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ABSTRACT. In this paper we will study two kinds of Eisenstein series: One for the

orthogonal groups of signature ( l , w + l ) , and one for the orthogonal groups of

signature (2,m + 2). We give an explicit Fourier expansion by means of Shimura's

method.

0. Introduction

Let S be an even integral negative definite symmetric matrix of rank m and
assume that S is maximal. We put

Sι= S , S2=\ 5,

G = 0(S), Gi = 0(Sι) and G2 = O(S2).

Put K\ιf = Gι,f Π GLm+2(Zp) and K2,p = G2>p Π GLm+4(Zp). Gf |00, the identity
component of the real point of G\, acts on X := R m x K.J (R* is the set of
positive real numbers) transitively by

(gι e GJ^X = (JΓ,r) e I ) .

the identity component of the real point of GI, acts on

:— \ Z £ Sιpin(Z)] > 0,

!1991 Mathematics Subject Classification. 11F55, 11F30.
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transitively by

g Z~ = (0<Z»~ J(g, Z), Z~ := Z e OT+4 (g E G^Z e £ ) .

We fix a point XQ = (Ow, 1) e S and denote by Jfιj00 the stabilizer subgroup of
Xo in Gfoo- Let P I [resp. PΊ\ be a maximal parabolic subgroup of G\ [resp.
GI] defined by (1.1) [resp. (1.2)]. By the Iwasawa decomposition for G\^ each
01 e Gι>y4 is written in the form

t\(g\) * *

*ι(0ι) * ι(<7ι),

hι(gι)εGA, fcι(flfι) e
ϋ<00

Then the Eisenstein series on G\,A is defined by

(0.1) *(gι;s):=

which converges absolutely in a right half plane {s €(C\Rεs > m/2}.
Let / be a non-negative even integer. We denote by Mι(Γ) the space

of holomorphic automorphic forms on D of weight / with respect to
Γ := G2,QlΊ G ôo Π/;<oo 2̂,/? The real analytic Eisenstein series on X) of
weight / with respect to Γ is defined by

v(2.y-2/+m+2)/4

(0.2) '

which converges absolutely in a right half plane {.se <C|Re,s > w/2+ 1}. In
particular if / > m + 2, we can define the holomorphic Eisenstein series
£/(Z) := £/(Z, / - m/2 - 1) e Λf/(Γ).

In §1 we introduce two kinds of Eisenstein series (0.1) and (0.2).
Applying Shimura's method, we write the Fourier expansion in terms of adelic
language (Proposition 1.3 and Proposition 1.4).

§2-§4 give the local theory to write Fourier expansions in Proposition 1.3
and Proposition 1.4 more explicitly. In §2 we calculate the contribution of
non-archimedean part which commonly appears in two types of Eisenstein
series. The local Hecke algebra which is studied by Sugano [12] plays im-
portant roles to prove the main theorem (Theorem 2.1) in §2. In §3 we
introduce confluent hypergeometric functions and calculate the contribution in
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archimedean part. In various aspects of our argument, we use the properties
of confluent hypergeometric functions studied by Shimura [10]. In §4 we
calculate the contribution which only appears in the type of Eisenstein series
defined by (0.2).

In §5 and §6 we study Eisenstein series on 0 ( l , w + l ) and 0(2,AW+ 2)
defined by (0.1) and (0.2), respectively. Combining the results in §l-§4, we
write the Fourier expansion of the Eisenstein series explicitly (Theorem 5.2 and
Theorem 6.2). We prove the continuation and the functional equation of the
Eisenstein series without using Langlands' theory [2].

THEOREM 0.1 (THEOREM 5.4). Let s be a complex number with
Res>m/2. We normalize the Eisenstein series $*(g\,s) by

1 if m is even

ξ(2s+l) if mis odd'

where ζ(S\ s) is the (global] standard L-function attached to the constant function
defined by (5.2) and ξ(s) = π~s/2Γ(s/2)ζ(s). Then £*(g\,s) has a meromorphic
continuation in s to the whole s-plane and is invariant under s ι-> —s.

THEOREM 0.2 (THEOREM 6.4). Let s be a complex number with
Res > m/2-f 1. We normalize the Eisenstein series E\(Z,s) by

where PI(S) is a polynomial in s defined in (3.10). Then Ef(Z,s) has a
meromorphic continuation in s to the whole s-plane and is invariant under
s h * — s.

Although the above assertions have been proved by Langland's theory, our
proof seems to be new and elementary.

The absolute convergence of (0.2) at s = I — m/2 — 1 is not guaranteed if
/ < m + 2. However, as in Shimura [1 1], we obtain the holomorphic Eisenstein
series of smaller weights. Since the Eisenstein series Eι(Z,s) is regular at
s = I - m/2 - 1 (l>(m + 4)/2), we can define

THEOREM 0.3 (THEOREM 6.5).

Et(Z) e Mι(Γ) for l>(m + 4)/2.

Moreover we give an explicit formula for the Fourier coefficients of
holomorphic Eisenstein series £/(Z) (Theorem 6.6). By this formula, we verify
that Fourier coefficients of Eι(Z) are rational numbers whose denominators are
bounded (Corollary 6.7).
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In §7 we consider the Eisenstein series on 0(2, m + 2) in the case of
Q-rank 1 to complete our results in this paper.
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on (9(2, m + 2) which is the main result in this paper. The author wishes to
express his sincere gratitude to Professor Takashi Sugano for his valuable
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NOTATION. We denote by TL, Q, IR and <C, respectively, the ring of
integers, the rational number field, the real number field, and the complex
number field. For an associative ring R with an identity element, Rx denotes
the group of all invertible elements of R and Mm(R) the ring of all matrices of
size m with coefficients in R. We put GLm(R) = Mm(R)x. If X e Mm(R), 'X
and Tr(X) stand for its transpose and trace. If R is commutative, det(A')
stands for its determinant, and we denote by SLm(R) the special linear group G
of degree m. For each place υ of Q, we denote by Qy the r-completion of Q,
and by \x\Ό the module of x for an x e Q*. Q^ [resp. Q^] means the adele ring
[resp. the idele group] of Q and for x = (*„) e (Q^ put \x\A = f[Ό \xv\v. For an
algebraic group G defined over Q, we denote by GQ the group of Q-rational
points of G. We abbreviate GQP to Gv. Let oo and / denote the sets of
archimedean primes and non-archimedean primes of Q, respectively. We
denote by GA, Gf and G^ the adelized group of G, the finite part of GA, and
the identity component of GOO, respectively. Similar notations are used for
an algebra or a vector space. When Q is a symmetric matrix of degree m,
for X and Y in Mm^ we put Q(X, Y) = 1XQΎ and Q[X] = 1XQX. We set
e[χ] = e

2πix for x e C . The cardinality of a finite set S is denoted by # 5 .
The disjoint union of sets Zι,...,Zy is denoted by ]JJ=1 Z, . We denote by
ί((*)) = 1 or 0 according as the condition (*) is satisfied or not. For a e IR,
the symbol [a] denotes the integer not greater than a.

1. Definition of Eisenstein series

Let S E Λfm(Q) be an even integral negative definite symmetric matrix and
assume that S is maximal, namely, S[g~l] is not even integral for any
gιε GLW(Q)ΠMm(X) with d e t # ^ ± l . We denote by G the orthogonal
group of S and by GI [resp. GI] the orthogonal group of

l

Si = I S resp. S2 =
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Put L = ΊΓ, L* = S~1L, Li = Zm+2, and L\ = Sj^Li. We define maximal
compact subgroups Kp := Gp Π GLm(Zp), K\,p := G\tp Π GLm+2(ZP), and
K2p := G2,pΓ\GLm+4(Zp). Let oo be the archimedean place of Q.

We recall the action of Gf^ on

3E := JR.™ x R+ (R+ is the set of positive real numbers)

and the action of G%)00 on

Sιpm(Z)] > 0,Si(r0,Im(Z)) > 0, 70 =

For X = (AΓ,r)6Ϊ, put X~ := X

1

e lRm+2. For βl e and

X e 3£, we define the action g\ <X> e 3£ and the automorphy factor j (g\ , X) e R x

by

We fix a point XQ = (Ow, 1) e ϊ and denote by K\^ the stabilizer subgroup of
Xo in G®^. Clearly K\^ is a maximal compact subgroup of G ^ and
GξjKi^SίX.

/-Sι[Z]/2\
For Z e Φ, put Z- := I Z e C m + 4 . For g e G$ „ and Z e 3>,

V 1 /
we define the action #<Z> e Φ and the automorphy factor J(g, Z) e C x by

We fix a point ZQ = zίo e D and denote by .£2,00 the stabilizer subgroup of ZQ
in G ôo Clearly 2̂,00 is a maximal compact subgroup of G?^ and

ôo s S We abbreviate Π
P < 0 o to and to

Let P I be a maximal parabolic subgroup of G\ defined by

(1.1)

ίi * *

Ai *

f- 1
1

and let P2 be a maximal parabolic subgroup of G2 defined by

t *
(1.2) P2,Q := /εQx,/zeGι,Q>.
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By the Iwasawa decomposition, each g\ e G\tA is written in the form

tι(g\) * *

h\(9\] *

and each g e GΊ,A is written in the form

t(g) * *

g=

For se<C, we define a function φ(g\\s) on G ^ by

p(0ι;j) = \t\(9ι)\A'

For a non-negative even integer /, we define a function //(# 55-) on GI,^ by

where \t\A means the idele norm of t e Q^. Then the Eisenstein series on
is defined by

(1.3)

which converges absolutely in a right half plane {^e <C|Res > m/2}. The
Eisenstein series on G^Λ is defined by

(1.4)

which converges absolutely in a right half plane {s e <C|Re,s > m/2 -hi}. We
easily see that

(1.5)

(1.6) £ f (w*, J) - £ f (M/(*oo,ZoΓ 7 (7 e G 2 , Q ^ e G

We prepare the following lemma (cf. [12, p29]).

LEMMA 1.1.

GI,Λ = GI^GI^KIJ.

By Lemma 1.1, we easily see that
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Therefore the values of $(g,s) [resp. Eι(g,s)] are determined by the restriction
to G j ^ [resp. G2 ^J. We define a discrete subgroup Γ of G2 ^ by

It is easily verified that

(1.7)

For Z = 0<Z0> e D (0 e G 2

0 J , we put

(1.8) £/(Z,j) := Ef(g,s}J(g,Zo)1.

Then by (1.7) we have

(2j-2/+m+2)/4

(1.9)

For X e Q"1 [resp. ^ e Q w + 2 ] , put

/I -'AS -S[X}/2^

nι(X)=( \m X
V 1

l
X lm | e ( ? ι

S[X]/2 -'XS 1

l -
resp. n2(X) = \m+2

X l m + 2 e

-Sι[X]/2 -'XSi 1.

We embed Gι to (?2 by

^i ι-»diag( 1,^1,1) (g^eGi).

We obtain the following Bruhat decomposition of GΊ and GΊ.

LEMMA 1.2. (i)

e Q m } .
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(ϋ)

w = I l w i ,

1

nι(X)

lm+2

"2 0,'m
X

xeQ

Lm \ j

J

J =

We define a character χ of the adele ring Q^ by χ = f[υ Xv> where

e [the fractional part of — x] for x e Q^ if v = p,

e [jc] for x e Q υ = IR if ι? = oo

We notice that χ is trivial on <Q. Now we normalize a Haar measure
ΛT = Π dX, on (D7!? as

= 1, [
J<

dX=l.

Then we note that dX^ is the ordinary Lebesgue measure. By the Fourier
expansion of β(n\(X)g\^s) as a function of X e Q^, we have

(1.10)

By (1.3) and Lemma 1.2(i), we have

(1.11) *η(gι,s)=δ(η

J m φ
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We assume that g\ e G®^. Since

*(m (X + U)gι , s) = f(m (X)gι , s) for tf e LPΊ

$η(9iιs) 7^0 o nly when ηeL*. So we have

(1-12)

Therefore we obtain the following proposition.

PROPOSITION 1.3. Let s be a complex number with Re5 >m/2. For
gι = diag(ί, l w , r 1 ) e Gf^ and X 6 IRW, w^ have

ηεL*

ι,s) = ts+m'2δ(η = o)

; * ) = f ^ ( n ι W ;
JQ™

In the same way, for g e G ^ , we have

(1.13)
Efr(n2(X)g,S)χ(-Sί(η,X))dX.

^ + V Q " 1 - 1 - 2

By Lemma 1.2(ϋ) we get

/ »2JΓβ; s
Qm+2

4-

ί
j

ί
JQ" + 2 \Q + 2

; J + 4-

xeQ
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where we put

(1.14) u(x):=w2n2\e
From Lemma 1.2(i), the third term is equal to

Σ Σ

£***
= Σ ί

ί

>

We note the above series is well-defined (see (4.2), (4.4)).

PROPOSITION 1.4. Let I be a non-negative even integer and let s be a
complex number with Res > m/2 + 1. For g = diag(ί, A, ί"1) e G® ^ and X e
R m + 2 , we have

E?(n2(X}g,s) =
tfeLJ

= 0)

wλere

f //ι0
Jjj^m+2

- ί
J Q-+2

^» 7 1 ^ ; s H-

= f

j

2. Non-archίmedean part

2.1. Results on non-archimedean part Let A: be a non-archimedean local field
with characteristic 0 and o its maximal order. We fix a prime element p of k
and denote by p = (p) the maximal ideal of o. Let χ be a character of A: trivial
on o and non-trivial on p " 1 . We normalize the valuation || = || of k so that
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\p\ = q~l where # = # ( o / p ) . Let S be a non-degenerate even integral
symmetric matrix of rank w, where "even integral" means that S = (sy) e
Mm(o) and sa e 2o. Put L = om and F = fcm. Throughout this section we
assume that S is maximal, namely, if M is a lattice containing L such that
±S[X]EO for any x e M , then M = L. We denote by L* = S~1L the dual
lattice of L and put

Then L' is a lattice contained in Lp~l and L'/L is a vector space over a finite
field o/p. We denote its dimension by d = d(S). We define the dual lattice of
L'

U* : = {η e V\S(η, X) e o for all X e L7}.

An element η e L* is said to be primitive if p~lη is not in L*. We denote by
L*nm the set of primitive elements. As is well-known, taking a suitable o-basis
of L, we may assume that

1
(1 appears v times),

where SO is anisotropic and v = v(S) is the Witt index of S. We denote by
ΠQ — ΠQ(S) the rank of SO, so m = 2v 4- «o Let G be the orthogonal group of
S and put

K=GΓ(GLm(o).

When we need to emphasize the Witt index v, we write v as a suffix; Gv, Kv, Fv,
Lv etc. For A" e Fv, we put

nv(X) := l^v X ,nv(X) := X \n.+2v 0 e G v + 1 .

1 / \-Sv[X}/2 -<XSV i

The main purpose of this section is to calculate the following integral

(2.1) /OS, * ; * ) : = [
J

where we write

*
* kv+l(g)ePv+lKv+l.
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We put η = paηQ, η0 e Z * ^ . Since

7(5, η] s) = /(£, hη\ s) for any h e K,

if v > 1 we may assume that

(2.2) 1,0 =

Ono+2v-2 if S[η] = 0,

is maximal if % ] * 0,

where S~ - ( Sv~l ~sv-rfv-i \where 6 _ ^ ^ ^ _ 2 o t ( ) J

For our purpose, we define the local standard L-function of 5 after [6]:

(2.3)

where

(2.4)

and

m-\

';')== Π
y=ι

r i

means the Legendre

if m\ even

if m\ odd,

if a = 0 or (no, 3) = (2,1)

if (no, d) = (1,1)

if (no, a) = (2,2)

if (no, δ) = (3,1)

if (no, 3) = (4,2)

symbol corresponding to

k ( v

/(-l)m < m~1 ) / 2detS)//c.
When η e L* is anisotropic, we denote by i/1 the orthogonal complement

of η in V. There exists a maximal even integral symmetric matrix Sη of
rankm—1 and geMm-\(o) such that Sη[g] is a matrix representation of
(̂i/J-ni,)- If S" is anisotropic, any matrix representation of Sl^ini.) *s a

maximal even integral symmetric matrix. We note that the isomorphic class of
Sη (modulo GLm-^o)) does not depend on the choice of Sη. We put

(2.5) βSΛ := {(Γ - qM + /+(»»-<ί+1)/2 - ?(»»+»ί-1)/2}/(? _ t )

where n'0 = n0(Sη), ff = d(Sη}.
The following theorem is the main theorem in this section.
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THEOREM 2.1. The function I(S,η-,s) can be continued as a meromorphic
function in s to the whole s-plane and written as follows:

(i)

(ii)

f; s + 1) I Cp(2j)/Cp(2ί +1) if m: odd.

We put η = p°η0 where η0 e L*plim is as in (2.2) for v > 1.

i MS;*)
ζp(s-m/2)Lp(S]S+l)

{ 1 if m : even
^ > ? v

ίp(2s)/Cp(2s+l) if m: odd ' "

(iii) 7/SM/O,

-V2

gs#(η',s] is a polynomial in (f,qs invariat under s\-^ —s. Its explicit
form is given as follows:

(2.6)

if v = 0,

i f v > l .

2.2. Proof of Theorem 2.1 In this subsection we give a proof of Theorem
2.1. The first part has been proved by Murase and Sugano (cf. [5, Theorem
1.9]). In the rest of this section we assume that η Φ 0.

When S is anisotropic, the Iwasawa decomposition for n^(X}(X e V - L)
is

'yl ZϊltXS -1 \ / 0 0 -1
II

i= (v\ I Λ 1 v I I π i Ύ— iv^vc *7— l v«o(^ J — I υ ι«0 — A M υ i/ίo ~ ^jr A A^ ^x A

0 0 Zχ/V-1 . - Z ϊ 1 ^ Zί»
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where Zx = \S\X\. Hence for any ηQ ε L\ r i m and a non-negative integer a

we obtain

/Λ/o; s) = 1 + J I \S[X}Γs-m/2χ(-paS(ηQ, X))dX

"

Σ
7=0

7=0

This proves Theorem 2.1 in the case of v = 0.
Hereafter we assume that v > 1 and ηQ e £ * p r i m is as in (2.2). Let

the characteristic function of MZ J(o). We often omit the suffix 1,7.
gf e Gy-i-i, it is easily seen that

tj be
For

(2.7) Pι,mWOO
Jkx

where dxt is the Haar measure normalized as J o X ί / x ί = 1.

LEMMA 2.2. We write

α \
Ov-l

β
Ov-l

V i /
Then we have

/(S0,(-α,-0);j) := 1 + ί dx\ dX0\χ-l\s-nQ/2+lχ(x^-^SQ(β,X0)
Jk-o JLo

PROOF. We put 7V = ζ»(s + %}l(Sv,ηQ',s). By (2.7) we noter V 2/

Λ=f <ar ί ί/x^woo™!)^))^-^,^))!?!^"1/2.
JF JA: X

= f dx [ rfy [ <fe [ <«b [ <fy ί
J0v-l J^v-1 Jfc J K ( ) J ^ J^JA:xΠo
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If v > 2, we deform the above expression as follows:

7V = ί dxy-i f έfyv-i [ dx [ dy ί dx [ <ϋr0 f </>>
Jo JA: J o - 2 J^-2 JA; Jκ0 JA:

x f rfx/^(ίx)^(ίfΛr

0So)^(ίy)^((yv-ι)^(ίy)
JA:xΓ)o

x φ(xv-ιyv-ι + 'xy + f(jcy + i50[Ao]))/(αx + Sb(jJ, JΓ0) + ^) |/Γ + Π o / 2 + 1

= f Λ f rfy f Λ f daro f rfv f rfx^(^)^(ί5roSo)ff(ίy)Kίy)
J o v ~ 2 JA:"-2 JA: J F O JA: JA:xΠo

x φ(*xy -h r(xj + ^50[Ar

0]))/(ax-h 5Ό(^,^o) + ^ ) | / | J + Λ o / 2 + 1

f ί ί f f f Γ ί
+ rf.xv_ι rfVv-i dx dy \ dx \ dXo dy

Jo JA:-o Jo v~2 JA: V ~ 2 Jk J V0 Jk JkxΠo

>-\yv-ι H- fχy + t(xy + \.

We prove that the second term in the last expression vanishes. Let f(t) [resp.
z(t)] be the C-valued [resp. ^-valued] continuous function on k*. Then we
have

I dxv-ι dyv-i dx\ dy d*tφ(tx)φ(ty)φ(tyv-\)
Jo JA:-o JA: JA: JA:xΠo

x φ(xv-ιyv-ι + txy 4- z(t))χ(ux + y)f(t)

= f dxv-ι \ dyv-ι I dx \ dy \ dxtφ(tx)φ(ty}φ(tyv.λ}
Jo JA:-o JA:-o JA: JA:xΠo

x φ(xv-ιyv.l -f txy + *(0)/(αx + ̂ )/(0

= [ dxv-ι [ έfyv-i I dx \ dy \ dxtφ(tχ-ly)φ(tχ-lyv-i)
Jo JA:-o JA:-o JA: JA:xΠo

x φ(xv-ιyv-ι +ty + z(tχ

= dxv-ι dyv-ι dx \ dy \
Jo JA:-o JA:-o JA: Jo

x φ(xv-ιyv-i +y + z(tχ-l))χ(ax +

= dxv-ι dyv-ι dx \ dy \ dxtφ(x~ly -
Jo JA:-o JA:-o JA: J o x
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This means that /v = 7v_ι = = I\. Hence we only have to calulate I\. By
similar arguments as above, we get

= f dx f dXo f dy \
Jo JKo Jk Jfcxno

dx
k-t,

\ dxΛ dy\ d
JK0 Jk J t x no

xχ(«x + S0(β,X0)+y)\t\s+n°/2+l

= \ dx\ dxΛ dy\
Jo Jκ0 Jk Jk

k JkTlo

+ f dx f <«o f rfj ( ^
JΛ-O Jκ0 Jfc JΛ*no

x ^(ί( j + x-1 iS0[*o]k(α* + 50(A Jίfo) + y)\x~l \s

= f dx f <tto f dy \ d*tφ(tlX0S0)φ(tiS0[X0})χ(S0(β,Xo))
Jo JVo Jo Jo x

+ f dx\ dxΛ dy\
Jfc-o Jκ0 J * J *

x χ(«x + x5o(A, J5To) - * |

= 1 + ί rfx ί rfJTo f dyφϊX0S0}φ(χ-l

y-\SQ[Xo])φ(y)
ik-o 3 Ko J/t

= I + f dx\ dXQ\χ
JA:-o JLo

and our lemma is proved.

The function 7(5o, (— α, — jff);̂ ) in Lemma 2.2 coincides with the function
/(S0, (-α, -β}\ q~s) in the notation of [12, (2.21)] and this function is calculated
explicitly in [12, Proposition 2.14]. Therefore we have proved Theorem 2.1 for
a n y ηQ E L * p ή m .

We now consider the general η.

LEMMA 2.3. We assume ηQ e Lpnm and S[ηQ] = 0. Then for any a>0, we
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have

(2.8) /(Sv,/Λ/0; *) = /(Sv, Voϊ *) έ q(-s+m'2-l}l

/=o

PROOF. Using (2.7), we have

f?)/OSv,/Λ7o; ϊ ) = ί dx ί rf^ f rfy f έ/x ί^(ί ίJKSv-ι)^)
2 ^ Jo Jκ v _ι JA: JA:xno

x φ(t(xy + \Sv-\[X])}χ(pay}\t\s+m/2

+ f Λ f rfar f <fy f rfx/^(ίx)
Jfc-o JKv-i Jk JA:xΠo

= \ dx\ dX\ dy\ d^tφ
Jo Jκ,_ι J t Jfcxno

x ^ > ' + ίl5v_1[JSr])^(^r1

7)|ί

+ f dx \ dX\ dy\ d
Jk-o JK^: 3k Jk*Γ\o

= £ f
fco J»Vι

+ £ f
" Jk-" Jk-o Jκv_, J * JpΌ"

x

V f Λc f <ttf f
/To JΛ-o Jκv_ι J *
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/ = 0

dx

l f δ(\
J Z V-1

\ dX\ dyφC
JKV_! Jo

/=o
6 p')dX

ί
Jk-o

x y(— i

/=0
f

= •'i»-ι

(-s+m/2-\)l

00

λ=l

To emphasize the primitivity we put

Λ —
Ja .—

Then our task is to prove

(2.9) Λ = /o
/=o
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For this purose, we introduce some notations:

00 Λ

/V_!(Γ) := Σ Tλυv-i(λ), vv^(λ) := δ^S^X] e pλ)dX.
λ=0 J^v-i

Using the above notations, we express Ja as follows:

Ja =

7=0

^μj-XXi
/=0 I I A=/ λ=l

_ q(-s+m/2-\}(a-M]

λ=l

I -s+m2-ll '~l

1=0 r

- <7 (- ί + w/ 2- 1 ) ( α- / + λVι (A) 4 ί(-*H»/2-i)(β- Vv-i

7=0 7=0

(-*^/2-1)(β-/+A+1>ι;v_1μ) - έ Σ
7=0 A=0 7=0 A=0

7=0

This means that Ja satisfies (2.9)

By Lemma 2.2, [12, Proposition 2.14], and Lemma 2.3, we obtain Theorem
2.1(ii).

In the rest of this section we assume τ/0 is anisotropic. To emphasize the
conductor and the primitivity we write ^y0 = ηQ and write η^a =paη^0. Let
jf?v = jjf(Gv,Kv) be the Hecke algebra of the pair (GV,KV) i.e.

' ~=' *™V

= {/ : Gv -> C|/(Mιfifiι2) =/(flf) for MI, w2 e ^Γv, supp/ is compact}.
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For 0 < r < v, we put

4 r ) := diag(/?lr, l^v-^/Γ 1 ! ,),

C^ := Kvc^Kv = {gε Gv\p - g e ΛfΛD+2v(o),πιιιkβ/p(M) = r}.

It is well known that Jfv is generated by C^ (0 < r < v) (cf. [8]). For the sake
of simplicity, we put

A = ί - C ^ C ω - (qd - 1 + # _ ! , ! + qd+l -g)},

B = q-V*+4^»{C%1 - W ~ V(<F+v~l + qS) + (q8 - l)(^/v-l,l + qδ+l ~ q)

,2 + qM - q2)}} - q-V»*-»(qfi-ι,ι + q8 - I) A +2q-&+n

where fvj = qJ-\f~^ - \)(f~i** + qe)/(qJ - 1) (cf. [12, (7.44)]).
For t e kx and g e GVί we put

(* ^
(t,9)=\ 9 e(? v + ι .

v r » ;
Let η e L* be anisotropic. We denote by T̂ C^ the space of functions W on
Gv+ι satisfying
(2.10) W(nv(X}(\,h)gύ)=χ(Sv(η,X)}W(g}
for any X e KV5 we ΛTv+ι and he Gv such that λ;/ = Λ. The Hecke algebra

acts on by

e Jfv+1, PΓ e ̂ f ),W * rtflf) = f W(gu)φ(u-l)du (φ
J G V + I

where we normalize the measure so that the volume of Kv+\ is 1. It is easily
seen that

Γ

11 J Kv

belongs to W*. For / > 0 and a e Z, we put

where

M/ = I l«0+2v-2
'P-'

Note that Φ/>α = 0 for negative α.
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LEMMA 2.4. Let η e L* be anisotropic. The function Φη is a simultaneous
eigen function of tfv+\. The eigenvalue λ(A) [resp. λ(B}] of A [resp. B] is

λ(A) =

[resp. λ(B) =

PROOF. Let φe 3tfv+\(Gv+\,Kv+\) be the characteristic function on
Kv+\hKv+\ = ] J / e / hiKv+\. Then we have easily

* Φ(a) = Σ I W λ / ) Γ ' ' 0 + V ] Φη(g) for g 6 Gv+1.
\ιe/

]
/

Hence we know Φη is the simultaneous eigen function of ^v+i Using the
explicit coset decomposotion of C ^ and cf+λ (cf. [12, Lemma 7.1]), we have
eigenvalues λ(A) and A(^).

PROPOSITION 2.5. Lei η ε L* be anisotropic. The function Φη satisfies the
following additional relation:

(2.11) Φηfa = q(-s+mWφηf+a_,» fora, / > 0.

/=o

PROOF. Lemma 2.4 implies

0 = (Φ * {(?-' + <Γ(«o+2*-1))Λ + (3-2 + ?-(2»0+4v-2)) _

Hence, by [12, Corollary 7.6], we have

(2.12)

0 = q-(****-V{q?f-\,*.\ ~ qΦf,a - Φf-ι,β + Φ/,β-ι}

_ l ι β + | _ φ / α ) _ q(φfa _ φf+l β _ l }

,a ~ ίΦl.β-1 - Φ0,α-l
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where we put pη = qd~lδ (ηφL'*). Using (2.12), we obtain

for (/,*) = (0,0)

for(/» = (0,l)

for(/,α) = (l,0)

for(/,α) = (0,2)

for ( / » = (!,!)

for(/» = (2,0).

(2.13)

Φo,ι ~~ Φι,o — q ^ 0 , 0

Φo,2 ~~ ^1,1 = q~ ΦQ,Q

Φθ,3 - Φ\,2 = ^~3ΦO,0

*i,2 - ^2,1 = q~2Φι,o

We assume that the following equations are valid for 3 < / < L:

(2.14) ΦnJ,n - Φn+ιj-n-ι = q-l+nΦn,o (0 < « < / - 1).

Then we can prove that (2.14) is valid for / = L + 1 in the same way as
(2.13). By the induction on / we have proved the following relation:

Φ/,α - Φ/+ι,fl-ι = q~aΦf,o for a, f > 0.

Note that this relation is equivalent to

t φ a - t ' f θ Γ α> / ^ °
ί=0

By Lemma 2.2, [12, Proposition 2.14], and Proposition 2.5, we obtain Theorem
2.1(iii) in the case of v > 1. Therefore we have proved Theorem 2.1 com-
pletely.

REMARK. The following proposition gives another proof of Theorem 2. 1
(iii) in the case of v > 1 and η e L^nm.

PROPOSITION 2.6.

»>* qs-q~s

PROOF. By Lemma 2.4 and [12, Corollary 7.8], we have

λ(A)Φffl = Φ/+,,o + {q-1 + q-0°+2*-»(l + δ(f = 0)qv-lβs,,η

+ <7-(«°+2")(l +δ(f - 1 V,)Φ/_ι,o for / > 0.
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Since Φ/,a = ί(-*-«o/2-v)(/+«)φ^j w e o b t a i n

« W = 0 + 9* - «-"* / 2a(/ - 0 ) ^ , , ) * ^ - *-*{! + <*(/ = 1)/»,}<JW

This recurrence formula can be easily solved.

3. Archimedean part

3.1. Hypergeometric functions In this subsection, we summarize some prop-
erties of hypergeometric functions studied in Shimura [10]. We put

» := {X e R w + 2 |5 j [X] > 0, Si (X, YQ) > 0}.

For h e R"1"1"2 and g e 0*, we define the eigenvalues of h relative to g by the
roots of the quadratic equation

Notice that the above quadratic equation has only real roots, since signature of
Si is ( l , m + 1). We then put (cf [10, (4.1)])

+(A, g) = the product of all positive eigenvalues of h relative to g,

(3.1)

δ(h,g}=δ+(h,g}δ-(h,g),

τ(A, g) = the sum of all absolute values of nonzero eigenvalues of h

relative to

μ(h, g) — the smallest absolute value of nonzero eigenvalues of h

relative to g if h φ 0; μ(h, g) = lif h = 0

λ(h,g] = the largest absolute value of nonzero eigenvalues of h

relative to g if h φ 0; μ(h, g) = lif h = 0.

We write μ(h) = μ(h, YQ) and λ(h) = A(A, YQ). Set

(3.2) ί ( Λ A;α,«= e$Sl(h,*)]$Sι[X + i 'g]Γa(WX - i g}ΓβdX

for (g, h) e ^ x R w + 2 and (α,/?)eC2. In [10], Shimura studied a function
ω(g,h θί,β) defined for (0,A,α,jff) e ^ x IRm+2 x C 2 which is holomorphic in
(α,jff) and satisfies
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(3.3) ξ(g,h;a,β) =

ifSl[h}>0,Sl(Y0,h)>0,

Ή2β-m/ϊΓ(β)-lΓ(β - m/2Γl\Sι[h]Sι[g]\β~m/2-1

ifSι[h]>0,Sι(Y0,h)<Q,

α + β _ m/2

x Γ(fl-lΓ(*-m/2Γ1\Sι(h,g)\-m/2-1 if Si [h] = 0, Sl (h, Y0) > 0,

x Γ(α - m/2)-1 \S, (h, g)f-m/2~l if Si [h] = 0, Sl (h, Y0) < 0,

2πm/2+2Γ(ot + β-m/2- l)Γ(α + β-m- l)Γ(a)~lΓ(β)~l

xΓ(a.-m/2)-lΓ(β-m/2)~l ifh = 0.

The following theorem is one of the main results of [10].

LEMMA 3.1 (Shimura [10] Theorem 4.1). The function ω satisfies

(fif,A;m/2 + l - A w / 2 + l - α ) if h - 0 or ̂ [Λ] Φ 0,
rt^ ί h n
(3.4) ^ h ^ β ) _

If (a,β) stays in a compact subset T of C2, then

(3.5)

where A and B are positive constants depending only on T and S\.

We denote by Wκ,μ(z) the classical Whittaker function

f^μ+κ-l/2

*
(Re(// + 1/2 - K) > 0, |argz| < π),

which is continued to the whole C2 as a holomorphic function in (K:, μ) and
satisfies WKtμ = Wκ-μ. By [10, (4.29)] if h e R m + 2 and Sι[h] = 0 we have

(3.7) ω(0,Λ;α,0 = 2---V/ 2 | 5 1 (A^) | ( ^ α ) / 2 ^ ( α _^ ) A ( α ^_ 1 ^

The following lemma is well-known (cf. [10]).
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LEMMA 3.2. The function Wκ,μ satisfies

\z-κWκ,μ(z)\ < Ae~z^(\ + z~B) for z > 0,

if (tf, μ) stays in a compact subset T of C2, where A and B are positive constants
depending only on T.

3.2. Calculation of «/«>(*, jy s) As is well-known, taking a suitable R-basis of
IR™, we may assume that

S = diag(-20ι ... - 2am), at > 0 (0 < i < m).

We assume that t > 0, η E L* and Re s > m/2. We calculate

(3.8) Λ>(f,9;j) = r " " /2 f fafa
J R W

PROPOSITION 3.3. Let s be a complex number with Re^ > m/2. For
t > 0, we have the fallowings:
( i ) When η = 0, we have

(ii) W%en 0 ^ ^ e L*, we λαι>e

PROOF. Since Jπ(t,η\s} = J^(t^hη\s) for Ae G^, we may assume that

/ om_, \

where we put Nn — \/\^S[η]\. To obtain an explicit description of
2, we take a decomposition

nl(X)=m(X')\ h

For XQ = (Om, 1), we have
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Since y ^ X o ) 2 = 1, we obtain

Therefore we have

[ (l-±S[X\)-
JR"

_ f-s+m/2 d e t - f f (\ + \\x\f+ Jγs-ml2e[-2tNηx}dτίdx,
JR™-1

 J R

where we put ||x|| = ('xx)1/2.
We assume that η = 0. Making use of the formula

f α
v 1

J R m
^ / o λ 'm/2)

we get the first assertion of our proposition.
We assume that η φ 0. By the change of polar coordinates

(3.9) [ [
JR™ J

R Jo

= βw_2 Γ ί l +
Jo

= 2-1ί2w_2 Γ

[
J

where Ωm-2 is the volume of the m - 2 dimensional unit sphere. As is well-
known, the last integral in (3.9) becomes as follows (cf. [9], [10]):

ι/ >ι

3.3. Calculation of Iί9θ0(g9η;s) In this section we assume that / is a non-
negative even integer, Res > m/2 + 1 and g = diag(ί, A, Γl) e G® ̂ . We calcu-
late the integral

l,«>(g,ns) = Γs+m/2+l \
Jj
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For this purpose, we introduce several polynomials in s

33

//2-1

(3.10)

and we put

7=0

7/2-1

(3.11)

N - l

(-l)'/2pJ->(-j) . P,(s)~l if Sι[η] = 0,Sι(ι/, FO) > 0

P/(-j) ^ | + ) ( s ) ' 1 if Si [η] = 0, Si (17, Γo) < 0

Pι(-s) ifSι[η}>0,Sl(η,Y0)<0

The next proposition is the main result in this subsection.

PROPOSITION 3.4. Let I be a non-negative even integer and let s be a
complex number with Res > m/2 + 1. For

g = diag(/,Λ, r 1 ) e G£j00 and hYQt = 7,

we λαue ίΛe following.

//.ooί̂ O j) = |detSir 1 / 2 2(- 6 ^ + 6 )/ 4 7^/ 2 + 2 Si[r] ( - 2 5 + / w + 2 ) / 4

Γ(s)Γ(s - m/2)

Γ((2s + m + 2)/4)2Γ((2s - m + 2)/4)
2 '

(ii) IfηeL\ and Sι[η] = 0,

I^(g,η;s) = |det 5. |-
.(-2ί+m+2)/4

m + 2)/4)2Γ((2s -m + 2)/4)2

, Y0) % 0.
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(ϋi) IfηeL[ and Sι[η] > 0,

//,« (9, η\ S) = |det Si |-V22

m + 2)/4)Γ((2j - m + 2)/4)

x ω(2πΓ, 2j/; (2* + m + 2/ + 2)/4, (2s + m - 2/ + 2)/4) : Si (17, r 0 ) ^ 0.

(iv) IfηeLl and S\(η\ < 0,

= |det Si r 1 ^ - 2 ^ 5 1 ^ 1 4 ) / 4 ^ 1 ^ [y]m / 4s, M( ί-1)/2<ί+( r , »/)//2«5-( Y,

X

x ω(2πY, 2η\ (2s + m + 21+ 2)/4, (2s- + m - 2/ +

Notice that

/2j-m-2/ + 2\ (-1)' /2,s-w + 2\
Γ( 4 J = ̂ ^ ) Γ l-^—J

Hence Proposition 3.4 follows from the next Lemma, (3.3) and (3.7).

LEMMA 3.5. Notation being as above,

-2/ + 2 2,y + m-2/ + 2

PROOF. By means of the similar method in the proof of Proposition 3.3,
comparing the automorphy factor of «2(^0 and the Iwasawa decomposition of
n2(X}, we get

, r 0) = -i
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Since |/(A:00(>i2(A')),Zo)| = 1, we have

(3.12) fcoteW) = {(-i + \sl(x})2 + MX, r0))2Γ1 / 2,

(3.13) J(kaa(n2(X)),Zϋγ
l

= {{-i + isiix})2 + wx, r0))2}//2(-ι +±sl[X\ + iSι(x, r0)Γ'.

By (3.12) and (3.13) we obtain

2 W) ί + m / 2 + 1./(M«2 W ) , zb)-'

Since ί = (iSι[7]) 1 / 2 and Y = HY0t, we have

ί fι,
Jjgm+2

4. Calculation of I[(g9 η; s)

In this section we assume that / is a non-negative even integer, Re s >
m/2 + 1 and

Let us calculate

ι}(g,w) =

where

JQΛ

and u(x) is defined in (1.14). We fix a γλ e P\^\G\^ and write
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(a\
r\η = IB I. Since

W
//*o\\ II*

u(x)n2\ XQ = Λι(Aro)Λ2| Om

VU/y vvo
we have

JQ^

Therefore we know that lΊ(g,η',s) Φ 0 only when η e L\ and S\[η] = 0. The
following proposition is the main result in this section.

PROPOSITION 4.1. Let the notation be the same as above. Let η e L\ be
iso tropic.

(ii) When ηφ§, we take a positive integer A so that A~lη is primitive in

L\. Then we have

(s + m/2+\Γlσs+m/2(A)

_l)'/2p(+)( j )-ι Wl/2>(2f^μ(4π\Sι(Y,η)\) if Sι(Y0,η) > 0

P(Γ\-s)W_IM2s+m)/4(4π\Sl(Y,η)\) ^ S^Y^η) < 0

where σs(A) = ΣήA '*•

PROOF. Since J(k\tXί(γlh),Zo) = 1 and

/ / -xSo[Y]/2

(4.2) u(φl(Y)=n1(-xY)n2[[ Y

VV o
we have

(4.3) f,(u(x)yig;s) =//(«(



Eisenstein series on orthogonal groups 0 ( l , w + l ) and 0(2, m + 2) 37

(i) By (4.1), (4,3) and

(4.4) u(x) diag(MιθΊA), W i f a A Γ ' . Γ 1 )

we have

Σ [ //(nW j + y
JQ^

We now calculate the local integral. First we consider the non-archimedean
part. Since

we get

ί l/Λκ(*))lΓ"/2+1 Λ = i + f
JQ^ J

Second we consider the archimedean part. By means of similar method in the
proof of Proposition 3.3, comparing the automorphy factor of u(x) and its
Iwasawa decomposition, we get

Because of |/(fcoo («(*)), ZQ)| = 1, we have

//,αo(«M;* + y + 1) = t00(u(χ))s+m/2+lJ(k00(u(x)),zϋΓ
l

= (X + | )<-*--2'-2>/4(je - 0 (-2^f2

Hence we get



38 Yoshikazu HIRAI

P(

i

+\s)

Therefore we know

(ii) There exists a yj e P I ,Q \GI_Q uniquely such that

/M
y,ί/ - Om , λ Φ 0.

\ 0 /
We take yi so that λ — 1 . Therefore we only have to calculate the following
integral (cf. (4.1)):

First we consider the non-archimedean parts. When we write

ι()Ί) * *

*

we obtain Qm = k\ίpη. We put a = ord^(yί). Since the p ak\,pη is

primitive in L\p, there exists a ΛoeZ^ such that ίι(yι) =pafa. By (4.3),
(4.4) and (4.5), we have

\tι(n)\p+m/2+l £ |

ι«
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+ ί ι*-
JV-z

= \p-a\s+m/2(l - p-
s-m/2-l)J2 P(~s~m/2}t

f=0

Next we consider the archimedean part. Since the (m + 2)-th component of

γιY is

°

we have

We know that

(x +

and we get

I fι,

[

JR

Therefore we obtain

^

As is well-known (cf. [10]), the last integral becomes

- '

x (X + tSι(Y,η))-^-x-iSι(Y;η))
JR

(ly+W+2)/4 1 S (Y Ni(-2ί-ifi-2)/4

and this proves the assertion (ii).
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5. Eisenstein series on 0(1, m + 1)

5.1. Standard L-function Let Q be a maximal even integral symmetric matrix
of rank m. We assume that Q < 0 or assume that sinature of Q is (1, m — 1)
(m>2). Then we define the (global) standard L-function attached to the
constant function by

L(Q;S):=l[[Lp(Q;S)
p<oo

where Lp(Q;s) is the local standard L-function normalized in (2.3). As the
gamma factor, we take

if Q < 0
(5.1)

if m is even

if m is odd.
V ' — ' '

Put

(5.2) ξ(Q ,S):=Laΰ(Q;S)Lf(Q ,s) (cf. [6]).

The function ξ(Q',s) is continued to C as a meromorphic function of s and
invariant under s\-> 1 — s. If m = 1, ζ(Q',s) is entire and does not vanish at
s=l/2. If m > 2, (^(β s1) is holomorphic except for possible poles at
s = m/2 — k (0 <k <m — l,k eZ) and has a simple pole at s = m/2.

Let ηλ be the orthogonal complement of η e U in F. There exists a
maximal even integral symmetric matrix Qη of rank m — 1 and 0 e Mm-\(ΊL]
such that βι;[gf] is a matrix representation of β L i n n We note that the
determinant of Qη does not depend on the choice of Qη.

5.2. Eisenstein series Since ^p(r\\s) =I(S,η]s) in the notation of (2.1), we
can write Jf(η\s) explicitly (cf. Theorem 2.1).

PROPOSITION 5.1. Let s be a complex number with Res > m/2.

(i)

if m is even

if m is odd
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(ii) IfOϊηeL ,

gs(η\s) '•= Ylp 9sj>(*l',s) is a finite product of polynomials in ps and p
defined in (2.6).

We define the normalized Eisenstein series $*(g\,s) by

By Proposition 3.3 and Proposition 5.1, we obtain the Fourier expansion of
£*(g\,s) explicitly.

THEOREM 5.2. Let s be a complex number with Re s > m/2. For
g\ = diag(ί, l w , t~l) e G® ̂  and X e R w , the normalized the Eisenstein series has
the following expansion

neL*

where

1 if m is even

if m is odd

if m is even

ξ(2s) if m is odd

and for 0 ^ η e L*,

1

The rest of this section will be devoted to the proof of the continuation
and the functional equation of the normalized Eisenstein series. On each
Fourier coefficient we obtain the following proposition.

PROPOSITION 5.3.. Let the notation be the same as in Theorem 5.2.
(i) The Fourier coefficient $*η(g\,s) has a meromorphic continuation in s to the
whole s-plane and is invariant under
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(ii) For an arbitrary s$ e C, there exist δ > 0 and 0 < τ e TL depending only on
S and SQ such that

is holomorphic in s on US(SQ) = {s G C||j — ΛΌ| < δ}.
(iii) Let SQ, δ and τ be as above. Given p > 0, there exist positive constants
c\ , . . . , C4 depending only on S, /?, ί αwrf τ swcλ

for t> p, se US(SQ) and 0 φ η e ZΛ

PROOF. The assertions (i) and (ii) are easily seen from Theorem 5.2.
Since gsj)(η\s) is a polynomial in/?5 arid/?"5 whose degree depends only on a,f
and S in the notation of (2.6), for any compact subset T of (C, there exist two
positive constants A and B depending only on T and S such that

\9s(η\s)\ <A\S[η\\B for any s e Γ, 17 € V.

We note that

|det Sη\ < \S[η] det 5| for η e L*.

Therefore, by Lemma 3.2 and Theorem 5.2, we obtain the assertion (iii).

We now apply Proposition 5.3 to Theorem 5.2. For an arbitrary so e C,
we take δ > 0 and 0 < τ e Z as in Proposition 5.3(ii). For given p > 0, there
exist positive constants cι,...,C6 depending only on S,ρ,δ and τ such that

ηeL*

<C5t
C6.

for t>p,sε US(SQ). Therefore we have the following theorem.

THEOREM 5.4. The normalized Eisenstein series $*(g\,s] (g\ 6 G\,A) has a
meromorphic continuation in s to the whole s-plane and is invariant under
s i— > — s. Furthermore, it is holomorphic except for possible simple poles at
s = m/2 — k (0 < k < m, k e Z) and the residue at s — m/2 is given by

*f \ _ =̂m ζ(S]s) if m is even
(g, s) - . . f m .
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6. Eisenstein series on 0(2, m + 2)

6.1. Real analytic Eisenstein series Since Ip(η\s) =I(S\,η\s} in the notation
of (2.1), we can write If(η\s] explicitly (cf. Theorem 2.1).

PROPOSITION 6.1. Let s be a complex number such that Res > w/2+ 1.

(i)

(ii) TfO 7̂  77 e L Ϊ , Si [77] = 0 #«</ A~lη (A is a positive integer) is primitive in L\,

1

ξ(2s+l)

(iii) IfηeL\ and Sι[η]*0,

If(η;s) =2(2ί-m+1)/V-2ί-l'"/2l-2)/2|51[?/]r ί/2|det 5ι|1 / 2 |det S ^

f Γ((2ί + m + 2)/4)Γ((2s - m + 2)/4) if 5! fo] > 0

+ m + 2)/4)2

if 5! fo] > 0 l

if Si W < 0 J

where gsι(*l',s) '>= Πp 9sίjp(n'^) is a finite product of polynomials in ps, p
defined in (2.6).

We normalize the Eisenstein series Eι(Z,s) as follows:

where PI(S) is the polynomial in s defined in (3.10). By Proposition 3.4 and
Proposition 6.1, we obtain the Fourier expansion of Ef(Z,s) explicitly.

THEOREM 6.2. Let I be a non-negative even integer and let s be a complex
number with Res > m/2 + 1. For X + iYe X), 0<Z0> = X -f iY (g e <?£„), the
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normalized Eisenstein series Ef(X + iY,s) has the following expansion

where the Fourier coefficient a*ι(Y,η\s) is given as follows:
( i ) When η = Q,

1 if m is even

ξ(2s+\] if mis odd

if m is even "I

if m is odd J

Γ-m/2+lK(j + m/2)

fl
)

[<J(25 )

(ii) W^en Sι[^] = 0, SΊ(/7, KQ) ^ 0 and A~lη (A is a positive integer] is primitive
in L\,

1 if m is even
-r - ^if m is odd

1 if OT is even Ί
,,. .. ., . . . I
ξ(2s+ 1) if OTIS odd J

(iii) WAen Sι[η] > 0 α«rf Sι(^, FO) ^ 0,

; ^ l/2)gsι(η;s)

x ω(2πF, 2^; (2* + OT + 2/ + 2)/4, (2s + m - 21 + 2)/4).

(iv) When Sι[η] < 0,

x δ+(η, Y)2δ-(η, YΓ2Qlη(s)ζ(S^s+ l/2)gSl(η;S)

x ω(2πY, 2η; (2s + m + 2l + 2)/4, (2s + m - 21
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Here gs^η s) := Y[p gsλp(η\s) is a finite product of polynomials defined in (2.6)
and we put QJ^s) := Pι(s}Qι,η(s] (cf. (3.10), (3.11)).

To prove the analytic continuation and the functional equation of Ef(Z,s)
(Theorem 6.4 below), we consider analytic properties of each Fourier coef-
ficient.

PROPOSITION 6.3. (i) The Fourier coefficient a"l(Y^η\s) has a meromorphic
continuation in s to the whole s-plane and is invariant under s i— » — s.

(ii) For an arbitrary SQ e C, there exist δ > 0 and 0 < τ e Z depending only
on S\ and SQ such that

is holomorphic in s on US(SQ) = {s E <C\\s — SQ\ < ό} and is real analytic in
(F,^)e^xC.

(iii) Let SQ, δ and τ be as above. There exist positive constants ci, . . . , C\Q
depending only on Si, δ and τ, such that

(s-s,γaϊ(Y,η s}\ < Cl(λ(Y)« + μ(Y)^)\\ηr e'^M if Sι(η] = 0

+ μ(YΓC9)\\η\Γ

for s E US(SQ) and η e L\.

PROOF. The assertions (i) and (ii) are easily seen from Theorem 5.4 and
Theorem 6.2. We shall prove (iii). Since there are only finitely many terms
with \\η || < 1, it is sufficient to consider the terms with \\η\\ > 1. First we
consider the case of S\[η] = 0. By Lemma 3.2 and Theorem 6.2, there exist
positive constants A, B and C depending only on S\,δ and τ such that

, Yγc + S^η, Y)c)

for j e Us(s0) and 77 eL,*. By [10, p. 299-p. 300] we have

\Sι(η, Y)\ < Dλ(Y)\\η\\, |5,(f,, Y)\~l < Eμ(Y)-l\\η\\F ,

\Sl(η,Y)\>Gμ(Y)\\η\\,

with positive constants D,E,F,G independent of Y and η. This proves the
assertion in the cace of S\ [η] = 0.

Next we consider the case of S\ [η] φ 0. For any compact subset T of (C,
there exist two positive constants A and B depending only on T and S\ such
that

\gSl (η\ s) I < A \Sι [η] \B for anysεT,ηe L\
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(cf. proof of Proposition 5.3). We note that

|det Si η I < \Sι [η] det Sλ \ foτηeL\.

Notice

<M* F) < Aλ(Y)\\η\\, ί+(V, YΓ1 < Bμ(ΎΓl\\η\\c if Sifo] < 0,

with positive constants A,B,C,D and E independent of Y and η (cf. [10,
p. 299-p. 300]). Therefore, by Lemma 3.1 and the above facts, we can easily
prove the assertion in this case.

We now apply Proposition 6.3 to Theorem 6.2. For an arbitrary SQ e C,
we take δ > 0 and 0 < τ e Έ as in Proposition 6.3(ii). Given p > 0, there exist
positive constants c\,...,c% depending only on S\,p,δ and τ, such that

for μ(Y) > p, se US(SQ). By the inequality

di and τ(η,Y)*Aμ(Y)\\η\\

with positive constant A independent of Y and η (cf. [10, p. 300]), there exists a
positive constant C depending only on p and *SΊ such that

e-τ(η,Y) < ^-C

Hence Schwarz' inequality gives

I (s - *) τ«?( Y, n; *}e\s\ (η, X)] I < c9λ( r ) c

ηεL]

for //(F) > p and Λ1 e 6̂ (5-0), where positive constants 09,̂ 10 depend only on *SΊ,
/?, δ and τ. Thus we have the following theorem.

THEOREM 6.4. The Eisenstein series Ef(Z,s) has a meromorphic con-
tinuation in s to the whole s-plane and is invariant under s i— » —s. Furthermore,
it is holomorphic except for possible simple poles at s = m/2 + 1 — k
(0 < k < m + 2, k e Z).
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6.2. Holomorphic Eisenstein series In this section we consider the
holomorphic Eisenstein series on !>. We denote by Mι(Γ] the space of
holomorphic automorphic forms on D of weight / with respect to Γ. For
/ > m + 2, we put

, / - ιtι/2 - 1) . = , Z)

Since the above series is absolutely convergent, we know £/(Z) e M/(Γ). The
convergence of (1.9) at s = I - m/2 - 1 is not guaranteed if / < m + 2. How-
ever, as in Shimura [11], we can construct the holomorphic Eisenstein series of
smaller weights.

THEOREM 6.5. We define

Eι(Z] := Eι(Z, I -m/2- 1) for l>(m + 4)/2.

Then Eι(Z) is a holomorphic function in Z on D i.e. Eι(Z] e Mι(Γ}. Moreover
if m is even and χSl is non-trivial, then Eι(Z) := E\(Z, 1) e Mι(Γ] for

PROOF. For X + iY = 0<Z0> and g e G , we write

Then by Theorem 6.2 we have

(6.1)

v 2
m : even

m : odd
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where

+ 2\

m : even

m : odd

/j+ι+^Λ i
V 2 )ξ(χs,s

s+l) : even

m : odd,

= IL<oo Bs.p(S) (Bs,,(s) is defined by (2.4)),

_ Λ _ / ° m = Q (mod 4)
m = 2 (mod 4)'

/ 0 m = 1 (mod 4)
m = 3 (mod 4)'

fieldd(S\) denotes the discriminant of the quadratic

Q ( ^ / ( - l ) ( m + 2 ) ( m + 1 ) / 2 del SΊ J and as(η;s) is an entire function in s which does

not have any zero. If / > m/2 + 2 and l^m + \, then every term of (6.1)

vanishes at s = I - m/2 - 1 except for the first term. If / = m + 1, then we

have
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, (-*- ! ) ' =m/2

f=wι/2

Hence we have α/( 7, 0; / - w/2 - 1) = 1 for / > m/2 + 2. If χSι is non-trivial,
ξfas^s) is an entire function and α/(7,0;l) = 1 for / = m/2 + 2.

In the same way, if Sι[;/]<0 or 5Ί(^, ΓQ) < 0, we have
; / - w / 2 - 1) = 0 for / > (m + 3)/2. We assume that Sι[η]>0 and

/, FO) > 0 . Notice that

= 0, Sι(Y*,η) > 0,

ω(2π, 2^; /, 0) = 2'm-2e[Sι (η, ίY}\ if Si [η] > 0, Si ( Y^η) > 0.

Hence we can write

, 17; / - m/2 - l)g[Sι (ι/, X)] = aι(η)e[Sι (η, Z)] for / > (m + 3)/2,

where α/(//) does not depend on Z.
Here we set

(6.2) g,(η) :=
del Si

det

= Π
Sι[η]

(2/-m-2)/4

gSl(η]l-m/2-

To write gij,(η) more explicitly, we take a positive integer >4 so that A lη is
primitive in L\ and put

ap = oτdp(A) and - ord, ( S i [η] = ap +fp.

We can write g^p(ή) as follows:
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(i) Ίfvp =

(ϋ)

Σ
ί=0

ap-\

,p r A),/J / ^

ί=0

Σ Σ />(2/

k=0 t=0

-p~n°>p/2βSl
k=Q t=Q

fp+αp-k-\
(2l-m-2}t+(l-\}k

t=\

Here βSlηp defined by (2.5) and β^p is as in (2.2). We note that the case (i)
does not occur, since the Q-rank of Si is 1. We give an explicit formula for
the Fourier coefficients of the holomorphic Eisenstein series by Theorem 6.2
and Theorem 6.5.

THEOREM 6.6. Let I be an even integer. We assume that I > m/2 + 2ifm
is even and χSl is non-trivial, I > m/2 + 2 otherwise. The Fourier coefficients of
the holomorphic Eisenstein series

E,(Z) = 1 + at(η)e[Sι(η9Z)]

is given as follows:
(i) When S\[η\ = 0 and A~lη (A is a positive integer) is primitive in L\,

21

(ii) When Sι[η]>0,

(_n[(w+2)/4]2-/ + w/2 + 3/Λ _ —} l-m/2-l d(Sι)
detSi

if m is even

BI-l-(m+\}/2,χSιη

if m is odd Λ
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where Bn [resp. Bn,χ} is the n-th Bernoulli [resp. generalized Bernoulli] number
(for the definition see [3, p. 89, 94]).

On the Fourier coefficient of £/(Z), the following corollary is obtained.

COROLLARY 6.7. The Fourier coefficient aj(η) is a rational number. More
precisely there exists a constant C e TL — {0} depending only on S\ and I such
that Cat(η] ε TL for all η e L\.

REMARK. When / > m + 2, an explicit formula for the Fourier coefficients
of the holomorphic Eisenstein series is given also by theta lifting of Jacobi form
(cf. [7]).

7. Eisenstein series on 0(2, m + 2) in the case of (Q-rank 1

To complete our results we consider the Eisenstein series on 0(2, m + 2) in
the case of Q-rank 1.

7.1. Definition of Eisenstein series Let *SΊ ε MW+2(Q) be an even integral
anisotropic symmetric matrix of signature (l,w + l) and assume that S\ is
maximal. Since S\ is isotropic for m > 3, we may consider the case of m = 1
or 2. We denote by G\ the orthogonal group of S\ and by GΊ the orthogonal
group of

S2=l Si

V

Put LI = Z m + 2 , L\ = S^lLι. We define the maximal compact subgroups
Kλ,p:=Gι,pΓ(GLm+2(Zp) and K2ιp := G2) jpn GLm+4(Zp). We fix a point
Z 0 = iYo such that SI[¥Q] = 2. We define the action of Gfj00 on

D := {Z6(Cw+2|Sι[Im(Z)] > 0, Sι(YQ,1m(Z)) > 0}

by

We denote by £2,00 the stabilizer subgroup of Z 0 in G^. Clearly £2,00 is a
maximal compact subgroup of G$^ and G$ >00 7̂ 2,00 = ΐ) Let / be a non-
negative even integer. We define the Eisenstein series of weight / with respect
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to Γ on D by

(7.1)
(2s-2l+m+2}/4

which converges absolutely in a right half plane {s e C|Re*y > m/2 -hi}.
Since the Q-rank of Si is 0, Sι[ι/] ^ 0 for all ?y 9̂  0 and the Bruhat

decomposition of G^Q is given by

(7.2) G2,Q -

where Λ2( ) and HΊ is same as in §1. We easily see that all properties in §3
also hold for this case. Therefore all the necessary calculations to obtain the
Fourier expansion of Eι(Z,s) explicitly have be done in §2 and §3.

7.2. Main theorem We put

! is even
! is odd.

THEOREM 7.1. Let I be a non-negative even integer and let s be a complex
number with Res > m/2+ 1. For X + iYeΏ, the normalized Eisenstein
series E*(X + iY,s) has the following expansion

ηεL\

where the Fourier coefficient ά [(Y,η]s) is given as follows:
( i ) When η = 0,

(ii) When Sι[η] > 0 and Sι(η, YQ) ̂  0,

if m is even

if mis odd

if mis even Ί

if mis o d d '

x

V*\S^ηΓ
l/*Qlη(s}ξ(Sλ^s + 1/2)0*0/5*)

'; (2s + m + 21 + 2)/4, (2s -f m - 27 +:
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(iii) When Sι[η] < 0,

άj( F, I/; *) =

x ί+(y, ^ ) J _ ( Γ , v)-β? | l fWί(Sι | l f; J+ l/2)gSl(η ,S)

x ω(2πΓ, 2ι/; (2s + m + 27 + 2)/4, (2s + m - 27 4- 2)/4).

THEOREM 7.2. 77ιe Eisenstein series Ef(Z,s) has a meromorphic con-
tinuation in s to the whole s-plane and is invariant under s h-» —s. Furthermore,
it is holomorphic except for possible simple poles at s = m/2 + 1 — k

The convergence of (7. 1 ) at s = I — m/2 — 1 is not guaranteed if / < m + 2. How-
ever, as in Shimura [11], we can construct the holomorphic Eisenstein series of
smaller weights. Notice that the number of primes such that S\tp is aniso-
tropic over Q^ is even if m = 1.

THEOREM 7.3. We define

Eι(Z) := Eι(Z, I -m/2- 1) for I > (m + 3)/2.

Then Eι(Z) is a holomorphic function in Z on D i.e. E\(Z) e M/(Γ).

THEOREM 7.4. Let I be an even integer with l>(m + 3)/2. The holo-
morphic Eisenstein series Eι(Z) has the following Fourier expansion

E,(Z) = a,(η)e[Sι[η,Z)],
ηeL*

( _ 1 ) [( W + 2)/4] 2 -/ + w /2 + 3 / Λ _ WX 1 ^ /

V 2/Λ/Λ/_w2 det5ι

/-(ιιι+l)/2

( 1)KifH 2)/4]2/-(m-3)/2/

l-m/2-l
^ |

z m is odd

where gt(η) is defined by (6.2).

REMARK. When m = 1, the algebraic group GΊ is isogenous to a qua-
ternion unitary group of degree 2 and this Eisenstein series is the one studied
in [1].
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