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On the vector field problem for product manifolds
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ABSTRACT. Let Span(M) be the largest number of linearly independent tangent vector
fields on the manifold M. In this paper we establish a criterion giving an upper bound
for Span(M) when M is a product of stably complex manifolds. We obtain explicit
upper bounds and exact values of Span(M) in some special cases, such as products
of lens spaces, products of quaternionic spherical space forms and products of Dold
manifolds.

1. Introduction

Let M be a smooth, closed (i.e. compact and without boundary), con-
nected manifold, we denote Span(M), the largest number of everywhere linearly
independent tangent vector fields on M. Finding Span(M) is a classical
problem in differential topology. This problem was solved when M is a sphere
by A. Hurwitz, J. Radon and J. F. Adams (see [11], [20] and [1]). For
spherical space forms, J. C. Becker has calculated Span(M) in [6]. For more
details about the present state of the question, the reader may consult the
survey paper of J. Korbas and P. Zvengrowski [17].

In this paper we shall study Span(M) for M being a product of two stably
complex manifolds M; and M;. In other words, we suppose that the stable
class of the tangent bundle 7, of M; carries a complex structure for i = 1,2.
We shall prove the following criterion for Span(M) in the framework of
complex K-theory.

THEOREM 1.1. Let M; be a smooth, closed and connected stably complex
m;-manifold and let y; € KU (M;) be the stable class represented by the tangent
bundle ty,, (i=1,2). If Span(M; x M>) =mj+my —k, then the following
relation is valid in KU°(M,) ® KU°(M,),

2" 1y1,(1) ® 71/2(y2) = 0 (mod 2"771),

1991 Mathematics Subject Classification: 5TR25, 55N15.
Key words and phrases: Tangent vector fields, vector bundles, geometric dimension, stably complex
manifolds, complex projective space, lens space, quaternionic spherical space forms, Dold manifolds.



438 Bernard JuNnoDp and Ueli SUTER

k
where 2n > my +my, j= [5] and y, is the formal power series associated to

Atiyah'’s y'-operations in KU-theory.

REMARK. At this point we should explain the meaning of the term
71/2(x). In general, for x € KU(X) the expression y;,,(x) does not make sense
in KU(X), but multiplied by a sufficiently high power of 2 it does. = Explicitely,
if dim(X) <2m+1 we define 2™y, ,(x) € KU(X) by

m

2"y p(x) =D 2™y (x).

i=0
Throughout this paper we will adopt this convention. Note that the expo-
nential property of y, implies

m
271 2(x +¥) = 2"y, (X)112(0) = Z 22"'_' (X))
r=0 i=0

In particular we shall consider the case where M is a product of lens
spaces L™ (2™) x L™(2™), or a product of quaternionic spherical space forms
N™(my) x N®(m;). We obtain the following results, where v,(n) is the
exponent of 2 in the prime factor decomposition of n.

THEOREM 1.2. For all positive integers ny and ny, if my and my are large
enough, we have

Span(L™(2™) x L™(2™)) = 2vy(n1 + 1) + 2v2(ny + 1) + 2.

Precisely, the above result is valid when:

1) mi+1=2%Q2u;+1) with w;>1 and m;> [logyn]+ 2% +2%,
(i=1,2),

2) m+1=2%Qu+1) with uy>1, na+1=2% and m; > [logy ni]+

min n; +2%, n1+3[ ]+4) (i=1,2),

3) m+1=2% and m,>[log2n,]+mm(n2+3[ ]+4 n1+3[4]+4)
(i=1,2).

If m; and m, are small, the best results we know are those of M. Yasuo
in [24].

THEOREM 1.3.  For all positive integers n;, if m; > [loga n;] + va(m + 1) +
vy +1)+4, (i=1,2), we have

Span(N™(my1) x N™(my)) < 2va(ny + 1) + 2v(ny + 1) + 6.
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This result is best possible when v,(n; + 1) and v2(n; + 1) are divisible by 4 (see
[6]). For small values of m; and m, the best upper bounds have been obtained
by T. Kobayashi in [16].

We establish similar results for products of spheres and complex projective
spaces, Dold manifolds D(u,v) and products of Dold manifolds.

THEOREM 14. Let M be the product T];_; S™ x [[;_; CP™. If all the
spheres are even dimensional then Span(M) = 0. If one of the m; at least is
odd, then

Span(M) Sm+2n—kSm+2Zv2(n1+1)
=1
where m =my +my +---+m,.

For the proof of this theorem only the second factor of M, involving
complex projective spaces, will be taken into account (see section 6). So, the
upper bound given in theorem 1.4 is a good bound only if Y/, Span(S™) is
small with respect to n; +ny + - - - + ng, or if r is small with respect to s. For
example, we believe that

Span(S*~! x CP®) = p(2u) + 2v2(v+ 1) — 1,

where p(2n) is the Hurwitz-Radon-Eckmann number (see for example [18]).
Invoking Clifford algebra constructions, it is possible to show that

Span(S*~! x CP®) > p(2u) + 2vo(v + 1) — 2.

CoroLLARY 1.1. Let N =[], D(ui,v;). If all the integers w;, i=
1,2,...,r, are even then Span(N) = 0. If one of the integers u; at least is odd,
then

Span(N) < Xr:(u,- + 2vy(v; + 1)).
i=1

In particular:
Span(D(2u + 1,v)) <2u+ 1+ 2vy(v + 1).

For r = 2 and p(2u; + 2) small with respect to v;, (i.e. max(u;,u;) < v; + v,) the
corollary improves a result of Sohn in [21].

The paper is organized as follows: In section 2, we shall see that
Theorem 1.1 is a straightforward consequence of a criterion about geometric
dimension mentioned in [12] and [14]. We give a proof of this criterion in
section 3. From section 4 to 6 we prove Theorems 1.2 to 1.4.



440 Bernard Junop and Ueli SUTER

2. The geometric dimension and the vector field problem

Let X be a finitt CW-complex and let x be an element of 755(X ). The
geometric dimension of x, denoted gdim(x), is the smallest integer k£ such that
x + k is represented by a k-dimensional real vector bundle. Here, k denotes
the trivial k-dimensional real vector bundle over X. If M is a smooth, closed
and connected m-manifold, we call geometric dimension of M and we denote
it by gdim(M), the geometric dimension of the stable class 7o of the tangent
bundle of M

T0 =Ty — M.

It is a well known result that
(2.1) Span(M) < m — gdim(M).

Consequently, if we can give a lower bound for gdim(M), we obtain an upper
bound of Span(M). The following result established in [12] and [14] is a useful
criterion to give lower bounds for gdim(M).

THEOREM 2.1. If x€ Ea(M ) is the image of a stable complex class, (i.e.
x=ry with ye KU(M) and r: KU(M) — KO(M) the canonical map), and if
gdim(x) < k, the following relation is satisfied in KU(M)

2" 1y, () =0 (mod2"71),

where 2n > dim(M), j = [;} and y, is as in Theorem 1.1.

We will give a proof of this theorem in section 3. Now we can show that
Theorem 1.1 is a straightforward consequence of Theorem 2.1. Let M be the
product M; x M,, where M; is a smooth, closed, connected and stably complex
m;-manifold for i=1,2. If 79(i) = 7a;, — m; denotes the stable class of the
tangent bundle over M;, we have the following relations:

10(i) =ry;, withy, e KU(M;), i=1,2.
7o = Tayx M, — M1+ my = pi(70(1)) + p3(70(2))
= pi(myy) +p3(ry2) = (i (1) +P3(02))s

where p; : M1 x M, — M; is the canonical projection.

Hence, the stable class 79 of the tangent bundle over M; x M, comes from
a complex stable class. If Span(M; x M,) > m; +my —k, by the inequality
(2.1) we have gdim(tg) < k. Then, according to Theorem 2.1, in KU(M; x M>)
the following relation holds:

(2.2) 2"y p(B1 (1) + P3(0,)) = 0 (mod 2"77).
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By the Kiinneth theorem in KU-theory [3] the homomorphism

KU°(M)) ® KU (M,) — KU°(M; x M>)
x®y - pi(x) p2(»)

maps KU® (M) ® KU°(M,) onto a direct summand.

We have 2" 'y, ,(pi(n) +P3 (1)) = 2"} (71/201)) - P5(71/2(72)). The
latter element corresponds via the Kiinneth isomorphism to 2"~ly, 2(0n) ®
71/2(»2) and Theorem 1.1 follows from (2.2). O

Let f:M — BSO(2n), 2n>dim(M), be the classifying map of
xX€ fé(M ). Since x = ry, we can lift the map f to BU(n). We shall denote
the classifying map of y by g. If we assume that gdim(x) = k, we can lift f to
BSO(k) and further to B(n, k), the latter space being the pull-back space of the
diagram

BSO(k)
BU(n) —— BSO(2n).

We have the following commutative diagram

B(n,k) - BSo(k)
(2.3) / P lq
M —2 BU(n) -~ BSO(2n).

With the same hypothesis as in Theorem 2.1 we can give a second criterion
concerning the geometric dimension of real stably complex vector bundles.

THEOREM 2.2. If gdim(x) <k, the following relations are satisfied in
H*(B(n,k); Z),

g*(¢;) =0 (mod 2), [IEC] +1<i<n-1,

where c; is the i-th universal Chern class.

Proor. In [12] and [15], we have determined the additive structure of
H*(B(n,k);Z). There are abelian group isomorphisms:

Z[C],...,ct]®A(at,b1+1,...,bn_1) if k=2t

H* B . g
(B(n, k); Z) {Z[CI,.--,Ct]®A(b1+l,--'1bn—l) if k=2t+1
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where A(x1,...,%y) is the free abelian group generated by the elements
XiXip...x;, Withl <ij<i<---<i;<m,

¢; is the image of the i-th universal Chern class under the map p* and the
elements b; satisfy the relations

ci=2b;, i= []Ec] +1,...,n—1.

Then, by the commutativity of the diagram (2.3), we have
g*(c;) =1 (" (ci)) =F*(2bs) = 2 (bs)

fori=[§]+l,...,n—l. O

We shall also need the two following results:

ProposITION 2.1. Let 79 and t9(i) be the stable classes of the tangent
bundles of My x M, and M; respectively (i =1,2). Then:

() gdim(z0) > max(gdim(zo(1)), gdim(z0(2))),
0) gdim(z0) < gdim(zo(1)) + gdim(zo(2)).

Proor. (a) If gdim(zo) = k, the stable class 7y may be written as 7o =
& — k where &£ is a real k-dimensional vector bundle. Then we have

70(1) = i1 (P (70(1)) + p3(70(2))) = i1 (w0) = i1(§) — k

and so gdim(to(1)) < k = gdim(zy). In the same way we show gdim(7p(2)) <
gdim(to).

(b) If gdim(zo(i)) = k;, the stable class 7o(i) may be written as 7o(i) =
¢ — ki, where &; is a real k;-dimensional vector bundle, for i = 1,2 and so

70 = (p1)"(v0(1)) + (P2)"(0(2)) = (21)"(£1) © (P2)"(&2) — K+ K,
hence gdim(to) < ki + kz = gdim(to(1)) + gdim(7o(2)). a
PROPOSITION 2.2. If M, and M, are as above, then
Span(My x M) > Span(M,) + Span(M).

Proor. If there are k; linearly independent tangent vector fields over M;,
for i = 1,2, then there are at least k; + ky over M; x M>. O
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3. Spinor representations and generators of KU(B(n,k))

Let Spin¢(2n) be the group (Spin(2n) x U(1))/(Z/2). Here Z/2 is the
subgroup generated by (e, —1), where ¢ denotes the generator of the kernel of
n : Spin(2n) — SO(2n), the 2-fold covering map of SO(2n). The composition
of the projection Spin(2n) x U(1) — Spin(2n) and = sends the subgroup Z/2 to
the identity matrix of SO(2n), and induces a map

i : Spin®(2n) — SO(2n).

We can also see the group Spin®(2n) as n~1(SO(2n) x SO(2)), where SO(2n) x
SO(2) is identified with a subgroup of SO(2n+2) and = : Spin(2n+2) —
SO(2n+ 2) is as above.

The canonical inclusion U(n) = SO(2n) lifts to Spin°(2n). Then, the map
BU(n) 2, BSO(2n), which is induced by this inclusion on the classifying spaces,
lifts to BSpin©(2n) (see [4]), i.e. we have maps

(3.1) BU(n) % BSpin®(2n) % BSO(2n), with B;of, = rn.
The pull-back diagram of Lie groups
Spin¢(2k) —— SO(2k)

Spin(2n) —— SO(2n)

gives rise to a pull-back diagram on the classifying space level and together
with (3.1) we obtain the pull-back diagram

B(n,2k) —*. BSpin°(2k) —— BSO(2K)

S R

BU(n) —2 BSpin‘(2n) —— BSO(2n)
In the following we concentrate on the left hand square. The diagram induces
a commutative diagram in KU-theory.

It is a well known result that the ring KU(BG) is isomorphic to the
completed representation ring RU (G), when G is a compact, connected Lie
group (see [5]). This is our motive to use below some information about the
representation rings of Spin‘(2n), Spin°(2k) and U(n) to define generators of
KU(B(n,2k)) (see also [12]). In a first step we consider the projection
Spin(2n) x U(1) 2, Spin° (2n). 1t induces an injection of representation rings

@* : RU(Spin(2n)) — RU(Spin(2n)) ® RU(U(1)).
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Let p be the representation defined as the identity of U(1), and let 43,, 45, be
the canonical irreducibles spinor representations of Spin(2n). The represen-
tations 4}, ® p of Spin(2n) x U(1) give rise to the representations Jzi,, of
Spin¢(2n) (the elements (¢, —1) acts trivially). The latter induce two elements
in KU(BSpin€(2n)) that we still denote A;Ln and 4,,. There is a relation
between these two elements and some generators of KU (B(n,2k)) defined in
[12] and [13].

ProposITION 3.1. (a) In KU(B(n,2k)), there are elements oy and By, such
that the following relations are satisfied

k=1
i) Jar(dy) = Z 25y oy
r=0
. k-1
ii) Fildy) =Y 25 4 9% — o+ B
r=0
n—1
iii) 2" KB =D 2My
r=k+1

(b) In KU(B(n,2k + 1), there is an element B, satisfying

n—1
i) 2" B =) 2MTY

r=k+1

Here the elements y" are the images of the universal generators of KU(BU (n))
under the map KU(BU(n)) — KU(B(n,j)), j = 2k, 2k + 1.

Proor. Let 7, T', T” be maximal tori of the Lie groups SO(2n),
Spin(2n), Spin(2n) respectively. Via the canonical inclusion U(n) = SO(2n),
T is also a maximal torus of U(n). Following [7], we know that

RU(T") = RUT)[u)/(u* =ay -0y ... )

where the «; are the 1-dimensional canonical irreducible representations of T
and u is an irreducible representation of 7 mapping ¢ to —1 € U(1). With this
description of RU(T’) and identifying RU(Spin(2n)) with its image in RU(T’),
we can write

n
A3+ 45 = [J(r + 1)

r=1

and
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n n
Ayt gy = U3+ 23)®p = [[r + ) @ p = [[(r + D' ®
r=1 r=1

in RU(Spin(2n)) ® RU(U(1)) = RU(T") @ RU(U(1)).

Both elements A;Ln +4,, and u"'®p belong to RU(T") <« RU(T)®
RU(U(1)) and the image of the element A2n + 4,, in RU(U(n)) shall be
determined, if we know the image of u"!®p. Invoking the explicit
description of the map U(n) — Spin°(2n) given in [4], we see that the image of
u"!®p in RU(T) is the trivial representation and hence

n

Fx o 7t 1 . n—r,r

Jon(doy + 43,) = H(“r +1)= H(“r -1+2)= 22 V-
r=1 r=1 r=0

The image of 45 + 45, in RU(Spin(2k)) is equal to 2"~ "(A +45,). By

homotopy commutativity of the diagram (3.2), the element ka(AJr + 45,) of
KU(B(n,2k)) satisfies the following relation

n—kfx (5t e — —r,
2" K (A + Ay) = 22" "y,
r=0

where y” denotes the image of the r-th universal class under the map p*.
Consequently, the element

k
Fx oo Tt 1~ —r.,r
(33) Birr = (o + dy) = Y257y
r=0
satisfies
n—1
2n—kﬂk+l — E 2n—ryr‘
r=k+1

So we have proved part iii) of Proposition 3.1.
We know that the Euler class in KU-theory of the sphere fibration

S§%=1 _, BSpin®(2k — 1) — BSpin®(2k)

is the element j;k — 43, (see [4]). We denote by & the image of this class in
KU(B(n,2k)), (i.e. the Euler class of the induced fibration under the map f;)
and we can write:

k k-1

fi(24y) = Z 27 4 By — ek = Z 2y 4 Y + Bt — &
r=0 r=0
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We set
k-1

o = Fldy) = Y 2y
r=0
satifying relation i) of Proposition 3.1; furthermore & = y* + B — 204-
Relation ii) is a straightforward consequence of relations i) and (3.3).
To prove part (b) of the proposition we consider the canonical map
B(n,2k + 1) L) B(n,2k +2). In KU-theory the homomorphism pj maps the
Euler class & to zero. We set B +1 =P3(%+1) and calculate

2" B = 2" P Qoreir) = 2" s (4 + Brya)
=P3(2n_k_l}’k+l + 2n—k—lﬂk+2)
Relation iii) for the case B(n,2k + 2) implies (b). O

The generator f, ., may be defined in another way, with the help of Thom
and Bott isomorphisms (see [12]).

Now we can see Theorem 2.1 as a consequence of the above Proposition.
Let f: X — BO(2n) be a classifying map of x =ry in T(B(X ), where r and y
are as in section 2. The map f lifts to BU(n) and we denote g the classifying
map of y. If gdim(x) =k, f lifts to BSO(k) and there is a map f: X —
B(n,k) such that the following diagram is commutative

B(n,k) ELEN BSO(k)
/ Jp lq
x —2 BU@m) —*— BSO(2n).
If k is even, we apply f * to the relation iii) of Proposition 3.1. We obtain in

KU(X), with j =l§c= [IEC], and identifying y” € KU(BU(n)) with its image in

KU(B(n,k)):
}’1/2 ) = 22" - ' (

r=0
n—1 _

— Zzn—r—lf*(y )
r=0

— f* qn=r= r+ 2n r— r

r=0 r=j+1

. -~ j .
= n-lf (Z 27y + ﬂj+1>
r=0

=0 (mod 2",
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If k is odd, say k = 2j+ 1, we proceed as before invoking (b) of Proposition
3.1 O

4. Proof of Theorem 1.2

By a well known theorem of H. Hopf, the span of the complex projective
spaces CP" and their products is zero, since the Euler characteristic of these
manifolds is non-zero. But, to study the lens space case, it will be convenient
to invoke the following facts on CP” (see for example [18]). The complex K-
theory of the complex projective space CP”" is given by

KUY(CP") = {:M/(ﬂ"*‘) i Zi (1)

where u denotes the stable class of the canonical complex line bundle over
CP". Since the KU-theory of CP" is torsion free, y;/;(x) makes sense in

1 1 n+1
KU(CP")®Q. We have y;,(4) = 1+ 54 and yyp((n+ 1)u) = (1 +§,u) :

The stable class of the tangent bundle zcp» — 2n over CP” may be identified
with r((n+ 1)u) (see [22]). It follows that the stable class of the tangent
bundle of CP™ x CP™ corresponds to the element (n; + 1)u; ® (n2 + 1)y, of
KU°(CP™)® KU°(CP™) and we calculate:

2"y (1 + D) @ 71 5((m2 + V) = 2"—11’1/2(#1)"1+l ® )’1/2(.“2)”2+1
4.1) o M nm+1 n+1
-3 Zzn—s—t——l( ) ( ),uf ® il
s=0 =0 s t

We now turn to the lens spaces. The space L"(2™) is the quotient space
S?+1/(Z,/2™) where the action on the sphere S***! = C™! of the group Z/2™
generated by { = exp(in/2™!) is given by:

tkz = (20,0521, ..., 5 2,).

It is well known that the KU-theory and the integral cohomology of L"(2™)
are given by:

UL o Z ifg=1
( ( )) = Z[a]/(a'”'l, (0‘ + 1)2’") if q= 0.

Z if g=0,2n+1
HI(L"(2™);Z) = Z/2" if qgeven,0 < g <2n
0 otherwise.
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Here ¢ = n*(u), where m: L"(2™) — CP" is the canonical map. The group
H?¥(L"(2™);Z) = Z/2™ is generated by z” where z is the first Chern class of o.
For a complete description, the reader is referred to [18].

Recall that the stable class 77»om) —2n+1 of the tangent bundle of
L"(2™) may be identified with r((n+ 1)o) (see [22]), and that the stable
class of the tangent bundle of L™(2™) x L™(2™), is the element 75 =
r(pi((m1 + 1)o1) + p5((n2 + 1)02)). The latter element is the pull back of the
stable tangent bundle of CP™ x CP™ with respect to the projection

L™(2™) x L™(2™) — CP™ x CP™.

Now we want to find a lower bound for gdim(zy). We proceed in two
steps. First we apply the cohomology criterion of theorem 2.2. This criterion
gives us a first bound for gdim(zy) (see Prop. 4.2). Next we use this bound
and Theorem'2.1 to prove Theorem 1.2. We start with some technical lemmas.

LEmMMA 4.1. Let g: L™(2™) x L™(2™) — BU(n) be the classifying map
of pi((m + 1)a1) + p5((n2 + 1)02). Then for I =1,2,...,n, we have

min(/,n;)
N n+1 ny +1 i
ge)= > (11- )(;_i)z,@»zé,

i=max(0,/—n;)

where g* is the map induced by g in integral cohomology, c; is the I-th universal
Chern class, and z; = ci(a;) € HX(L™(2™);Z) = Z/2™, for i= 1,2, and n>
nm +ny+2.

PROOF.

g*(c1) = a(pi((m + 1)a1) + p3((n2 + 1)a2))
!

=Y c(pi((m + o)) c-i(p((n2 + 1)02))
i=0
1

=Y " pile((m + 1)on)) pi(ci—i((n2 + 1)a2))

i=0

4 ny+1 .
—Z("'“)pl q(m)')( " )pz(cl(az) D

()0 e
*Z N EAR
i=0 I—i

We know that z1 =0fori>n +1 and thatz “i=0forl—i>ny+1. This
achieves the proof. O
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LEMMA 42. Let n+1=2°(Q2u+1) and s > 1 be integers. The following
congruences are satisfied,

)

Notice, if n is even, then (

{1 (mod2) ifi=n+1-2°
0(mod2) ifn+2-2°<i<n.

ntl ) is odd.
Proor. Recall that Vz((Z)) = a(k) + a(n — k) — a(n) where a(n) is the

number of 1 in the dyadic expansion of n. Then, we have

n+1 n+1 s s
v 12 = .y =a2’)+a(n+1-2°)—a(n+1)

=1+ a2 u) — a(2°Qu + 1))
=1+4+a(w)—aRu+1)=1+a(u)—a(u) —1=0.

1 1
Moreover, as (n_: ) = (n:—+1 i)’ we can reduce the case i > n+2 —2°

to the case i <2°—1.
Let us give the dyadic expansion of n+ 1 and i,

n+1=2°Qu+1)=2%4+2%4...4+2% withs; >85> >5=s,
=29 422 4...42% withs—1>q1>q> > g
It is easy to see that
s—1 ) r—1
n+l—i=2"42% 4. 2% Y 2 =N "%,
Jj=qr v=1
We observe that a(n+ 1) =¢ and (i) =r, then we can write
an+1—-i)=t+s—r—qg=an+1)—a@i)+s—¢g >an+1)—ai). O
LemMA 4.3. Consider the integers n;+1=2%Q2u;+1) with w;>1
(i=1,2), and | =ny+ny +2—2% —2%.  We have g*(c;) # 0 (mod2).
ProoF. According to Lemma 4.1, we have

min(/,n;)
x m+1\/n+1) ; -
ve= > ("I (% e

i=max(0,/—n;)
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. 1) . .
Using Lemma 4.2, we see that (m;l- ) is even if

n +1-2% <i<min(/,n) < n,

n+1

) is even if
l—i

we also see that (

I—ny <max(0,/ —m) <i<m+1-2%,

since in this last case my;+1—-22 <m+n+2-2%-22—j=]—i<n,.

2
Finally (nljl)(nlz-'_i ) is odd if i=n +1-2% since I—i=
n,+1-2%. So,

we have established

1 1 s s
g‘(cl) = (n12-sil- ) (nzz'st )Z;n+l—21 ®Z;2+1_2 2 £0 (mod 2). 0

LEMMA 4.4. Consider the integer n+ 1 =2°(2u+1). We have
gdim(tpaomy — 20+ 1) > 2n+2 — 251,
PrOOF. We know that tynom —2n+1 =r((n+1)g). Moreover, if
g: L"(2™) — BU denotes the classifying map of the stable bundle (n+ 1)o,

g*(cr) = ci((n+1)a) = (”“IL l)c,(a)’.

Assume that gdim(tpnpom —2n+1)=2n+1- 25t Then according to
Theorem 2.2

g (c)) =0 (mod2) forl>n+1-2°
which is inconsistent with Lemma 4.2. O

LeMMA 4.5 If n=2°—1 and m > [logan]) + 1, then
. n
gdim(tniamy —2n+ 1) > [5]

PrROOF. According to [24] we have gdim(tpnom) — 2n+ 1) > ry(n,m) where

(111 <men-2)
()

ry(n,m) = max{O <r< [;]

(&)
In our case v, ,
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In particular if r = [5] =2 -1,

s—wn(r)=s=[logan)|+1<m<m+1=m+n-2r. O

ProrosITION 4.1. Let n;+1=2%Q2u;+1) be an integer with u; > 1
(i=1,2). Then

gdim(to) = 2ny + 2ny + 4 — 2511 _ 25241,

PROOF. Assume that gdim(to) = 2m + 2my + 3 — 251+ —29+1 Then,
according to Theorem 2.2, we should have g*(¢;) =0 (mod2) for all

I=n+n+2-2%—-2%..,n +ny+ 1, which is inconsistent with the result
of Lemma 4.3. ’ O

PropPoSITION 4.2 a) Consider the integers ny+1=2%Qu +1) with
up =1, n+1=2% and my > [logany] + 1. Then we have

gdim(to) > max(2n1 +2 29+ [223] )

b) Consider the integers n; + 1 = 2% and m; > [logan;]) + 1, (i = 1,2). Then

we have
gdim(to) > max([%l], [%] )

Proor. By Proposition 2.1
gdim(to) > max(gdim(zo(1)), gdim(z0(2))),

where 7o(i) = Tom@m) — 2m + 1.
Moreover, according to Lemmas 4.4 and 4.5 we can assert that, under the
hypothesis of a),

gdim(to(1)) = 2 +2 — 251 and  gdim((2)) = ["—22]

and under the hypothesis of b),

gdim(zo(1)) > [”7‘] and  gdim((2)) = [”32] O

Now, we apply the criterion of Theorem 1.1 to the stable classes y; = (n; + 1)a;,
i=1,2. If Span(L™(2™) x L™(2™)) =2(n; +n,+ 1) —k, the following
relation is satisfied in KU(L™(2™)) ® KU(L"(2™)):

2n—1y1/2((n1 + 1)o1) ® (12 + 1)a3) = 0 (mod 2"V 1)

with n>n;+n+2 and j = [%]
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The left hand side of this congruence is the image of the left hand side of
(4.1) under the canonical projection L™ (2™) x L™(2™) — CP™ x CP™ and
(4.1) implies

ni 2
(4.2) Z an-i--1 (m + 1) <n2 N 1)6{ ® o5 =0 (mod2" 7).
i=0 1=0 ! !
We shall consider the projection
T @y : Z[o1]) ® Z[oz] — KU(L™(2™)) @ KU(L™(2™)).

The relation (4.2) lifts to Z[o1] ® Z[o;] modulo ker(m; ® mp), that is to say
modulo the ideal of Z[oi] ® Z[o,] generated by

"M @®1L,1®ox (1+6)™™ —1)®1and 1 @ (1 +a2)°" —1).
We obtain in Z[o] ® Z[o] :

m. il n+1 n+1 ;
(4.3) DI “< , )( ; >a1®a§

i=0 1=0 I
1 ny ny 3 ! om
=2"7" Z Za,-;a{ ®a,+ ((1+01)" —1)p(o1,02)
i=0 1=0

+((1+02)*™ = 1)p,(01,02)

where p,(01,02), p,(01,072) are certain polynomials and the coefficients a; are

integers.
We need the following result to conclude.

LeMMA 4.6. If m > [logy(n)], then
(x+1)¥" =1 = 2mloa2np(x) 4 x"*g(x)
where p(x), q(x) are polynomials in the indeterminate x and deg(p(x)) < n.
Proor. We have

x+1)* -1= i(z:')xi

i=1

Vz((z:l)) =m —vz(i) = m — [logy n],

i=1,2,...,n, the lemma follows. |

and since
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We shall now assume that m; > [logan;] + 1(i = 1,2), and we set
n=n;+ny+2. Using Propositions 4.1 and 4.2, we obtain for j= [%C]
and n—j—1:

1) If mi+1=2%Qu;+1), u;>1 (i=1,2), we have

j=n+n+2-2%-2%2 p—j—-1<2%4+22-1.

2) m+1=2%Qu+1), uy =1, n,+1=2% we have

jZmaX(nl +1-2%, [%]) n—j—-1< min(nz + 25 ny + [——————3("24+2)D.

3) If mj+1=2% (i=1,2), we have

jZmax([%], [%]), n—j—1 Smin(nz-l- [}(71_144_-_2_)_]’”‘ + [3—(%2)])

Under the above hypothesis the relation (4.3) becomes in Z[oi] ® Z[o3):
SN O il +1\/n+1)\ ; i
4.4 gn-i-l ‘("‘ )< >a'®a’so mod 2" 7).

As the generators o ® o) are free in Z[o1] ® Z[o], (4.4) induces the con-
gruence relations:

(4.5) gr-i-i-1 ("’ + 1) ("2 ;L 1) =0 (mod 2"1),

1

for 0 <i<n and 0 <! < n;. In particular, if i =n; and / = n; in (4.5), one
gets

2y 4 1) (ny 4+ 1) = 0 (mod 2"771).
In other words, we have:
n—-m-nm—-1+vm+1)+wnm+l)=>n—j-1
S0
Jj=nm+n—vy(n + 1) —vn(np+1).

If one of the following three conditions is satisfied
) mi+1=2%Q2u; +1), u; >1 and m; > [log n;] + 25 +2%2(i = 1,2)
2) m+1=2%Qu+1), wy=1, n+1=2% and m; > [logyn]+

min<n2+231,n1 + [&T—Z)]) (i=1,2)
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3) n;+1=2%and m; > [log; n;] +min(n2+ [@],nl + F(—’if——-a])
(i=1,2), then

Span(L™(2™) x L™(2™)) < 2v(n1 + 1) + 2va(ny + 1) + 2.
Using Proposition 2.2 and Theorem 1.1 of [6], we observe that
Span(L™(2™) x L™(2™)) > Span(L™ (2™)) + Span(L™(2™))
=2v(n; + 1) +2va(ny + 1) + 2.

This achieves the proof of Theorem 1.2. O

5. Proof of Theorem 1.3

Let H be the field of quaternions and let m be a positive integer. Let Q,,
be the group of order 2™+! generated by x and y such that x> = »2 and
xyx =y. We can see Q,, as a subgroup of S* c H, taking x = exp(in/2™!)
and y=j. Here quaternions are represented by z; +jz, with z;, z; e C.
We call Q,,—spherical space form, or quaternionic spherical space form, the
quotient manifold N"(m) = S**3/Q,,, where the action of the group Q, on
S¥+3 « H**! is given by:

q - (x0,X1,...,%n) = (gx0,gx1,---,9%n)-

We recall that to any group representation of Q,, corresponds a vector bundle
over N"(m). We denote by ap, o; and J; the stable classes of the bundles
corresponding to the complex representations ap, a; and { defined by:

ap(x) =1, ap(y)=-1
ai(x)=-1, a(y)=-1
{(z1 +jz2) = (21 _Z-2>.

2 I

Notice that the representation { is nothing else than the representation induced
by the canonical representation of S* = H in U(2). The latter representation
defines a canonical 2-dimensional complex vector bundle p over the quater-
nionic projective space HP" = S**3/S3. Its stable class z = p — 2 is mapped
on to J; by the homomorphism induced by the projection

S4n+3/Qm - Nn(m) x S4n+3/s3 = HP" c HP®,

(5.0) 81 = n*(z) e KU(N"(m))



Vector field problem 455

According to [22] we can identify the stable class of Tyn(,) in I’(\(/)(N "(m)) with
r((n+1)dy).

Consider the elements f(s) in KU(N"(m)) inductively defined by the
formulas

{.3(0) =d
B(s)=B(s—1)>+48(s—1) fors>1.

For all integer s > 1, let d’(s) and &'(s) be the integers such that 0 < b'(s) < 2¢
and

zao+vo = {5

and for all integer i =2+ d such that 0 <d <2% and 0 <s<m, let

(i) = {a/(s+ +1 if2d<b(s+1)
d(s+1) if 2d > b(s+1)
am-l+ (M) f =1
u(i) = 2ms- 246 f =25 > 1
2m-s=3+al) if j=24+d >3, 0<d<?2"

Now we can give the additive structure of KU*(N"(m)). The result is due to
K. Fujii and M. Sugawara in [10] and we will adopt their notation in what
follows. As abelian groups there are isomorphisms:

KUY(N"(m)) = Z

and

M
(51)  KUN"(m)) = Z/2"*" - (o) @ Z/2"* - (o) ® Y _ Z/u(i) - (50),
i=1
where M = min(2"~',n). Here Z/t- (x) denotes the cyclic group of order ¢
generated by x. '
The generators & and J; are defined by

3

m— m-3
w=a -2 B [] @+Ba).

s=1 t=s+1

s
(52)  Si=ps)+ > 20NEOp_ ) =25 1<s<m—1,
j=1
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s—1 s+1
& =81 p(1) [[@+B())-2°0"6{p(s)+) 2% -0 15 p(s+1-)),
(53) <0 =

=2 4+d,1<s<m-1,0<d <2
We need some complementary technical results.
LEMMA 5.1. For all 1 <s<m—1, we have
Bls) =6} +4,(61)
where qs(01) is a polynomial of degree 2° — 1 with even integer coefficients.

Proor. It is easy to see that the assertion is valid for s=0 and s=1.
Moreover, if it is true for s > 1, the recurrence relation

B(s+ 1) = B(s)? + 4B(s) implies that it is true for s+ 1. O

LEMMA 5.2. Foralli=2°+d<nwith0<d<2and0<s<m-—1, the
integer a(i) satisfies the condition a(i) > 2.

Proor. Recall that

2n+1 if nodd

2 (s + 1)+ b (s+1) = { :
2n if n even.

For the two cases we have d/(s+ 1) > 1, since &'(s + 1) < 2**! <2n. Then, if
2d < b'(s + 1), by definition a(i) =d'(s+ 1) +1>2. If2d > b/(s+ 1), we also
have a(i) =d'(s+1) > 2, since d'(s+ 1) =1 would imply

2n <2 (s + 1)+ b (s+1)
<25 424
<2n
which is impossible. O
LeMMA 5.3. Let u(n) be as above. Then

v2(u(n)) > m — [logan) — 1.

ProoF. For n=2°>1, u(n) is given by 2m—s-2+d(s) = pm—logzn_

and for n=2°+d >3 with 0<d <2% u(n) is given by 27 s-3+aln) =
om- [logzn]—1 . O

LeMMA 5.4. For all 1 <i < M, there is an odd integer A; and a polynomial
Di(01) of degree i — 1 with even integer coefficients such that

o; = A,'J{ +p,-(61).
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Proor. By definition, the result is true for i = 1. If i = 2%, we replace in
(5.2) the elements f(s) and B(s —j) by the expression given in Lemma 5.1.
Then J; becomes

s ) -
0 =07 +4s(01) + 3 2@ D@D ST g0 (1))
j=1
If i = 2° +d with 0 < d < 2%, we do the same with the relation (5.3) and obtain

s—1
8; = 617183 + 401) [] (2 + 67 + ¢i(61)) — 2°O~16{ (3¥ + g,(61))
j=0

s+1
j_ a(i)— s+1-j
+3 2@ 0a-gd (62 4 g, (61))
j=2

and hence d; = (1 — 2¢0-1)§8+2" | p(4,), where p(d;) is a polynomial in &; of
degree < i with even integer coefficients. We conclude with Lemma 5.2. ]

It follows from (5.1) and Lemma 5.4 by induction on i that the elements
d1, 02,...,0; and Jy, 612, - ,5{ generate the same subgroup of f(TJO(N"(m)); (all
groups under consideration have order a power of 2).

Invoking (5.1) again and assuming that 2”~! > n, we set

KU°(N™(m)) =~ G@® Z/u(n) - (6,),

where G is the’glbgroup generated by ap, &, J1, 512, e ,(5{'—1 and we get for the
projection p: KUY(N™(m)) — Z/u(n) - (0,):

(51.)_{0 ifi=1,...,n-1
POV=14-6, ifi=n,where 4 is an odd integer.
Now consider the stable class 7o of the tangent bundle of N"(m). According
to [18] and [22] and by (5.0) we have
19 =r(n+1)01 =rn*((n+1)z), ze KUMHP")

The y-operations on the element ze KU(HP") are given by ,(z) = 1 + zt(1 — 1)
(see [18]). It follows that

z\ n+1
np(+1)2) = (1+3)" e KUMHP") ® Q = Qlz)/(™")

and further in KU(HP™) ® KU(HP™)

(5-4) 2" 1y ((m + 1)z1) @ y12((m2 + 1)22)

=ii n+1\ nm+1 pn-2i-2-1,1 @ /I
i ! e

i=0 =0
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We now apply Theorem 1.1 to the stable classes y; = (n; + 1)1, i =1,2. If
Span(M) =4n; +4n, + 6 — k, then the following relation is valid in
KU(N™(m1)) ® KU(N™(mj)),

(5.5) 2" 1y ((m +1)611) ® 71 /5((n2 + 1) 612) = 0 (mod 2"71),

here n>2n; +2n;+4 and j = [Izc]

By (5.0), the left hand side of this congruence is the image of the left hand
side of (5.4) under the map

N™(mj) x N™(my) - HP™ x HP™,
and (5.5) implies
n 2
(56) Z Z(m ;" 1) <n2 ;‘ 1)2n—2i—21—16{’1 ®6{’2 =0 (2n—j—l).
i=0 /=0
Under the projection
KU’ (N™(m1)) @KU (N™(m3)) — (Gi®Z/u(m) - (9n,)) ® (G2 ®Z/u(n2) - (9n,))
— Z/u(m) - (0n) ® Z/u(ny) - (On,) = Z/min(u(n), u(nz))
the relation (5.6) reduces in the latter group to
(5.7 A - (n + 1)(ny + 1)23 = 0 (mod 22 +2m+3)
provided 2™~ 1 >n; (i=1,2).
The integer u(n;) is a power of 2 and by Lemma 5.3 we have v,(u(n;)) >
m; — [logan;] — 1. So, if the hypothesis of Theorem 1.3 is satisfied, i.e. if
m; > [logan] + va(m + 1) + va(ma + 1) +4, (i=1,2), then min(v2(u(m)),

va(u(nz))) > va(my + 1) + vo(n2 + 1) + 3 and the congruence (5.7) is satisfied in
Z/min(u(n;),u(ny)) if and only if

J=2nm +2m —vy(nm + 1) —va(ny + 1).
This implies
Span(M) =4n; +4ny; + 6 —k <4ny; +4n, +6 — 2j
<2vy(n; + 1) +2v(ny + 1) + 6.
and achieves the proof of Theorem 1.4. O

We notice that this result is best possible when v,(n; + 1) and vy(nz + 1)
are zero modulo 4 since by Proposition 2.2 and Theorem 1.1 of [6] we have

Span(N™ (my) x N™(my)) > Span(N™ (m)) + Span(N™(m;))
=2w(n + 1) + 2vy(ny + 1) + 6.
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6. Proof of Theorem 1.4

Let M be the product []._,S™ x[[_,CP" and set m=m +
my+---+m,n=n+ny;+---+n, If all the spheres are of even dimension,
then the Euler chacarteristic of M is non-zero and Span(M)=0. In the
following we shall suppose that one of the spheres at least is odd dimensional.

The tangent bundle of M is isomorphic to P,_,p;(tsm) ® P_,4] (tcpn),
where p,: M — S™ and ¢;: M — CP™ are the canonical projections. The
tangent bundles of the spheres are stably trivial and the complex tangent bundle
of CP™ is stably isomorphic to (n; + 1)y;, where y; denotes the stable class of
the canonical line bundle over CP™ (see [22]). For 7y, the complex stable class
of the tangent bundle on M, it follows that

T0 = IZI:‘I?(("I + D).

. . . 1
As in the beginning of section 4, we have y;,(y) =1 +5H and so

n+1
Y12((m + Day) = (l + -;— u,) . An obvious generalization of Theorem 1.1 to

products of more than two factors implies: If Span(M) = m + 2n — k then the
following relation is satisfied in (X),_,KU(CP™) = KU(S) ® X),_,KU(CP™),
(S= S"™ xS8™ x--- x S™),

s 1 m+1 .
2N-1 @(1 +5m) =0 (mod 2V 71y,
I=1

where 2N >m +2n and j = [IEC] Expanding the latter relation, we get

n

S
X, >, 2 H(n’; l)ui“ ® -+ @ =0 (mod2V7).
I=1

u=0 uy+uy+--tus=u

Since u' ® --- @ u* are free generators, we obtain, concentrating on the
coefficient of u' ®@ --- @ pl*,

e r M+ 1 el T e
oN-n IH( In; )=2N " lg(m+1)50(mod2N’ h.

This implies

S
N——n—l+2vz(n1+l)2N—j—l
=1
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and further
S
2n—-2) w(m+1) <2<k
I=1
Finally,
S
Span(M) <m+2n—-k < m+2sz(n1+ 1),
=1
which finishes the proof of Theorem 1.4. Od

The Dold manifold D(u,v) is the quotient of the product manifold
S* x CP*
by the Z/2-action
S*x CP* - S"x CP’, (x,z) =(—x,2).

Hence S* x CP" is a 2-fold covering of D(u,v), and generally,

f[ S# x CPY

i=1

is a covering manifold of the product manifold

ﬁ D(u,-, D,‘).
i=1

Corollary 1.1 is therefore a direct consequence of Theorem 1.4. (If M — M is
a covering, then obviously Span(M) < Span(M).)
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