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ABSTRACT. Let Span(M) be the largest number of linearly independent tangent vector

fields on the manifold M. In this paper we establish a criterion giving an upper bound

for Span(M) when M is a product of stably complex manifolds. We obtain explicit

upper bounds and exact values of Span(M) in some special cases, such as products

of lens spaces, products of quaternionic spherical space forms and products of Dold

manifolds.

1. Introduction

Let M be a smooth, closed (i.e. compact and without boundary), con-

nected manifold, we denote Span(M), the largest number of everywhere linearly

independent tangent vector fields on M. Finding Span(M) is a classical

problem in differential topology. This problem was solved when M is a sphere

by A. Hurwitz, J. Radon and J. F. Adams (see [11], [20] and [1]). For

spherical space forms, J. C. Becker has calculated Span(M) in [6]. For more

details about the present state of the question, the reader may consult the

survey paper of J. Korbas and P. Zvengrowski [17].

In this paper we shall study Span(M) for M being a product of two stably

complex manifolds M\ and Mi. In other words, we suppose that the stable

class of the tangent bundle τMi of Mz carries a complex structure for i = 1,2.

We shall prove the following criterion for Span(M) in the framework of

complex ^-theory.

THEOREM 1.1. Let Mi be a smooth, closed and connected stably complex

mi-manifold and let y{ e KU(Mi) be the stable class represented by the tangent

bundle τ ^ , (i = 1 , 2 ) . If Span(M\ x Mi) = m\ + mi — k, then the following

relation is valid in KU°{Mι) ® KU°(M2),

2n-ιyι/2(yι) ® γι/2(y2) s 0 (mod 2- ' - 1 ) ,
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[ k]
— and yt is the formal power series associated to

Atiyah's yι-operations in KU-theory.

REMARK. At this point we should explain the meaning of the term

7ι/2(x)' I n general, for x e KU(X) the expression y\/2{x) does not make sense

in KU(X), but multiplied by a sufficiently high power of 2 it does. Explicitely,

if dim(X) <2m + l we define 2mγλ/2(x) e KU(X) by

Ϊ = 0

Throughout this paper we will adopt this convention. Note that the expo-

nential property of γt implies

r=0 /=0

In particular we shall consider the case where M is a product of lens

spaces Lnι(2mι) x Ln2(2m2), or a product of quaternionic spherical space forms

Nnχ(m\) x Nni{m2). We obtain the following results, where V2(n) is the

exponent of 2 in the prime factor decomposition of n.

THEOREM 1.2. For all positive integers n\ and n2, if m\ and m2 are large

enough, we have

Span(Ln*(2mι) x LΛ 2(2W 2)) = 2v2(«i + 1) + 2v2(n2 + 1)4-2.

Precisely, the above result is valid when:

1) m + 1 = 2Si(2ui 4-1) with ut > 1 and nti > [log2 m] + 2Sι + 2S2,

2) m + 1 = 2*(2wi -f 1) w//A wi > 1, n2 + l= 2Sl and nti > [log2ni]+

3) π, + l = 2 *

If wi and W2 are small, the best results we know are those of M. Yasuo
in [24].

THEOREM 1.3. For all positive integers n\, if m, > [log2ni\ + v2(n\ 4-1) +

v2(^2 4-1) + 4 , (i = 1,2), we λύwe

< 2v2(m + 1) + 2v2(w2 + 1) + 6.
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This result is best possible when v2(n\ + 1) and V2(«2 + 1) are divisible by 4 (see

[6]). For small values of m\ and m2 the best upper bounds have been obtained

by T. Kobayashi in [16].

We establish similar results for products of spheres and complex projective

spaces, Dold manifolds D(u,v) and products of Dold manifolds.

THEOREM 1.4. Let M be the product ΠLi Sm x Πϊ=icpni' V al1 t h e

spheres are even dimensional then Span(M) = 0. If one of the m, at least is
odd, then

s

Span(M) <m + 2n-k<m + 2^v 2 (n t + 1)
/=i

where m = m\+m2Λ V mr.

For the proof of this theorem only the second factor of M, involving

complex projective spaces, will be taken into account (see section 6). So, the

upper bound given in theorem 1.4 is a good bound only if X)[=1 Span(Smi) is

small with respect to n\ + n2 H \-ns, or if r is small with respect to s. For

example, we believe that

Span(S2u~ι x CPV) = p(2u) + 2v2(v + 1) - 1,

where p(2ή) is the Hurwitz-Radon-Eckmann number (see for example [18]).

Invoking Clifford algebra constructions, it is possible to show that

S / ^ S 2 " - 1 x CPV) > p(2u) + 2v2(v + 1) - 2.

COROLLARY 1.1. Let N = Y\r

i==ιD(ui,υi). If all the integers Ui, i =

1,2,..., r, are even then Span(N) = 0 . If one of the integers uι at least is odd,

then

Span(N) < 2^(w, + 2v2(ty + 1)).
ί=l

In particular:

Span(D(2u 4- l,t>)) < 2u + 1 4- 2v2(ι; 4- 1).

For r = 2 and />(2wz 4- 2) small with respect to t>, , (i.e. max(wi, w2) < t i 4- u2) the
corollary improves a result of Sohn in [21].

The paper is organized as follows: In section 2, we shall see that

Theorem 1.1 is a straightforward consequence of a criterion about geometric

dimension mentioned in [12] and [14]. We give a proof of this criterion in

section 3. From section 4 to 6 we prove Theorems 1.2 to 1.4.
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2. The geometric dimension and the vector field problem

Let A" be a finite CW-complex and let x be an element of K0{X). The

geometric dimension of x, denoted gdim(x), is the smallest integer k such that

x + k is represented by a Λ-dimensional real vector bundle. Here, k denotes

the trivial Λ>dimensional real vector bundle over X. If M is a smooth, closed

and connected m-manifold, we call geometric dimension of M and we denote

it by gdim(M), the geometric dimension of the stable class τo of the tangent

bundle of M

to = ΪM — HL-

It is a well known result that

(2.1) Span(M) <m- gdim(M).

Consequently, if we can give a lower bound for gdim(M), we obtain an upper

bound of Span(M). The following result established in [12] and [14] is a useful

criterion to give lower bounds for gdim(M).

THEOREM 2.1. If xeKO(M) is the image of a stable complex class, (i.e.

x = ry with y e KU{M) and r : KU(M) —• KO(M) the canonical map), and if

gdim(x) < k, the following relation is satisfied in KU(M)

t k~\
— and γt is as in Theorem 1.1.

We will give a proof of this theorem in section 3. Now we can show that

Theorem 1.1 is a straightforward consequence of Theorem 2.1. Let M be the

product M\ x M2, where Mz is a smooth, closed, connected and stably complex

mrπianifold for i= 1,2. If τo(/) = TM, — W/ denotes the stable class of the

tangent bundle over Mz, we have the following relations:

*o(0 = rytJ with yt e KU{Mt), i = 1,2.

~m\ +m2 =p](τp(l)) +p*2(τ0(2))

where pt: M\ x M2 —• Mi is the canonical projection.

Hence, the stable class τo of the tangent bundle over M\ x M2 comes from

a complex stable class. If Span(M\ x Mi) > m\ + m2 — k, by the inequality

(2.1) we have gdim(τ0) < k. Then, according to Theorem 2.1, in KU(M\ x

the following relation holds:

(2.2) 2"-1y1 / 2(P;(y1) +pl(y2)) s 0



Vector field problem 441

By the Kϋnneth theorem in KU-theory [3] the homomorphism

KU°(Mι) ® KU°(M2) - KU°(Mι x M2)

maps KU° (M\)®KU°(M2) onto a direct summand.
We have 2^yxl2(p\{yλ) +&&)) = 2"-1/>ί(y1/2(j>1)) p5(y1/2(y2)). The

latter element corresponds via the Kϋnneth isomorphism to 2n~ιγl/2(yι) ®
a n d Theorem 1.1 follows from (2.2). •

J^et / : M -• BSO(2n), 2n > dim(M), be the classifying map of
Λ: G KO(M). Since x = ry, we can lift the map / to BU(n). We shall denote
the classifying map of y by g. If we assume that gdim(x) = A:, we can lift/to
BSO(k) and further to B(n,k), the latter space being the pull-back space of the
diagram

BSO{k)

BU(n) > BSO(2n).

We have the following commutative diagram

B(n,k) - ^

(2-3) yS L

M —2-> BU{ή) —ϋ-t BSO(2n).

With the same hypothesis as in Theorem 2.1 we can give a second criterion
concerning the geometric dimension of real stably complex vector bundles.

THEOREM 2.2. If gdim(x) < k, the following relations are satisfied in
H*(B(n,k);Z),

where cι is the i-th universal Chern class.

PROOF. In [12] and [15], we have determined the additive structure of
H*(B(n,k);Z). There are abelian group isomorphisms:

if k = 2ί + 1
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where A{x\,.. .,xm) is the free abelian group generated by the elements

xiχXi2 ...Xis w i th I < i\ < 12 < - < is < m,

Ci is the image of the i-th universal Chern class under the map p* and the

elements 6, satisfy the relations

Ci = 2bu i = g l + 1 , . . . , Λ - 1 .

Then, by the commutativity of the diagram (2.3), we have

(Tict) =r(p*(ci)) =f*(2bi) = 2f{bi)

for i = Γ|l + 1 π - 1 . D

We shall also need the two following results:

PROPOSITION 2.1. Let τo and τo(/) be the stable classes of the tangent

bundles of M\ x Mi and Mi respectively (i = 1,2). Then:

(a) gdim(τ0) > m&x(gdim(τo(l)),gdim(τo(2))),

(b) gdim(τ0) < gdim(τo(l)) + gdim(τo(2)).

PROOF, (a) If gdim(τo) = k, the stable class τo may be written as τo =

ξ — k where ξ is a real Λ -dimensional vector bundle. Then we have

τo(l) = <ίW(τo(l)) +/>5(τo(2))) = ij(τ0) = i\{ξ) - k

and so gdim(τo(l)) <k = gdim(τo). In the same way we show gdim(τo(2)) <

gdim(τ0).

(b) If gdim(τo(i)) = kj, the stable class τo(/) may be written as τo(/) =

ξi — ku where ξt is a real fc,-dimensional vector bundle, for i = 1,2 and so

τo = (ft )* (τo(l)) + (P2)*(τo(2)) = {ptffa) Θ

hence gdim(τo) <k\+kι = gdim(τo(l)) + gdim(τo(2)). •

PROPOSITION 2.2. 7/* Mi αwd M2 are a^ above, then

Span(Mχ x Af2) > Span(Mχ) + Span(M2).

PROOF. If there are k\ linearly independent tangent vector fields over Mu

for 1 = 1,2, then there are at least k\ +k2 over Mi x M2. D
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3. Spinor representations and generators of KU(B(n,k))

Let Spinc(2n) be the group (Spin{2n) x U(l))/(Z/2). Here Z/2 is the
subgroup generated by (ε, -1), where ε denotes the generator of the kernel of
π : Spin(2ή) —• SO(2ή), the 2-fold covering map of SO(2n). The composition
of the projection Spin(2ή) x C/(l) —»• Spin(2n) and π sends the subgroup Z/2 to
the identity matrix of SO(2ή), and induces a map

ft: Spinc{2ή) -> SO(2n).

We can also see the group Spinc{2ή) as π~ι(SO(2n) x SO(2)), where SO(2ή) x
SO{2) is identified with a subgroup of SO(2n + 2) and π : Spin(2n + 2) ->
S0(2n + 2) is as above.

The canonical inclusion C/(w) c S0(2n) lifts to Spinc(2n). Then, the map
BU(n) -A BSO(2n), which is induced by this inclusion on the classifying spaces,
lifts to BSpinc(2ή) (see [4]), i.e. we have maps

(3.1) BU(n) h BSpinc{2ή) ^ BSO(2ή), with Λ« O/2Λ = rΠ.

The pull-back diagram of Lie groups

Spinc(2k) > SO(2k)

Spinc(2ή) > SO(2n)

gives rise to a pull-back diagram on the classifying space level and together
with (3.1) we obtain the pull-back diagram

(3.2)

BU(n)

In the following we concentrate on the left hand square. The diagram induces
a commutative diagram in ^(/-theory.

It is a well known result that the ring KU(BG) is isomorphic to the
completed representation ring RU(G), when G is a compact, connected Lie
group (see [5]). This is our motive to use below some information about the
representation rings of Spinc(2n), Spinc(2k) and U(n) to define generators of
KU(B(n,2k)) (see also [12]). In a first step we consider the projection
Spin(2n) x U(l) —• Spinc(2ή). It induces an injection of representation rings

φ* : RU{Spinc(2ή)) -> RU{Spin{2ή)) ® RU(U(l)).
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Let p be the representation defined as the identity of U{\), and let A\n, A2n be

the canonical irreducibles spinor representations of Spin(2ή). The represen-

tations A^n ® p of Spin{2ή) x U(l) give rise to the representations A^ of

Spinc(2ή) (the elements (β,-l) acts trivially). The latter induce two elements

in KU(BSpinc(2n)) that we still denote A2n and A2n. There is a relation

between these two elements and some generators of KU(B(n,2k)) defined in

[12] and [13].

PROPOSITION 3.1. (a) In KU(B(n,2k)), there are elements oίk andβk+ι such

that the following relations are satisfied

k-\

r=0

k-l

r=0

n-\
m) 2 Pk+\ = 2s 2 γ

r=k+\

(b) In KU(B(n,2k+ 1), there is an element β'k+ι satisfying

r=k+l

Here the elements γr are the images of the universal generators of KU(BU(n))

under the map KU(BU(n)) -• KU(B(nJ)), j = 2k, 2k + 1.

PROOF. Let T, V, T" be maximal tori of the Lie groups SO(2ή),

Spin(2n), Spinc{2ή) respectively. Via the canonical inclusion U(n) a SO(2n),

T is also a maximal torus of U(n). Following [7], we know that

RU(T') s RU(T)[u]/(u2 = α i α2 . . . ocn)

where the α, are the 1-dimensional canonical irreducible representations of T

and u is an irreducible representation of V mapping ε to —1 e 17(1). With this

description of RU{V) and identifying RU(Spin(2n)) with its image in RU(T'),

we can write

and
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®P = «"* Π(«r + 1) ® /> = Π(αr + I)""1 ®P
r=\ r=\

in RU{Spin(2n))
Both elements 4 ^ + ̂ ζ, a n d u~ι®p belong to RU(T") c RU{T')®

RU{U{\)) and the image of the element A^ + A^ in RU(U(n)) shall be
determined, if we know the image of w"1®/?. Invoking the explicit
description of the map C/(w) —> Spinc(2n) given in [4], we see that the image of
u~ι ® p in RU(T) is the trivial representation and hence

r-l+2) =
r=l r=\ r=0

The image of A$n + A2n in RU(Spin(2k)) is equal to 2n~k(A\k + Δ2k). By
homotopy commutativity of the diagram (3.2), the element / ^ ( ^ i + ^ϊk) °f
KU(B(n,2k)) satisfies the following relation

r=0

where γr denotes the image of the r-th universal class under the map p*.
Consequently, the element

~2k) - Σ 2"~ryr

k

Σ
r=0

satisfies

n-\

2nkβk+i = y ^ 2n~ryr.
r=k+\

So we have proved part iii) of Proposition 3.1.
We know that the Euler class in KU-theory of the sphere fibration

r»2λ:-l BSpinc(2k - 1) -> BSpinc(2k)

is the element A2k - A2k (see [4]). We denote by εk the image of this class in
KU(B(n,2k)), (i.e. the Euler class of the induced fibration under the
and we can write:

k k-l

r=0 r=0
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We set
k-\

satifying relation i) of Proposition 3.1; furthermore β* = γk + βk+\ — ^k-
Relation ii) is a straightforward consequence of relations i) and (3.3).
To prove part (b) of the proposition we consider the canonical map

B(n,2k+ 1) Q B(n,2k + 2). In JΠT-theory the homomorphism pi maps the

Euler class β̂ +i to zero. We set βfk+ι =/>5(α*+i) a n ( ^ calculate

+ βk+2)

Relation iii) for the case B{n,2k + 2) implies (b). •

The generator βk+ι may be defined in another way, with the help of Thorn
and Bott isomorphisms (see [12]).

Now we can see Theorem 2.1 as a consequence of the above Proposition.
Let / : X —• BO(2n) be a classifying map of x = ry in KO(X), where r and y
are as in section 2. The map/lifts to BU(ή) and we denote g the classifying
map of y. If gdim(x) = k, f lifts to BSO(k) and there is a map / : X —•
B(n,k) such that the following diagram is commutative

If k is even, we apply/* to the relation iii) of Proposition 3.1. We obtain in
k \kλ

KU(X), withy = - = - , and identifying γr e KU(BU(n)) with its image in

KU(B{n,k)):

= 0 (mod 2"-J-χ).
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If k is odd, say k = 2/ + 1, we proceed as before invoking (b) of Proposition

3.1. D

4. Proof of Theorem 1.2

By a well known theorem of H. Hopf, the span of the complex projective
spaces CPn and their products is zero, since the Euler characteristic of these
manifolds is non-zero. But, to study the lens space case, it will be convenient
to invoke the following facts on CPn (see for example [18]). The complex K-
theory of the complex projective space CPn is given by

10 i f ? = l ,

where μ denotes the stable class of the canonical complex line bundle over
CPn. Since the KU-theory of CPn is torsion free, γχ/2(x) makes sense in

l / l v + 1

KU(CPn) ® Q. We have γι/2(μ) = 1 + ̂  a n d Vipd" + 1)/*) = ί 1 + ψj .
The stable class of the tangent bundle τcp» - 2n over CPn may be identified
with r((n + l)μ) (see [22]). It follows that the stable class of the tangent
bundle of CPni x CPni corresponds to the element (n\ -\-l)μx® (n2 + \)μ2 of
KU0(CPn*)® KU°(CPn2) and we calculate:

{) ® γι/2((n2 + \)μ2) = 2»

We now turn to the lens spaces. The space Ln{2m) is the quotient space
S2n+λ/(Z/2m) where the action on the sphere S2"*1 c C n + 1 of the group Z/2m

generated by ζ = exp(iπ/2m~ι) is given by:

ζkz={ζkzo,ζkzu...,ζ
kzΛ).

It is well known that the KU-theory and the integral cohomology of Ln(2m)
are given by:

if q = 0,2w + 1

Hq(Ln(2m); Z) s ^ Z/2W if ^ even, 0 < q < 2n

otherwise.
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Here σ = π*(μ), where π : Ln(2m) —> CPn is the canonical map. The group

H2r(Ln(2m); Z) s Z/2 m is generated by z r where z is the first Chern class of σ.

For a complete description, the reader is referred to [18].

Recall that the stable class τL«(2m) ~ 2n + 1 of the tangent bundle of

Ln(2m) may be identified with r((/i + l)σ) (see [22]), and that the stable

class of the tangent bundle of Lnι(2mι) x Z,Λ2(2W2), is the element τ 0 =

r(pj((/!i + l)σ\) +/>2((«2 + l ) ^ ) ) . The latter element is the pull back of the

stable tangent bundle of CPnχ x CPni with respect to the projection

L"ι(2mi) x Ln2(2m2) -> CP" 1 x CP" 2 .

Now we want to find a lower bound for gdim(τo). We proceed in two

steps. First we apply the cohomology criterion of theorem 2.2. This criterion

gives us a first bound for gdim(τo) (see Prop. 4.2). Next we use this bound

and Theorem 2.1 to prove Theorem 1.2. We start with some technical lemmas.

LEMMA 4.1. Let g : Lni(2mι) x Lni(2mi) -> BU{n) be the classifying map

o/Pι((n\ + l)σi) +p*2((n2 + l)σ2). Then for 1= 1,2,...,«, we have

where g* is the map induced by g in integral cohomology, cι is the l-th universal

Chern class, and zt = c^σi) e H2(Lni(2mi);Z) s Z/2 W ί , for i = 1,2, and n >

2.

PROOF.

g*{Cι) =

i = 0

1=0

We know that z\ = 0 for / > n\ -h 1 and that z^"1 = 0 for / - i > n2 + 1. This

achieves the proof. •
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LEMMA 4.2. Let n + 1 = 2s (2u + 1) and s>\ be integers. The following

congruences are satisfied,

_ / 1 (mod 2) if i = n + 1 - 2s

(mod 2) if n + 2 - 2* < i < n.

Notice, if n is even, then ( j is odd.
(n + \\ .

is

V n )
PROOF. Recall that V2 ( ( . ) ) = α W + α ( w ~k) ~ α ( w ) where φ ) is the

number of 1 in the dyadic expansion of n. Then, we have

= 1 + φ ) - α(2w + 1) = 1 + φ ) - φ ) - 1 = 0 .

Moreover, as ( . ) = ( Λ . we can reduce the case i > n -+- 2 — 2s

to the case i < 2s - 1.

Let us give the dyadic expansion of n + 1 and i,

« + 1 = 2*(2w + 1) = 2Sι + 2S1 + + 2*, with JI > s2 > > st = s,

i = 2qi +2q2 + '-+ 2q% with s - 1 > qx > q2 > > qr-

It is easy to see that

j- l r-1

n + 1 - i = 2 J l + 2S2 4- + 2*-1 +

We observe that α(« 4-1) = t and α(ι) = r, then we can write

α(w + 1 - i) = t + ^ - r - qr = α(n -h 1) - α(i) + ^ - qr > α(w + 1) - α(ι). D

LEMMA 4.3. Consider the integers Λ,- + 1 = 2ίl(2wI + 1) w/ίA «/ > 1

(i = 1,2), and I = n\ + n2 -f 2 - 2*1 - 2*2. H^ Λαi e gf*(c/) φ 0 (mod2).

PR<X)F. According to Lemma 4.1, we have

/=max(0,/-n2)
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Using Lemma 4.2, we see that ί 1 is even if

n\ + 1 - 2Sι <i< min(/,ni) < nu

we also see that ( , ) is even if

V / - i /

l-n2< max(0, / - n2) < i < n\ + 1 - 2Sχ,

since in this last case n2 + 1 - 2Sl < n\ + n2 -f 2 - 2Sl - 2S2 - i = / - / < n2.

Finally ( ^ ^ M ^ ^ ) i s o d d i f i = "ι + l-2Sι, since / - / =

Λ2 + 1 - 2 * . So,

we have established

^ l ) ( " 2

2 t ' ) ^ 1 + 1 - 2 " β ^ 2 + 1- 2 1 2 + 0 (mod 2). D

LEMMA 4.4. Consider the integer n + 1 = 2s{2u+ 1). WKe Aαt e

gdim(τLn{2m) - 2yι+l) > 2« •+- 2 - 2*+1.

PROOF. We know that τLπ(2™) - 2ΛI + 1 = r((n 4- l)σ). Moreover, if

: Ln(2m) —• 2?ί7 denotes the classifying map of the stable bundle ( » + l)σ,

Assume that gdim{τLn^2m^ — 2n+1) —2n+\— 2S+X. Then according to

Theorem 2.2

g*(cι) = 0 (mod2) for / > Λ + 1 - 2s,

which is inconsistent with Lemma 4.2. •

LEMMA 4.5 If n = 2s - 1 and m > [log2n] + 1, ίλe«

gdim(τLn{2m) - 2n+l) > [-J.

PROOF. According to [24] we have gdim(τLn^2m^ — 2n+ 1) > r2(n,m) where

In our case ^ ί ί " , . )) = V2\\ r )) = S ~
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In particular if r = Γ l̂ = 2s~λ - 1,

s - V2(r) = s = [Iog2 n] + \<m<m+l=m + n-2r. Π

PROPOSITION 4.1. Let Λ, + 1 =2 J '(2ιi f+ 1) be an integer with M, > 1
( i = l , 2 ) . Then

gdim(τ0) > 2nx +2n2 + 4- 2 * + 1

PROOF. Assume that gdim(τ0) = 2n\ + 2n2 + 3- 2Sι+ι - 2S2+ι. Then,
according to Theorem 2.2, we should have g*(cι) = 0 (mod 2) for all

/ = n\ -h «2 + 2 - 2Sχ - 2Sl,..., n\ H- n2 + 1, which is inconsistent with the result
of Lemma 4.3. •

PROPOSITION 4.2 a) Consider the integers n\ + 1 = 2Sι(2u\ + 1) with

gdim(τo) > maxί 2n\ +2 — .

b) Consider the integers nx• -\-1 = 2Si and nti > [log2 nj\ + 1, (i = 1,2).

we

PROOF. By Proposition 2.1

gdim(τ0) > ma,x(gdim(τo(l)),gdim(τo(2))),

where τo(/) = τL«I(2«,) - 2λif + 1.
Moreover, according to Lemmas 4.4 and 4.5 we can assert that, under the

hypothesis of a),

gdim(τo(l)) >2nx+2- 2*+ 1 and gdim(τo(2)) > g ]

and under the hypothesis of b),

gdim(τo(l)) > [y] and gdim(τo(2)) > g ] . •

Now, we apply the criterion of Theorem 1.1 to the stable classes yi = fa -f l)σ, ,
i = l,2. If Span(Lnι(2mi)xLn*(2m2))=:2(nι+n2 + l)-k, the following
relation is satisfied in KU(Ln'(2m')) ® KU(Ln2(2m>)):

ni + l)σi) ® (n2 + l)σ2) = 0

with n>n\+n2 + 2 and y = - .
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The left hand side of this congruence is the image of the left hand side of
(4.1) under the canonical projection ZΛ(2mi) x L"2(2m2) -* CPnι x CP"2 and
(4.1) implies

(4.2) £ £2"- '- '- ' h + l ) ("2 + l )σ{ <g> σ> Ξ 0 (mod2--').
, =o /=o \ ι / \ ι /, =o /=o

We shall consider the projection

πi ® π2 : Z[<n] ® Z[σ2]

The relation (4.2) lifts to Z[σ\] ® Z[σ2] modulo ker(π\ ® π2), that is to say
modulo the ideal of Z[<τi] ® Z[σ2] generated by

< 1 + 1 ® 1,1 ® σ2

Λ2+1, ((1 + σx)
2mι - 1) ® 1 and 1 ® ((1 + σ^)1^ - 1).

We obtain in Z[σi] ® Z[σ2] :

(4.3)
,=0 1=0 \ ι

= 2"~]~λ Σ Σ
ί=0 /=0

where P\(σ\,σ2), Piipx^i) are certain polynomials and the coefficients an are
integers.

We need the following result to conclude.

LEMMA 4.6. If m> [logiin)], then

(x + \)2m - 1 = 2m-V°^p(χ) + y + ^ c)

/?(JC), q{x) are polynomials in the indeterminate x and deg(p{x)) < n.

PROOF. We have

and since

\\i ) ) = m~V 2W^m-

i '=l,2,...,/i, the lemma follows. Π
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We shall now assume that m, > [Iog2ni\ + l(i = 1,2), and we set

[ k
-

and n —j — 1:

1) If mr + 1 = 2*(2n, + 1), Ui > 1 (i = 1,2), we have

7 > m + W2 + 2 - 2* - 2 ί 2, n -j - 1 < 2* + 252 - 1.

2) If A*I + 1 = 2J I(2MI + 1), wi > 1, n2 + 1 = 2S\ we have

+ l -2-,[ | ] ) , n -j- 1 <

3) If Λ, + 1 = 2J i

5 (i = 1,2), we have

3 ( Λ I + 2 )

Under the above hypothesis the relation (4.3) becomes in Z[σ\] ®Z[<72]:

(4.4) χ : £ 2 ^ )(

As the generators σ[ ® σι

2 are free in Z[σ\] ® Z[σ2], (4.4) induces the con-
gruence relations:

(4.5) 2"--'-1 ( " ' + l ) ( " 2 + ! ) Ξ 0

for 0 < i < «i and 0 < / < «2 In particular, if / = n\ and / = «2 in (4.5), one
gets

2π-'w-1(wi + 1)(Λ2 + 1 ) Ξ

In other words, we have:

n - n\ - Jt2 - 1 -h v2(ni + 1)4- v2(«2 + 1) > n -j - 1

so

j > Π\ + «2 ~ V2(/Il + 1) ~ V2(«2 + 1).

If one of the following three conditions is satisfied

1) m + 1 = 2J'(2«/ + 1), «/ > 1 and rm > [log2πj + 2J l + 2J2(i = 1,2)

2) «i + 1 = 2J l
 (2MI + 1), MI > 1, n2 + 1 = 2* and mz

( ί = l f 2 )
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3) rtl.+ l = 2 * a n d m , > [ / ^ ] + ^ ^
(/= 1,2), then V L 4 J L 4 J /

Span(Lnι(2mι) x L"2(2m2)) < 2v2(«i + 1) + 2v2(«2 + 1) + 2 .

Using Proposition 2.2 and Theorem 1.1 of [6], we observe that

Span(Lnι(2mη x Ln2{2m2)) > Span(Lni(2Wl)) + Span(Ln2 (2m2))

= 2v2(«i + 1) + 2v2(w2 + 1)4-2.

This achieves the proof of Theorem 1.2. •

5. Proof of Theorem 1.3

Let H be the field of quaternions and let m be a positive integer. Let Qm

be the group of order 2m + 1, generated by x and y such that x2"1'1 —y1 and
xyx = y. We can see Qm as a subgroup of S3 cz H, taking x = exp(iπ/2m~λ)
and y—j. Here quaternions are represented by z\ +yz2 with zi, z 2 e C .
W^ cα// Qm—spherical space form, or quaternionίc spherical space form, the
quotient manifold Nn(m) = S4n+3/Qm, where the action of the group Qm on

c H * + i i s g i v e n b y :

We recall that to any group representation of Qm corresponds a vector bundle
over Nn(m). We denote by αo, αi and δ\ the stable classes of the bundles
corresponding to the complex representations αo, a\ and ζ defined by:

ao(x) = 1, ao(y) = - 1

a\{x) = - 1 , a\(y) = - 1

Notice that the representation ζ is nothing else than the representation induced
by the canonical representation of S3 cz H in U{2). The latter representation
defines a canonical 2-dimensional complex vector bundle p over the quater-
nionic projective space HPn = S4/ϊ+3/S3. Its stable class z = p — 2 is mapped
on to <?i by the homomorphism induced by the projection

S4n+3/Qm = Nn(m) A S 4 π + 3/S 3 = HP" c HP 0 0 ,

(5.0) δx=π*(z)eKU(Nn(m))
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According to [22] we can identify the stable class of τNn^ in KO(Nn(m)) with

ri(n+l)δx).
Consider the elements β(s) in KU(Nn(m)) inductively defined by the

formulas

(β(0)=δι

\ β(s) = β(s - I)2 + 4β(s - 1) for s > 1.

For all integer s > 1, let ά(s) and V{s) be the integers such that 0 < b'(s) < 2s

and

n + 1 if n odd

n if n even.

and for all integer i = 2s -h d such that 0 < d < 2s and 0 < s < m, let

1) + 1 if 2d<b'(s+l)

1) if 2d>b'(s+\)

if i = 1

M(0 = ^ 2 w - J - 2 + u | / ^ if i = 2* > 1

if i = V + rf > 3, 0 < d < 2s.

Now we can give the additive structure of KU*(Nn(m)). The result is due to

K. Fujii and M. Sugawara in [10] and we will adopt their notation in what

follows. As abelian groups there are isomorphisms:

and

(5.1) KU\Nn{m)) s Z/2"+1 (αo> Θ Z/2*+1 (αi) θ

where M = min(2w~1,/i). Here Z/ί (x) denotes the Cyclic group of order t

generated by x.

The generators αΓ and <5f are defined by

m-3 m-3

Έi = *ι-2Σβ{s)l[
s=l t=s+l

(5.2) δ, = ̂ (ί) + ^ 2(2J-1«α'(s)+1)^(J -y), i = 2s, 1 < ί < m - 1,
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s-l 5+1

a, = if-V(i)n(2+^)-2^
P 3J 7=0 j=2

i = 2s + rf, 1 < j < m - 1,0> < d < 2s.

We need some complementary technical results.

LEMMA 5.1. For all 1 < s < m - 1, we

where qs(δi) is a polynomial of degree 2s — 1 with even integer coefficients.

PROOF. It is easy to see that the assertion is valid for s = 0 and s= I.

Moreover, if it is true for s > 1, the recurrence relation

β(s+l) =β(s)2 + 4β(s) implies that it is true for J + 1. D

LEMMA 5.2. For all i = 2s + d <n with 0 < d < 2s and Q<s<m-\, the

integer a(i) satisfies the condition a(i) > 2.

PROOF. Recall that

n + 1 if n odd

. 2n if n even.

For the two cases we have a'(s+ 1) > 1, since b'(s+ 1) < 2s+ι < 2n. Then, if

2d< b'{s + 1), by definition a(i) = a'{s + 1) -h 1 > 2. If 2d > b'{s + 1), we also

have a{i) = a'(s+ 1) > 2, since a!{s+ 1) = 1 would imply

< 2s+ι + 2d

<2n

which is impossible. •

LEMMA 5.3. Let u(ή) be as above. Then

v2(u(n)) >m- [log2n] - 1.

PROOF. For n = 2s > 1, u(n) is given by 2m-s-2+ά^ = 2m-log2n,

and for n = 2s + d > 3 with 0 < d < 2s, u(n) is given by 2m~s-*+aW =
2m-[log2n)-\ ^ Q

LEMMA 5.4. For all 1 < i < M, ίλere £y an odd integer At and a polynomial

Pi(δ\) of degree i— 1 with even integer coefficients such that

δi = Aiδ[+pi(δι).



Vector field problem 457

PROOF. By definition, the result is true for / = 1. If i = 2s, we replace in
(5.2) the elements β(s) and β{s-j) by the expression given in Lemma 5.1.
Then δi becomes

δi = δ

7=1

If i = 2s + d with 0 < d < 2s, we do the same with the relation (5.3) and obtain

δt = δd

χ-\δ\ + Aδx)f[(2 +δf + φx)) - 2^-ιδf(δY + qa(δχ))
j=0

5+1

7=2

and hence δi = (1 — 2a^~ι)δγ+ls +p(δ\), where p(δ\) is a polynomial in δ\ of
degree < / with even integer coefficients. We conclude with Lemma 5.2. •

It follows from (5.1) and Lemma 5.4 by induction on i that the elements
^ij <?2> ,δi and δ\, δ\,...,δ\ generate the same subgroup of KU°(Nn(m)); (all
groups under consideration have order a power of 2).

Invoking (5.1) again and assuming that 2m~ι >n, we set

KU°(Nn(m))^G®Z/u(n)-(δn),

where G is the subgroup generated by αo, off, δ\, δ\,... ,δ"~ι and we get for the
projection p: KU°(Nn(m)) -• Z/u(n) (δn):

if I = 1 , . . . , Λ - 1

A δn if i = n, where A is an odd integer.

Now consider the stable class τo of the tangent bundle of Nn(m). According
to [18] and [22] and by (5.0) we have

τ o = r(n + l)<5i = rπ*((n + l)z), z e KU(HPn)

The y-operations on the element zeKU(HPn) are given by γt(z) = 1 + zt{\ — i)
(see [18]). It follows that

+ ! ) W + 1 eKU(HPn) <g) Q = Q[z]/(zn+ι)

and further in KU(HPni) ® KU(HPn2)

(5.4) 2"-Vi/2((«i + l)n) ® γί/2((n2 + l)z2)

z = o /=o
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We now apply Theorem 1.1 to the stable classes yt = (w/ + l)ίi,i, i = 1,2. If

Span(M) = 4n\ + 4«2 + 6 — k, then the following relation is valid in

KU(N*(mi)) ® KU(Nn2(m2)),

(5.5) 2"-ιyι/2((m + l ) ί M ) ® y1/2((π2 + 1)<M = 0 (mod2^- 1 ),

here w > 2n\ + 2«2 + 4 and / = - .

By (5.0), the left hand side of this congruence is the image of the left hand

side of (5.4) under the map

Nnι(mx) x Nn2(m2) -+ H P " 1 x H P " 2 ,

and (5.5) implies

Σ Σ( M I

ιo /o V ιι=o /=o

Under the projection

KU\Nn^mx))®KU\Nn>(m2)) -+ (Gλ®Z/u{nx) (δnι))®(G2®Z/u(n2)

-^ Z/iι(πi) (δHι) ® Z/i/(fi2) (δn2) S Z/min(

the relation (5.6) reduces in the latter group to

(5.7) A (nχ + \){n2 + 1)23 = 0

provided 2mi~ι >rii (i= 1,2).

The integer κ(/i, ) is a power of 2 and by Lemma 5.3 we have v2(u(rii)) >

mi — [log2rii] — \. So, if the hypothesis of Theorem 1.3 is satisfied, i.e. if

mi > [log2rii] + v2(«i + 1) + v2(n2 + 1) + 4, (i = 1 , 2 ) , then min(v2(u(nι)),

vi(u{n2))) > v2{n\ + 1) + V2(«2 + 1) + 3 and the congruence (5.7) is satisfied in

Z/min(w(Λi),w(«2)) if and only if

j > 2nχ + 2n2 - v2(«i -f 1) - v2(«2 + 1).

This implies

Span(M) = 4n\+4n2 + 6 - k < 4n\ + 4n2 + 6 - 2/

< 2v2(wi + 1)4- 2v2(w2 + 1) + 6.

and achieves the proof of Theorem 1.4. •

We notice that this result is best possible when v2(n\ + 1) and V2(«2 + 1)
are zero modulo 4 since by Proposition 2.2 and Theorem 1.1 of [6] we have

Span(Nnι(mι) x N"2(m2)) > Span(Nni(mi)) + Span(Nn2(m2))

= 2v2(nι + 1) + 2v2(w2 + 1) + 6.
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6. Proof of Theorem 1.4

Let M be the product Πί=i SWl x Π / = i c p n ι a n d s e t m = m i +
mi Λ h mΓ, /i = /ii + /i2 H h «j. If all the spheres are of even dimension,
then the Euler chacarteristic of M is non-zero and Span(M) — 0. In the
following we shall suppose that one of the spheres at least is odd dimensional.

The tangent bundle of M is isomorphic to φ£=1/>*(τJ«/) θφ/ ί

= 1 ^/( τ cp"θj
where pt: M —> Sm' and qι: M —> CPnι are the canonical projections. The
tangent bundles of the spheres are stably trivial and the complex tangent bundle
of CPnι is stably isomorphic to (nι 4- l)μh where μx denotes the stable class of
the canonical line bundle over CPnι (see [22]). For τo, the complex stable class
of the tangent bundle on M> it follows that

s

1=1

As in the beginning of section 4, we have 71/2(̂ 7) = 1+-5M1 and so

/ j yif+i
ϊι/2((nι + l)β*ι) = ( 1 + 9^/) An obvious generalization of Theorem 1.1 to

products of more than two factors implies: If Span(M) =m + 2n-k then the
following relation is satisfied in ®*=1KU(CPnι) c KU(S) ® (g)s

ι==ιKU(CPn<),
(S = Smι x SW2 x x Smr),

0
s / 1 \»/+l

N~ι (X) 1 + - f t ) =
/=i V 2 /

\kλ
where 2iV > m -j- 2w and 7 = - . Expanding the latter relation, we get

Σ
/=1 ^ '

Since /z"1 <g) ® μ"' are free generators, we obtain, concentrating on the
coefficient of μ"1 ®

ΛΓ-«-I J | ^ / + 1 \ = 2iv-n-i j j ( | f / + j) s 0
/=Λ nι ' 1=1

This implies

Σ
1=1
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and further

1=1

Finally,

s

Span(M) <m + 2n — k <m + 2 V^ vi(rtι -1-1),
ι=ι

which finishes the proof of Theorem 1.4. •

The Dold manifold Z)(w, v) is the quotient of the product manifold

Su x CPV

by the Z/2-action

S" x CPV -> S" x CP\ (x, z) = (-jc, f).

Hence S" x CPϋ is a 2-fold covering of D(u, v), and generally,

r

1=1

is a covering manifold of the product manifold

f[D(uhVi).
ί=l

Corollary 1.1 is therefore a direct consequence of Theorem 1.4. (If M —> M is
a covering, then obviously Span(M) < Span(M).)
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