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AsstrACT. Two bilinear forms on a scalar generalized Verma module M(1) =U
(8) ® y(p)C are treated in this paper, where g is a complex simple Lie algebra and p is
its parabolic subalgebra. They coincide on each I-irreducible component up to scalar
multiple, where [ is a Levi subalgebra of p. These ratios have played important roles in
the representation theory. We show intrinsically that these ratios are products of b-
functions when the nilpotent radical n* of p is commutative. As an application we
explain the reason why the b-functions control the irreducibility or M(A), the orbit
decomposition of n* under the action of the Levi subgroup, and the unitarizability of
M(4).

1. Introduction

Let G be a complex simple Lie group. Let g be the Lie algebra of G and
b its Cartan subalgebra. Let 4 and 4" be the root system and the positive
system, respectively. Let p be a parabolic subalgebra containing § and all
the positive root spaces. Then the pair (g,p) is said to be of commutative
parabolic type if the nilpotent radical nt of p is commutative. In this paper,
we exclusively consider (g,p) of commutative parabolic type.

Let M(A) be the scalar generalized Verma module induced from /e
Hom(p,C). Then M(A) ~ C[nt*] as vector spaces. We therefore obtain the
representation of U(g) on C[nt], and denote it by ¥, : U(g) — End C[n*].

Let {X,, H;} be a Chevalley basis of g, where X, eg* for a € 4 and
H;el. To give the definition of contravariant forms, we define an involu-
tive anti-automorphism ‘- on U(g) by X, — X_,(a¢e€4) and to be the
identity on . For a representation (z, V) of g, a bilinear form (,) on V
is called a contravariant form or a 7=(U(g))-contravariant form if it satis-
fies (n(X)v,w) = (v,n("X)w) for X eg and v, we V. We study a canonical
¥,(U(g))-contravariant form (,), and a canonical ad(U(l))-contravariant
form (,) on M(4) ~ C[n*] , where I is the Levi subalgebra of p containing
h. Let Cln*]= @,.l, be the irreducible decomposition as an ad(U(1))-
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module. Then the above two contravariant forms coincide up to constant
multiple on each 1,. Let g;(u) be the ratio of (,); and (,) on I,.

On the other hand, there is a prehomogeneous vector space (L,Ad,n")
associated with (g, p) of commutative parabolic type, where L is the connected
subgroup of G corresponding to I. If (L,n*) is regular prehomogeneous vector
space (see Definition 6.1 (3)) then there exists a relative invariant f € C[n*] and
the b-function b(s) is defined by 'f(9)f ! = b(s)f*. In Wallach [28], g;(x)
appears and is determined explicitly. Moreover the results of Kostant-Sahi
[16], of Shimura [23], of Rubenthaler-Schiffmann [20] and of Faraut-Koranyi
[4] are deduced from the explicit formula for g;(x«). Our main purpose is
to show intrinsically that ¢;(u) is a certain product of b-functions. As an
application we explain the reason why the b-functions control the irreducibility
of M(4), the orbit decomposition of nt under the action of the Levi subgroup,
and the unitarizability of M(4).

The contents of this paper is as follows: In §2 to §5, we prepare basic
definition such as scalar generalized Verma modules and contravariant forms.
In §6 we recall the definition of b-functions and introduce another function,
which is deeply related to b-functions. In §7 we state our main theorem
(Theorem 7.1). In §8 we define subalgebras of g and restate our main result at
the end of the section. In §9 we derive an important conclusion Corollary 9.1
from our main theorem, which gives an expression of ¢;(x) as a product of b-
functions. In §10 we give another expression of g;(u).

In §11 , we consider the irreducibility of M(4). It is known that M(A) is
irreducible if and only if the contravariant form (, ), is nondegenerate or
equivalently g;(u) # 0 for all 4. In Jantzen [12], the determinant of (, ), is
calculated and the irreducibility criteria are described concretely. In Shapo-
valov [22], the determinant is calculated for the Verma module. It is observed
that the values of A which makes M (A) irreducible, are related to the zeros of
the b-functions. The first published result which relates the irreducibility
criteria and the b-functions, is Suga [24]. The necessary condition for the
irreducibility is stated there in terms of b-functions in the case where g is
classical. Gyoja [7] and [8] conjectured an irreducibility criterion in terms of b-
functions in a more general setting, and he proved this in some special cases
including the commutative parabolic cases by a case study. In this paper we
explain intrinsically why there exists such a relation between b-functions and
the irreducibility.

In §12, we consider the one-to-one correspondence between Ad(L)-orbit
on nt and the zeros of a b-function. Tanisaki found this correspondence
motivated by the study of hypergeometric systems (Tanisaki [25], [26]). His
proof was a case study. We give an intrinsic proof of the correspondence.

In §13, we consider the unitarizability of the irreducible quotient of M (A1),
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say L(A). This application is suggested by Professor Shuichi Suga. Only in
§13, we work in ‘real’ situation, that is, we use a real form of the complex Lie
algebra g. Most arguments, however, go well as in the ‘complex’ situation.
There are many articles which treat the unitarizability (Wallach [27], Par-
thasarathy [19], Garland-Zuckerman [5], Enright-Howe-Wallach [3], Enright-
Joseph [13] and many other articles). It is known that the values of A such
that L(4) is unitarizable, are related to the zeros of a b-function. We explain
intrinsically the reason for this relation.

In §14 and §15, we prove the main theorem using Boe [1].

The author would like to express his gratitude to Professor Mutsumi Saito
for his constant encouragement and valuable advice. He also would like to
express his thanks to Professor Akihiko Gyoja, Professor Shuichi Suga and
Professor Hirofumi Yamada for their valuable advice.

2. Commutative parabolic type

Let g be a complex simple Lie algebra, and ) a Cartan subalgebra of
g. We denote the root system and the set of positive roots by 4 and 47,
respectively. Let {ay,...,a,} be the set of simple roots and let {wy,...,w,}
be the set of fundamental weights corresponding to {aj,...,a,}. In other
words, w; € h* and 2(w;, o) = J;i(aj, ). We take a parabolic subalgebra p of
g containing all the positive root spaces and ). Let [ be the Levi subalgebra of
p containing §, and n* the nilpotent radical of p. In this paper, we exclusively
consider the case where nt is nonzero and commutative. We say (g,p) in this
case to be of commutative parabolic type. In this case, p is a maximal
parabolic subalgebra and there exists exactly one simple root a;, such that the
root space g % is not contained in p. For all the possible pairs (g,p) of
commutative parabolic type, corresponding pairs (g, i) are listed in Figure 1,
where the numbering of the simple roots follows Bourbaki [2], and white circles
correspond to ;. Let 4, be the root system of I and 4}, = 4T\A4,. Set
n=>, 4 g *. Let G be the connected algebraic group corresponding to g,
and L be the closed subgroup of G corresponding to I.

3. Generalized Verma modules

DeFiNITION 3.1, For 4 € Hom(p, C), we set M(4) = U(g) ® y(,)C;, where
C, is the representation space of . The U(g)-module M () is called a scalar
generalized Verma module with highest weight A.

There is an identification S(n~) ~ C[n*], since n~ can be considered as the
dual space of n* via the Killing form. Thus there is a vector space iso-
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Fig. 1. Commutative parabolic type

morphism M(1) ~ U(n™) ®cCy ~ S(n~) ~ C[n*]. We can therefore consider
C[n*] as a U(g)-module. We denote this representation by ¥;: U(g) —
EndC[n*]. We can find explicit form of ¥,(X) for X e g by a direct cal-
culation.

LeEmMmaA 3.2.
() ?(X)=X (Xen?)
(2) ¥i(X) =ad(X) + A(X)

)
Ek :[X’Fk]a_ﬂc—'_l(X) (X €l),
o 0 ) .
—aFk—aN;A([X,FkD—aFk (X en®),

where {, > is the Killing form on g, (, ) is the inner product on §* induced from
the Killing form, {F}} is a basis of n~ and A% is the complex number determined
by A= Aw,,.

) w0 =3 Y IIX B, B
k1

In particular, ¥,;(U(g)) is contained in D,+, the ring of polynomial
coefficient differential operators on n*. We identify M(A) with ¥,(U(g))-
module C[n*] from now on.
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4. Two contravariant forms

In this section, we give a definition of contravariant forms and then we
introduce two contravariant forms on M(4).

DEerFINITION 4.1. Define anti-automorphism ‘- of U(g) by
X, —» 'X,=X_, (o € 4),
H,' — 'H,‘=H,' (ie{l,...,n}),

where H; €l is the coroot of «;, that is, H; e [g%, ¢ %] and o;(H;) =2, and
X, € g*(o € 4) are the root vectors such that {H;, X,} forms a Chevalley basis
of g.

Definition 4.1 depends on the choice of Chevalley bases. We fix a
Chevalley basis {H;, X,} once and for all. Here we have an equality

2
(4-1) <Xa7X—a>=W (OtEA),
Indeed, 2 Xy, X_o) = {[Hy, Xu), X—a) = {Hy, Hy) = 20/ (2, 2), 20/ (2, &) =
4/(a,a), where H, € b is the coroot of ae A+,

DeriniTION 4.2, Let (7, V) be a U(g)-module. A symmetric bilinear
form (, ) on V is called a contravariant form or a n(U(g))-contravariant form if
(n(u)v,v") = (v,n("u)v’) for all ue U(g) and v, v' e V.

The following propositions are fundamental on contravariant forms.

PROPOSITION 4.3. Let V be a U (g)-module and m a reductive subalgebra
of §. Assume that (,) is an m-contravariant form on V. If W) and W, are
inequivalent irreducible w-submodule, then (W1, W,) =0. In particular, dif-
ferent weight spaces of V are orthogonal with respect to ().

Proor. See Garland-Zuckerman [5, Lemma 2.5]. O

PROPOSITION 4.4. Let V be a U(g)-module. Assume that V is a highest

weight module. Then we have

(1) There exists a nonzero contravariant form on V, and it is unique up to
constant multiple.

(2) The radical of a nonzero contravariant form on V coincides with the
maximal proper submodule of V.

Proor. See Humphreys [11, §6] or Wallach [27]. O

We introduce two contravariant forms on M(A) ~ C[n*]. One is a
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¥,(U(g))-contravariant form and the other is an ad(U(I))-contravariant form
on C[n*].

DEFINITION 4.5. Define C-linear function ¢; : U(g) — C as a composite of
the projection from U(g) = U(h)® (¢~ U(g) + U(g)ct) to U(h) and A: U(h) —
C, where ¢ =3, _ .+ g** We define a ¥;(U(g))-contravariant form (, ),
by

(f,9), = ¢a("af) for f,g€Cln*] = Sn”) = U(g).
See also Humphreys [11, §6].

We will define another symmetric C-bilinear form on C[n*t]. We shall
identify S(n*) with the ring of constant coefficient differential operators on n*
via the Killing form as follows: For Pe S(n*) ~ C[n~|, define a constant
coefficient differential operator P(3) on n* by

(4.2) P(0)exp<{x, y) = P(y)exp<{x,y) forxen" and yen~.

For P e S(n*), we write it by P(d) when it is regarded as a differential operator
on nt.

DEFINITION 4.6. Define symmetric C-bilinear form (, ) on C[nt] ~ S(n")
by

(f,9) = ('9(9)/)(0)  for f,g€C[n*] =~ S(n7),

where ’g(0) is the constant coefficient differential operator on n* identified with
tge S(nt), and (‘g(d)f)(0) means a differentiation followed by evaluation at
0en'. This bilinear form is ad(U(l))-contravariant, since the bilinear form
defined by <(P,f> = (P(0)f)(0) for PeS(n*) and feCn*], is Ad(L)-
invariant. Moreover (, ) is nondegenerate.

We summarize some properties of these forms.

LemMma 4.7. (1) ¥,(U(1))-contravariance and ad(U(1))-contravariance are
the same notion.

(2) A ¥,(U(g))-contravariant form is also ¥;(U(l))-contravariant.

(3) (f,gh), = (¥u('9)f k),  for f,9,he Cln*] =~ S(n7).

@ (f,gh)=("9(0)f,h)  for f,g,heC[n*] = S(n").

Proor. (1) It follows from ¥;(X)=ad(X)+A(X) for Xel. (2) It
follows immediately from the definition of the contravariance. (3) Since (, );
is ¥,(U(g))-contravariant, and since ¥,(u) is just a multiplying operator
for ue Cn*] ~ S(n~), we get the identity. (4) It follows immediately from
Definition 4.6. O
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5. The ratio of the two contravariant forms

We have defined two contravariant forms on M(A)~ S(n™) ~
C[n*]. Since both (, ) and (, ), are ad(U(I))-contravariant by Lemma 4.7, it
follows from Proposition 4.4 (1) that (, ), coincides with (, ) up to constant
multiple on each irreducible ad(U(I))-submodule of C[n*]. In this section we
define a function g;(u) as the ratio of these two forms.

DErFINITION 5.1.  o,f € 4 are said to be strongly orthogonal, if o and f are
non-proportional and both a+ ¢ 4 and « — f ¢ 4 hold.

If o, € 4 and (a,f) <0, then « — f € 4. Thus if a is strongly orthogonal
to f then a is orthogonal to p.

We take the family of mutually strongly orthogonal roots contained in 43
as follows (Harish-Chandra [9]): Set y; = «;,. When we have taken y,,..., 7,
let y;,, be the lowest root in

{o € 4% | o is strongly orthogonal to all y,,...,7;},

if this set is not empty. Let r be the index of y; which we could take last. Set
Ai=—(n+--+y) forie{l,...,r}
THEOREM 5.2. (Schmid [21]) Let V), be the finite dimensional irreducible

ad(U(1))-module with highest weight u. We denote by C*[n*] the homogeneous
component of degree d of C[nt]. Then we have

1 (ﬂZklll +---+kr/1r,
dim¢ Homy(¥,, C?[n*)) = Jor some k; € Lo, d =3, jkj)

0 (otherwise)

For u=kildi+---+ki (kje L), let I, be the unique ad(U(l))-
submodule in C[n*] with the highest weight . Then we have an irreducible
decomposition

Cnfl= @ L.

ue Ej’:l Zs04

In particular C[n*] is multiplicity free, that is, all the multiplicities of irreducible
ad(U(I))-submodules are equal to one. Let f; be a highest weight vector of I,
and f,=f{'---fF for p=kidy+ - +kd, Then f, is a highest weight
vector of I,.

As we stated before, two ad(U(l))-contravariant forms (, ), and (, ) on
C[n*], coincide on each irreducible submodule I,. For pu=kid + -+ k.4,
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(kj € Zso) and A€ Hom(p,C), we define g,(u) by

(’ )A = QA(/‘)(a ) on I;t X ];4-
LemMa 5.3. For all u,(f,, f,) is nonzero.

ProOF. It is obvious from the definition that (, ) is nondegenerate on
C[n*]. For pu#v, it follows from Proposition 4.3 that (I,,1,) =0 since
C[n*] is multiplicity free. Thus (, ) is nondegenerate on each I,. We have
(/o fu) # 0 since the highest weight space of I, is one-dimensional. O

Thanks to Lemma 5.3, we have

(5.1) a1() = (Fu) il U F)-

6. b-Functions

In this section, we introduce prehomogeneous vector spaces and define b-
functions of prehomogeneous vector spaces associated with (g,p) of com-
mutative parabolic type.

DEerFINITION 6.1. (1) A finite dimensional G-module V is called a pre-
homogeneous vector space if there exists an open G-orbit on V.

(2) A nonzero function f on V is called a relative invariant of (G,V), if
there exists a character y of G such that f(gv) = x(g9)f(v) for all ge G and
vel.

(3) A prehomogeneous vector space (G, V) is said to be regular if there
exists a relative invariant f of (G, V) and the Hessian det(d”f /0x;0x;) is not
identically zero, where {x;} is a linear coordinate system of V.

REMARK 6.2. It is known that (L,n*) is a prehomogeneous vector space
and the open L-orbit contains X, +---+X,, where X, is an element of
our fixed Chevalley basis (Muller-Rubenthaler-Schiffmann [18, Theorem 2.4]).
The (L,n*) is regular if an only if Hermitian symmetric space G/L is of tube
type (Koranyi-Wolf [15]).

All the pairs (g,ip) of commutative parabolic type, where (L,n*) becomes
regular prehomogeneous vector spaces, are listed in Figure 2. Notation is the
same as before.

Let H, be the coroot of y;, that is, H, €[g%,97"] and y;(H,) =2. Set
b_ = Z;:l CHV,"

THEOREM 6.3. (Moore [17, Theorem 2]) (1) For a € AL N A", the possible
Jorms of «|y- are as follows:

—
—

E(yj_))i)(l <i<j<r), —571'(1 <i<r), 0.
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(A2r-1y7') '—-—-'—o—o—::'}:. (,,.Z 1)
(Bn,1) O—e— . —e=>0 (n>2)
(Caym) e —...—e&=o0 (n>3)
(D, 1) T aze
(D21 R (r>2)
(Er,7) ._._I—°_'_°

Fig. 2. Regular type

(2) For ae A5\{y1,--.,7,}, the possible forms of aly- are as follows:

1 . 1 .
5(7;"‘7’:’)(1 <i<j<r), 5)’;‘(1 <i<r).

(3) If (L,n*) is a regular prehomogeneous vector space, then +(1/2)y; in
the above possibilities do not occur.

We exclusively deal with the case when (L,n%) is a regular prehomo-
geneous vector space for the rest of this section. We can find relative invariant
of a regular prehomogeneous vector space (L,n*) using Theorem 6.3.

LemMA 6.4. If (L,n") is regular, then 1, = —2w;,. Thus f, is a relative
invariant of (L,n").

Proor. For aed, we have of-=(1/2)(y;—7)(,je{l,...,r})
by Theorem 6.3, since (L,n%) is regular. We have that (4,,a)=
S (@) = —Syalty,) = —Syaly-(5,) = = X1/ = 7)(1,) = —(1/2)
{(;,7,) = (7»7)} = 0, where ¢, denotes the element in b which is identified
with y, via the Killing form. Thus 4, is a constant multiple of ;. We can
determine it by computing (4,, a;)/(w;,, #;,). We have that (4,,«;,)/ (@i, %) =
(it V)27 (% %) = = (1 7)/27 () = 2.

The highest weight of I) is equal to —2w;,, and therefore I;, is a trivial
one-dimensional ad(U(]l,1]))-module, that is, I; = Cf,. This means that f, is
a relative invariant. O
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Here we define b-functions and b-function-like functions associated with
the regular prehomogeneous vector spaces (L,n*) = (L,Ad,n*). Since f, is
the relative invariant, ge L acts on f, by a certain scalar multiple, say
x(g). Dually for 'f, e S(n*), g acts by x(g)"". Thus 'f.f, e U(g) is Ad(L)-
invariant, and therefore the differential operator ‘f,(d)f, on n* is Ad(L)-
invariant. Then ’£,(9), acts on f, € C[n*] (u= k141 +--- + k;A,) by a certain
scalar multiple, since C[n*]| is multiplicity free.

As for Ad(L)-invariance of ¥;(’'f,f,), we need the following lemma.

LEMMA 6.5. The representation ¥, is Ad(L)-equivariant. Namely, Ad
(9)-%:(u) = Ad(g) o ¥1(u) 0 Ad(g™!) = ¥;(Ad(g)u), for ue U(g) and g e L.

PrOOF. We have a canonical linear isomorphism M(4) = U(g) @y
C; — C[n"]. Thus we can define linear mapping «: U(g) — C[nt] as a
composite of the canonical surjection U(g) — M(4) and the above canonical
isomorphism M (1) — C[nt].

First we show that ¢ commutes with the Ad(L)-action. Since U(g) =
Un™)U(p) from PBW theorem, any u € U(g) is a sum of elements such as
np (neU(n™), pe U(p)). We may assume u = np without loss of generality.
For g e L, we have a(Ad(g)(np)) = a(Ad(g)n Ad(g)p) = Ad(g)n - A(Ad(g)p) =
Ad(g)n - A(p) = Ad(g)a(np). Thus a commutes with the Ad(L)-action.

It is easy to see that ¥,(u)f = a(uf) for.ue U(g) and f e C[nt]~
S(n~). Thus we have Ad(g)o ¥i(u)oAd(g™!)f = Ad(9)a(uAd(g7!)f) =
a((Ad(g)u)f) = Pi(Ad(g)u)f. The assertion is proved. O

By Lemma 6.5, ¥;('f,f,) is Ad(L)-invariant, and therefore ¥;(’f,f,) also
acts on f, by a certain scalar multiple.

Then we can define functions b,(x) and g; ,(u) by '£,(0)f.f, = b.(w)f, and
v,('1.f) fu =By (n)f, respectively. It is easily seen that b, and f,, are
polynomials.

Moreover we can define these functions for z e ) CA; as follows. Let 4
be a connected simply connected open subset of nt such that fi(a),...,
f(a) #0 for all aeA. Set O =C[n*]. For u=kid+---+ki (kieC),

ot 7N f, on A becomes a D4-module. Here a differential operator
0/0x e D4 acts on (O[fl_',...,fr_l]f,, by
0 o f,
= 0h) =7 futost
op dlog f,
- afy + @ Ox f/l

= (56; + a—]%f") (@) S
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where ¢eO[f{',...,f;'] and dlog f,/dx=3,kif;'0f;/0x. Then there
exists b-function b/(u) € Olky, ..., k] such that ‘f,(0)f.f, = b/(u)f,. Here
by(¢) and b)(u) coincide when u € >, Z5o4;, and therefore they coincide for all
ue ) ;Ch. Similarly we can define f, ,(u) for ue ) ;C4. In this way, we
can define polynomials b,(x) and B, ,(u) by the following definition.

DEFINITION 6.6. Assume that (L,n*) is regular. Define polynomials b,
and B, , by

0y = br(1) S
Wl(tf;‘f;‘)f;t = ﬂ).,r(:u)fy?

for e Hom(p,C) and u = ki + -+ k.4, (kj e C).

7. Main theorem

We continue to assume that (L,n") is regular in this section. We state
our main theorem. The theorem needs the normalization of f,. By Muller-
Rubenthaler-Schiffmann [18, Theorem 2.4], the open L-orbit on (L,n")
contains the vector X, +---+X,. Thus f,(X, +---+X,)#0. Then we
normalize f, by

(7.1) LHX, +-+X,)=1

We fix this normalization for the rest of this paper.
We define the constants which will be used in our main theorem. Let
p, € Hom(p,C) be the half sum of the roots of n*, that is,

p(X) = (— ) a) (X) = 3 Trwad(X) (X e¥).

-
aedy

Since p, is a constant multiple of w;,, we define the complex number p° by

(72) pr = P} @iy-

The following theorem and its corollary (Corollary 9.1) are our main
results. This theorem suggests that the structure of scalar generalized Verma
modules has a certain connection with b-functions of prehomogeneous vector
spaces associated with them.

THEOREM 7.1. Assume that (L,n") is a regular prehomogeneous vector
space. If f, is normalized by (7.1), then for p=kid +---+ kA, (ki e C),
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Bir(1) = (=1)"br(u)by (1~ (A° + p]) r),

where 1° is the complex number defined by A = Aowio.

8. Subalgebras of g

In this section, we will define certain subalgebras of g and show some
properties related to these subalgebras. Then we define b-functions and b-
function-like functions associated with the subalgebras. We return to the
situation where (L,n*) is not necessarily regular.

We define the subalgebras of g following Wallach [27]. Set

a3 = {aeA;;alb- = (ye +7;)/2 for some 1 < j <k <i}U{y,...,7},

nF = j{: gia.

+
aeAMi

Let I; be [nf,n7]. It is easy to see that I; is a Lie algebra. Set

i T
pi = Li+nf,
g =1 +i+nf,
h,=hNg,

and let L; be the connected closed subgroup of G corresponding to [;. Then
(g;,p;) is of commutative parabolic type, and (L;n;) is a regular pre-
homogeneous vector space. Obviously, the maximal family of mutually
strongly orthogonal roots contained in A,T,,,-, constructed in the same way,
coincides with {ylg ...,y }-

We can describe the decomposition of C[n;] as an ad(U(l;))-module. For
u=kiy; + -+ kiy; (kj € Zxo), f, is contained in C[n/], although I, is not
necessarily contained in C[nj]. We can show that f, is a maximal weight
vector with respect to the action of ad(U(l;)), and f, runs over all the maximal
weight vectors of ad(U(l;))-module C[n}] by applying Theorem 5.2 to
C[nf]. In other words, there is a decomposition into irreducible ad(U(l;))-
modules

Chfl= @  (LNCH)).
He Zj;]zzoﬂ.j
We consider C[nf] as a U(g,)-module in the following way. The

restriction 4|, leads to the generalized Verma module M(4[,) = U(g;) ®u(p,
C,, which is isomorphic to C[n/] as a vector space. We denote this rep-
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resentation of U(g;) on C[nf] by ¥ a,- Note that this representation is not
equivalent to the restriction of ¥, to U(g;). By the same argument as in
Lemma 6.4, we can show that 4; = —2w;, on b, and therefore f; is the relative
invariant of (L;,nj"). The following definition is a generalization of Definition
6.6.

DeriNiTION 8.1, For i€ {l,...,r}, define polynomials b; and g, ; by
@) fify = bil ) fo
V’u,,,(tfiﬁ)fﬂ = B;.i(1) s
for Ae Hom(p,C) and = ki +--- + kil (k; € C).
As in Theorem 7.1 we normalize f; so that
(8.1) filX, +--+X,)=1 forie{l,...,r},

and define a character p; by
1
pi=3 Y <Hom(y,C).
aedy ;

Since p; is a constant multiple of w;, on b,, we define the complex number p?
by
(8.2) pi= p?wio on b;.

Since each (L;,n;") is a regular prehomogeneous vector space, even if (L,n") is
not regular, Theorem 7.1 implies the following assertion.

THEOREM 8.2. Assume that f; (j€{l,...,r}) is normalized as (8.1) and
that (g,p) is of commutative parabolic type, where the prehomogeneous vector
space (L,n%) is not necessarily regular. We fix ie{l,...,r}. Then for

u=kir+---+kidi(kj e C),

Bai(r) = (=1)'bi(w)bi(u — (2° + p)As),

where A° is the complex number defined by My, = Aowio.

9. An expression of g;(u) in terms of b-function

In this section we give a corollary to the main theorem. The corollary is
a part of our main results. It indicates that a contravariant form on a scalar
generalized Verma module is deeply related to b-functions.
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CorOLLARY 9.1. If f’s are normalized by (8.1), then for u=k
Al +-+ kr;l'r (kl € ZZO):

ki—1

() = (~1)%8k H [T bitkias + -+ + kicadicy + jdi = (A% + p0) ).
i=1 j=0

ProoF. We can calculate g(u) using (5.1):  qi(u) = (f,, [0/ (i -
First we compute (f, f,);-

By Definition 4.5, the construction of (,),;, we can compute (f,,f,);
within the subalgebra U(g,) of U(g), since f, e C[nf]. In other words,
(S f)i = (f;ufu)/u , where (, ), is the ¥, (U(g,))-contravariant form on
C[n;}] constructed in the same way as in Definition 4.5. Then we have

(9.1) (fw fida = U S,
= Sy efumidu,,
= (Ya, ) fums O, () fumi ),
= (#a, (S S fuma fus D,
= B = 2) fums fums ),

= Ba (= 2r) - Boy (1 = ke k) fumioiyr Jukii D, ,
by Lemma 47 (3). Here f,_;, =/V-fF eClnt]. Thus

(Su=toi> Jutod, )/1| = (futotr Ju-ic, )/1| as before. Then we can apply
Lemma 4.7 (3) agaln to (9.1), and at last we have

r ki—1
(S i = H H By ikidr + - + kic1dicy + jhi).

i=1 j=0

Similarly, it follows from Lemma 4.7 (4) that

(o f3) HHb(k1/11+ kit Aiet + ).

i=1 j=0

Then we have
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2(w) = (fufidal S )

=TT 11 BuiCers + - + kicydicy + jAs) [bikids + -+ + KicyAicy + jha)

i=1 j=0

r ki 1 )
= (=1)'bilkrdy + -+ + kizydimy + jhi — (A% + pD)4y).

i=1

~.
Il
o

Here 3/ Z i = ik; = deg fu- Thus the corollary is proved. O

10. Another expression of ¢;(x) in terms of b-function

We give some applications in sections from 11 to 13. In this section we
show some formulas for b;(x) and g¢;(x) which will be used in the later
sections.

Set

(10.1) bi(s) = bi(sk;) (seC).

First we give a formula which expresses b,(u) in terms of b;(s)
(ie{l,...,r}). Note that this formula does not depend on the main theorems
(Theorem 7.1, Theorem 8.2), and we will use it to prove the main theorems.

ProposiTION 10.1. For u=kii +--- + k.4, (kj e C),

bki+---+k)  by(k1 t k)
by_y(k1+---+ k) bk + k)

br(iu) = bl (kr)
In particular, b;(s) divides b;y1(s) and therefore b,(u) is a polynomial of degree i
in k;. Moreover the total degree of b,(u) in ki,...,k, is equal to r.

Proor. If we know the above equality, then it is easy to see that b;(s)
divides b;,1(s), since b,(u) and b;(s) are polynomials. Then, in addition, it is
obvious that b,(u) is a polynomial of degree i in k; (i€ {1,...,r}), since the
degree of b;(s) is equal to i. Moreover it follows that the total degree of b,(x)
in ky,...,k, is equal to r.

We therefore have only to prove the equality. For i€ {0,...,r — 1}, let £
be a lowest weight vector of I; ,. The longest element of the Weyl group of
(I,h) maps y; to y,_; +, which can be proved by using Theorem 6.3. This fact
implies that f; € C[g? Q'], where 4}, = {ae Ay;aly- = (7 +7;)/2 for some
i<j<k<ryU{yy1--- 7} and g4 =3, _,a* for a subset 4 in 4.

Here we also normalize f’s so that

(10.2) filXy, +---+X,)=1 forie{l,...,r}.
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Then we have
I g5, 5+ ) = f)fi(p) for x e and y e g“er.
Indeed, f,(x+ y) is a relative invariant with respect to Ad(L;)-action as a
function of x e n}, since Ad(L;) acts trivially on g%e:. It has a weight Arly,»

which is equal to |y by Theorem 6.3. Thus f,|n+ @{y} is a scalar multiple of
fi |“+ Similarly, f,| Ry is a scalar multiple of fi | i Thus we have the

above equality thani(s to the normalizations.
Here we show that

(10.3) F@)fl . flapmit = b m) R pli plitd pm

for ie{l,...,r—1}, ki,...,ki, me Zso (Rubenthaler-Schiffmann [20]). Let
Ny be the nilpotent subgroup of L corresponding to the nilpotent subalgebra
g4u"4" of 1. Then both sides are Ad(Ny)-stable, and they have the same
weight. Thus they coincide up to a constant multiple. Let 4 be an affine
space X, +---+ X, + g% = n*. Then we have

GOOT - ELT a = F@UT - 17 10)
= tﬁ(a)fimﬂlA
= b,_,-(m)f,.'”|A

=b,i(m)ff - fEL LR

We proved (10.3).
Applying the equality (10.3) repeatedly, we have

r—1 k;

tf,’i’f'(a)”'tf 0 f k|+ e Hbr G+ ki1 + -+ k) Xf{“-“ff’f,.

i=1 j=1
Applying 'f,(0) to this equality, we get

r—1 k,'—l

blky + -+ k) [T TI 6r-iG + ki + - + k) x £,
i=1 j=0

r—1 ki

= br(ﬂ)HHbr—i(j+ki+1 +-- +kr) X fu

i=1 j=1
Then the proposition is proved by comparing both sides. O

Second we show the formula for the b-function b;(s), although
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Rubenthaler-Schiffmann [20] gives an intrinsic proof of the formula. We need
two known lemmas to show the formula.

Lemma 10.2. For ie{l,...,r—1}, L), o I,.

ProOF. Let C?[n*] denote the homogeneous component of degree d of
C[n*]. Then I, = C"'n*] = C/[n*]C'[n*] = C[n*]l;,. Thus there exists
p=k +---+k, such that I, < C'[n*] and I, < I;. Assume that
u#4. Then pu=kisy+- - -+ki1diog=—(my, + - +mi_1y,_,), where
mj= kj+---+k. Any ad(U(I))-maximal weight occurring in II; is a
sum of u and a weight of I,. Thus A =u+a for some ae 4y. Here
(Aix1 — Wy = {(my = D)yy + -+ (mi-1 = 1)yiy — 7 — Vis1 Hy--  This can not
be equal to af,- by Theorem 6.3. Thus x must be 4; and we prove the lemma.

O

LemmAa 10.3. Let Y be the maximal submodule of M(1). For u=
kili+ -+ kA (kjeZso), I, occurs as a component of the irreducible
decomposition of Y regarded as an ad(U(l))-module, if and only of q,(u) = 0.

Proor. It follows from Proposition 4.3 and Proposition 4.4 (2) that
I, < Y if and only if (I,,1,), = 0. Since I, is an irreducible ad(U(I))-module,
the nonzero contravariant form (, ) defined in Definition 4.6 is nondegenerate
on I,. Thus it follows from the definition of g,(u) that I, < Y if and only if

q:(p) = 0. O

DerINITION 104, For 1 <i<j<r, define c=# {aed . Nd™;0f- =
(77 —71)/2}. Tt is known that c is independent of i or j.

It is easily seen that c¢= #{aedy;al- = (+7)/2} for 1<i<
j <r. Then we can determine the constant p? defined in (8.2) in the same way
as in Lemma 6.4

i—1
2

ProrosiTioN 10.5. (Rubenthaler-Schiffmann [20], Wallach [28]) For ie
{1,...,r}

(10.4) pY = c+ 1.

where d; e C* is constant.

ProoF. Let Y be the maximal submodule of M(A). By Lemma 10.2
if I, cY then I), <Y since ¥,(X) is a multiplying operator for
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X en”. Then it follows from Lemma 10.3 that ¢;(4;) = 0 implies g;(4;+1) =0
for ie{l,...,r—1}. By Corollary 9.1, if bi(=1°—p?) =0 then b,
(-A° - pY.1) =0. Obviously b;(s) has s+ 1 in its factors for any j and it is
known that b;(s) is of degree j in s. Since bi(s) =s+ 1 up to constant, if
bi(=A° - p¥) = 0 then Sy L - pY+1=0. In this case, we have by(—2° — pY) =
0. Since —A°—pd+1#0, by(—2°—p?) has a factor —4° —p¥ + 1. Thus
we have by(—1°— pY) = (=4° - pY+ 1)(-1° - p3+1) up to constant.
Inductively we have b;(=A" = p?) = (=22 =p¥+1)--- (A" =p%+1) for
ie{l,...,r} up to constant multiple. The proposition is proved by replacing
—1% = p? by s and using (10.4) for p?. O

We conclude this section with some consequences of Corollary 9.1,
Proposition 10.1 and Proposition 10.5.

ProposiTION 10.6. For ie{1,...,r} and p=kiA +--- + kid;i (kj € C) we
have

i—1 .
(10.5) bi(ﬂ)=diH<ki_j+"'+ki+1+%C),
j=0
where d;’s are defined in Proposition 10.5.

ProOPOSITION 10.7.  For u=kiAi + -+ kA, (kj € Zxo) we have

r r—1 kip1+-+k,—1 i
(10.6) q(n) = (H d,-"") II (z“ 40— m)
i=1 j

i=0 m=0

r ki
(107 a0 = [T TI B0 = G+ ki + - + k),

i=1 j=1

where d;’s are defined in Proposition 10.5.

11. Irreducibility criteria for scalar generalized Verma modules

In this section we consider two irreducibility criteria for scalar generalized
Verma modules. One is in terms of b-functions and the other is in terms of
contravariant forms. We see how these two criteria relate to each other
through Corollary 9.1 or Proposition 10.7.

ProposiTioN 11.1. For A= A"w,, € Hom(p,C), the following are equiv-
alent:
(1) The scalar generalized Verma module M(A) with a highest weight A is

irreducible.
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r ki
@ J[[[6:(2° = G+kisi+--+ &) #0 for all ky,... k€ Zso.

i=1 j=1

(3) b (A° —m) #0 for all me Zs,.

Proor. By Lemma 10.3 and (10.7), is follows that (1) and (2) are
equivalent. Next we assume (2). Then bi(/lo —m) #0 for all ie{l,...,r}
and me Z-¢ and therefore (3) follows. Conversely if we assume (3), then
bi(A° —m) #£0 for all ie {1,...,r} and m € Zs, since b; divides b,. Then (2)
follows. O

12. b-Functions and L-orbits on the nilpotent radical

In this section we consider Ad(L)-orbits on n*. The set of Ad(L)-orbits
on n* and the set of zeros of the b-function of the relative invariant are in one-
to-one correspondence (Tanisaki [26]). We give another proof of the corre-
spondence and it explains why there exists a correspondence between the orbits
and the zeros of the b-function. We give another proof of the correspondence,
which is intrinsic.

First we investigate Ad(L)-orbits on n*. For ie{0,...,r}, set C;=
V (D, )\V(I)), where V(I,)) = {X en* | f(X) =0 for all fel,}, V(I),) =
and V(I;,,)=n*. Then we have C;= V(I,,,) and

(12.1) {0}=Cyc --- =« C,=n",

where the overlines denote the Zariski closures. In fact, the disjoint union
nt =CyU.--UC, is the Ad(L)-orbit decomposition of n*t (Goncharov [6,
Proposition 3.5]).

Lemma 12.1. (1) C[ntI;, = (—B”I,,, where =k + - + kA (kj € L)
runs over such u satisfying k;+---+k, > 0.
(2) C[ntllL, is a radical ideal of Cln*].

(3) The defining ideal I(C;) of C; is equal to C[n*]I,
{0,...,r—1}. (See also Tanisaki [26, Proposition 1.5].)

for ie

i+1

PrROOF. Set R, = @”I,, (w=kis+ - +kdp ki€ Zso,ki+ - +k >0).

(1) C[n*]L, contains f;,..., f, from Lemma 10.2. Thus C[n*]I,, contains
all the maximal weight vectors which appear in R;. Since both sides are
ad(U(1))-stable, we have C[n*]I;, o R;.

On the other hand, assume that x is an ad(U(I))-maximal weight occurring
in C[n*]I;,. Then we can write

/,t=k]).1 +"'+krj.r (kjEZZ())
=-my— - —my, (m=k+- - +k),
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by Theorem 5.2. Also u is a sum of A; and a weight occurring in C[n*], say
v. Here v is a sum of roots in 4y, and therefore Vlr,- is a certain sum of
—(1/2)ys (1<j<r) by Theorem 6.3. Then we have that m; >0, or
equivalently k;+ ---+k, >0, since 4 has 4;=—(y; +---+y;) as its sum-
mand. Thus the maximal weight u occurs in R;.

(2) We show R; is a radical ideal. Since R; is ad(U(I))-stable and ‘this
action is derived from Ad(L)-action, its radical also ad(U(l))-stable. If R;
is not a radical ideal then there exists v = kjA; + --- + ki_14;—1 such that I,
is contained in the radical of R;. Then there exists m € Z~ such that (f,)" €
R;, where f, is the highest weight vector in [/, defined before. How-
ever (f,)" € Iy, indeed (f,)™ is the highest weight vector in I,,. Since
I,,NR; =0, this is a contradiction, and we proved (2).

(3) I(C) =I1(V(I;,,)) = Cn*]I,,. Here C[n*]I,,, is a radical ideal by
(2). Thus I(C;) = C[n*]L,,,. O

ProposITION 12.2. (Tanisaki [26]) There exists a one-to-one correspon-
dence between non-open Ad(L)-orbits on nwt and the zeros of the b-function b,(s),

(non-open Ad(L)-orbits on n") — (zeros of b,(s))
C = ¢(C) - 1,

where ¢(C) is the unique complex number A° such that I(C) = C[n*] becomes
the maximal submodule of M(\’w;)~ C[nt]. More concretely for ie
{0,...,r=1}, ¢(C)) = aiy1 + 1, where C; is the non-open Ad(L)-orbit as in
(12.1) and a;;) is the unique zero of b;y1(s) which is not a zero of bi(s).

Proor. Let C; and a;;; be as above for ie{0,...,r—1}. Then the
defining ideal 1(C;) is equal to C[n*][;,,, by Lemma 12.1 (3). We assume that
C[n*]I;,, is the maximal submodule of M(4) for some A. Then it follows
from Lemma 10.3 and Lemma 12.1 (1) that g¢;(u) =0 if and only if
kivi+---+k >0 for u=kid +---+ k. In particular, we have g;(4;) # 0
and ¢;(4ir1) =0. Then by (10.7) we have b;(1° — 1) # 0 and b;;(A° = 1) =0,
and therefore it follows that there exists at most one A such that C[n*]I,,,
becomes the maximal submodule of M(4). Namely, the unique possibility for
such A is given by A =ai +1.

Conversely we assume that A = (aj41 + 1)w,, for je{0,...,r—1}. We
find aj;1 = —jc/2—1 from Proposition 10.5. For u=kiAd +- -+ ki, if
kjt1 +---+k >0 then g;(u) in (10.6) has a factor in which i = j and m =0,
that is, (jc/2—jc/2—0). Thus g,(u) =0. On the other hand, if k., =
--+=k, =0 then a factor (ic/2— jc/2—m) in (10.6) occurs only when
i< j. Thus all these factors are negative and therefore ¢;(u) # 0.

Then we have that ¢;(x) =0 if and only if ki +---+k >0 for
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A0 = aj+1 + 1. In other words, the maximal submodule of M (A%w;,) is equal
to C[n*]l,,, for A° = a;;1 +1 by Lemma 12.1 (1). In this way we obtain the
desired correspondence. O

13. The unitarizability of the irreducible quotient of M (1)

Let L(A) be the irreducible quotient of M(4). In this section, we consider
the unitarizability of L(4). This application is suggested by Professor Shuichi
Suga. This problem is considered in Wallach [27], Parthasarathy [19], Garland-
Zuckerman [5], Enright-Howe-Wallach [3], Enright-Joseph [13] and many other
articles. It is known from these articles that the values of A such that L(4) is
unitarizable, are related to the zeros of b-functions. We will explain in terms
of our main theorem, the reason why there exists such a relation.

We must consider real Lie algebras. We take the real form g, such that

8o =lo®ny (Cartan decomposition),
(80)c =8
()c =1,
(m)c=n*@n,
where subscript C means the complexification.

When we work in the ‘real’ situation, the definitions in previous sections
must be slightly modified.

DerFiNiTION 13.1.  Define a conjugate linear anti-automorphism -* of U(g)

by

H'=H; (ie{l,...,n}),

X'=X_, (xedp),

Xac* = —X_u (O(GAN).
We extend -* conjugate linearly to g and anti-automorphically to U(g). Note
that -* is a composite of ‘- and the Cartan involution. Note also that -* is a
complex conjugation by regarding g, as a purely imaginary part and v —1g, as

a real part. See also Wallach [28], Garland-Zuckerman [5], Enright-Joseph
[13] or Shapovalov [22].

LEMMA 13.2.  Under the normalization (8.1), f, = (—l)degﬁ"fﬂ for u =k
It e+ ks (k€ Zso).
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Proor. We have only to prove the lemma for u=4; (ie{l,...,r}),
since fll:ff'---fk’. For aedA NA4" we have [X_o f]]=-[X*,fi"=

r

—[Xs, fiI* =0. Clearly the weight of f; is equal to —A; and therefore
fleCl.

Set Xy =X, +---4+X, and X_='X, =X_, +---+X_,. We com-
pute f/(X_), where f; € S(n") is regarded as a function on n~. We expand
f; as a polynomial in X_,(a € 4%).

f;' = Z aBX—Bl o .X_ﬂi (ﬁ] € A;)a

where B runs over the set %; which satisfies that {X_g --- X_p | B € %;} forms a
basis for C‘[n*], the homogeneous component of degree i. If agpX_g ---
X_p,(Xy) # 0 then (f,...,[;) must be equal to (y;,...,y;) up to order. Since
Xy (Xy) = 2()}1,);1)‘l and f;(X;) =1, we have ag, € R, where B; = (y;,...,7)).
Thus we have f/(X_)=3g(apXp, - Xp) (X-)=a5(~Xp,) - (—Xp)(X-) =
(-1)'apXp, - Xp, (X-) = (-1)"fi(X_), and we proved the lemma. O

We define ‘real’ analogues of b-functions b;(x) and f; ;(u). See section 9
for the notation.

DerINITION 13.3. For i€ {l,...,r}, define polynomials 4 and ﬂ;, ; by
L@ fif =b; () S
o, ) = B i)
for Ae Hom(p,C) and u = kid + --- + kiki (kj € C).
LemMMA 134. For ie{l,...,r} and p=kih +--- + kik; (kj € C),

Bii(m) = (—1)",3,1,[(/1).
Proor. The lemma immediately follows from Lemma 13.2. O
Next we consider a ‘real’ analogue of q;(u).
DerNITION 13.5. Let (#, V) be a representation of g.

(1) A Hermitian form (, ) on V is called a contravariant sesquilinear form
or a n(U(g))-contravariant sesquilinear form if (,) satisfies

(13.1) (m(u)o, w) = (v, n(u*)w)

for ue U(g) and v, we V.
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(2) We say V to be g,-infinitesimally unitary if there exists a positive
definite Hermitian form (, ) on V such that

(13.2) (m(X)v,w) = (v, —7(X)w)

for X egy and v, we V.
Note that if (, ) satisfies (13.1) then it satisfies (13.2).

LeEMMA 13.6. Let V be a highest weight U(g)-module with a highest weight
vebh*.

(1)  Contravariant sesquilinear forms on V are unique up to constant
multiples.

(2) If there exists a nonzero contravariant sesquilinear form (, ) on V, then
veRw) + -+ + Rowy, where w;’s are fundamental weights.

Proor. (1) See Humphreys [11, §6], Wallach [27].

(2) Let vy eV be a highest weight vector. Then v(H;)(vy,v:) =
(Hivg,vy) = (vy, HFvy) = (vg, Hivy) = v(H;)(vy,vy), where H; is the coroot
of a simple root «;, that is, an element of our fixed Chevalley basis. If

(v4,v4) # 0 then v(H;) = v(H;) and we have ve Rw; + --- + Rw,. O
We assume that A€ Rw; + --- + Rw,, that is, 1€ Rw;,.

DEerFINITION 13.7.  Define two bilinear form (, ); and (,)* on C[nt*] by

(f,9); =e.(9"f)
(f,9)" =9*(9)£(0)

for f,g e C[nt], where ¢, is the same as in Definition 4.5. See also Enright-
Joseph [13] as for (, );.

The following lemma gives important properties of these forms.

Lemma 13.8. (1) The bilinear form (,)" is an ad(U(l))-contravariant
sesquilinear form.

(2) For AeRwj, (,); is a ¥;(U(g))-contravariant sesquilinear form.

(3) The bilinear form (,)* is positive definite on C*[n*] if d is even, and is
negative definite if d is odd, where Cd[n+] is a homogeneous component of degree
d. Therefore (—1)*B%(,)* is positive definite on I,.

(4) The radical of (,); is equal to the maximal submodule of M(1).

(5) (fgah)*=(gvf*(a)h)* for f,g,heC[n*].

ProoF. (1) It is easy to show that (, )* is a Hermitian form. We have to
show that (ad(u)f,g)" = (f,ad(u*)g)". This holds for ue > ,RH; + 3

aedy



216 Akihito WAcHI

RX, and f,9€ 3 ez .5 - (,/_1)dRX_ﬂ] ---X_p,, since in this case ‘u = u*,
20:Fje
'f = f* and 'g=g*. Thus it holds for all u, f, and g.

(2) Tt is easy to see that (, ); is a Hermitian form when A € Rw;,. Then
the assertion follows by the same argument as (1).

(3) The first assertion is clear from the definition of -*. Since (, )" is
nondegenerate on I,, the second one follows.

(4) We have the assertion by a similar argument to (1).

(5) 1is a direct consequence of the definition. O

Here we shall define the analogue of g;(x). Define g;(u) by

(W) = f L)1/ L £
where p=kidi + -+ kA (kj € Zxy).
LemMa 13.9. gq;(u) = q:(p).

PROOF.
(1) = o L3/ S )"
= (/1) £2(2)£,(0)
= (=1)* g, (" £ 1) [ (=151, (8) £,,(0)
= (fos S)2/ Sy £2)
= (W) O

ProrosITION 13.10. The following conditions are equivalent:

(1) The irreducible quotient L(A) of M(A) is infinitesimally unitary.

(2) (,); is nonnegative definite.

(3) For all u=kidy + -+ kA (kj € Zso), (—1)%Bhgt(u) > 0.

@) A=a;+13Ge{l,....r}) or %<a,+1, where A° is the complex
number determined by A = A’w;, and a; is the unique zero of bi(s) which is not a

zero of bi_1(s).

Proor. The contravariant sesquilinear form (,); on M(4) induces a
nonzero contravariant sesquilinear form on L(4). This induced form on L(4)
can not be negative definite, since (1,1); =1. By Lemma 13.6 (1), any
contravariant sesquilinear form on L(A) is its constant multiple. Thus L(4) is
infinitesimally unitary if and only if the induced form on L(A) is positive
definite. Then by Lemma 13.8 (4), (1) and (2) are equivalent.

By Lemma 13.8 (3) and the definition of g;(x), (2) and (3) are equivalent.
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Next we show that (3) implies (4). By Lemma 13.8 (3) we haye
(=)', )" > 0. Then 0< (~1)'(f](d)f;, )" = (~1)'b;(0) = b(0) = &, T2}
(1 + je/2), by Proposition 10.5. Here ¢ € Z-o and therefore we have d; > 0.

Thus (3) says

r ki
(~D* AT T 2:(° = G+ ki +--- + k) 2 0

i=1 j=1

for all u=kiA +---+ki (kj € Zxo). In Particular, if u= A, then (—1)’p,
(A°~1)>0 for te{l,...,r}. Thus if A° #a;+1 for all ie{l,...,r} then

t—1 . t—1 .
-1 o, J.) = _0_J
0<(-1) d,jl}(i +2c) d,jQ( ! 2c)

for all +. Here d; >0 and ceZso, and therefore we have 20 < —(r=1)
¢/2=a,+1. We proved that (3) implies (4).
Lastly we show that (4) implies (3). By (10.6)

—1 degf"‘ B r—1 ki1 +-+kr_y —20 _L
(133) (~1*% kg, = [] Letm
i=0 m=0

up to positive constant multiple. If A° <a, +1=—(r—1)c/2 then —A° >
(r — 1)c/2 and therefore all the factors appearing on the right hand side of
(13.3) is nonnegative. Namely (3) is satisfied. Next we assume that A0 =
a,+ 1 for some te{1,...,r}. If a factor (—A® — ic/2 + m) occurs in (13.3) for
i = t—1 then a factor (—lo — (t=1)c/2 + 0) also occurs. In this case (13.3) is
equal to zero and (3) is satisfied. If all the factors (—10 —ic/2+m) in (13.3)
satisfy that i < ¢t— 1, then every factor is positive, and then (3) is satisfied.
Thus we have shown that (3) implies (4). We proved the proposition. []

14. Factors contained in g, ;(u)

The sections 14 and 15 are devoted to proving the main theorems
(Theorem 7.1 and Theorem 8.2). We have only to prove Theorem 7.1 since
Theorem 8.2 is a direct consequence of Theorem 7.1. Thus we may assume
that the prehomogeneous vector space (L,n*t) is regular.

The proof of the theorem requires several steps. First, we show that b,(u)
divides f,;,(u) in the ring Clki, ...k, A°]. Second, we show By () =
B_iap (= (" +p)A) by using Boe’s theorem. Then we know b,
(= (A°+p%)4) divides B, ,(u) in the ring Clki,...,k,A°]. Thus
br(u)br(— (A° +p0)4) divides B, ,(u). Third, we show that B, ,(u) =
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b ()b (1 — (A° +p%)A,) up to constant multiple. Lastly, we calculate the
principal symbol of ¥;(‘f,f.) to determine the constant.

LemMA 14.1. Let Dyn+ be the ring of polynomial coefficient differential
operators on w*. Then ¥,('f,) = P;'f,(0) for some P; € DL, where DL is the
subspace of L-invariant elements in Dy-.

ProoF. In general, let g* € S(n™) and he Dy+ ~ C[nt] ® S(n*) be rel-
ative invariants with respect to the Ad(L)-action, and we assume that they
correspond to the same character y € Hom(L,C*). Then A is a sum of several
relative invariants h; € I, ® ‘I, which correspond to the same character y,
where ‘I, = {'f| f € C[n*]} = S(n™).

Set g='(g9*) eC[n*]. Then Cgh; cgl, ® I, is a trivial Ad(L)-sub-
module. Namely, g/, ® ‘I, contains an Ad(L)-invariant nonzero element.
Thus it follows from Schur’s lemma that gf, is the dual module of ‘I, since
both gl, and ‘I, are irreducible. Therefore we have ‘I, = ‘(gl,) = "I, g%,
since C[n*] is multiplicity free.

Thus h;el, ® 'I,, =1, ® 'I,g9* and there exists P; € Dy+ such that h; =
P;g*. Here h; and g* have the same character, and therefore P; is Ad(L)-
invariant. Then h = (3 P;)g*, where ) P; is an Ad(L)-invariant.

Finally, we take 'f,(0) and ¥;('f,) as g* and A, respectively, to prove the
lemma. ([

We have the following proposition from Lemma 14.1 and the definition of
B;, and b,. This is the goal of the first step.

ProposiTION 14.2. In Clky,... k], b/(n) divides B, (1) (u=kidi+
...+krj’r)‘

Next, we show that B, , have another factor related to b,. We use the
theorem of Boe [1].

THEOREM 14.3. (Boe [1, Theorem 4.4]) If (g,p) is of commutative par-
abolic type and (L,n*) is a regular prehomogeneous vector space, then for A,
A" € Hom(p, C) the necessary and sufficient condition for Homy g (M ("), M (1))
to be nonzero is that A= 2" or A=lw, —p, and ' = —Ilw; — p, for some
le Z>().

If A°+p%eZso then Hom(M(—A—2p,), M(1)) contains the mapping
C[n*] — C[n*]

[ [

by the proof of the theorem. Thus it follows that
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(14.1) SEW o () = Vi) fE7 (e Ulg)),

if A%4+p%eZso. In fact, this equality holds even if A°+p? is a complex
number.
Now we can prove that §;, have another factor related to b,.

PROPOSITION 14.4. The equality B; (1) = B_;_s, (11— (A° + pQ)4,) holds,
and therefore b,(u— (A° +p)A,) divides B; (1) in Clki, ...k, 20).

ProoF. We have ?I’,{(’f,f,)f# = B, (1) f, by the definition of f;,. On

the other hand, by (14.1), ‘P,l(’f,fr)f# :ffoﬂ’f’ W—A—Zp,(tfrﬁ)f,—'lo"p?f,, =
B_sap (1~ (l°+p9)l,) f.- This proves the first statement of the proposi-
tion. The second statement follows from Proposition 14.2. |

Next we get a proposition which proves the third step.
Lemma 14.5. B, (u) = b(u)b, (1 — (A% +p%)4,) (up to constant multiple).

PrOOF. We have that f; ,(u) has factors b,(u) and b,(u— (A% + p®)4,)
from Proposition 14.2 and Proposition 14.4. Here b,(#) and
be(u— (A0 + p%)J,) are prime each other, since all irreducible factors in b,(u)
are different from that in b,(u— (10+p?)i,). Thus B, ,(u) is divisible by
b ()b, (1t — (A° + p®)4,). Then by Proposition 10.1 the total degree of B ()
in ki,...,k, is at least 2r, and the degree in A° is at least r.

On the other hand, it follows from Lemma 3.2 that the operator ¥;('f,)
is of order at most 2r and of degree at most r in A°, since f, is of degree
r. Thus we have that the total degree of f, ,(u) in k1, ...k, is at most 2r, and
the degree of A’ is at most r. Then B; (1) must be a constant multiple of
by ()b, (p — (A° +p%4,), and we get the proposition. O

15. The principal symbol of ¥;(’f,)

In this section, we determine the constant which appeared in Lemma 14.5
and prove our main theorem. To determine it, we show that the principal
symbol of ¥;('f,) and that of £,'f,(9)'f,(d) coincide up to a certain constant
multiple.

First, we write f; and ’f; in polynomials in root basis. We give an
arbitrary total order to A7 satisfying y, <---<7y,. Set #;={(By,...,B:) | B;
€4y »B; < B;11}. We use this order only to define 2.

For ie{l,...,r}, define age C(Be %;) by

f}: ZaBX_ﬂI~--X_p,. (B=(ﬂla~~~n8i))'

BE.@,’
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Here ap is uniquely determined thanks to the order. Then obviously we have

', = Z apXp, -~ Xg (B=(By,---,B))-

Be%;

We can determine special ag’s thanks to the normalization (8.1). Set B; =
(?15---,7:)- Here B; is the unique element in %; which consists of only y;’s and
makes ag nonzero. We denote the Killing form on g by ¢, >. Then we have

(15.1)  1=f(X, +---+X,)

= Z aB(X—ﬂx’XY1 +o +XY,’>“'<X—I?,"XY| +-- +X}'i>'
BE.@,‘

Here in the nonzero summands of (15.1), each B, must be equal to some
y¢. By the property of B;, (15.1) is equal to

2 2

0Ly o)

aBi(X—}'l’X}’l > <X_}'i’X7i> = ap,

= ziaBi(yI?yl)—i’

where we used (4.1). Thus we have

ap, = 2—i(yl ) yl)i°

Next, we introduce the principal symbol of a differential operator. Let
D,+ be the ring of polynomial coefficient differential operators, and D¢ , the
subspace of D+ consisting of operators of order at most d. We define a linear
mapping o, : D%, — C[n*@®n~] ~ C[n*] ® C[n"] as follows: If the dth order
part of Pe D¢ is a certain sum of go/0X_g ---8/0X_g, (9 € C[n*], B € 4y),
then o4(P) is the sum of g&s ---&z,. Where g e C[n7] is the linear mapping
defined by

i 1 (6=p)
fﬂ(X.&) = m(X..&) = {0 (5 " ﬁ) for o e A?\}

In particular, for P e Dn+ of order d, o4(P) is the principal symbol of P.

ProposiTION 15.1. a(¥,('£)) = (=1)"a(f, £,.(0)"£.(0)), under the nor-
malization (8.1).

ProOF. ([Step 1] First we show that ¥,(‘f,) is a differential operator of
order 2r, namely that, a5, (¥;("f,)) # 0.
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Set X, =X, +---+X,and X_='X, =X, +---+X_,. Symbols can
be considered as polynomial functions on the cotangent bundle of n*, which
can be identified with n* x n~. Then we evaluate o5 (%,;('f,)) at (X, X_)
and we have

(15.2) o (Yi('f)(Xs, X2)
= > apou(Pi(Xp - Xp)) (X4, X0)
B=(p,-B) e B,
= Y an{ s 3 (1 Ko Xoplist,
Be &, d,nedf

{% Z [[Xﬁr,X_a],X_,,]fafr,}(X+>X—),

o,nedf,

where we adopted the basis {X; | 6 € 4%} as {Fi} in Lemma 3.2, since {Fy} is
any basis of n~ there.
Here we compute the jth factor of (15.2).

{% Z [[Xﬁj’X—ﬁ]vX—ﬂ]ééfr]}(X+aX—)

o,nedy,

= 3 3l X)X, X SG0)00)
N

l r
= E <[[Xﬂj’X—}’k]?X—}'/]?X+>
k,l=1
1 r
= 5 <[Xﬂi7X—}'k]s_H}'l>
k,1=1
= - <XﬂjaX—yk>,
k=1

where H,, is the coroot of y,, that is, H, = [X,,X_,]. This is equal to zero
if B;¢{yi,-.-,»}. If B;=v, for some m, then <{Xpg,X_, >=2/(Yp, V) =
2/(y1,71)-

Therefore the summand of (15.2) which does not vanish, is given only by
B=B,=(y,...,7,), and we have
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(153) ou(¥a('£)) (X, X0) —{ 2<Xﬂ,,X_yk } { Z<Xﬁ, X_yk>}

=2"(r,7)" - {=2/ )}

= (-1)".
Moreover we find that § =7 =y, in the jth factor of the summand of (15.2)
which does not vanish.

[Step 2] By Lemma 14.1, there exists Ad(L)-invariant operator P, € DL,
such that ¥;('f,) = P,'£.(3). Here P; is of order r by Step 1. In this step,
we show that o,(P;) is a certain constant multiple of a,(f,'f,(9))-

Let (I, ® ’I,,)L denote the subspace of I, ® ‘I, consisting of Ad(L)-
invariant elements. By Schur’s lemma, it is one-dimensional and spanned
by g1 ®g] +92®g9; +---, where {g;} is a basis of [, and {g;} is the dual
basis with respect to ¢, > which appeared in Definition 4.6. Here we may
assume that all g;’s are weight vectors, and that g; is the highest weight
vector f,, and we put f;=g{. We embed I,® ‘I, in Dy by gQP —
gP(0) as before. Then DL = @”(I,, ® ’I,,)L and we can write P; =
douiu (zue (@ 'I,)*). Since the order of P; is equal to r, we have

S o

deg f,<r
Moreover

o (P)= Y or(z).

deg f,=r

We have only to show that o,(z,) is equal to zero if degf, =r and u # 4,
since dim/; =1 implies that z; e Cf,'f,(0).

A summand of ¢,(P;) has a form gQ(d), where g € C[n"] is a polynomial
of degree r and Q € C[n~] is a monomial of degree r. We may assume that
g and Q are weight vectors. We call such g a coefficient polynomial. Let v
be a maximal element among the weights of coefficient polynomials in
o,(P;). Then vy is an Ad(L)-maximal weight occurring in C[n*] by the
maximality, since o,(P;) is a sum of o,(z,) = f,f,(0) +9295(0) +---. In
particular, all the terms of o,(P;) in which the weight of the coefficient
polynomial is vy, come from Cf, f;‘o =Cf,, ' f,,- Let Poe Dy+ be the sum
of terms of P, in which the weight of the coefficient polynomial is equal
to vp. Here Pyp#0 by the property of v,. Then we have Py=
5fy, £, (0) (se C*). Here we compute a(Po’f,(0)) (X;,X_) in two different
ways.
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First, we define h; by vo = hAy +---+ h4,. Then f, = f{" ---f,h‘ and it
follows from the normalization (8.1) that

(15.4) 02 (Po' 1,(0)) (X4, X_) = o2:(s1,, ' £,,(9) " £,(9)) (X1, X-)
= £, (X4) £, (X2) £ (X-)
=s5s#0,

where ‘f, and ‘f, € S(n*) ~ C[n"] are regarded as functions on n".
Second, we compute o(Py’f,(0))(X;,X_) by using the explicit formula for
¥,('f)). In the formula

o1,m €45,

(155) Gzr(yl,l(tfr)): Z 08{% Z [[XBI’X—én]aX—ﬂn]é&im}

0r,m, € 4%,

{% Z [[Xﬂ,,X—J,]7X~n,]fa,fn,}’

the terms of o,,(Py"f,(0)) precisely correspond to the sum of the terms in (15.5)
in which the coefficient polynomials have the weight v, that is, in which
>_;(B; —9d; —n;) = v or equivalently > :(d; +#;) = —vo — 4. Thus we have

aZr(POtfr(a)) = Z ag2™" Z [[Xﬂl ) X—51]7 X—m] cee
B

dj,m; € 4y,
Z(‘sj'*"lj):—"o—lr

T [[Xﬂr’ X“éy]’ X—'ﬂ,]éél é’ll Tt é&,ém-

As is stated in the last paragraph of Step 1, the nonzero summand of
o2 (Pi("f,))(X+, X_) is given only by B= B, and ¢; = n; =y; for all j. Thus
the nonzero summand of o,,(Py’f,(0))(X+, X_) also satisfies B = B,, and J; =
n;=7;. Such a summand occurs only if vy = 4,, since > :(d; +1;) = —vo—
Jr. By (15.4) 02,(Po"f,(9))(X+, X_) is nonzero and vy must be equal to A,.
Then we proved this step, since all the Ad(L)-maximal weight satisfying
deg f, = r are equal to or higher than A,.
[Step 3] At last, we can prove the proposition. We have

o2 (£, £,(0) £,(0)) (X4, X2) = £(X4) f(X2) f(X-) = 1,
We combine this with (15.3), and obtain the proposition. O

Now we can prove Theorem 7.1. For u = kA, + --- + k,A,, there exists a
complex number a by Lemma 14.5 such that
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(15.6) V1) =B (W Sy = a b ()b (n— (A° + p0)4r)

and obviously we have

(15.7) L@ 1 1) L), = bW S,

Here a # 0. Indeed, if a = 0, then ¥,("f,f,)f, = 0 for all 4, and ¥;('f,f,) =0
as an operator, since ¥;('f,f,) commutes with the Ad(L)-action and A
generate C[n*] as an Ad(L)-module. This contradicts the fact that the order
of ¥,("f,) is equal to 2r. Thus a #0.

When we consider the top degree parts of a b,(u)b,(u — (A° + p®)4,) and

of b,(1)* in (15.6) and (15.7), they come from the top order parts of ¥;('f.f,)
and of 'f,(0)f,"'f,(0)f,, respectively. The relation between these top order
parts is described in Proposition 15.1. Thus we have a = (—1)’, since the top
degree parts of b,(u)b,(u— (A° + p%)A,) and b,( ,u)2 coincide. We have proved
Theorem 7.1.
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