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ABSTRACT. TWO bilinear forms on a scalar generalized Verma module M(λ) = U

(g) <8>c/(p)C;ι are treated in this paper, where g is a complex simple Lie algebra and p is

its parabolic subalgebra. They coincide on each I-irreducible component up to scalar

multiple, where I is a Levi subalgebra of p. These ratios have played important roles in

the representation theory. We show intrinsically that these ratios are products of b-

functions when the nilpotent radical n + of p is commutative. As an application we

explain the reason why the ^-functions control the irreducibility or M(λ), the orbit

decomposition of n + under the action of the Levi subgroup, and the unitarizability of

M(λ).

1. Introduction

Let G be a complex simple Lie group. Let g be the Lie algebra of G and

ί) its Cartan subalgebra. Let A and A+ be the root system and the positive

system, respectively. Let p be a parabolic subalgebra containing ί) and all

the positive root spaces. Then the pair (g, p) is said to be of commutative

parabolic type if the nilpotent radical n + of p is commutative. In this paper,

we exclusively consider (g, p) of commutative parabolic type.

Let M(λ) be the scalar generalized Verma module induced from λ e

Hom(p,C). Then M(λ) ~ C[n+] as vector spaces. We therefore obtain the

representation of U(q) on C[n+], and denote it by Ψχ : £/(g) —• EndC[n+].

Let {Xa,Hi} be a Chevalley basis of g, where ^ e g " for α e A and

Hi el). To give the definition of contravariant forms, we define an involu-

tive anti-automorphism ' on C/(g) by Xa ι-> Ar_α(α e A) and to be the

identity on i). For a representation (π, V) of g, a bilinear form (, ) on V

is called a contravariant form or a π(C/(g))-contravariant form if it satis-

fies (π(X)v,w) = (v,π(ίAr)w) for l e g and v, weV. We study a canonical

^(C/(g))-contravariant form (,)λ and a canonical ad(ί/(I))-contravariant

form (, ) on M(λ) ^ C[n+] , where I is the Levi subalgebra of p containing

I). Let C[n+] = ©μIμ be the irreducible decomposition as an ad( £/(!))-
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module. Then the above two contravariant forms coincide up to constant
multiple on each Iμ. Let qχ{μ) be the ratio of (, )λ and (, ) on Iμ.

On the other hand, there is a prehomogeneous vector space (L,Ad, n+)
associated with (g, p) of commutative parabolic type, where L is the connected
subgroup of G corresponding to I. If (L,n+) is regular prehomogeneous vector
space (see Definition 6.1 (3)) then there exists a relative invariant / e C[τt+] and
the ^-function b(s) is defined by ' /(3)/ ί + 1 = b(s)fs. In Wallach [28], qλ(μ)
appears and is determined explicitly. Moreover the results of Kostant-Sahi
[16], of Shimura [23], of Rubenthaler-Schiffmann [20] and of Faraut-Koranyi
[4] are deduced from the explicit formula for qχ(μ). Our main purpose is
to show intrinsically that qχ{μ) is a certain product of ^-functions. As an
application we explain the reason why the ^-functions control the irreducibility
of M(λ), the orbit decomposition of n+ under the action of the Levi subgroup,
and the unitarizability of M(λ).

The contents of this paper is as follows: In §2 to §5, we prepare basic
definition such as scalar generalized Verma modules and contravariant forms.
In §6 we recall the definition of ^-functions and introduce another function,
which is deeply related to ^-functions. In §7 we state our main theorem
(Theorem 7.1). In §8 we define subalgebras of g and restate our main result at
the end of the section. In §9 we derive an important conclusion Corollary 9.1
from our main theorem, which gives an expression of qχ(μ) as a product of b-
functions. In §10 we give another expression of qχ(μ).

In § 11 , we consider the irreducibility of M(λ). It is known that M(λ) is
irreducible if and only if the contravariant form (, )λ is nondegenerate or
equivalently qχ(μ) φ 0 for all μ. In Jantzen [12], the determinant of (, )λ is
calculated and the irreducibility criteria are described concretely. In Shapo-
valov [22], the determinant is calculated for the Verma module. It is observed
that the values of λ which makes M(λ) irreducible, are related to the zeros of
the ό-functions. The first published result which relates the irreducibility
criteria and the ^-functions, is Suga [24]. The necessary condition for the
irreducibility is stated there in terms of ^-functions in the case where g is
classical. Gyoja [7] and [8] conjectured an irreducibility criterion in terms of b-
functions in a more general setting, and he proved this in some special cases
including the commutative parabolic cases by a case study. In this paper we
explain intrinsically why there exists such a relation between ^-functions and
the irreducibility.

In §12, we consider the one-to-one correspondence between Ad(L)-orbit
on n+ and the zeros of a ^-function. Tanisaki found this correspondence
motivated by the study of hypergeometric systems (Tanisaki [25], [26]). His
proof was a case study. We give an intrinsic proof of the correspondence.

In §13, we consider the unitarizability of the irreducible quotient of M(λ),
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say L(λ). This application is suggested by Professor Shuichi Suga. Only in

§13, we work in 'real' situation, that is, we use a real form of the complex Lie

algebra g. Most arguments, however, go well as in the 'complex' situation.

There are many articles which treat the unitarizability (Wallach [27], Par-

thasarathy [19], Garland-Zuckerman [5], Enright-Howe-Wallach [3], Enright-

Joseph [13] and many other articles). It is known that the values of λ such

that L(λ) is unitarizable, are related to the zeros of a Z?-function. We explain

intrinsically the reason for this relation.

In §14 and §15, we prove the main theorem using Boe [1].

The author would like to express his gratitude to Professor Mutsumi Saito

for his constant encouragement and valuable advice. He also would like to

express his thanks to Professor Akihiko Gyoja, Professor Shuichi Suga and

Professor Hirofumi Yamada for their valuable advice.

2. Commutative parabolic type

Let g be a complex simple Lie algebra, and ί) a Cartan subalgebra of

g. We denote the root system and the set of positive roots by A and A+,

respectively. Let {αi,...,απ} be the set of simple roots and let {π\,..., wn}

be the set of fundamental weights corresponding to {αi,. . . ,α Λ }. In other

words, Wj e I)* and 2(τu, ,α/ ) =δij(oij,ocj). We take a parabolic subalgebra p of

g containing all the positive root spaces and ί). Let I be the Levi subalgebra of

p containing ί), and n+ the nilpotent radical of p. In this paper, we exclusively

consider the case where n + is nonzero and commutative. We say (g, p) in this

case to be of commutative parabolic type. In this case, p is a maximal

parabolic subalgebra and there exists exactly one simple root α, 0 such that the

root space g~α'o is not contained in p. For all the possible pairs (g, p) of

commutative parabolic type, corresponding pairs (g, *o) are listed in Figure 1,

where the numbering of the simple roots follows Bourbaki [2], and white circles

correspond to α,0. Let ΔL be the root system of I and Δ^ = Δ+\ΔL. Set

n~ = Y^aeA+ g~α Let G be the connected algebraic group corresponding to g,

and L be the closed subgroup of G corresponding to I.

3. Generalized Verma modules

DEFINITION 3.1. For λ e Hom(p,C), we set M(λ) = £/(g) ®u(p)Cλ, where

Cα is the representation space of λ. The ί/(g)-module M(λ) is called a scalar

generalized Verma module with highest weight λ.

There is an identification S(n~) ^ C[n+], since n~ can be considered as the

dual space of n"1" via the Killing form. Thus there is a vector space iso-
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Γ - 1
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O — i
(Eβ.l)

(E7,7) J

Fig. 1. Commutative parabolic type

morphism M(A) ~ U(n ) ® c Q — ^C11 ) — C[n+]. We can therefore consider

C[n+] as a £/(g)-module. We denote this representation by Ψχ : C/(g) —>

EndC[n+]. We can find explicit form of Ψχ{X) for X e g by a direct cal-

culation.

LEMMA 3.2.

(1) Ψλ{X) = X ( J e n " )

(2)

where <, > w /Â  Killing form on g, (, ) w /Λe inner product on ί)* induced from

the Killing form, {F^} is a basis ofn~ and λ° is the complex number determined

by λ = λ°πio.

In particular, ^ ( (7(g)) is contained in Dn+, the ring of polynomial

coefficient differential operators on n + . We identify M(λ) with

module C[n+] from now on.
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4. Two contravariant forms

In this section, we give a definition of contravariant forms and then we

introduce two contravariant forms on M(λ).

DEFINITION 4.1. Define anti-automorphism *> of ί/(g) by

Xa -> % = X _ α (OLE A),

Hi -> tHi = Hi (ιe{l,. . .,/i}),

where 77, e ί) is the coroot of α, , that is, /// e [gα'",g~α/] and α/(i/, ) = 2, and

Jfα e gα(α e zl) are the root vectors such that {Hi,XΛ} forms a Chevalley basis

of g.

Definition 4.1 depends on the choice of Chevalley bases. We fix a

Chevalley basis {H^XΛ} once and for all. Here we have an equality

(4.1) <Jrα,Λ-_α> = - ^ - ( α e J ) ,

Indeed, 2<JTα,Z_α> = <[Jϊα, JΓJ, JΓ_β> = <i/α,#α> = (2α/(α,α),2α/(α,α)) =
4/(α,α), where Hae^ is the coroot of αGzί + .

DEFINITION 4.2. Let (π, F) be a £/(g)-module. A symmetric bilinear

form (, ) on V is called a contravariant form or a π(f/(g))-contravariant form if

(π(iι)ι , t;') = (t ; ,^^) ! ; ' ) for all ue t/(g) and ι;, 1/ e K.

The following propositions are fundamental on contravariant forms.

PROPOSITION 4.3. Let V be a U (q)-module and m a reductive subalgebra

of g. Assume that (, ) is an m-contravariant form on V. If W\ and W2 are

inequivalent irreducible msubmodule, then (W\,W2)=0. In particular, dif-

ferent weight spaces of V are orthogonal with respect to (, ).

PROOF. See Garland-Zuckerman [5, Lemma 2.5]. •

PROPOSITION 4.4. Let V be a U(§)-module. Assume that V is a highest

weight module. Then we have

(1) There exists a nonzero contravariant form on V, and it is unique up to

constant multiple.

(2) The radical of a nonzero contravariant form on V coincides with the

maximal proper submodule of V.

PROOF. See Humphreys [11, §6] or Wallach [27]. •

We introduce two contravariant forms on M(λ) ^ C[n+]. One is a
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^(C/(g))-contravariant form and the other is an ad(£/(I))-contravariant form
on C[n+].

DEFINITION 4.5. Define C-linear function φλ : £/(g) —» C as a composite of
the projection from C/(g) = £/(!)) Θ(c"ί/(g) + £/(g)c+) to C/(ϊ>) and λ : *7(ϊ)) ->
C, where c 1 = Σ α G j + 9 ± α We define a ^(C/(g))-contravariant form (, )A

by

(/, 0)χ = 9χ('gf) for /, g e C[n+] * S(n") c £/(g).

See also Humphreys [11, §6].

We will define another symmetric C-bilinear form on C[n+]. We shall
identify S(n+) with the ring of constant coefficient differential operators on n+

via the Killing form as follows: For P e S(n+) ~ C[n~], define a constant
coefficient differential operator P(d) on n+ by

(4.2) P{8) exp<x, y} = P(y) exp<x, y} for x en+ and y en~.

For P e S(n+), we write it by P{8) when it is regarded as a differential operator
on n+.

DEFINITION 4.6. Define symmetric C-bilinear form (, ) on C[n+] ~ S(n~)
by

C for f,ge C[n+] - S(n"),

where ^(δ) is the constant coefficient differential operator on n + identified with
tgeS^), and (^(δ)/)(0) means a differentiation followed by evaluation at
Oen + . This bilinear form is ad(C/(I))-contravariant, since the bilinear form
defined by </>,/> = (P(d)f)(0) for P e S(n+) and /eC[n+], is Ad(L)-
invariant. Moreover (, ) is nondegenerate.

We summarize some properties of these forms.

LEMMA 4.7. (1) Ψχ{U(X))-contravariance and a,d(U(\))-contravariance are
the same notion.

(2) A Ψχ{U(§))-contravariant form is also Ψχ{U(\))-contravariant.

(3) (f,gh)λ = (Ψλ('g)f,Qx for f,g,he C[n+] - S(n~).
(4) (f,gh) = C

PROOF. (1) It follows from Ψλ(X) = nd{X) + λ(X) for Xel (2) It
follows immediately from the definition of the contra variance. (3) Since (, )λ

is ^(^(c^-contravariant, and since Ψχ(u) is just a multiplying operator
for weC[n+] ~ S(n~), we get the identity. (4) It follows immediately from
Definition 4.6. •
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5. The ratio of the two contravariant forms

We have defined two contravariant forms on M(λ) ^ S(n~) ~

C[n+]. Since both (, ) and (, ) λ are ad(£/(I))-contravariant by Lemma 4.7, it

follows from Proposition 4.4 (1) that (, )λ coincides with (, ) up to constant

multiple on each irreducible ad(£/(l))-submodule of C[n+]. In this section we

define a function qχ(μ) as the ratio of these two forms.

DEFINITION 5.1. oc,β e A are said to be strongly orthogonal, if α and β are

non-proportional and both α + β φ A and α - β φ A hold.

If oί,β e A and (α,/?) < 0, then oc- β e A. Thus if α is strongly orthogonal

to β then α is orthogonal to β.

We take the family of mutually strongly orthogonal roots contained in A^

as follows (Harish-Chandra [9]): Set yx = ocio. When we have taken γx,..., γh

let γi+ι be the lowest root in

{α e Ax I α is strongly orthogonal to all y l 5 . . . , y,},

if this set is not empty. Let r be the index of yt which we could take last. Set

λ/ = -(yi + + y«) f o r ί e { l , . . . , r } .

THEOREM 5.2. (Schmid [21]) Let Vμ be the finite dimensional irreducible

diά{U{\))-module with highest weight μ. We denote by C ί /[n+] the homogeneous

component of degree d of C[n+]. Then we have

{
for some kj e Z > 0 , d = ΣjJkj)

0 (otherwise)

For μ = k\λ\+•'-+ krλr (kje Z^o), let Iμ be the unique ad(t/(I))-

submodule in C[τt+] with the highest weight μ. Then we have an irreducible

decomposition
C[n+] = © Iμ.

In particular C[n+] is multiplicity free, that is, all the multiplicities of irreducible

ad(£/(I))-submodules are equal to one. Let ft be a highest weight vector of Iλi

and fμ = /f1 •/*' for // = A iAi H h A:rλr. Then fμ is a highest weight

vector of Iμ.

As we stated before, two ad((7(I))-contravariant forms (, ) λ and (, ) on

C[n+], coincide on each irreducible submodule Iμ. For μ = k\λ\ -\ h krλr



200 Akihito WACHI

(kj eZ>o) and Λ, e Hom(p, C), we define qχ(μ) by

(> )λ = Vλ{μ)(, ) onlμ xlμ.

LEMMA 5.3. For all μ,(fμ1fμ) is nonzero.

PROOF. It is obvious from the definition that (, ) is nondegenerate on

C[n+]. For μ # v, it follows from Proposition 4.3 that (Iμ,Iv) = 0 since

C[n+] is multiplicity free. Thus (, ) is nondegenerate on each Iμ. We have

(fμifμ) ^ 0 since the highest weight space of Iμ is one-dimensional. •

Thanks to Lemma 5.3, we have

(5-1) qι{μ) = {fμfμ)J{fμJμ)-

6. ^-Functions

In this section, we introduce prehomogeneous vector spaces and define b-

functions of prehomogeneous vector spaces associated with (g,p) of com-

mutative parabolic type.

DEFINITION 6.1. (1) A finite dimensional G-module V is called a pre-

homogeneous vector space if there exists an open G-orbit on V.

(2) A nonzero function/on V is called a relative invariant of (G, F), if

there exists a character χ of G such that f(gυ) = χ(g)f{v) for all g e G and

veV.

(3) A prehomogeneous vector space (G, V) is said to be regular if there

exists a relative invariant / o f (G, V) and the Hessian det(δ2 f/dxidxj) is not

identically zero, where {*,-} is a linear coordinate system of V.

REMARK 6.2. It is known that (L,n+) is a prehomogeneous vector space

and the open L-orbit contains Xyχ -\ h Xϊr, where Xγ. is an element of

our fixed Chevalley basis (Muller-Rubenthaler-Schiffmann [18, Theorem 2.4]).

The (L,n+) is regular if an only if Hermitian symmetric space G/L is of tube

type (Koranyi-Wolf [15]).

All the pairs (g, z'o) of commutative parabolic type, where (L, n + ) becomes

regular prehomogeneous vector spaces, are listed in Figure 2. Notation is the

same as before.

Let Hγ be the coroot of γj, that is, Hγ. e [g^g"^"] and 7j{Hyj) = 2. Set

THEOREM 6.3. (Moore [17, Theorem 2]) (1) For oceALΠ zf+, the possible

forms of α|fj- are as follows:

- ^ • - ^ ( l < / < ; < r ) , - - 7 , ( 1 < / < r ) , 0.
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r-1 r-1

(A2r-i,r) — ° — (r > 1)

( B Π J 1 ) ° — • = • • (n>2)

(Cn, n) Φ= o (n > 3)

o — — ... — —
(D n , 1) I (n > 4)

(D2r,2r) * I * (r>2)

(E7,7) • - . - . — . — . ~ o

Fig. 2. Regular type

(2) For α e ^\{y 1 ? . . . , γr}, the possible forms of α^- are as follows:

-(γj + y,-)(l <ί<j< r ) , - 7 , ( 1 < 1 < r ) .

(3) If (L,x\+) is a regular prehomogeneous vector space, then ±{\/2)yi in

the above possibilities do not occur.

We exclusively deal with the case when (L, n + ) is a regular prehomo-

geneous vector space for the rest of this section. We can find relative invariant

of a regular prehomogeneous vector space (L,n+) using Theorem 6.3.

LEMMA 6.4. If (L, n + ) is regular, then λr — —2vσio. Thus fr is a relative

invariant of (L, n + ) .

PROOF. For α e ΛL, we have α | r = (l/2)(yy - γ^ij e {1,..., r})
by Theorem 6.3, since (^, n+) is regular. We have that (λr, α) =

-ΣLi(y*.«) = -Σ*«('*) = -Σk«l f t-(ίΛ) = -Σ*(i/2)(y, - 7,)(^) = -(1/2)
{(γj, γj) — (yh yt)} = 0, where t7k denotes the element in ί) which is identified

with γk via the Killing form. Thus λr is a constant multiple of τuio. We can

determine it by computing (λn ctk)/(πio,cck). We have that (λn α / o ) / ( ^ o , α/o) =

-(7i + •• + 7 r,y1)/2-1(α ί 0,α / 0) = - ( y i . y i ) ^ " 1 ^ , ^ ) = - 2 .

The highest weight of Iχr is equal to —Iτσ^, and therefore Iχr is a trivial

one-dimensional ad(C/([I, I]))-module, that is, Iχr = Cfr. This means that fr is

a relative invariant. •



202 Akihito WACHI

Here we define ^-functions and &-function-like functions associated with
the regular prehomogeneous vector spaces (L, n+) = (L,Ad, n+). Since fr is
the relative invariant, g e L acts on fr by a certain scalar multiple, say
χ(g). Dually for tfr e S(n+), g acts by χ(gy

ι. Thus <frfr e U(g) is Ad(L)-
invariant, and therefore the differential operator ιfr{jS)fr on n+ is Ad(L)-
invariant. Then tfr(S)fr acts on fμ e C[n+] (μ = k\λ\ H h krλr) by a certain
scalar multiple, since C[n+] is multiplicity free.

As for Ad(L)-invariance of Ψχ^f^), we need the following lemma.

LEMMA 6.5. The representation Ψχ is Ad(L)-equivariant. Namely, Ad
(g).Ψλ(u) := Ad(g) o ψλ(u) o Ad(g~ι) = Ψλ(Ad(g)u)9 for u e Ufa) and g e L.

PROOF. We have a canonical linear isomorphism M(λ) = C/(g) ®c/(p)
Q —» C[n+]. Thus we can define linear mapping α : C/(g) -^ C[n+] as a
composite of the canonical surjection C/(g) —>• M(A) and the above canonical
isomorphism M(λ) —>• C[n+].

First we show that α commutes with the Ad(L)-action. Since C/(g) =
ί/(n~)C/(p) from PBW theorem, any we C/(g) is a sum of elements such as
np (n e U(n~), p e C/(p)). We may assume u — np without loss of generality.
For geL, we have cc(Ad(g)(np)) = oc(Ad(g)n Ad(g)p) = Ad(g)n λ(Ad(g)p) =
Ad(g)n-λ(p) = Ad(g)a(np). Thus α commutes with the Ad(L)-action.

It is easy to see that Ψχ(u)f = ot(uf) for.weί/(g) and / e C [ n + ] -
S(τr). Thus we have Ad(^) o Ψλ(u) o Ad(^- !)/ = Ad(^)α(wAd(^-1)/) =
a((Ad(g)u)f) = Ψχ(Ad{g)ύ)f. The assertion is proved. •

By Lemma 6.5, ΨλCfrfr) is Ad(L)-invariant, and therefore Ψλi'fJr) also
acts on fμ by a certain scalar multiple.

Then we can define functions br(μ) and βλ,r(μ) by ιfr{S)frfμ = br(μ)fμ and
Ψλ{tfrfr)fμ

=βλ,r(lΛ)fμ> respectively. It is easily seen that br and βλr are
polynomials.

Moreover we can define these functions for μ e Σ Cλi as follows. Let A
be a connected simply connected open subset of n+ such that fλ(a),...,
fr(a)φ0 for all aeA. Set G = C[n+]. For μ = M i + •••+ M r (*y eC),
^[/j"1,- ,f7l]fμ o n ^ becomes a Z)^-module. Here a differential operator
d/dxeDA acts on ̂ [/f1,... J;% by

~fμ

δx δx
•)(?)/„,
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where φ e O\f\\... J?] and d log fμ/dx = ΣM^dfJdx. Then there
exists ^-function b'r(μ) e Θ[ku ... ,kr] such that tfr(d)frfμ = b'r(μ)fμ. Here

br{μ) and b'r{μ) coincide when μ e Σ , Z>(Λ, a n c * therefore they coincide for all

μ e ΣiCλi. Similarly we can define βχr(μ) for μ e ΣtCλi. In this way, we

can define polynomials br(μ) and βχ,r(μ) by the following definition.

DEFINITION 6.6. Assume that (L,n+) is regular. Define polynomials br

and βλr by

for λ e Hom(p, C) and μ = kxλ\ + + krλr (kj e C).

7. Main theorem

We continue to assume that (L, n + ) is regular in this section. We state

our main theorem. The theorem needs the normalization of fr. By Muller-

Rubenthaler-Schiffmann [18, Theorem 2.4], the open L-orbit on (L,n + )

contains the vector Xlχ + V Xyr Thus fr(Xγι H 1- X7r) Φ 0. Then we

normalize fr by

(7.1) /Γ(jryi + . . + jryr) = i.

We fix this normalization for the rest of this paper.

We define the constants which will be used in our main theorem. Let

/? reHom(p,C) be the half sum of the roots of n + , that is,

(X 6 p).

Since /?,. is a constant multiple of τσ^, we define the complex number p® by

(7.2) Λ=Av

The following theorem and its corollary (Corollary 9.1) are our main

results. This theorem suggests that the structure of scalar generalized Verma

modules has a certain connection with ft-functions of prehomogeneous vector

spaces associated with them.

THEOREM 7.1. Assume that (L, n + ) is a regular prehomogeneous vector

space. If fr is normalized by (7.1), then for μ = k\λ\-\ h krλr (ki e C),
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where λ° is the complex number defined by λ = λ°wio.

8. Subalgebras of g

In this section, we will define certain subalgebras of g and show some

properties related to these subalgebras. Then we define ^-functions and b-

function-like functions associated with the subalgebras. We return to the

situation where (L,n+) is not necessarily regular.

We define the subalgebras of g following Wallach [27]. Set

AN,i = ί α G Δ h α Iff = (ϊk + ϊj)/2 f o r s o m e 1 <j <k<i}U{γι,..., y j ,

Let 1/ be [n^n,"]. It is easy to see that 1/ is a Lie algebra. Set

and let L, be the connected closed subgroup of G corresponding to I/. Then

(9/,p,-) is of commutative parabolic type, and (Li,n~l) is a regular pre-

homogeneous vector space. Obviously, the maximal family of mutually

strongly orthogonal roots contained in A^ if constructed in the same way,

coincides with {γx | ^ , . . . , γ^.}.

We can describe the decomposition of C[n/~] as an ad(C/(Iz))-module. For

μ = k\γx H h kiyt (kj e Z>o), fμ is contained in C[n/~], although Iμ is not

necessarily contained in Cfnj1"]. We can show that f is a maximal weight

vector with respect to the action of ad(C/(I, )), and fμ runs over all the maximal

weight vectors of ad((7(I/))-module C[nt] by applying Theorem 5.2 to

C[n/"]. In other words, there is a decomposition into irreducible ad(t/(I, ))-

modules

CK+]= ® (

We consider C[n+] as a C/(gz)-module in the following way. The

restriction λ\Pj leads to the generalized Verma module M(λ\p) = t/(g, ) ®c/(p.)

Cχ\ which is isomorphic to C[nf ] as a vector space. We denote this rep-
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resentation of £/(&) on C[n+] by Ψχ\ . Note that this representation is not

equivalent to the restriction of Ψχ to {/(g,-). By the same argument as in

Lemma 6.4, we can show that λt = —2πio on \)u and therefore f is the relative

invariant of (Li,x\}~). The following definition is a generalization of Definition

6.6.

DEFINITION 8.1. For ι e { l , . . . , r } 3 define polynomials 6/ and /^, by

for λ E Hom(p, C) and μ = M i + + Mi (*/ e C).

As in Theorem 7.1 we normalize /j so that

(8.1) fi(Xγi + ... + Xγr) = l f o r i e { l , . . . , r } ,

and define a character /?, by

Pi = 2 Σ α e H o m ( P / 5

c )

Since pt is a constant multiple of τuio on ί)/5 we define the complex number pf

by

(8.2) Pi = p°πk on t),.

Since each (L, ,n/~) is a regular prehomogeneous vector space, even if (L, n + ) is

not regular, Theorem 7.1 implies the following assertion.

THEOREM 8.2. Assume that fj (j e {1,.. . ,r}) w normalized as (8.1)

(g, p) w of commutative parabolic type, where the prehomogeneous vector

space ( L , n + ) is not necessarily regular. We fix / e { l , . . . , r } . Then for

where λ° is the complex number defined by λ\v = λ°Wi0.

9. An expression of qχ{μ) in terms of ^-function

In this section we give a corollary to the main theorem. The corollary is

a part of our main results. It indicates that a contravariant form on a scalar

generalized Verma module is deeply related to 6-functions.
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COROLLARY 9.1. If f{s are normalized by (8.1), then for μ = k\

λ\ + + U (ki eZ>0),

r ki-\

qχ(μ) = (-l)deg/^ Π Π Wih + ' ' + ̂ -i^-i + ̂ < " (λ° + Λ°M
i=l 7=0

PROOF. We can calculate qλ(μ) using (5.1): qλ(μ) = (fμ,fμ)λ/(fμ,fμ).

First we compute (fμ,fμ)λ.

By Definition 4.5, the construction of (,)λ, we can compute (fμ,fμ)λ

within the subalgebra U(qr) of C/(g), since fμeC[n+]. In other words,

(fμ>fμ)λ = U'μ>fμ)λ\ψr>
 w h e r e (> ^ i s t h e ^A|Pr(C/(gr))-contravariant form on

C[n^] constructed in the same way as in Definition 4.5. Then we have

(9-1) (fμ,fμh = (f

= (frfμ-λrifrfμ-λr)λ\Pr

= hM ~ λr) ' "βλΛP " krλr){fμ-krλrJμ-krλr)λ\Vr,

by Lemma 4.7 (3). Here fμ_kχ = f\ι • f£j e C[n^_{]. Thus

(fμ-krλrJμ-krλr)λ\Pr=(fμ-krλrJμ-krλr)λ\Pri

 a S b e f θ Γ e T h e Π W e C a Π apply
Lemma 4.7 (3) again to (9.1), and at last we have

r ki-\

(fμ>fμ)λ = Π Π βλΛMl + * * * + fe-1^
/=1 y=0

Similarly, it follows from Lemma 4.7 (4) that

r ki-\

WμJμ) = Π Π *'Wl + * * * + ̂ -1^-
/=1 ; = 0

Then we have
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r ki-\

= Π Π PλΛhh + + ki-\λi-\ +jλi)/bi{kχλx + + fc/_iA/_i

ι=l y=0

r ki-\

i=\ 7=0

Here ]Γ[=1 ΣJlo1 ' = Σί=i ^ = deg^. Thus the corollary is proved. •

10. Another expression of qχ{μ) in terms of ^-function

We give some applications in sections from 11 to 13. In this section we

show some formulas for bi(μ) and qχ{μ) which will be used in the later

sections.

Set

(10.1) bi(s) = bi(sλi) ( jeC).

First we give a formula which expresses br(μ) in terms of bj(s)

(i G {1, . . . , r}). Note that this formula does not depend on the main theorems

(Theorem 7.1, Theorem 8.2), and we will use it to prove the main theorems.

PROPOSITION 10.1. For μ = k\λ\ H + krλr (kj e C),

h f t A brjki + . . + kr) b2{kr-l+kr)

In particular, bj(s) divides bj+\(s) and therefore br(μ) is a polynomial of degree i

in ki. Moreover the total degree of br{μ) in k\,...,kr is equal to r.

PROOF. If we know the above equality, then it is easy to see that bi(s)

divides bi+\(s), since br(μ) and bj(s) are polynomials. Then, in addition, it is

obvious that br(μ) is a polynomial of degree i in kt ( i e { l , . . . , r } ) , since the

degree of bi(s) is equal to i. Moreover it follows that the total degree of br(μ)

in k\,..., kr is equal to r.

We therefore have only to prove the equality. For / e {0,..., r — 1}, l e t /

be a lowest weight vector of Iχri. The longest element of the Weyl group of

(I, ί)) maps yt to yr_/+1, which can be proved by using Theorem 6.3. This fact

implies that ft e C[g4? '], where AQ , = {αe J ^ ; α ^ - = (yk + γj)/2 for some

i<j <k<r}U {y/+1,..., γr} and $A = ΣaEA gα for a subset A in A.

Here we also normalize / ' s so that

(10.2) /•(*,,+••• + *,,) = ! f o r i e { l , . . . , r } .
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Then we have

f o r χ E < a n d

Indeed, fr(x + y) is a relative invariant with respect to Ad(Z,,)-action as a

function of c e n+, since Ad(L, ) acts trivially on g^β 1'. It has a weight Λr|^5

which is equal to λi\ί)_ by Theorem 6.3. Thus /J.|n+${_j,\ is a scalar multiple of

fi\n+. Similarly, fr\ Δ+ is a scalar multiple of/ | „+ . Thus we have the

above equality thanks to the normalizations.

Here we show that

for i e {1, . . . , r - 1}, ku...,kh me Z > 0 (Rubenthaler-Schiffmann [20]). Let

NL be the nilpotent subgroup of L corresponding to the nilpotent subalgebra

gj L j nj +

 Qf j Then both sides are Ad(7V£)-stable, and they have the same

weight. Thus they coincide up to a constant multiple. Let A be an affine

space Xγι -\ h Xy. + g^β ' c n + . Then we have

We proved (10.3).

Applying the equality (10.3) repeatedly, we have

& (*)"• ^ (d)f^'"^1 =flf[ br-tU + kM + + kr) X f\' /ΓVr
ι = l 7 = 1

Applying f/ r(^) to this equality, we get

r-\ ki-\

br{kχ + + kr) Y[ J J ftΓ_ίC/ + A/+1 + . . . + fcΓ) X /̂
ι=l 7=0

r-1 ^

= *r(^) Π Π b'-M + fe+1 + - + ^)X/,
i=l j=\

Then the proposition is proved by comparing both sides. •

Second we show the formula for the ft-function bi(s), although
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Rubenthaler-Schiffmann [20] gives an intrinsic proof of the formula. We need

two known lemmas to show the formula.

LEMMA 10.2. For i e {1,... ,r - 1}, Iλ]Iλi => Iλi+ι.

PROOF. Let C ί/[n+] denote the homogeneous component of degree d of

C[n+}. Then / i , 1 c C ί + 1 [ n + ] = C i ' [ n + ] C 1 [ n + ] = C ί [ n + ] / l l . Thus there exists

μ = k\λ\-\ Ykrλγ such that Iμ a C'[n+] and Iχi+] c IμIχx. Assume that

μ φ λi. Then μ = k\λ\ H h ̂ /-iΛ-i = -(m\γι H \- mί-i}^), where
rrij = kjΛ \-kr. Any ad(t/(I))-maximal weight occurring in IμIχι is a

sum of μ and a weight of Iχr Thus λi+\ =μ + (x for some α e ^ . Here

(Λ/+i - μ)\r = {(mi - 1)^ + + (w/_i - l)y/_! - yf - y / + i } | r . This can not

be equal to α|^- by Theorem 6.3. Thus μ must be λj and we prove the lemma.

D

LEMMA 10.3. Let Y be the maximal submodule of M(λ). For μ =

k\λ\ + + krλr (kj-e Z>o), Iμ occurs as a component of the irreducible

decomposition of Y regarded as an ?iά(U(\))-module, if and only of qχ{μ) — 0.

PROOF. It follows from Proposition 4.3 and Proposition 4.4 (2) that

Iμ c Y if and only if (Iμ,Iμ)λ — 0. Since Iμ is an irreducible ad(£/(I))-module,

the nonzero contravariant form (, ) defined in Definition 4.6 is nondegenerate

on Iμ. Thus it follows from the definition of qχ(μ) that Iμ a Y if and only if

qx(μ) =0. D

DEFINITION 10.4. For 1 < i < j < r, define c—φ {α e ΛL Π A+; α|^- =

(ϊj — y/)/2}- It is known that c is independent of / or j .

It is easily seen that c = # { α e Δ^\ α^- = (yy + yf)/2} for 1 < / <

y < r. Then we can determine the constant /?? defined in (8.2) in the same way

as in Lemma 6.4:

Λ? c + i .

PROPOSITION 10.5. (Rubenthaler-Schiffmann [20], Wallach [28]) For ie

7=0

where dt G C X W constant.

PROOF. Let Γ be the maximal submodule of M(Λ). By Lemma 10.2

if Iχ. cz Y then / .̂+1 c Y since ^ ( Ό is a multiplying operator for
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X e n~. Then it follows from Lemma 10.3 that qχ(λi) = 0 implies qχ(λi+\) = 0

for ι e { l , . . . , r - l } . By Corollary 9.1, if bi(-λ°-pf)=O then bM

(—λ° — pf+ι) = 0. Obviously bj(s) has s + 1 in its factors for any j and it is

known that bj(s) is of degree j in s. Since b\(s) = s+ 1 up to constant, if

bx(-λ° - p\) = 0 then -λ° - p°{ + 1 = 0. In this case, we have b2{-λ° - p*) =

0. Since -λ° - p\ + 1 φ 0, b2{-λ° - p°2) has a factor -λ° - p\ + 1. Thus

we have bι(-λ° - /?J) = (-λ° -p\+ l)(-/l 0 - p\ + 1) up to constant.

Inductively we have bi(-λ° - p?) = (-λ° - p°{ + I) {-λ°-p? + l) for

i e {1,. . . , r} up to constant multiple. The proposition is proved by replacing

-λ° -pf by s and using (10.4) for pf. Π

We conclude this section with some consequences of Corollary 9.1,

Proposition 10.1 and Proposition 10.5.

PROPOSITION 10.6. For i e {1, . . . , r} and μ = k\λ\ -\ h k\λi (kj e C) we

have

(10.5) bi{μ) = dif[(kH + + ki + 1 + |

where di's are defined in Proposition 10.5.

PROPOSITION 10.7. For μ = k\λ\ -\ h krλr {kj e Z> 0 ) we have

(10.7) qλ{μ) = f[f[bi(λ° - (j + kM
i = l y = l

J/'ί1 are defined in Proposition 10.5.

11. Irreducibility criteria for scalar generalized Verma modules

In this section we consider two irreducibility criteria for scalar generalized

Verma modules. One is in terms of ^-functions and the other is in terms of

contravariant forms. We see how these two criteria relate to each other

through Corollary 9.1 or Proposition 10.7.

PROPOSITION 11.1. For λ = λQvjiQ e Hom(p,C), the following are equiv-

alent:

(1) The scalar generalized Verma module M(λ) with a highest weight λ is

irreducible.
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(2) Π Π 6 / μ 0 - C / + ̂ +i + + * r ) ) ^ 0 / o r all ku Λ e Z>0.
i = l 7 = 1

(3) Z>r(>l0 - m) φ 0 /or α// m e Z > 0 .

PROOF. By Lemma 10.3 and (10.7), is follows that (1) and (2) are

equivalent. Next we assume (2). Then bi(λ° - m) Φ 0 for all /e { l , . . . , r }

and m e Z>o and therefore (3) follows. Conversely if we assume (3), then

bi(λ° — m) Φ 0 for all / e {1,. . . , r} and m e Z>o, since b\ divides br. Then (2)

follows. •

12. ^-Functions and L-orbits on the nilpotent radical

In this section we consider Ad(L)-orbits on n + . The set of Ad(L)-orbits

on n + and the set of zeros of the 6-function of the relative invariant are in one-

to-one correspondence (Tanisaki [26]). We give another proof of the corre-

spondence and it explains why there exists a correspondence between the orbits

and the zeros of the fc-function. We give another proof of the correspondence,

which is intrinsic.

First we investigate Ad(L)-orbits on n + . For /e{0, . . . , r } , set Cι• =

V(Iλi+ι)\V(Iλi), where V(Iλi) = {X e n_+ \f{X) = 0 for all / e Iλi}, V(IJ = 0

and V(hr+ι) = * + . Then we have C, = V(Iλi+ι) and

(12.1) {0} = Q c . . . czC~r = n+,

where the overlines denote the Zariski closures. In fact, the disjoint union

n + = Co U U Cr is the Ad(L)-orbit decomposition of n + (Goncharov [6,

Proposition 3.5]).

LEMMA 12.1. (1) C[n+]Iλ. = ®μIμ, where μ = k\λ\ H h krλr (kj e Z> 0 )

runs over such μ satisfying kx• Λ- + kr > 0.

(2) C[n+]Iλi is a radical ideal of C[n+].

(3) The defining ideal I(Q) of Q is equal to C[n+]Iλi+x for i e

{0,..., r - 1}. (See also Tanisaki [26, Proposition 1.5].)

PROOF. Set Rt = 0 ^ (μ = k\λ\ H h krλr, kj e Z > 0 , kt H h kr > 0).

(1) C[n+]/^ contains fh ... ,/ r from Lemma 10.2. Thus C[n+]/^ contains

all the maximal weight vectors which appear in Rim Since both sides are

ad(t/(I))-stable, we have C[n+]Iλi => Ri.

On the other hand, assume that μ is an ad(£/(I))-maximal weight occurring

in C[n+]/A,.. Then we can write

μ = k\λ\ Λ h krλr (kj e Z> 0 )

rnryr (mj = kj H h kr),
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by Theorem 5.2. Also μ is a sum of λi and a weight occurring in C[n+], say

v. Here v is a sum of roots in Ajj, and therefore v^- is a certain sum of

— (l/2)>ys ( l < y < r ) by Theorem 6.3. Then we have that w, > 0, or

equivalently kj + h kr > 0, since μ has λx• = -(γλ -\ h y, ) as its sum-

mand. Thus the maximal weight μ occurs in Ri.

(2) We show Rf is a radical ideal. Since Ri is ad(£/(l))-stable and this

action is derived from Ad (Z,)-action, its radical also ad(C/(I))-stable. If Ri

is not a radical ideal then there exists v = k\λ\ H Vki-\λi-\ such that Iv

is contained in the radical of R{. Then there exists m e Z>o such that {fv)
m e

Ri, where fv is the highest weight vector in 7V defined before. How-

ever (fv)
m e Imv, indeed (fv)

m is the highest weight vector in Imv. Since

ImvΠRi = 0, this is a contradiction, and we proved (2).

(3) I(Ci)_= I(V(IλiJ) => C[n+}Iλi+ι. Here C[n+]//l/+1 is a radical ideal by

(2). Thus I(d) = C[n+]Iλi+ι. •

PROPOSITION 12.2. (Tanisaki [26]) There exists a one-to-one correspon-

dence between non-open Ad(L)-orbits on n + and the zeros of the b-function br(s),

(non-open Ad(L)-orbits on n + ) —> (zeros of br(s))

C ->

where φ(C) is the unique complex number λ such that I(C) <= C[n+] becomes

the maximal submodule of M(λ WiQ) ĉ  C[n+]. More concretely for ie

{0, . . . , r — 1 } , ^(C/) = αι+i + 1, where Ci is the non-open Aά(L)-orbίt as in

(12.1) and ai+\ is the unique zero of bi+\(s) which is not a zero of bi(s).

PROOF. Let C, and ai+\ be as above for ie {0,... ,r— 1}. Then the

defining ideal /(C, ) is equal to C[n+]/^.+1 by Lemma 12.1 (3). We assume that

C[n+]/^/+1 is the maximal submodule of M(λ) for some λ. Then it follows

from Lemma 10.3 and Lemma 12.1 (1) that qλ(μ)=0 if and only if

ki+ι H \- kr > 0 ίor μ = k\λ\ -\ h krλr. In particular, we have qχ(λi) Φ 0

and qλ(λi+ι) = 0. Then by (10.7) we have bi(λ° - 1 ) ^ 0 and bi+i(λ0 - 1) = 0,

and therefore it follows that there exists at most one λ such that C[n+]/^.+1

becomes the maximal submodule of M(λ). Namely, the unique possibility for

such λ is given by λ° = ai+\ + 1.

Conversely we assume that λ = (aj+\ + l)t^/0 for j e {0,..., r — 1}. We

find tfy +i = —jc/2 — 1 from Proposition 10.5. For μ = k\λ\ -\ h krλr, if

kj+\ H h kr > 0 then qχ(μ) in (10.6) has a factor in which / = j and m = 0,

that is, (jc/2 - jc/2 — 0). Thus ^(//) = 0. On the other hand, if kj+\ =

•.. = kr = 0 then a factor (/c/2 — jc/2 — m) in (10.6) occurs only when

/ < j . Thus all these factors are negative and therefore qχ(μ) Φ 0.

Then we have that qχ(μ) = 0 if and only if fcy+H \- kr > 0 for
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λ° = aj+\ + 1. In other words, the maximal submodule of M{λ°Wi0) is equal

to C[Π+]/A/+1 for λ° = ai+\ + 1 by Lemma 12.1 (1). In this way we obtain the

desired correspondence. •

13. The unitarizability of the irreducible quotient of M(λ)

Let L(λ) be the irreducible quotient of M(λ). In this section, we consider

the unitarizability of L(λ). This application is suggested by Professor Shuichi

Suga. This problem is considered in Wallach [27], Parthasarathy [19], Garland-

Zuckerman [5], Enright-Howe-Wallach [3], Enright-Joseph [13] and many other

articles. It is known from these articles that the values of λ such that L(λ) is

unitarizable, are related to the zeros of ft-functions. We will explain in terms

of our main theorem, the reason why there exists such a relation.

We must consider real Lie algebras. We take the real form g0 such that

9o — *o Θ No (Cartan decomposition),

(9o)c = 9,

(Io)c = I,

(πo)c = n + φ n " ,

where subscript C means the complexification.

When we work in the 'real' situation, the definitions in previous sections

must be slightly modified.

DEFINITION 13.1. Define a conjugate linear anti-automorphism •* of C/(g)

by

We extend •* conjugate linearly to g and anti-automorphically to U(q). Note

that * is a composite of *• and the Cartan involution. Note also that * is a

complex conjugation by regarding g0 as a purely imaginary part and λ/-Tg0 as

a real part. See also Wallach [28], Garland-Zuckerman [5], Enright-Joseph

[13] or Shapovalov [22].

LEMMA 13.2. Under the normalization (8.1), / * = {-l)άQgfμtfμ for μ = k{
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PROOF. We have only to prove the lemma for μ = λ[ (i e {1,. . . ,r}),

since /„ = /?'•••/*. For aeALΠA+ we have [*_«,/*] = - [ * ! « , ΛΓ =

-[X^fi]* = 0. Clearly the weight of / * is equal to -λ, and therefore

Set X+ = Xγι+- ' + Xγr and Z_ = *X+ = X_yi + + X-yr We com-

pute f*(X-), where / * e S(n+) is regarded as a function on n~. We expand

/ as a polynomial in A r _ α (αeJ^) .

/,= Σ aBX-βι...X-βt (βjeA+),
B=(βχ,..A)

where B runs over the set S&i which satisfies that {̂ -̂ j X-β. \B e $i\ forms a

basis for C'[n+], the homogeneous component of degree /. If aβX-βλ'

X-βt{X+) φ 0 then (βι,... ,βj) must be equal to (γu . . . , y, ) up to order. Since

X-γj(X+) = 2(γuγιy
ι and /J(jr+) = 1, we have aBi e R, where Bi = (γu..., γt).

Thus we have pi(X.) = ΣB{aBXβχ • Xβι)\X-)=Wi(-Xβχ)- -{-Xβ^X-) =

(-\)ιaBiXβχ'"Xβi {X-) = (-lJ'yjίΛL), and we proved the lemma. Π

We define 'real' analogues of ̂ -functions bi(μ) and βλ^{μ). See section 9

for the notation.

DEFINITION 13.3. For ι e { l , . . . , r } , define polynomials b* and j8^ by

for A e Hom(p, C) and /ί = M i -̂  1- M/ (Λ, e C).

LEMMA 13.4. For i e {1, . . . , r} and μ = k\λ\ H h Aτ, A, (Λ, e C),

PROOF. The lemma immediately follows from Lemma 13.2. •

Next we consider a 'real' analogue of qχ(μ).

DEFINITION 13.5. Let (π, V) be a representation of g.

(1) A Hermitian form (, ) on F i s called a contravariant sesquilinearform

or a π(U(o))-contravariant sesquilinear form if (, ) satisfies

(13.1) (π(u)v,w) = (v,π(u*)w)

for u e £/(g) and D, we V.
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(2) We say V to be Q0-infinitesimally unitary if there exists a positive

definite Hermitian form (, ) on V such that

(13.2) (π(X)v,w) = (υ,-π(X)w)

for J e g 0 and v, w e V.

Note that if (, ) satisfies (13.1) then it satisfies (13.2).

LEMMA 13.6. Let V be a highest weight U(g)-module with a highest weight

vet)*.

(1) Contravarίant sesquilinear forms on V are unique up to constant

multiples.

(2) If there exists a nonzero contravariant sesquilinear form (, ) on V, then

v e Rw\ -\ h R^Jn, where w/s are fundamental weights.

PROOF. (1) See Humphreys [11, §6], Wallach [27].

(2) Let υ+ e V be a highest weight vector. Then v(Hi)(υ+,υ+) =

(Hi.υ+,v+) = (v+,Ht*v+) = (t;+,/7/.i;+) = v(Hj)(v+,v+), where Hi is the coroot

of a simple root α, , that is, an element of our fixed Chevalley basis. If

(ϋ+, v+) φ 0 then v(//, ) = v(Hj) and we have v e Rτσ\ -f h Rt^,,. Π

We assume that λ e Rw\ H h Rτcjn, that is, λ e Rtu/0.

DEFINITION 13.7. Define two bilinear form (, )l and (, )* on C[n+] by

(f,g)*=9*(d)f(0)

for / , g E C[n+], where φλ is the same as in Definition 4.5. See also Enright-

Joseph [13] as for (, )^.

The following lemma gives important properties of these forms.

L E M M A 13.8. (1) The bilinear form ( , ) * is an ad(C/(I))-contravariant

sesquilinear form.

(2) For λeRπio, (, )l is a Ψχ(U(§))-contravariant sesquilinear form.

(3) The bilinear form (, )* is positive definite on C^[n+] if d is even, and is

negative definite if d is odd, where Cd[n+] is a homogeneous component of degree

d. Therefore ( - l ) d e g ^ ( , )* is positive definite on Iμ.

(4) The radical of (, )j[ is equal to the maximal submodule of M(λ).

(5) (fg,hy = (g,f*(d)hy for f,g,he C[n+].

PROOF. (1) It is easy to show that (, )* is a Hermitian form. We have to

show that (ad(u)f,g) = (f,ad(u*)g)*. This holds for ue
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RXa and f,ge Σdez^βJeA+(v^) RX-βι '"x-βd>
 s i n c e i n t h i s c a s e ' " = "*,

' / = / * and *g = g*. Thus it holds for all u, f and g.

(2) It is easy to see that (, )l is a Hermitian form when λ e Rvσio. Then

the assertion follows by the same argument as (1).

(3) The first assertion is clear from the definition of •*. Since (, )* is

nondegenerate on Iμ, the second one follows.

(4) We have the assertion by a similar argument to (1).

(5) is a direct consequence of the definition. •

Here we shall define the analogue of qχ{μ). Define q\{μ) by

where μ = k\λ\ Λ V krλr (kj e Z>o).

LEMMA 13.9. q*λ(μ) = qλ(μ).

PROOF.

= qλ(μ) D

PROPOSITION 13.10. The following conditions are equivalent:

(1) The irreducible quotient L(λ) of M(λ) is infinitesimally unitary.

(2) (, )l is nonnegative definite.

(3) For all μ = kιλι + ... + krλr (kje Z>0), ( - l ) d e g % ( / / ) > 0.

(4) λ° = ai + 1 (/ e {1, . . . , r}) or λ° < ar + 1, where λ° is the complex

number determined by λ — λ°τuio and aι is the unique zero of bι[s) which is not a

zero of b[-\(s).

PROOF. The contravariant sesquilinear form (, )j[ on M(λ) induces a

nonzero contravariant sesquilinear form on L(λ). This induced form on L(λ)

can not be negative definite, since (1,1)^ = 1. By Lemma 13.6 (1), any

contravariant sesquilinear form on L(λ) is its constant multiple. Thus L(λ) is

infinitesimally unitary if and only if the induced form on L(λ) is positive

definite. Then by Lemma 13.8 (4), (1) and (2) are equivalent.

By Lemma 13.8 (3) and the definition of q\{μ), (2) and (3) are equivalent.
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Next we show that (3) implies (4). By Lemma 13.8 (3) we have
(-l)'C/;.//)* > 0. Then 0 < (-l)'(/;(3)/,, 1)* = (-l)ty(O) = b,(0) = 4Π£5
(1 +jc/2), by Proposition 10.5. Here c e Z > 0 and therefore we have φ > 0.

Thus (3) says

(-l)d e g /* ή f[b,(λ° - U + ki+λ + • • • + kr)) > 0
ι = l ; = 1

for all μ = k\λ\ H 1- &,A (&,- e Z so) In Particular, if μ = 1, then (-1)%
(1° - 1) > 0 for t e {1,... ,r}. Thus if 1° / β, + 1 for all ί e {1,... ,r} then

7=U

for all t. Here φ > 0 and ceZ>o, and therefore we have λ° < —(r — I)
c/2 = ar+l. We proved that (3) implies (4).

Lastly we show that (4) implies (3). By (10.6)

r- l ki+ι+-+kr_ι

(13.3) (-l)deβ/'^(/ί) = Π Π
i=0 m=0

up to positive constant multiple. If λ° < ar + 1 = -(r - l)c/2 then -A0 >
( r - l)c/2 and therefore all the factors appearing on the right hand side of
(13.3) is nonnegative. Namely (3) is satisfied. Next we assume that λ° =
at + 1 for some t e {1,..., r}. If a factor (-λ° - ic/2 + m) occurs in (13.3) for
/ ^ t — 1 then a factor (—λ° - (t — l)c/2 + 0) also occurs. In this case (13.3) is
equal to zero and (3) is satisfied. If all the factors (—λ° — ic/2 + m) in (13.3)
satisfy that i<t—l, then every factor is positive, and then (3) is satisfied.
Thus we have shown that (3) implies (4). We proved the proposition. •

14. Factors contained in βλj{μ)

The sections 14 and 15 are devoted to proving the main theorems
(Theorem 7.1 and Theorem 8.2). We have only to prove Theorem 7.1 since
Theorem 8.2 is a direct consequence of Theorem 7.1. Thus we may assume
that the prehomogeneous vector space (L, n+) is regular.

The proof of the theorem requires several steps. First, we show that br(μ)
divides βλ,r(μ) in the ring C[ku... ,kr,λ

0}. Second, we show βλr(μ) =
β-χ-2P,Aμ - (λ° + p®)λr) by using Boe's theorem. Then we know br

(μ - (λ° + p*)λr) divides βλ,r(μ) in the ring C[k\,..., kn λ0]. Thus
br{μ)br(μ-(λ°+p?)λr) divides β^r{μ). Third, we show that βλr(μ) =
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br(μ)br(μ — (λ° + p®)λr) up to constant multiple. Lastly, we calculate the

principal symbol of Ψχ^ff) to determine the constant.

LEMMA 14.1. Let Dn+ be the ring of polynomial coefficient differential

operators on n + . Then ΨλCfr) = Pλfr(δ) for some Pλ e D^+i where D^+ is the

subspace of L-invariant elements in Dn+.

PROOF. In general, let g* e S(n+) and heDn+ ~ C[n+] (g) S{n+) be rel-

ative invariants with respect to the Ad (L) -action, and we assume that they

correspond to the same character χ e Hom(L, C x ) . Then h is a sum of several

relative invariants A, e Iμ. ® % which correspond to the same character χ,

where 7V = {tf\fe C[n+]} cz S(n+).

Set g = ' (#*) G C[n+]. Then Cght c= glμ. ® 7Vί is a trivial Ad(L)-sub-

module. Namely, glμ. ® 7V/ contains an Ad(L)-invariant nonzero element.

Thus it follows from Schur's lemma that glμ. is the dual module of % , since

both glμ. and 7V. are irreducible. Therefore we have '/Vi = *(glμ.) = % . # * ,

since C[n+] is multiplicity free.

Thus hi E Iμ. ® 7V|. = Iμ. ® % . # * and there exists Λ e Dn+ such that A, =

P, 0*. Here Λ, and g* have the same character, and therefore Pt is Ad(L)-

invariant. Then h = (Σ,Pi)g*} where ^2 Pi is an Ad(L)-invariant.

Finally, we take r/.(3) and Ψχ^f) as #* and A, respectively, to prove the

lemma. •

We have the following proposition from Lemma 14.1 and the definition of

βλr and br. This is the goal of the first step.

PROPOSITION 14.2. In C[k\,..., kr], br(μ) divides βλ r(μ) (μ = k\λ\ +

- + U).

Next, we show that βλr have another factor related to br. We use the

theorem of Boe [1].

THEOREM 14.3. (Boe [1, Theorem 4.4]) If (g,p) is of commutative par-

abolic type and (L,n+) is a regular prehomogeneous vector space, then for λ,

λ' e Hom(p,C) the necessary and sufficient condition for \iovau^{M(X'),M{X))

to be nonzero is that λ = λ' or λ — lwio — pr and λ' = -lwio — pr for some

I e Z > 0 .

If λ° +p® eZ^o then Hom(M(—λ — 2pr),M(λ)) contains the mapping

C[n+] - C[n+]

by the proof of the theorem. Thus it follows that
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(14.1) f?+?' Ψ-λ-2Pr{u) = Ψλ(u)ff+"' (u e £%)),

if λ° + p® G Z>o In fact, this equality holds even if λ° + p® is a complex

number.

Now we can prove that βλr have another factor related to br.

PROPOSITION 14.4. The equality βλ r(μ) = β_λ_2Pr(μ - {λ° + p®)λr) holds,

and therefore br{μ - {λ° + p*)λr) divides βλr{μ) in C[ku... ,kr,λ
0}.

PROOF. We have Ψλ{tfrfr)fμ=βλ,r(μ)fμ by the definition of βλ r. On

the other hand, by (14.1), Ψ.CfJ^f^f^Ψ-x-i^fMff^f^
β-χ_2Pr(μ - (λ° + Pr)λr)fμ This proves the first statement of the proposi-

tion. The second statement follows from Proposition 14.2. •

Next we get a proposition which proves the third step.

LEMMA 14.5. βχ,r(μ) = br(μ)br(μ - (λ° + p°)λr) (up to constant multiple).

PROOF. We have that βλj(μ) has factors br(μ) and br(μ- (λ° + ρ?)λr)

from Proposition 14.2 and Proposition 14.4. Here br(μ) and

br(μ— (λ° + p,)λr) are prime each other, since all irreducible factors in br(μ)

are different from that in br(μ - (λ° + p®)λr). Thus βχ,r(μ) is divisible by

br(μ)br(μ - (λ° + p°)λr). Then by Proposition 10.1 the total degree of βλ r(μ)

in k\,..., kr is at least 2r, and the degree in λ° is at least r.

On the other hand, it follows from Lemma 3.2 that the operator Ψχ^fy)

is of order at most 2r and of degree at most r in λ°, since *fr is of degree

r. Thus we have that the total degree of βλ r(μ) in k\,..., kr is at most 2r, and

the degree of λ° is at most r. Then βχr(μ) must be a constant multiple of

br(μ)br(μ—(λ° + p,)λr), and we get the proposition. •

15. The principal symbol of Ψλ('fr)

In this section, we determine the constant which appeared in Lemma 14.5

and prove our main theorem. To determine it, we show that the principal

symbol of ΨχCfr) and that of fr

ιfr{ dYfr(d) coincide up to a certain constant

multiple.

First, we write /• and tfi in polynomials in root basis. We give an

arbitrary total order to Δ% satisfying γx < < γr. Set &i = {(βu... ,βi)\βj

e Λ~jγ j,βj < βj+\}. We use this order only to define 091.

For i e {1, . . . , r}, define aB e C(B e Λί) by

/ • = 5 > * Γ _ A . ••*.,, (B={βu...Jβi)).
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Here aβ is uniquely determined thanks to the order. Then obviously we have

' / , = Σ'BXβr Xβ, {B=(βu...,β,)).

We can determine special α^'s thanks to the normalization (8.1). Set Bt =

(γ{,..., ft). Here Bt is the unique element in 3&i which consists of only γ/s and

makes aB nonzero. We denote the Killing form on g by <, >. Then we have

(15.1) i

Here in the nonzero summands of (15.1), each βj must be equal to some

yk. By the property of 2?, , (15.1) is equal to

= 2iaBi(γuγι)-i,

where we used (4.1). Thus we have

Next, we introduce the principal symbol of a differential operator. Let

Dn+ be the ring of polynomial coefficient differential operators, and D^+ the

subspace of Dn+ consisting of operators of order at most d. We define a linear

mapping σd : D%+ -• C[n + θn~] ^ C[n+] ® C[n~] as follows: If the dth order

part of P 6 Z)^+ is a certain sum of gd/dX-βι d/dX-βd {g e C[n+],βj e 4^),

then σ^(P) is the sum of gξβ{ - -ζβd- Where ξβ e C[n~] is the linear mapping

defined by

e ί i (<*=£)

In particular, for P e Dn+ of order d, σ<ι{P) is the principal symbol of P.

PROPOSITION 15.1. σ{ΨλCfr)) = (-l)V(/// r(3)'/ r(<3)), under the nor-

malization (8.1).

PROOF. [Step 1] First we show that ΨχCfr) is a differential operator of

order 2r, namely that, σ2r(ΨλCfr)) Φ °
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Set X+ = Xyχ H h X7r and Z_ = *X+ = X-7r + + X-7r. Symbols can

be considered as polynomial functions on the cotangent bundle of n + , which

can be identified with n + x n~. Then we evaluate σ2r(ΨλCfr)) a t 0^+>^-)

and we have

(15.2)

where we adopted the basis {X# \ δ e A^} as {F^} in Lemma 3.2, since {i* }̂ is

any basis of n~ there.

Here we compute the y'th factor of (15.2).

k,ι=\

k=l

where Hγι is the coroot of γh that is, Hγι = [XγnX-γι]. This is equal to zero

if βjφ{γu...,γr}. If βj = γm for some m, then (Xβj,X_γm} = 2/(γm,γm) =

Therefore the summand of (15.2) which does not vanish, is given only by

B = Br = (γu ..., γr), and we have



222 Akihito WACM

(15.3) σ2r(Ψχ(ιfr))(X+,X-) = flJ - £ <*fil,X-yk> I { - ΣI {

Moreover we find that δ = η = yy in the yth factor of the summand of (15.2)

which does not vanish.

[Step 2] By Lemma 14.1, there exists Ad(L)-invariant operator PχεD^+

such that ΨλCfr) = Pλ'frid)- Here Pλ is of order r by Step 1. In this step,

we show that σr(Pχ) is a certain constant multiple of σr(f/fr(d)).

Let (/̂  (x) ί / / / ) L denote the subspace of Iμ (x) ιIμ consisting of Ad(L)-

invariant elements. By Schur's lemma, it is one-dimensional and spanned

by G\ ® G\ + 9i ® Qi ^ > where {#,} is a basis of Iμ and {gj} is the dual

basis with respect to <, > which appeared in Definition 4.6. Here we may

assume that all g/s are weight vectors, and that g\ is the highest weight

vector fμ, and we put f*μ=gl We embed Iμ ® ιIμ in Dn+ by g®P »-»>

gP{8) as before. Then D^+ = ®μ{Iμ ® % ) L and we can write Pχ =

Σμzμ (zμ G (Iμ ® *^)L)> SiπcQ the order of P^ is equal to r, we have

Moreover

We have only to show that σr(zμ) is equal to zero if d e g ^ = r and μ φ λr,

since dim/^ = 1 implies that zχr e C/// r(3).

A summand of σr{Pχ) has a form gQ(d), where # e C[n+] is a polynomial

of degree r and β e C[n~] is a monomial of degree r. We may assume that

g and β are weight vectors. We call such g a coefficient polynomial. Let vo

be a maximal element among the weights of coefficient polynomials in

σr{Pχ). Then vo is an Ad(L)-maximal weight occurring in C[n+] by the

maximality, since σr(Pχ) is a sum of σr(zμ) = fμf*(d) + gigϊiβ) H I n

particular, all the terms of σr(Pχ) in which the weight of the coefficient

polynomial is vo, come from CfVQf*o=CfVo

tfVo. Let P$ e Dn+ be the sum

of terms of Px in which the weight of the coefficient polynomial is equal

to vo Here Po Φ 0 by the property of vo Then we have Po =

s/vo7vo(5) ( ^ C x ) . Here we compute σ{PτS

tfr(S))\X+,X-) in two different

ways.
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= f\x fhx
First, we define hj by v0 = M i + + hrλr. Then fVQ = f\x fh

r

x and it

follows from the normalization (8.1) that

(15.4) σ 2 r (P 0 'Λ(δ))(^ + ,*_) = σ2r(sfVo %(d

= sfVo(X+YfVo(X.Yfr(X.)

where ?/Vo and *fr e S(n+) ~ C[n~] are regarded as functions on n~.

Second, we compute σ(iV/r(d))(^+,^-) by using the explicit formula for

ΨxCfr)- In the formula

(15.5) σ2r(ΨλCfr))=

the terms of σ2r(Potfr(δ)) precisely correspond to the sum of the terms in (15.5)

in which the coefficient polynomials have the weight vo, that is, in which

Σj(βj ~ 4/ ~ Vj) = vo o r equivalently Σ/(^/ + *lj) = ~ v o - λr. Thus we have

2"Γ Σ

•••[[Xβr,X-δr],X-ηr}ξSlξηι-.-ξSrζηr.

As is stated in the last paragraph of Step 1, the nonzero summand of

σ2r(Ψλ(tfr))(X+,x-) i s S i v e n only by B = Br and δj = η = y, for all j . Thus

the nonzero summand of <72r(Λ)'/r(d))(Ar+, X-) also satisfies 5 = Br, and ^ ; =

η. — γ.. Such a summand occurs only if vo = λr, since Σjify+Vj) = ~vo~

λr. By (15.4) σ2r(Potfr(d)){X+,X-) is nonzero and vo must be equal to λr.

Then we proved this step, since all the Ad(L)-maximal weight satisfying

d e g ^ = r are equal to or higher than λr.

[Step 3] At last, we can prove the proposition. We have

σ7r{fr

tfr{S)tfr(S)){X+,XJ)=fr{X+)tfr{XJ)tfτ{X.) = 1.

We combine this with (15.3), and obtain the proposition. •

Now we can prove Theorem 7.1. For μ = k\λ\ +. h krλr, there exists a

complex number a by Lemma 14.5 such that
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(15.6) Ψχ('frfr)fμ = βχΛβ)fμ = a br(μ)br(μ -

and obviously we have

(15.7) CfrWfr 'Wmfn = br{μΫfμ

Here a φ 0. Indeed, if a = 0, then ΨλCfrfr)fμ = 0 for all μ, and ΨχCfrfr) = 0
as an operator, since Ψχ{ιfrfr) commutes with the Ad(L)-action and fμ's
generate C[n+] as an Ad(L)-module. This contradicts the fact that the order
of ΨλCfr) is equal to 2r. Thus a Φ 0.

When we consider the top degree parts of a br(μ)br(μ— (λ° + p®)λr) and
of br(μ)2 in (15.6) and (15.7), they come from the top order parts of ΨλCfrfr)
and of r/ r(5)/// r(^)/n respectively. The relation between these top order
parts is described in Proposition 15.1. Thus we have a = (-l) r , since the top
degree parts of br(μ)br(μ - (λ° + ρ®)λr) and br(μ)2 coincide. We have proved
Theorem 7.1.
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