROLLARY. If Γ2 e C1>A, λ e (0,1], then the nonhomogeneous Fredholm

equations (18), (19) are uniquely solvable in CQ(Γ2) for any right-hand side from

C°(Γ2).

6. The strongly dissipative Helmholtz equation

Let us consider the general Helmholtz equation in Rm

(23) Au(x) + c(x)u(x) = 0, c(x) = d(x) + ic2(x),

where c\(x) and c2(x] are real functions, and A is Laplacian in Rm, m > 1.
Equation (23) is said to be strongly dissipative in a domain D c Rm, if
c\ (x) < 0 for any x e D. In this case the principle of maximum modulus holds
for solutions of (23).

The maximum modulus principle enables us to prove uniqueness and
solvabilty theorems for the problem U in weaker assumptions to the smoothness
of Γ2 and to the smoothness of f(s) in (2b) than in the sections 2-4.

In the present paper maximum means weak maximum, i.e., a real function
F(x) has a maximum at a point jc°, if F(x) < F(xQ) for any Λ: in a neigh-
bourhood of x°.

At first we give a simple proof of the maximum modulus principle.

THEOREM 6. Let Helmholtz equation (23) be strongly dissipative in
D G Rm. If u(x) e C2(D) is a solution of (23) in D, then \u(x)\ can not reach
positive maximum in the internal point of D.

REMARK 1. We do not introduce any restrictions on the domain Z>, which
may be internal or external. For example, the domain D c R2 may be bounded
by closed and open curves, so that D may coincide with the domain
considered in the section 2.
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REMARK 2. We suppose that in case of an external domain x φ D if
\x\ = oo.

REMARK 3. We do not impose smoothness conditions on c(x).

REMARK 4. If c2(x)=0 and so c(x) = c\ (x) < 0, then (23) is a real
equation and the maximum principle for its solutions is well-known [3].

Proof of Theorem 6. Let u(x) = u\(x] + iu2(x) be a solution of (23) in D,
where u\(x) and u2(x) are real functions. We rewrite (23) in the form of a
system

(24a) Aui (x) + d (x)uι (x) - c2(x)u2(x) = 0,

(24b) Au2(x) + cι (x)u2(x) + c2(x)uι (x) = 0,

and put F(x) = \ \u(x)\2 = \ (u\(x) + u\(x)}. Note

(25) FXjXj = (uι)^uι + (u2)XjXu2 + ((Ul)Xj)
2 + ((w2)x,.)

2, j=l,...,m.

Suppose that x° is an internal point of Z>, and \u(x)\ has a maximum in ΛJ°, i.e.,
for any x in a neighbourhood of c0 the inequality holds: |ιι(x)| < |M(^°)|

Consequently, in this neighbourhood F(x) < F(x°), so that F(x) also has a
maximum in Λ:°.

Since F(x) e C2(Z>), the necessary condition for the maximum of F(x) at
the point x° is

FXjXj(xQ)<0, 7 = 1,..., in.

This inequality follows from the fact that the function

*Ύv° Y° v v° v° "\
Γ ^Λj , . . . , Λy_J , Λy, Ay_|_J , . . . , Λ>m)

of a variable Xj has a maximum if Xj = Xj. Consequently,

With the help of (25) we have

HI Aui + t/2Λ«2 -h (Fwi)2 + (Vu2)
2\x=χ0 < 0.

Substituting here Au\ and 1̂/2 from (24), we get

2 < 0.

In our assumptions c\(x°) < 0, and therefore F(JC°) = 0, so that |w(x°)| = 0.
Theorem 6 is proved.
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COROLLARY. In addition to the conditions of Theorem 6 suppose that D is
an internal domain and u(x) ε C°(Z)), then

sup |ιι(jc)| = sup |«(jc)| = |ιφc°)|, x° e dD.

PROOF. If u(x) = 0 in D, the corollary is clear. If u(x) φ 0 in 5, then
\u(x)\ reaches a positive maximum at a point XQ e D. According to Theorem 6,
c0 is not internal point of D, therefore x° e dD. The corollary is proved.

REMARK. The corollary also holds for an external domain D if u(x)
uniformly tends to zero as \x\ — > oo.

Now we give an example, which shows that the maximum modulus
principle (i.e. Theorem 6) does not hold if c(x) = const and c\ > 0.

Suppose c = β2 = const, β = βl-{- iβ2, \β2\ < \βλ |, and so c\ = β\ - β\ > 0.
In these assumptions the function

- ί silih (β2(Xl - x?)) sin(A(*ι - x?))

is a solution of (23) for any xj. We consider an arbitrary domain D c= Rm

containing the point x° = (xj, . . . ,.x^). The function \u(x)\ reaches a positive
maximum in the point x°, i.e., for any x in a neighbourhood of this point:
\u(x)\ < \u(x°)\ = 1.

7. The problem U for the strongly dissipative Helmholtz equation

In this section we study the problem U if Helmholtz equation (2a) is
strongly dissipative, that is,

Imβ > \Reβ\.

As mentioned above, this assumption enables us to prove uniqueness and
solvability theorems in weaker conditions on Γ2 and on f(s) from (2b) then in
the sections 2-4.

Further on we follow notations from the sections 2-4.
We suppose that Γ2 e C M , λ e (0, 1] instead of Γ2 e C2>λ in the sections

2-4. Besides, we abandon the class K in the formulation of the problem U.
Now we reformulate the problem U for the case of strongly dissipative equation
(2a).

Problem U0. To find a function w(x) e C 2 (^\Γ 1 ) Π C°(0) which satisfies
equation (2a), where Im/? > |Re/?|, and satisfies the boundary condition (2b).
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In addition, if 2 is an external domain, then w(x) must uniformly tend to zero
as \x\ — > oo.

The uniqueness theorem holds for the problem Uo in case of both internal
and external domain 3t and follows from the corollary to Theorem 6.

THEOREM 7. If Γl e C2'Λ, Γ2 e C M , λ e (0, 1], then the problem U0 to at
most one solution.

Theorem 7 is essentially based on the fact that equation (2a) is strongly
dissipative.

To prove the solvability theorem, we assume that/(,y) in (2b) belongs to
C ^ ί Γ 1 ) ® C°(Γ2) instead of f(s) e Cl^(Γ) in the sections 3-4. We seek the
solution of the problem U0 in the form (3), where μ(s) e C™(Γl) 0 C°(Γ2),
ω e (0, 1], q e [0, 1). The analysis of the problem UQ can be given in the same
way as in the sections 2-4. Instead of Theorem 2 we have

THEOREM 8. Let Γ 1 e C2'A, Γ 2 e C1^, f(s) e Cl>λ(Γl) 0 C°(Γ2), λ e (0, 1].
If equation (4) has a solution μ(s) in C"(Γl) 0 C°(Γ2), wλm? ω e (0, 1] αwrf
# e [0, 1), then function (3) is a solution of the problem UQ.

Lemma 1, Theorem 3 and the corollary to Theorem 3 hold if 7"1 e C2?A

and Γ2 e Cl>λ. Theorem 4 holds, if in addition to these conditions on Γ we
assume f(s) e Cl>λ(Γl) © C°(Γ2). We note that the proof of the solvability of
equation (16) is essentially based on Theorem 7 and on the analysis of equation
(18) presented in the section 5. Finally, we arrive at the solvability theorem
for the problem UQ.

THEOREM 9. If Γ 1 e C2'A, Γ 2 e C1'^, f(s) e Cl^(Γl) 0 C°(Γ2), λ e (0, 1],
then the solution of the problem UQ is given by (3), where μ(s) is a solution of
equation (4) in Cp

l/2(Γl] ) 0 C°(Γ2), p = min{l/2, λ}.

The existence of a solution of equation (4) mentioned in Theorem 9 is
ensured by Theorem 4, modified as described above. Thus, in case of strongly
dissipative Helmholtz equation we do not use energy equalities to prove
uniqueness theorem for our problem and so we abandon the class K in the
formulation of the problem. Nevertheless, the solution w(x) of the problem
Uo constructed by Theorem 9 satisfies conditions 1) and 3) of the class K and in
addition Vw e C°(^\Γ1\Γ2\Ar), where X is a set of end-points of Γ 1 . Unlike
the problem U, gradient of the solution of the problem UQ may not be con-
tinuously extendable to Γ2. In case of an external domain, the solution of Uo
presented in Theorem 9 meets condition (2c), though we require weaker con-
dition at infinity in the formulation of UQ.
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