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ABSTRACT. The purpose of this paper is to investigate some topics on the selection
problems based on the vector and the combined ranks, with special reference to the
structures of population parameters. We pay more attention to the vector rank
statistics. First, by obtaining the joint distribution of the rank sums, exact results on
the problems of selecting the best population based on the vector rank are given. Then,
we give asymptotic results, for both the vector rank and the combined rank cases,
using their respective moments. We put the main emphasis on the fact that these
results are given with reference to the distributions (parameters) of the underlying
populations. One of the open questions of the selection problems based on the ranked
data lies in the determination of the LFC, though this problem has been discussed in
several places. Thus, finally, under the assumption of the parametric configuration,
some asymptotic results on LFC are obtained.

1. Introduction

In the analysis of experimental data, there are so many occasions to test
the significance of k treatments. Analysis of variance technique is one of the
statistical methods to cope with such situations. The problem is that even
though we have an analytical result such as certain hypothesis being significant
(or not significant), this may not be necessarily satisfactory to the experi-
menters. R. E. Bechhofer [3] states, in his first pioneering paper relating
to ranking and selection, as follows: "Thus in an agricultural problem the
hypothesis that several essentially different varieties of grain have the same
(population) mean yield is an unrealistic one since it is obvious that if the
varieties actually are different, the (population) mean yields also be different,
and a sufficiently large sample will establish this fact at any preassigned level of
significance. Moreover, should a significant result be obtained, the experi-
menter's problem usually have just begun. For having established that the
varieties are different he may now desire to select the one which is 'best'. Here
the best variety might be defined as the one having the largest (population)
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mean yield. Whenever the experimenter ultimately is faced by the prospect of
having to choose a best variety, it seems reasonable that the experiment should
have been designed with this outcome in mind."

This thought motivated the development of variety of multiple comparison
(decision) procedures (see for example Gupta and Berger [9], Hsu [16]) and
among which, ranking (ordering) and selection procedures, proposed first by
Bechhofer, played very important roles. These procedures were proposed
under the so called indifference zone formulation. Soon after the Bechhofer's
proposal, Gupta proposed some selection procedures under the subset selection
formulation (explicitly in [14], originally in his Thesis).

Bechhofer treated first the selection of /-best populations with respect to
the population means [3] and population variances [4] of normal populations.
Since then, varieties of methodologies and algorithms have been proposed
for ranking and selection problems. Here we cite several keywords which
illustrate the spread of ranking and selection problems—with respect to dis-
tributions (such as normal, binomial, exponential), with respect to parameters
(such as location, scale), with respect to the selection of the best or worst,
sequential method, two- or multi-stage procedures and so forth. Details of
these spreads can be seen through the books by Bechhofer, Kiefer and Sobel [5],
Gibbons, Olkin and Sobel [7] and Gupta and Panchapakesan [13]. Also we
have a categorized guide of this field due to Dudewicz and Koo [6]. In [15],
Gupta and Panchapakesan indicate and discuss some directions for future
research in this field.

There are two streams of procedures based on the ranks, for the selection
of populations with distributions having the location or scale parameters. One
is based on the combined ranks (Wilcoxon type rank) and the other vector
ranks (Friedman type rank). In the indifference zone approach, the first result
using a statistic based on the combined ranks appears in Lehmann [18]. He
obtained an asymptotic result under the assumption that the slippage configu-
ration of population parameters is the least favorable configuration (LFC).
While Rizvi and Woodworth [28] showed that the assumption is incorrect by
giving a counter example. Further, under another assumptions, Puri and Puri
[26], [27], Alam and Thompson [1] have given some relevant results.

The subset selection approach based on the combined and the vector ranks
has been extensively studied by Gupta and McDonald [11], [12] and McDonald
[24], [25].

The indifference zone approach based on the vector ranks was investigated
from the exact theoretical points of view by Matsui [19]. He also treated
the selection problem under the assumption of the slippage configuration of
parameters to be LFC [20], but the assumption is not generally correct, as is
shown by Lee and Dudewicz [17].
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In most of the selection procedures, slippage configuration and equi-
parameter configuration of population parameters play an important role as the
parametric configurations giving the minimum of the probability of correctly
selecting the target population(s). This is the so called least favorable configu-
ration. The difficult part of the problem is how to obtain such a configuration.

In this paper we investigate the exact properties of selection procedures
based on the vector rank, for both the indifference zone and the subset selection
formulations, with paying attentions to the structure of population parameters.
Our attention is also given to the structure of the least favorable configuration
of population parameters. Further, using the same type of assumptions as
Lehmann [18], behaviors of two procedures based on the combined and the
vector ranks are investigated asymptotically for both the indifference zone and
the subset selection formulations.

In Section 2, the distribution of the vector ranks in relation to the
underlying distribution of the population is given. Applications to some main
distributions are also given. In Section 3, exact results of selection procedures
are given under both the indifference zone and the subset selection formula-
tions. In general, the problem of determining the least favorable configuration
on population parameters is an open question, for selection procedures based
on the ranks. So, we attempt to give some relevent results. In Section 4, we
give some preliminary results on the PCS using exact moments in the framework
of slippage configuration. Finally in Section 5, asymptotic results of selection
procedures based on the vector and the combined ranks are presented, under
the given parametric assumption, for both the indifference zone and the subset
selection formulations.

2. Distribution of the rank sum statistics

The purpose of this section is, first to explain the features of the vector
ranks with reference to the underlying distributions of populations, then to give
the distribution of the sums of the vector ranks.

2.1. Distribution

Let ΠiϊΓLϊ iΠk denote k given independent populations. Suppose
that Πp *' = 1,2,... ,fc has a continuous cumulative distribution function (c.d.f.)
FΪ(X) = F(x; θi) specified by parameter 0, . The probability density function
(p.d.f.) of Ft(x) is denoted by ft(x) or /(x;^).

In this paper, we use two types of ranking systems to organize the statistics
of concern. Since there are no popular wording to these ranking systems, we
start to define one of the ranking systems "vector ranks". Another definition
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(combined ranks) is given in Section 4.1. Note that this wording is not
necessarily used in general, but can be seen in Gupta and McDonald [12].

DEFINITION 2. 1 . Let Xj = (X\j, Xy,..., Xkj), j = 1 , 2, . . . , n be n indepen-
dent vectors of random variables corresponding to the y-th observation of the k
populations Π u ΓL' » Πk For each vector Xj, form a new vector of rank
order statistics

(2.1) R(Xj) = (R(XV), R(Xy), . . . , R(X^)),

where for each y , R(Xy) = r if Xy is the r-th smallest among the k components
of A), i = 1 , 2, . . . , k, j = 1 , 2, . . . , n. Then R(Xj) is called a vector rank.

The rank defined in this way is known as Friedman's ranks in a n x k
table. The raws and columns indicate blocks and treatments, respectively.
Such a rank occurs when n independent judges orders k populations according
to some criteria of classification. Ordeing may be given to the objects, cate-
gories, etc. and sometimes useful in reducing the effects of extreme values or
unknown (or lost) data with size information. Ranking processes can also be
applied to some preference or sensory type of data and in such type of data,
observations may be supposed to be distributed according to some continuous
distribution.

Now, consider the rank sum Γ,- based on the n independent observations of
populations Π/> i = 1 , 2, . . . , k,

(2.2) Tt = R(Xij).
7=1

We first consider the joint distribution of Γi, T^ . . . , 7* in connection with the
distributions F/(JC)'S or parameter 0/'s, / = 1,2, . ..,&. The approach by the
joint distribution was proposed by Matsui [19]. Here we express the result in a
general way, by introducing some vector and matrix notations.

For any given /, let (mi, . . . ,raz, . . . ,wjt) be a permutation of numbers 1
through k, with w, fixed to be A: (1 < w, < k — 1 , j = 1 , 2, . . . , A:; j φ ΐ). Order
s = (k — 1)1 such permutations lexicographically, namely (mi, mi, . . . ,Wfc) <
(w'jjW ,̂ . . . ,m'k) when m\=m\, m^ = m'2, . . . ,mr-\ = nir_\ and mr<m'r for
some r. Denote the y-th vector in this order by

(2.3) fij = (m\j, . . .,mi_\j,k,mMj, . . .,mkj)', i = 1,2, . . . ,fc,



Selection problems based on ranked data 59

For example, when k = 3,

r n = (3,l,2)', 1-12 = (3,2,1)', r2ι = (1,3,2)',

1-22 = (2, 3,1)', Γ3i = (l,2,3);, ι 32 = (2, 1,3)'.

By using these vectors, let us define the basic probabilities py,

Pk-ij, - ,pι/, O ' = l , 2 , . . . , s) as

(2.4) Pij = Pτ(R(X) = r0), ί = l , 2 , . . . , * , 7 = 1,2,...,*,

where Λ(^) is the vector of rank order statistics for any observation X =

By introducing the above basic probabilities /?z/s, (/ = 1,2, ...,&;
7 = 1,2, . . . ,s), we have the following theorem concerning the joint distribution
of rank sums (7Ί, 72,..., 7\). This theorem is essential to consider some exact
theoretical results on selection procedures based on the vector ranks.

THEOREM 2.1. In an n repetitions of experiments, let T\, 72, . . . , 7^ be the
rank sums defined by (2.2). Then the joint distribution of T = (T\, Γ2, . . . , Tk)
is given as follows.

(2.5)
πe/ /=! \ 7=1 V

Here t = (t\ , *2, - - - , ft)', h's are integers, n < t\ , ί2, - - , tk < nk, Σ*=l tt =
nk(k-\- 1)/2, αwrf / is the index set such that

(2.6) 7 = {Λ; J&i = f, / ( j k ! )ιι = Λ},

where K is a k x &! matrix

(2.7) 1ST = (r*ι , . . . , Yks, ι A:-ι,ι , . . . , rjt-1,5, . . . , m , . . . , n , ) ,

(2.8) Λ= (nWj .jΛ^Λjt-l,!,...,^-!,,,,...,/!!!,...^!*)7, ^ X 1

(2.9) /(«) = (!, I , - . - , ! / , W x l

PROOF. This distribution is a kind of multinomial probability but differs
in summing up to form rank sums. By using the basic probabilities p$ defined
by (2.4), the ranks of any observation vector X = (X\,X2, . . . , Xk)' is specified
by ry = (mw,m2jj, . . . ,mkj^ where mw,my^ . . . , w w takes values 1 through
k exclusively and m/7)/ — k, j — 1 , 2, . . . , j ; / = 1 , 2, . . . , k. Denoting the number
of occurences of rank vector R(X) = r,y among « repetitions of observations by
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n,y, we have the rank sum of Xι to be mi/ny for given i and y, / = 1,2,..., k\
j = 1,2,..., s. Adding for every j and /, we have the rank sum of the /-th
population as

k s

YYm^n^tL
Δ-J Z-~s y ' J

Thus we have the theorem.

The cases k = 2 and 3 are of special interest from both the practical and
the capable theoretical viewpoints. In the rest of the paper, distribution
functions F(x\θi),i = 1,2,... ,k are supposed to belong to the location or
scale parameter family of distributions, i.e., F(x; 0, ) is expressed as F(x, 0, ) =
F(x - θi] or F(JC; 0, ) = F(jc/0, ) depending on whether they belong to the
location or scale family of distributions. Here, we note that when we are
dealing with the scale parameter, ranking should be given to the absolute values
of the observations, if necessary. In this case, F,'s should be the distribution
functions for the absolute values of variables.

2.2. Exact forms of distribution

By using Theorem 2.1 we attempt to give some exact forms of the vector
rank distributions in more reduced expressions. As we mentiond before, some
types of the ranked data which are categorized based on sensory preference or
empirical knowledge may well be considered to be derived from continuous
distributions. We consider the cases when the observations are from popula-
tions with normal and exponential distributions, both belong to the location
and scale parameter families of distributions.

More precisely, we consider the four seperate cases when populations Π*
have the following main distributions (i = l,...,fc):

A-l: Normal distribution with the location parameters; ΛΓ(0, , σ2)

A-2: Normal distribution with the scale parameters; 7V(0,0?)

B-l: Exponential distribution with the location parameters; E(θi,σ)

B-2: Exponential distribution with the scale parameters; £(0,0, )

Here N(μ,σ2) expresses the normal distribution with location and scale
parameters μ and σ. Also, E(θ,σ) expresses exponential distribution with
location and scale parameters 0 and σ respectively.

First, we will give some notations and preliminary results. Let the
probability density function (p.d.f.) and cumulative distribution function (c.d.f.)
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of the standard normal distribution JV(0, 1) denoted by

(2.10) φ(
V2π

(2.11) * ( * ) = [ * Φ
J — 00

respectively. Also the upper probability of the bivariate normal distribution
with means 0, variances 1 and correlation coefficient p is expressed as

(2.12) L(utv;p)=Γ Γ * - ? expj- l (x2 - 2pxy+y2)} dxdy,
Ju Jv 2πγl - (r I A1 - P) )

which is called L-function. L-function has the following properties.

(2.13) L(«ι,»;/0=L(ι>, «;/>),

(2.14) L(-u,v;p) = l-Φ(v)-L(U,v ,-p),

(2.15) !,((), 0; ,,) = - + - s i i Γ V

Now, by the transformation of variables, we have following relations. This
lemma is useful to evaluate the joint distribution of T when the underlying
population is normal.

LEMMA 2.1. For any real a\ and Wi, i = 1,2,... ,A: — 1, let

(2.16) 4

where D = {(xι,*2, •••,**); ** ^ aΐχk + w, , ι = 1,2, . . . , / : - l -oo < xk < oo}.
7/ẑ w ίA^ k-fold integral can be expressed as

(2 17) /*
u = (MI, M2, - - , Wfc-i/, A = {«; «/ < w, , i = 1, 2, . . . , A: - 1} and Σ = (σ,y),

ώ = 1-h έi?, i = 1, 2, . . . , fc - 1; atj = a^, ί, j = 1, 2, . . . , k - 1, / ̂  7.

As a special case of Lemma 2.1, we have the following. This lemma is
important to evaluate the PCS function numerically, and used frequently in
later section.
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LEMMA 2.2. In the expression (2.17), if DQ = {«; w/ < h, i = 1,2,..., k - 1}

Σ = (σfj), σu=\, i= 1,2,...,&- 1; σ,y = />,ι,y = 1,2,... ,fc - l,ι ^y,

(2.18)
fc-l

(x}dx.

By letting fc = 2 and 3 in the above lemma, we have the following

relations.

(2.19)

(2.20) =L(-c\,-c2;p),

where a = V \ Λ + */> ι = 1,2 and /? = aιa2/ψl + αfy 1 + α|.

In the same way, we have the following relations for any real 01,^2 ^ 0,

(2.21) Γ Γ % ( J C ) ^ ) r f F Λ c = ̂ -sin-1/»ι,
Jo Jo ^ n

(2.22) f°° Γ * Γ * φ(x)φ(y}φ(z] dzdydx = ^ - sin'1 />2,
Jo Jo Jo δ π

where ρλ = a\/ J\ H- a\ and /?2 = «i«2/v/l H- tff

The case Λ = 2

In this case, two rank sums T\ and TI are dependent, and their joint
distribution can be expressed as

(2.23)
it! \2Λ-ί2

where ίi = 3n — ί2, ̂ 2 = «, « + 1 , , 2« and

(2.24) F(x -f 62 — θ\) dF(x), (location parameter case)

f°°
F((θ2/θι)x) dF(x). (scale parameter case)

k Jo

Again, turning to the four cases above, we have the following reduced

forms of p2\.
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(2.25) A-l: p2, = Φ{(Θ2 -

A-2: /72ι = (2/π)sin" p = (Θ2/Θ{)/1 +

B-l: />2i = 1-0/2) exp{-(0 2 -0 ι )M-

B-2: Λι = l - 0 ι ( 0 ι + 02).

The case k = 3

When A: = 3, the probability distribution of T is given by (2.5) for

t = (t\ , *2, '3)' and n = (n^ , /ι32, «2i , "22, «n , "12) such that f i + f2 + *s = 6w>

3̂1 4- «32 H- «2i + «22 + «n + ̂ 12 = n, t and Λ have the relation

/ I 2 1 2 3 3\

(2.26) f - I 2 1 3 3 1 2 ] n.

\3 3 2 1 2 I /

Further, there are six cases of basic probabilities p^\ through p\ι, whose
original forms are given by (2.4). For example, p^\ has the following form.

(2.27) />3i

By evaluating these integrals for the location and the scale parameter cases, we
have the following basic probabilities p^\ through p2\ for cases A-l through
B-2.

A-l: Normal distribution with location parameters

(2.28) p3ι = L ( - W I , -w2;/?),

p2i =L(w 2 ,-vvι - w2;/?), p22 = L ( - W I , W I +w2;/>),

p\\ =L(-w2,wι +w2;/?), pu = L(w\, w2;/?).

where wi = (02 - θι)/y/2σ, w2 = ((93 - θ2)/Vϊσ and /? = -1/2
A-2: Normal distribution with scale parameters

2 2
(2.29) /?3i = - (sin~ Vi - sin"1 /?2), /?32 = - (sin~ Ip3 - s in ' 1 p4),

n n
2 2

" 1 " 1 " 1 " 1/?2ι = - (sin"1 ps - sin"1 /?6), /?22 = - (sin"1 pΊ - sin"1 /?8),
π 7Γ

2 2
/?n =-(s in~ 1 y9 9 -s in" 1 /? 1 0 ) , /?ι2 = -( s in" 1 ; ? ! ! - sin" 1/?^),
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and δι =
B-l: Exponential distribution with location parameters

(2.30)

P3i = l - j '
1
2'

= 1β-^-Ie-C
2 2

1

6<

where w\ = (Θ2 — θ\)/σ and wi — (θi — 62)/σ.
B-2: Exponential distribution with scale parameters

(2.31)
1 + & 1

1

l+<52 1

1

1

1

where

P2\ =

P ϊ l l+διδ2 l+δ2~+διδ2'

= θ2/θι and δ2 = Θ3/Θ2.

01

Pl2 =

1+5,

1

1+02+0102'

δ2

l+δl l+h+δfa'

2.3. Moments of the vector ranks

In this section, we give moments of the vector ranks with reference to the
underlying distributions of populations as given in Section 2.1. Since moments
of the vector ranks R(Xij), i— 1 , 2, . . . , k\ j = 1 , 2, . . . , n, defined in Definition
2.1 do not depend on j , each repetition of observations, we denote R(Xij), the
rank of Xy, by Rj. Then we have the following results, which can be seen in
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Matsui [22] and play an important role in considering behaviors of selection
procedures in later sections.

THEOREM 2.2. The mean, variance and covariance of the vector rank
statistics R — (R\,R2, ..., Rk) are given as follows.

(2.32) E(Rt)=k\G(x)dFι(x)+^ i = 1,2,...,*,

(2.33) Var(Rι) = 2k ί G(x) dFt(x) - 2k ί G(x)Ft(x) dFt(x) - k ί H(x) dFt(x)

+ k2 1 G(x)2 dFt(x) - k2 Q G(x) dFt(xή - 1 ,

(2.34) Cov(Rt, RJ) = k (2 - J Fj(x) dFi(*)) J G(x) dFj(x)

j(x G(x) dF,(x)

- 2A:Q G(x)Ft(x) dFj(x) + J G(x)Fj(x) dF,(

,(x) dFj(x) - 2Ft(x)F,(x) dF,(x)

where

(2.35)
7=1 ;'=ι

One of the important implications of this theorem is the close relationship
between ranks and parameters stated in the following theorem.

THEOREM 2.3. If the distribution functions F(x; 0, ), i = 1, 2, . . . , k belong to
the stochastically ordered family of distributions, then we have

(2.36) E(Rt) > E(Rj) if and only if 0, > θj.
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PROOF. We have

J/ (x; ft) dFfr ft) = 1 - IF(X ft) dF(x; ft), (i, / = 1, 2, . . . , k).

Thus, from (2.32) and (2.35), we have the following.

(2.37) E(Rt) - E(Rj) = £ {F(x; θj) - F(χ , ft)} dFfr ft).

Since c.d.f. F(JC; θ) is stochastically ordered, we have F(x; ft) < F(JC; θj) for
ft > ft, thus the theorem follows.

From Theorem 2.3 we can expect that the selection procedures of the best
population (with largest parameter, say) based on the ranks can be warranted
in appropriate conditions.

In Tables 1 and 2, we will give some values of mean and standard
deviation of the rank statistic RΪ for the cases A-l and A-2 with k = 3. Some
behaviors of the rank statistic can be seen from these tables.

Table 1. Mean and Standard Deviation of Ranks; Normal Population with

Location Parameters and k = 3

Wι

M>2

E(R3)
E(R2)

E(R,)

SD(R3)

SD(R2)

SD(Rl)

0.0

0.0

2.00

2.00

2.00

0.82

0.82

0.82

1.0

2.52

1.74

1.74

0.69

0.75

0.75

2.0

2.84

1.58

1.58

0.42

0.61

0.61

1.0

0.0

2.26

2.26

1.48

0.75

0.75

0.69

1.0

2.68

2.00

1.32

0.56

0.67

0.56

2.0

2.90

1.84

1.26

0.32

0.54

0.46

2.0

0.0

2.42

2.42

1.16

0.61

0.61

0.42

1.0

2.74

2.16

1.10

0.46

0.54

0.32

2.0

2.92

2.00

1.08

0.28

0.40

0.28

Table 2. Mean and Standard Deviation of Ranks; Normal Population with

Scale Parameters and k = 3

<*1

*2

E(R3]

E(R2)

E(Rl)

SD(R3)

SD(R2)

SD(R1)

1.0

1.0

2.00

2.00

2.00

0.82

0.82

0.82

3.0

2.59

1.70

1.70

0.70

0.70

0.70

5.0

2.75

1.63

1.63

0.58

0.64

0.64

3.0

1.0

2.30

2.30

1.41

0.74

0.74

0.61

3.0

2.72

2.00

1.28

0.56

0.62

0.49

5.0

2.83

1.92

1.25

0.46

0.56

0.46

5.0

1.0

2.37

2.37

1.25

0.68

0.68

0.49

3.0

2.75

2.08

1.17

0.51

0.56

0.40

5.0

2.85

2.00

1.15

0.42

0.50

0.37
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3. Selection problems based on the vector ranks—exact results

In this section, we deal with selection procedures based on the vector
ranks. First, we give two formulations of the selection procedures. Then the
exact results of the procedures are given by using the distributional results of
Section 2.

3.1. Two formulations

Consider k populations ΠnΓL' >ΓL (k>2) where Π / s a r e charac-
terized by the distributions with parameters 0ι,02,... ,θk. Here 0,, i =
1,2,..., k, take the values of some interval Θ in the real line and denote the
parameter space 0 = (θ\, 02,..., θk} by Ω. Also, the ordered values of parame-
ters are denoted as θ\\ \ < 0pj < < 0ρt], and the population associated with
0M is written as Π(/)> ί = l,2,...,fc.

We assume that the ordered relation of populations is determined by the
corresponding parameter 0^. We say Πry) *s better than Πm if * <j Then,
the population JJ/^ is the best population, and the populations Π(fc-r+i)> »
Π(fc) are called the /-best populations.

Indifference zone formulation

As we mentioned in Section 1, Bechhofer [3] considered the problem of
selecting the ί-best normal populations. Here we give the so-called indifference
zone formulation due to Bechhofer for the case of selecting the f-best populations.

Our goal is to select the ί-best populations associated with the parameters
0[fc-f+i], . ,0[Aτ]. To attain this goal, i.e., to select correctly the target popu-
lation^) is called "correct selection" and denoted by CS. Let ^ be a selection
(decision) rule. The probability of a correct selection by 3fc is written by
Pr(C5|Λ), which is abbreviated as PCS.

Further, we specify the following two constants in relation to the probability
requirement,

(3.1) φl_t+λ k_t and P*, where 0 < φ*k l k_t < oo, \/(k\<P* <\.
I v /

For a rule ^ , we impose the probability requirement:

(3.2) Pτ(CS\3l) > P* whenever φk_t+l k_t > φ\_

where φtj is a distance function relating to two parameters such that
φ.j = φ(θfl,θ[j]). We try to guarantee the probability Pτ(CS\0t) to be greater
than P* over the subspace of the parameters ΩQ = {0; φk_t+l^_t > φ*k_t+lιk_t}>
and this region of parameters is called the preference zone. While if the
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distance φk_t+ι^_t < #£_ ί+1 £_p then we do not have much concern to select
(or to identify) the relevent population—i.e., we dare not to discriminate the
population—and the region is called the indifference zone.

Our aim is to investigate the behavior of Pτ(CS \Λ) under the probability
requirements as above.

Subset selection formulation

The subset selection formulation proposed by Gupta (see e.g., [14]) is to
select ô (SQ > t) population(s) from k populations Πi^ΓL' »ΓLt> ^n order
that this subset S contain the f-best populations, i.e., the populations corre-
sponding to 0[fc_ί+i],...,%]. Here we note that the size of the subset S is a
random variable and this formulation has the aim of considering a procedure
which guarantees the probability of a correct selection (PCS) with as small a
sample size as possible. In this case, the probability requirement is given by

(3.3) Pr(CSΊΛ) > P* where θ e Ω,

where P* (!/(*) < P* < 1) is a preassigned constant. Note that the Pr(C5|Λ)
is considered over the whole parameter space Ω.

3.2. Selection procedures based on the vector ranks

Let us consider the ranking and selection problem of selecting the popu-
lation with the largest (or smallest) parameter value, based on the vector ranks
defined in Definition 2.1.

For the descriptions on populations, we use the same ones as in Section
2. Further, in this section, we suppose that the distribution functions F(x; 0, ),
/ — 1,2,..., k belong to the location or scale parameter family of distributions.

By the same procedure (2.2) as in Section 2, we construct the rank sum
statistic

(3.4) I*

obtained by the n repetitions of observation vectors. Again, as we stated
in Section 2, note that the ranking procedure is carried out for the absolute
values of observations, if it is necessary, when we are dealing with the scale
parameters.

More specifically, the problem here is stated as follows. Let the ordered
parameters be

(3.5) θm <0 [ 2 ] <•••<%].
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We consider a ranking and selection procedure 0t based on the rank sum Tiy

ι = l,2, ...,/k or T = (7Ί, TΊ,. .., 7&) for selecting the population associated
with θ[iή. Here, we assume without loss of generality that the population Y[k is
associated with the parameter θ^.

Now, let us consider the following two procedures of selecting the best
population based on T. These types of rules are used for selecting the best
population with either the largest location or scale parameters, using statistic T.

3.3. PCS' for the indifference zone formulation

First we consider the indifference zone approach due to Bechhofer [3]
under the above framework. We denote this procedure as ^/(α), which is
given as follows.

(3.6) ^£/(α) : Select the population associated with Tk as the best,

where α is the index for two cases, i.e., we set α = 1 for the location parameter
case and α = 2 for the scale parameter case.

In this case, the rule ^/(α), (α = 1,2,) is requested to satisfy the following
probability requirement.

(3.7) Pr(CS|Λ/(α)) > P* whenever φΛ(θk, 0,) > yα + <ζ

where l/k < P* < 1, J* is a given constants, φΛ is a distance function,

9j — θj when α = 1,
( 3 ' 8 ) r.v-n-y/ ^ . / 0 . w h e n α - 2 ,

and

(39)
\ ) / α i 4 , Λ

I 1 when α = 2.
Note that this is a little different from the usual notation because we are
treating the location and the scale parameter simultaneously. We sometimes
call (3.8) as the location gap (when α = 1) and the scale gap (when α = 2).

By using Theorem 2.1 in Section 2, we have the following form of the
probability of a correct selection (PCS) for the procedure

THEOREM 3.1. Let Λ/(α) be the selection procedure defined in (3.6). Then

the probability of a correct selection is given as follows.

(3.10)
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where Ig is the index set

(3.11)

to-i)

where Q is a (k — 1) x k matrix

(3.12) β =

Here E^ denotes the unit matrix of order k, g corresponds to the "tied" rank

case and "a ^ O" means that some g elements of the vector a are equal to zero

and the remaining elements are negative.

PROOF. If the population associated with Π/t *s the best, ^Qn a correct
selection occurs if and only if 7& > Tiy ί = 1, 2, . . . , k — 1. Thus, PCS is given
by using Theorem 2.1. concerning the joint distribution of (Γi, T^, . . . , 7^).
While ties may occur among rank sums including 7^, and tied cases must be
broken by certain chance mechanism with equal probabilities. Thus, consider-
ing the number g of tied to the maximum cases, we have the theorem.

Note that the PCS for ^/(α) will be given to various kinds of goals — such
as selection of the population with the smallest parameter — only by changing
the index set given above.

Form Theorem 3.1, we have the following results for k = 2 and 3.

The case k = 2

By using the distributional results (2.23) of the rank sum and the relation
known as the sum of binomial probabilities

) f
/ Jp

v=0

we have

(3.14)

7(v + 1, v + l)/J5(v + 1, v + 1) for « = 2v + 1,

£ / , (v+l ,v+l)/2£(v+l ,v + 2) forιι = 2v + V V = 1 ' 2 ' " ' '

where B(m,ri) and Bp(m,ri) are the complete and the incomplete beta functions
respectively, and p is given by the pι\ in (2.24).

Now we have to give an idea related to the parameter configuration. The
least favorable configuration (LFC) for the procedure Λ/(α) is defined as the
configuration of the population parameters which attains the minimum of the
PCS under the requirement (3.2) or (3.7). In this case, it is easily shown that
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LFC is given by

(3.15) 9Λ(θk,θi)=γΛ+FΛ

for α = 1,2.

The case A: = 3

In general, as k increases, the form of the index set Ig and the variable
relationship becomes tremendously complicated. For k = 3, the index set Ig is
given as follows.

(3.16) /i ={! ! ;/) ! > 0 , Z ) 2 > 0 }

/2 = {n;Z)ι =0,Z>2 > O o r D ι >0,Z> 2 =0}

/3 = {n;/>ι=/>2=0}

where

(3.17) Z>ι = Λ3ι + 2W32 - 7121 ~ 2«22 + «11 ~ «12

Z>2 = 2«3i + « 3 2 + Λ21 - «22 - «11 ~ 2« ι 2

and «3i + «32 4- «2i + 2̂2 + «n + «i2 = n.
PCS can be calculated by using Theorem 3.1, for various populations.

For the location and scale parameter cases of normal and exponential dis-
tribution given in A-l, A-2, B-l and B-2 of Section 2.2, we can obtain the PCS
values by using the relations (2.28) through (2.31).

However, to obtain the forms of LFC is generally a hard nut to
crack. We will discuss on this topic in Section 3.5.

3.4. PCS for the subset selection formulation

Another approach is based on the subset selection formulation due to
Gupta [14], which selects the subset of populations using the following selection
procedures.

(3.18) ΛS(CL) : Select JJ. if and only if Tt > max Γ7 - rfα,

Recall that a correct selection (CS) occurs if and only if the best popu-
lation (in our case Πk) is included in the selected subset. Our aim is to find a
selection procedure satisfying

(3.19) inf Pr(CS |^s (α))>P*,

where α = 1, 2, \/k < P* < I and Ω = {θ = (θ\, Θ2, . . . , 0*); 0/ e β, i = 1, 2, . . . , k}.
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We have the following theorem.

THEOREM 3.2. Let ^s(α) be the selection procedure defined by (3.18).
Then the probability of a correct selection is given as follows.

k ( s \ \
(3.20) Pr(αSΊ^5(α)) = V n\ Π TT —- / # ].

f J -LA I A A γι \ " I
nel i=\ \y =l 1J' /

where s — (k — 1)!, 7 ί's the index set such that

(3.21) / = {ii; βtfii < dJ'(k_l},J'(k{)n = n}

and Q, J(k-\] are given by (3.12) and (2.9).

PROOF. If γ\k is the best population, then a correct selection occurs if and
only if Tk > Γ/ - dα, i = 1,2,..., k - 1. Thus, using Theorem 2.1, we have the
above result.

By the same way as in the indifference zone formulation, we have the
following results for k = 2 and 3.

The case k = 2

We can write the index set in the PCS formula (3.20).

(3.22) 1= {(Π2i,«n);«2i - « n > - 4 , n2ι+nn=n}.

Thus we have

/o 2 ^ n > (n /y W2

Letting n* = {(n — dα)/2} — 1, where {x} is the smallest integer not less than x,
from Theorem 3.1 we have

(3.24)

where p is pι\ in (2.24). The least favorable configuration is given when
62 = #ι, i.e., when p — \ in (3.24).

The case k = 3

The index set in the PCS formula (3.20) is given for n =
(nι\,n32,n2\,n22,n\2,n\ι) which satisfy the relations

(3.25) «31

4- «32 + 121 - «22 ~ «11 ~



Selection problems based on ranked data 73

and «sι 4 «32 4- ̂ 21 4- «22 + «n 4- ̂ 12 = n. Further, p^(i = 1,2,3;y = 1,2) is
given in Section 2.2, for seperate cases of corresponding populations.

3.5. LFC and the slippage configuration

Since the probability of a correct selection (PCS) is a function of the
unknown parameters, we try to evaluate its value under the scheme of prob-
ability requirements given by (3.2) for the indifference zone formulation and by
(3.3) for the subset selection formulation.

As we mentioned in Section 3.3, it is sufficient to evaluate the PCS under
the LFC, that is, under the configuration of parameters attaining the minimum
of the PCS with respect to the respective probability requirements.

Various discussions have been made to get the least favorable configura-
tion of some selection procedures. Among which, the slippage configuration
played a significant role in giving the least favorable configuration of parameters.
Actually, for example, for the selection of the best of location or scale parame-
ter of normal populations, the slippage configuration is shown to be the LFC
(Bechhofer [3], [4]).

Now we define the slippage configuration of distributions as follows:

DENITION 3.1. For given c.d.f.'s F\(x),F2(x),... ,Fk(x), a slippage con-
figuration of distributions is defined by

(3.26) F^x) = •- = Fk-t(x)(=FQ(x)) > Fk.t+l(x) = - - = Fk(x)( = F(x)).

for all x, where t is any given integer such that 1 < t < h — 1.

Since we are dealing with the location and scale parmeter families of
distributions, the above definition is the same as

(3.27) 0ι = - 0*_,( = 0o) < 0*-H-ι = = θh( = β).

Then one of the important problems is to find the LFC for each of the
selection procedures based on the ranks. Selection procedure based on the
combined ranks (For the definition, see Section 4.1.) is first considered by
Lehmann [18]. He obtained the PCS by assuming the slippage configuration
to be a LFC. But Rizvi and Woodworth [28] showed the assumption to be
incorrect by a counter example. Matsui [19] also considered the procedure
using vector ranks and assuming the slippage configuration to be the LFC.
But this assumption is also shown to be incorrect by Lee and Dudewicz [17], by
giving a counter example.

These two counter examples are very tricky ones. So it may be noted that
still slippage configuration is one of the nearest paths to give LFC for most of
the selection procedures based on ranks. Actually, for selecting the location
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parameter of normal populations based on vector ranks, it is partially proved
and partially numerically confirmed that the slippage configuration is the LFC
(Alam and Thompson [1], Matsui [21]).

Finally, we give a result concerning the distribution of T given in (2.2),
under the slippage configuration of t = 1, (see Definition 3.1). In this case, the
probabilities py, i= 1,2,..., k'J = 1,2,..., (k — 1)!, defined in (2.4), have the
same forms for every j . Thus for every j , we have

i-l k-i

(3.28) Pij = Pr(Xh < . <X^ < Xk < Xli+ί

This simplifies the distribution (2.5) and hence also the expressions for the PCS
(3.10) and (3.20). We discuss this case again in Section 4.3.

3.6. Sufficient condition on the LFC

Now we give a sufficient condition for a configuration to be LFC for some
selection procedures. This result can be used to examine the LFC of some
selection procedures based on the ranks.

Let ^-populations Πι>Π2> >ΓL be given with stochastically ordered
distribution function as follows:

(3.29) F(χ θi)>F(x,θk), i = l , 2 , . . . , * - l , for all jc.

Let Xj = (X\j, Xy, . . . , Xkj), j = 1, 2, ...,«, be the y'-th independent sample from
each population, where X\,X2, - - . ,Xk are assumed to be independent. Let
RΪJ = U(Xij) be functions of Xij, which are defined with respect to Xy
themselves, or with respect to relations among the components of Xj. Now,

(3.30) Tt = £ Rij
7=1

is the statistic associated with the i-th population.
Our aim is to choose, among k populations, a population Π/t w*th

the stochastically smallest c.d.f. Fk(x) = F(x',θk) by means of the statistics
(Γi, 72, . . . , Tk). A natural procedure is to choose Y\s if Ts is the largest
among Γι,Γ2,...,7]k.

Now, the probability of a correct selection is given by

(3.31) PrΩ( max Γ,<
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where

(3.32) Ω = {(Fl(X),F2(x),...,Fk(X)) ,Fi(X)>Fk(x), i = 1,2,...,*- 1}.

The least favorable configuration of populations is defined to be a configuration
ΩQ such that

(3.33) Prβ ( max Tt < Tk) > Prβo ( max Tt < Tk)
\l<ϊ<λ:-l J \l<ί<A;-l /

for all Ω.
The following theorem gives us a sufficient condition for

(3.34) ΩQ = {Fι(x),F2(x), . . . ,F*(*));*ι (*) = F2(X) = = Fk.,(x) > Fk(x)}

to be the least favorable configuration to our selection problem (see Matsui and
Choi [23]).

THEOREM 3.3. If the c.df. GΩ(y) = GΩ(yι,y2, . . . , jfc-i) of y = (Rυ - Rkj,

R2j - Rkj, . . . , Rk-ij ~ Rkj), 7 = 1 , 2, . . . , w, satisfies the relation

(3.35) GΩ(y)>GΩo(y) for all y,

then the configuration ΩQ in (3.34) is a LFC.

4. Selection problem based on the ranks — asymptotic case

As we mentioned in above sections, especially in Section 3.5, LFC is a key
notion to the selection procedure based on the ranks. We have seen that
several investigations have been made.

In this section, we consider the selection procedures of selecting the largest
(smallest) location parameter or the smallest (largest) scale parameter from an
asymptotic viewpoint. Since we are considering two formulations and two
types of rank sum statistics — vector rank type and combined rank type — let us
restate our framework on the populations, parameters, statistics and proce-
dures. Note that notations of statistics and procedures are different from the
previous sections, since we are treating another (combined) type of statistics also.

4.1. Restatement of the problem

Let ΠυΓL' >ΓL; b e ^ independent populations where Πz has the
associated cumulative distribution function (c.df) F(X] 0, ), i = 1, 2, . . . , k. It is
assumed that {F(jc;0/)} is a location or scale parameter family, i.e., F(x;0,-) =
F(X-θi), -oo < θi < oo, or F(x\θi)= F(jc/0, ), 0Z > 0. Let the ordered 0,
be denoted by 0pj < 0p] < < 0pq. The population associated with 0^ is
defined to be the best. Note that selection of the worst can be treated in the
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same as the best case, as is explained below. Our procedure for selecting the
best population is based on the ranks of observations from these populations.

Then we have

(4.1) F(x; θm) > F(x; θ[2]) > > F(x; %])

for all jc. We assume, without loss of generality, that Y[k is the best popu-
lation (i.e., θk>θi, i = 1,2, . . . ,fc - 1).

We now consider the rank sum statistics based on the combined ranks.

DEFINITION 4.1. Let JSΓ/i, Xa, . . . , X^ be «z independent observations from
the population Π P z = lj 2, . . . , £ , and let # = Σ?=ι Λί Then, the combined
ranks of the observation X is defined as

(4.2) R&j) = r

if Xy is the r-th smallest among all N observations.

The combined rank is known as Wilcoxon type rank, and its rank sum is
used in Mann-Whitney- Wilcoxon Test, or in Kruskal-Wallis Test for λ -sample
problem.

We are going to give a unified treatment for the selection procedures based
on the vector ranks (Friedman type rank) defined in (2.1), and the combined
ranks (Wilcoxon type rank) defined here. Let R^ denote the rank of Xy as a
vector rank, R\j ' denote the rank of Xy as a combined rank and consider the
rank sum in the following way.

For s = 1,2, define

(4.3) T = b s R , ΐ = l , 2 , . . . Λ
7=1

and

(4.4) J^ = (Γ^rf ,...,rf)',

where b\ = 1 and bi = I/Hi.
We now consider the two selection procedures — the indifference zone

formulation and the subset selection formulation — based on these two statistics.
First, under the indifference zone formulation, we define the selection procedure
$ι(s, α) as follows:

(4.5) 3%ι(s, α) : Select the population associated with T$ as the best.

This is the selection procedure selecting the population with the best location
parameter (α = 1) or scale parameter (α — 2), based on the statistic J ^ .

In this case, the rule Λ/(j,α), (,s,α= 1,2) is required to satisfy the fol-
lowing probability condition:
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(4.6) Pr(CS|Λ/(j, α) > P* whenever φΛ(θk, 0,) > yα + <5*,

where I/A: < P* < 1, 5* > 0 are specified constants, 0>a(0/, 07 ) and yα are given
by (3.8) and (3.9) respectively.

Under the subset selection formulation for selecting a subset containing the
best population, we define the following procedures:

(4.7) 0 S ( S , α) : Select ΓL i f a n d o n l y i f Γ ^ ^ m a x Γ ; W ~ *»

Again, α = 1 and 2 correspond to the location and scale parameter cases,
respectively. We say that a correct selection (CS) occurs if and only if the best
population (in our case Y[k) is included in the selected subset. Our aim is to
obtain a rule $s(s, α) satisfying

(4.8) inf

where s,a = 1,2; l/k < P* < 1; Ω = {θ = (0ι,02, . . . ,0*);0, 6 β, / = 1,2, . . . ,*},
0 is a real line. The constant rfα is the smallest non-negative number satisfying
(4.8), so called P* condition.

As we mentioned before, it is fairly difficult to construct the LFC for both
the rules Λ/(l,α) and #s(2,a) based on the ranks. This problem is still open
in general (for α = 1,2). For example, as in the counter examples, it is pointed
out that the configuration θ\ = 62 = - - - = 0*_ι; pα(0jk,0*-ι) = 7α +^α ^n * e

indifference zone procedures, or the configuration θ\ = 02 = = 0^ in the
subset selection rules, do not yield, in general, the minimum of the PCS. A
discussion on the LFC can be found in Gupta and McDonald [12].

Our purpose is to discuss the LFC under an asymptotic framework with
reference to the underlying distribution of populations. We assume that an
order relation holds between the "gaps" of parameters. This assumption is
similar to those considered by Lehmann [18], and Alam and Thompson [1]. The
LFC's of the procedure are studied by using the exact moments of the
combined and vector rank statistics T^s\ s = 1,2 for the location and the scale
parameter cases (α = 1,2), for both the subset selection and the indifference
zone formulations.

Now we consider the asymptotic distribution of T^s\ s = 1,2 with reference
to the exact moments of population distributions. Then we will investigate the
PCS under the slippage configuration of parameters.

4.2. Moments of the ranks

Let us denote the mean vector and variance-covariance matrix of T^ by
/il^ and Λ%\ (s = 1,2), according as we are dealing with the location (α = 1) or
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the scale (α = 2) parameters. Under the distributional set-up we considered in
Section 1, the elements of f$ = (μ$,μ$,...,μ$) and Λ$ = (λ$j), ί,j =
1,2,..., & are given as follows.

For the vector rank case, the moments were given in Matsui [22] from
which we obtain the elements of mean vector μ^ and variance-covariance
matrix A^ of statistics J ^ as follows:

(4.9) μ(V=nE(Ri),

(410) λ(l} = [nVar(Ri^ {orί=J>
' α'y \nCoυ(Rt,Rj), for i*j,

where E(Ri), Var(Ri) and Coυ(Ri,Rj) are given in Theorem 2.2.
For the combined rank case, the mean vector μ£' and the variance-

co variance matrix A® are obtained from more general results given in the
Appendix. In this case, since we are going to compare the two procedures
based on the vector rank and the combined rank statistics, we consider the case

in Definition 4.1. Then we have

(4.12) μ(^=kn^G(x)dFi(x) + \/2, /= 1,2,...,*,

(4.13) k(3n - 1) ίG(x)dFi(x) - 2k(2n - \)\Ft(x)G(x)dFt(x)

+ k2n ί G(x)2 dFi(x) - k ί H(x) dFt(x) - k2n (ί G(x) dFt(x)\

~ (n-l)^(\Fm(x)dFi(X)] -1/12, if 1=7,
w=l ^ J /

kn(2- lFj(x)dFi(x)\ \G(x)dFj(x)

+ kn(2- \Fi(x)dFj(x) j G(x)dFi(x)

- n Y^Fm(x) dFt(xήFm(x) dFj(x) - 2kn\Fj(x}G(x) dFt(x)

FjWdFtW

' dFj(x) + \ Fj(x)z dFi(x) - 1, if iΦ7,

where G(x) and H(x) are the same ones as in the equations (2.35).
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4.3. PCS under the slippage configuration

In this section, we derive asymptotic results on the PCS for both the
indifference zone and the subset selection formulation, under the slippage
configuration of distributions.

The slippage configuration of distributions we consider here is the cases
t = 1 in Definition 3.1 and hence we have the following distributional structure,

(3.14) Fl(x) = F2(x) = =Fk-l(=F0(x))*Fk(x)( = F(x)).

For the vector rank sum statistics (2.2), we have, from the expressions (2.32),

(2.33) and (2.34), the following means, variances and covariances

(ι = l,2,. . . , * - ! ) .

(4.15) f = n{-a +

μW=n{(k-l)a+l},

σ(P = n{(k - l)β - a2 - (k - 2)b + k(k -

4fc = n((k ~ ! ) f l - (* - ^ + (k ~

= =

Also for the combined rank sum statistic (4.3), from (4.12) and (4.13) we
have the following expressions.

(4.16) μf] = -na+(kn + n

σf = (hi - l)σ - (In - l)α2 - (hi - 3n + l)b - 2(n - l)c

+ (k2n -3kn + 2

o g = (k- 1)(2« - l)α -(k- \)(nk - l)a2

+ (k- \)(nk -n-\)b- 2(k - !)(« - l)c,

σ[2) = σP) = ( _ 2 n + j j f l + ( π f c _ 1 ) α 2 _ ( n f c _ n _ ^ b + 2 ( / J _ 1 ) C )

σ,f = -na - na2 + 2«6 -(nk-n + 1)/12, i ^y, i, _/ ̂  A:,

where
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(4.17)

(4.18)

(4.19) c

Thus for large n, the rank sum vector Γ^ is asymptotically distributed as
a λ>dimensional normal distribution with mean vector μ£' and variance
covariance matrix Λ$ where elements of /ι« and Λ$ are given by (4.15) and
(4.16), respectively for s= 1,2.

Using Q defined by (3.12), let Z ( ί ) = QT(s\ Then, Z ( ί ) is asymptotically
distributed as a normal distribution

(4.20)

Here βμα is the vector with k — 1 elements

(4.21) flα? = (vw,...,vW

where

(4.22) v W = ^ ' ) - ^ ) , i = 1,2,. .

and β/i fβ ' is a (k - 1) x (Jk- 1) matrix

(4.23)

with

(4.24)

That is,

(4.25) v ^ ^ A π ί - α

4 υ = n{2ka - k2a2 + k(k - 2)b + k(k -

τ (1) = n{ka - k2a2 + k(k - \}b - k/U},

and
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(4.26) v<2>=feι(

ίn-k-2)a- (k2n + kn + 2n-k- 2)a2

+ (k2n -kn + 2n-k-2)b- 2(k + 2)(n - l)c

+ (fc2n - 3fcn + 2n + k - 2)/12,

τ(2) = (2kn + n-k- l)β + (-£2n -kn-n + k+ l)α2

+ fc2« + /i - A: - 1 6 - 2foj + « - fr - l c - tot - n

If the underlying population is normal, then from the statements given in
Section 2.2, we have the following forms.

Location parameter case: Let the location gap of FO(X) and F(x) be Δ( > 0),
then

(4.27) α =

Scale parameter case: Let the scale gap of FQ(X) and F^x) be Λ( > 1), then

(4.28) a = (2/π)si

According to the statements on PCS's of two formulations, we have the
following propositions. Where the notation « means the (asymptotic)
equivalence of both sides of the equation when n is large.

PROPOSITION 4.1. The PCS for the selection procedure Λ/(s,α) under the
slippage configuration is given for large n as follows (s, α = 1,2).

f

(4.29) Pr(CS|Λ/(j, «)) « Φ
J

where φ and Φ are given in (2.10) and (2.11) respectively.

PROOF. If the population Y[k is the best population, then a correct
selection occurs if and only if β J ^ < O. Thus using (4.20) through (4.23), we
have for large n

(4.30) Pr(CSΊΛ/(j, α)) » Pr(Z ( ί) = QT(s"> < O]
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where Λ« = (l/$)QA®Q[ and W® = (Z« - Qμ^)/^. Here, using
Lemma 2.2, we have (4.29).

The integral (4.29) is a special case of the integral investigated by Gupta
[8]. This type of integral can be evaluated numerically by using the numerical
integration method of Gauss-Hermite type.

PROPOSITION 4.2. The PCS for the procedure ΛS(S,OL) under the slippage
configuration is given for large n as follows (j,α = 1,2).

"1

(4.31)
/

j,flO) * fφ[ * L Z ^ + ^ ^
] \ ^ - ^

PROOF. Since a correct selection occurs if and only if
thus we have for large n

(4.32) Pτ(CS\®s(S, «)) « Pr(Z« =

-I
where W(ή = (l/$)QA®Q[ and W(s} = (Z(s^ - Qμ^}/^\ Here, using
Lemma 2.2, we have (4.31).

Note that in most of subset selection procedures, LFC is given by the equi-
parameter case (but not proved in general, for the present case). In the equi-
parameter case, v^ = 0 in (4.31).

5. Asymptotic properties

This section is devoted to obtain the LFC under the assumption of order
relation between gaps of parameters. Several relevant results are also given.
First, we will set an assumption in relation to the pairs of parameters.

5.1. Assumption

We assume the following relation to hold between the gaps of parameters:

(5.1) φΛ(θt,θj) = yα + κα^Γ1/2 + 0(,Γ1/2), α = 1,2,

where yα is given by (3.9); for each pair (i,j), K^J depends on 0, and θj and is
increasing in θj when θj is fixed, and decreasing in θj when 0, is fixed; also,
κ«ϋ = I* w h e n θi = ΘJ-
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Then letting

(5.2) 7α(/ = v

we obtain the following lemma.

LEMMAS. 1. For φΛ(θi,θj), (α = 1,2) given by (3.8), we have the following:

(5.3) /«0 = *«0 + 0(l),

where

(5.4)

ij f(x)2 dx,

ij xf(

when α = 1 ,

dx, when α = 2,

PROOF. By using the Taylor expansion to the integral 7α,y,

Γf 1

U α J '
we have the lemma.

In the special cases when the underlying distribution is Λf(0,1), we have

the following:

(5.5)

and

(5.6)

5.2. Asymptotic distribution

Let us define

(5.7) W® =

Then

(5.8)
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where W® = (W^ ,W^,... ,W^)' and Q is given by (3.12), has the mean

vector η$ with elements

(5.9) η*=^(μ*-$k)> /= 1,2,...,*-!,

and the variance-covariance matrix Σ$ with elements

(5.10) σg = - (λg - 4 1 ~ >fi + 4 1 ) ' ι,7 = 1,2,... ,fc - 1,

where μ^ and Λ,£» are given by (4.9) throught (4.13).
Now, under the assumption (5.1), using Lemma 5.1, we have for α = 1,2

and s = 1,2

(5.H) 1«i=-Ί=\
V"\ J-

k k-\

as n —> oo, where K^j is given by (5.4). Also, under (5.1), we have

2, for i Φj,
(5-12) ^ ! / f, 2 1 W 1 ? ^ for/=y;

for i ^7 ,

IJ \ (k2 — ̂ )/12, for / =7.

Consequently,

r̂  ( v,, for i 7̂  i,

(5.i4) σg ^ < ; ' y:
I2ι?,, forz=7,

where

f k(k + 1)/12, when ,s = 1,
( 5 1 5 ) ϋ ί = i/tVl2 ; when , = 2.

Thus using the central limit theorem, we have the following asymptotic dis-
tribution of W$:
(5.16) W($ - N(ή($, ±W), α = 1,2,
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where ffl = (^f,^,. .. ^ J L i ) ) ' w i t h laments given by (5.11), and

(5.17) ΣM = vs(E(k_l}+G(k_l}),

with G(k-i) = J(k-i)J(k-i)'

5.3. PCS and LFC

In this section, we give the probability of a correct selection (PCS) for the
indifference zone and the subset selection approaches and consider the least
favorable configuration (LFC) of parameters for these two approaches.

Indifference zone formulation

Using the asymptotic distribution of W^\ (s, α = 1,2) given by (5.16), the
PCS for the rule ^/(.s, α) (̂ , α = 1,2) is given for large n by

(5.18) Pr(CS|Λ/(j,α)) « P r ( ^ < 0)

where

(5.19)

(5.20) f/W

Since LFC is given as the minimum of the (5.18), we study behaviors of
j/α under the requirement

(5.21) p«(0*,0/)^yα+a;,

we have the following theorem.

THEOREM 5.1. Under the assumptian of order restriction (5.1) the (asymptotic]

LFC of the PCS for the rules fflf(s,aΐ), s, α = 1,2 is given for large n by

(5.22) p(0*,0/) = y«+a;, 1 = 1, 2,. . . , * - ι .
PROOF. By using (5.11) and (5.4), we have

fc-l

(5.23) ή(^ =
j=
J*

where
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{\f(x}2dx, whenα-1,
{

xf(x}2 dx, when α = 2.

From assumption (5.1), we have

Here we examine the location and the scale parameter cases seperately.
The case α = 1 (location parameter): From the probability requirement (5.21),
we have φl(θk^θi) >δ\, thus

Thus we have, for large n

(5.27) ή$ < - ^/n(k~2)δ\Aι, i = 1,2,... ,k - 1.

The case α = 2 (scale parameter): Since

(5.28) κ2ij — κ2kj = Vnφ2(θk, Θj){l/φ2(θk, 0, ) — 1} 4- 0(1)

and φ2(θk,θi) > 1 +δ*2 for scale parameter case, we have

(5.29) κ2ij — κ2kj = < — ^/nδ*2 + o(l).

Thus we have, for large n

(5.30) ή% < — \fή(k — 2)δ*2A2, ί= 1,2,... ,fc — 1.

In summary, for both the location and the scale parameter cases, we have

(^ ^ 1 \ z(s} ̂  r i
\j.ji) ij^,' ^ —ς α J^—1)?

where

(x)dx, forα=l,
J,

y/n(k - 2) xf(x)2 dx, for α = 2. •

Since the region of integration for PCS is £7^ < — ή$ /^/2vs, the minimum of
the PCS is given by the minimum of ή$, i= 1,2,...,/:- 1, that is when

P«(0*, ft) = ?«+<£•
Thus, neglecting the terms of o(l), we have the following expressions for

PCS.
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COROLLARY 5.1. Under the asymptotic LFC,

(5.33) Pr(CS|Λ/(j, α)) « Prf Ό® < -±== C./<*-i)) -
V V*Vs /

Using lemma 2.2, the expression (5.33) can be rewritten as

(5.34) Vt(CS\Λ,(s, α)) * [ Φ (* +
J \

for S,QL = 1,2.

As we mentioned before, this type of integral can be evaluated by using
the Gauss-Hermite method of numerical integration.

Subset selection formulation

Following the arguments similar to the ones for the rule ^/(s, α), we can
derive asymptotic results on the PCS for the rule ^ ( s , α), (s, α = 1,2). We
have, for large n,

(5.35)

= Pr (t/W < ( - ^ + ̂ ^ - i ) ) />/2ί) ,

where 17^ is same as (5.19).
By the same way as in the indifference zone formulation, the infimum

of PCS is given when ή$ = Ctyt-i), that is φ(θk,θi] = 0, which implies the
following.

THEOREM 5.2. Under the assumption of order restriction (5.1) the (asymptotic]

LFC of the PCS for the rules &s(s, <*),£, α = 1,2 is given for large n by

(5.36) ?(0*,0/) = 0, / = 1,2,. . . , * - ! .

Also we have the following corollary to evaluate the PCS function
asymptotically.

COROLLARY 5.2. Under the asymptotic LFC,

(5.37) Pr(CS|Λ 5( J > α)) «
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Using lemma 2.2, the expression (5.37) can be rewritten as

(5.38) Pr(CS|Λ s( J,«))*fφf Jc + τ ^ = ) φ(x)dx
J \ ^ynvs/

for s,a= 1,2.

Appendix: Moments of combined rank

Let k populations ΠiίIL» >Πk ^ e giyen> where Π* ^ a s Λe corre-
sponding continuous distribution /^(jc), (s = 1,2, . . . , fc). Take «5 observations
-ϊii, -Ϊj2, - - - , -ϊjii, fr°m populations Π.s> (s = 1, 2, . . . , fc) and consider the com-
bined (Wilcoxon type) rank RSJ of XSj among all kn observations. Then the
means, variances and covariances of ranks RSJ are given in the following way.

THEOREM A.I.

(A.I) E(Rsj) =

(A.2) V(Rsj) = 2N ί G(x) dFs(x) - 2N ί Fs(x)G(x) dFs(x) + N2 ί G(x)2 dFs(x)

- N I H(x) dFs(x) - N2 Q G(x) dFs(x)^ - 1 ,

(A.3) Cov(Rsi, Rsj) = 3N J G(x) dFs(x) - 4N J

(A.4) Cot;(^-, Λr/) = ^ 2 - ^ W ίίFi(jc) G(x) dFt(x]

(X) dFt(x]\ I G(x) dFs(x)

k f f

-Σm \Fl(x)dFs \FtdFt
ι=ι J J

- 2ΛΓ I Ff(jc)G(jc) dF,W - 27V I F,(x)G(x) dFt(x]

Fs(x) dFt(x) J F, W dF,(x) + j ^
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where s,t= 1,2, . . . ,k,s Φ t\ ίj= 1,2, . . . ,ns,i ^y; / = l,2,...,w, and

(A.5) N=
ι=ι ι=ι ι=\

PROOF. We sketch the proofs for (A.I) and (A.3) above. The remaining
results are obtained similarly.

Mean:

(A.6) Pr(Rn = j) = ] Γ P r ( f l ι ofX{s, a2 of J φ , . . . , ak of X'ks < X\
A

<(n\-a\-\] ofX[s, (m - a2) of X'2s, ...,(nk- ak) of X'ks)

where fl, (i = 1 , 2, . . . , k) is an integer such that

k

(A.7) 0 < α ι < « ι - l , 0 < α z <«/(/ = 2,3,..., fc),

and "# z of JG's", "(«, — Λ, ) of A '̂s" should be read as "α, variables out of
(Xii,Xa,...,Xinf) and remaining («z — ΛZ) variables", and so forth. Further,
the summation ΣA ^ taken over all A:-tuples (a\,ci2, . . . ,αjt) of integers which
satisfy the relation (A.7). From (A.6), we have

(A.8)

x -

By changing the order of summation, we have

x (1 - F1(x)) ( l l l-β l-1 )(l - F2(x))(n2~a2} ---(I- Fk.ι

ί=\

where the summation ΣAι is taken over all (k- l)-tuples (01,02,- ^k-ι) of
integers which satisfy the relation (A.7). Adding in turn over ^-1,^-2, - - -, #1,
we obtain the result for E(Rn).
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Covariance:
For s < t, we have

(A.9) Pr(Λn = s, R2ι = 0 = Σ * ^(^ of Λfa a2 ofX& ...,ak oΐX'ks

< Xn < bι of A>,ft2of X'2s, . . .,bkofX'ks

< XΊ\ < cι ofX[s, c2 ofX'2s, ...,ck ofX'ks),

where α,,ft/, Cj (i= 1,2, ...,/:) are integers such that

(A.10) α, + ft/ 4- c/ = v, , i = 1, 2, . . . , fc,

A: A: k

(A. l l )

7=1 7=1 7=1

and vz =m — I for i = 1,2, vz = Λ, for z = 3, 4, . . . , k.
The summation £ ^ is taken over all tuples (#/, ...,ak,bι,...,bk,cι,...,

which satisfy the relations (A.9) and (A. 10). Then

(A. 12)

n =s,Rl2 = t) = f f
JJxs<t JJx<y s < t

where

'(i -ί/ωr, / = 1,2,...,*.
By changing the order of summation, first for s and for t, we have

= ίί Σ Σ c' Π Λte
JJx<>; ^ f 5 l / = 1

k-\ k-\ / k-\ \ 2 / k-\

where

7=1 7=1 \7=1 / \7=1 / \7=

and

l ) ^ ^ ) ^ ^ ) + 3nkFk(x) + nkFk(y) 4- 2,

A = 1 1 ^ ( ^ ) 4 11^^) + 3,
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The summation ]Γ^ is taken over all tuples (a\,..., a^-i, b\,..., b^-i,
cι,...,Cfc_ι) which satisfy the condition (A. 10). By carrying out the addition
in turn for sets (Λ, , ό, , c/)5 (/ = A: — 1, & — 2,.. ., 2,1), we have a reduced form of
/i. By proceeding on similar steps for ^2s>tstPτ(R\\ = s,R2\ = t), we obtain
Cov(Rn,R2ι).

For rank sums

we have

(A.14) E(TS) = nsE(Rsj), s=l,2,...,k,

(A.15) Q»ι;(7i,Γ/) = »ΛC'£w(l^,lV), s,t=l,2,...,k, s Φ t,

and

(A.16)

v(τt) =
;=ι

= Nn,(3n, -1)1 G(x) dFs(x) - 2Nns(2ns - 1) ί Fs(x)G(x) dFs(x)

+ N2ns ί G(x)2 dFs(x) - Nns f H(x) dFs(x) - N2ns (\ G(x) dF,(xj\

« ι ι > x -
/=!*

Especially, if Fi(x) = F(x) for all i, then we have

(A.17)

Also for fc = 2, we have the following:

(A.20) E(Tl)=^^- + ntnjFj(x)dFl(x), 1,7 =1,2; 7/1,
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(A.21)

V(Tί) = ntnjVm - 1) I Fj(x) dFt(x) + ninj(nj - 1) f Fj(x}2 dFt(x)

+ n^m - 1) I Fi(x)2 dFj(x) - mn^m + nj - 1) Q Fj(x) <tfi

-/i,-/iX?i/-l), z,y = 1,2; i ^ 7 ,

(A.22)

- (m +Λ2 - l)^Fl(x)dF2(x)^F2(x)dFι(x)

l(x)2dF2(x) - (n2 - 1) F2(x)2 dF,(x) -
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