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ABSTRACT. We give a necessary and sufficient condition for a positive measure μ on the

upper half-space of R" to satisfy the inequalities

for all u in a subclass of a harmonic Bergman space when 0 < p < 1 and p <q, where

Dy denotes the partial differentiation operator with respect to the last coordinate y. We

also show that the Bergman norm is comparable to derivative norms and harmonic

conjugation is bounded on the harmonic Bergman space bp when 0 < p < 1.

1. Introduction

Let H be the upper half-space of the ^-dimensional Euclidean space
Rn(n > 2), that is, H = {z = (x, y) e R"; y > 0}, where we have written a point
z G R" as z = (x, y) with x = (χu..., xM_i) e R""1 and j eR. For 0 < p < oo,
let M = bp(H,dV) be the class of all harmonic functions w on H such that

< 00

where dV denotes the Lebesgue volume measure on H. The class bp is called
the harmonic Bergman space. Recently, properties of functions in the har-
monic Bergman space bp for 1 < p < oo have been studied by Ramey and Yi
[9], and several important results have been given. Our aim is to investigate
properties in the harmonic Bergman space bp when p < 1.

In this paper, we study conditions on a σ-finite positive Borel measure μ on
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H for which there is a constant C satisfying \\u\pdμ < C\\Dyu\pyrdV for all
u in a subclass of bp when p < 1, where Z>y denotes the partial derivative
with respect to y and r > — 1 . (Our consideration is more general.) Such
inequalities on the unit disk in the complex plane were studied by Stegenga
[10]. It was proved that when r> 1 a finite positive Borel measure v on
the unit disk satisfies the inequality \\f\2dv < C$\f'\2(\-\ζ\)rdA for all
holomorphic functions / if and only if there is a constant K such that
v(S(I)) < K\I\r for any interval / in the unit circle, where dA denotes the
Lebesgue area measure, |/| denotes the normalized arc length of /, and
S(I) = {ζ : ζ/\ζ\ e /, 1 - |/| < |f | < 1}. It was also proved that when 0 < r < 1
such measures are those satisfying v(\JS(Ij)) < AΓCap(U7/) for all finite dis-
joint collections of intervals {7/}, where Cap is an appropriate Bessel capacity
(if r < 0 any finite Borel measure satisfies this inequality). It is known that
these characterizations can be generalized to the case of p > 1 (see also [10]).
When p < 1, the characterization in Ahern and Jevtic [1] is simpler. Indeed, v
satisfies the inequality J\f\pdv < Cf\f'\p(l - \ζ\)rdA if and only if v(S(/)) <
K\I\2~p+r when p < 1. In the proof of the case p < 1, a Hausdorff capacity
was used in stead of the Bessel capacity. When p > 1 investigations for
several variables are given in [3]. In these investigations, necessary and
sufficient conditions were not obtained completely, and it was also shown that,
in general, the above condition is not necessary, in contrast to the result on the
unit disk. In case p < 1, no necessary and sufficient conditions are known.

In §3, we give a necessary and sufficient condition for a measure μ on the
upper half-space H to satisfy the inequality \\u\pdμ < C \\Dyu\pyrdV for all
u in a subclass of bp when p < 1 (see Theorem 1). §2 is devoted to some
preliminary lemmas for this investigation in §3. In the proofs of character-
izations of measures on the unit disk to satisfy such inequalities in [10] and [1],
capacity estimates are used. However, in the proof of Theorem 1 in § 3, we
use integral representations for harmonic functions.

In §4, we study properties of functions in the harmonic Bergman space bp

when p < 1. All results described in §4 were proved in [9] when p>\. In
[9], it was shown that if p > 1 and u e bp then there exist unique harmonic
conjugates u\,...,un-\ of u that belong to bp. Using the ideas used in the
proof of Theorem 1, we show that these conjugation results are also valid in
the case of p < 1. Therefore, harmonic conjugation is bounded on the
harmonic Bergman space bp for all 0 < p < oo and all dimensions n. It is well
known that such conjugation result is not valid in the theory of Hardy spaces
(see [5, pp. 102-123] and [4, pp. 167-172]). Moreover, we show that when
p < 1 the Bergman norm is comparable to several "derivative norms" as in [9].
These results are consequences of Theorem 1 and the boundedness of harmonic
conjugation.
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Throughout this paper, C will denote a positive constant whose value is

not necessary the same at each occurrence; it may vary even within a line.

2. Preliminary lemmas

Recall that a point z e H will be written as z = (x, y) with x e R""1 and

y > 0. We use the absolute value symbol | | to denote the Euclidean norm in

R" or R""1. For z = (JC, y), let z = (x, -y). The pseudohyperbolic metric p

in H is defined by p(z,w) = \z - w\/\z - w\. It is clear that p is invariant

under horizontal translations and dilations. Let Dε(w) = {z e H;p(z,w) < ε}

when w = (s, t) e H and 0 < ε < 1. Dε(w) is a Euclidean ball whose center

( 1 + ε2 \ 2εt
s, r t I and r respectively. It follows that there is a

1 — εz J 1 — ε z

constant C = Cε > 0 such that C~λtn < V(Dε(w)) < Ctn for all weH. The

proof of (3) of Lemma 1 is parallel to that of Lemma 4.3.6 in [12].

LEMMA 1. Let 0 < ε < 1. Then, the following are true.

(1) Ifz,w,ζare in H and p(z,w) < ε, then C~ι\z-ζ\ < \w-ζ\ < C\z-ζ\

with a positive constant C depending only on ε.

(2) If z = (JC, y), w = (s, t) are in H and p(z, w) < ε, then C~ιy < t < Cy

with a positive constant C depending only on ε.

(3) IfO < ε < 1/2 then there exist a positive integer N and a sequence {ζj}

in H satisfying the following conditions: (a) H = UDε(ζj), (b) Dεμ(ζi)Γ\

D€μ(ζj) = 0 if"iφ j , (c) any point in H belongs to at most N of the sets Z>2e(C/)

PROOF. (1) Suppose that z,w,ζeH and p(z,w) < ε. It is sufficient to

prove that \w — ζ\ < C\z — ζ\. Since the condition p(z, w) < ε implies the

inequality \w — z\ < ε\w — z\} we have \w - ζ\ < \w — z\ + \z — ζ\ < ε\w — z\ -f

\z - ξ\ < ε(\w - ξ\ + \ξ - z\) + \z - f |. It follows that (1 - ε)\w- ξ\ < ε\ζ - z\ +

\z - C| < ε\l - z\ + \z - f I = (1 + ε)\z - f|. (2) In the first inequality in (1), if

we put ζ = w then we have It = \w — vP| > C~ι\z — w\ > C~xy. (3) See the

proof of Lemma 4.3.6 in [12].

For a function u on H and δ > 0, let τsu denote the function on H defined

by τsu(x,y) = u(x,y + δ), and let ZΓ? = {τδu;uebp,δ > 0}. If α = ( α i , . . . , α π )

is a multi-index of nonnegative integers with order /, then D α denotes the

partial differentiation operator d^/dx"1 ...dx^dy**. The following lemma is

stated in [2, Corollary 8.2] when p > 1.

LEMMA 2. Let 0 < p < 1. Then, the following are true.

(1) For any uebp, there is a constant C>0 such that \Dau{s, t)\ <

c/tn/p+\*\ for aιι ^ ή e H
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(2) For any uebp, there is a constant C > 0 such that \(Daτsu)

M l < C/(t + δ)nlp+^ for all {s,t)eH.

PROOF. (1) Let wo = (0,1) and 0 < ε < 1. Then, by Lemma 2 in [4,

Section 9] there is a constant C = Cε > 0 such that Kwo)^ < C JD ( v V o ) \u\pdV.

For w = (s, t) e H, replacing u(z) by u(tz + (s, 0)) in the inequality and making

a change of variable, we have \u(s, t)\p < C/tn JD ,χ \u\pdV. Therefore, we

obtain \u(s, t)\ < C/tn/p. As in the proof of Corollary 8.2 in [2], we apply this

inequality and Cauchy's estimates to u. Then the desired inequality follows.

(2) follows from (1).

Let w = (s, t) G H. The Poisson kernel Pw is the function on R"" 1 given

by Pw(x) = P(s -x,t) = γnt/(\s - x\2 + t2)n/1 {γn is the positive constant γn =

2/(nV(Bn)), where Bn denotes the unit ball in Rn). The harmonic extension

of this function to H is P(s - x, t + y). If z = (JC, y) e H, then we may write

Pw(z). We note that Pw(z) = γn(t + y)/\w - z\n, \D?Pw(z)\ < C/\w-z\n^~\

and D?Pw(z) = (-l)aι+-+""-lD«Pw(z). The following lemma is useful and

stated in [9, Lemma 3.1]

LEMMA 3. Let 0 < c < 1. Then, there is a constant C > 0 depending on c

and n such that

for all w — (s, i) e H.

Let m be a nonnegative integer and let cm = (—2)m/m\. The following

Lemma 4 is given in [2, Chapter 8] and [9], when uebp and p > 1. The

proofs of (1) and (2) of Lemma 4 are parallel to the proofs of Theorem 8.22 in

[2, Chapter 8] and Lemma 4.1 in [9] respectively, except only minor changes.

LEMMA 4. Let 0 < p < 1. If u e &~p, then the following equalities hold.

(1) u(w) = -2 j H u{z)DyPw{z) dV(z) for all weH.

(2) u(w) = -2cmfHym(D?+ιu)(z)Pw(z)dV(z) for all weH, m =

0,1,2,.. . .

PROOF. (1) We only show that uDyPw is integrable, because the remainder

of the proof is parallel to that of Theorem 8.22 in [2, Chapter 8]. Since

u e &~p, (2) of Lemma 2 implies that there are constants C and δ > 0 such that

\Dau(z)\ < C/{y + δ)n/p+lcίl. Thus, we have \u(z)\ < C ( j + δyn/p+c{y+ δ)~c<

Cy~c for some 0 < c < l . Therefore, we obtain ]\uDyPw\dV < C \ y~c /

\w — z\ndV = Ct~c, where the last equality follows from Lemma 3. Thus,

uDyPw is integrable. (2) Similarly, we have | Z ) ^ + 1 φ ) | < Cy-c~m/(y +δ).
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Therefore, j\ymPwD™+ιu\dV < C \y~c{yΛ- t)/{(y + δ)\w - z\n}dV. Since

{y + t)/(y + δ) is bounded for y > 0, we see that ymPwD™+ιu is integrable.

The following Lemma 5 is a consequence of Lemma 4, and we omit the

proof (note that arguments similar to those in the proof of Lemma 4 guarantee

that the right-hand side of the equality in Lemma 5 is well defined and the

remainder of the proof is parallel to that of Lemma 4.6 in [9]).

LEMMA 5. Let 0 < p < 1. If u e 3ΓV\ then

u(w) = -2cm+k f ym+k(D?u)(z)D$+ιPw(z)dV(z)

for all m,k > 0 and w e H.

3. Carleson inequalities

Let Bt(s) denote the ball in R""1 with center s e Rn~ι and radius

t > 0. When no confusion arises we may write Bt in stead of Bt(s). For each

ball Bt in R""1 set S(Bt) = {(x, y);x e Buy < 2t}. We now state our main

result in this section.

THEOREM 1. Suppose that 0 < p < I, p <q and r > - 1 . Let μ be a σ-

finite positive Bore I measure on H, and let £ and m be nonnegatiυe inte-

gers. Then, the following (1) ~ (3) are equivalent.

(1) There is a constant C > 0 such that

) 9 ' Q ) "
for all u e SΓP and for all multi-indices α of order

(2) There is a constant C > 0 such that

\D™u\pyrdV

for all u e 3Γp.

(3) There is a constant K > 0 such that μ(S(Bt)) < κ6n+r^q/p+^"m^q for all

balls BtdRn~K

We note that in case (n -f r)q/p -f {β — m)q = 0 (or equivalently,

n + r = p(m — £)), μ satisfies the above inequalities if and only if μ is a finite

measure. In fact, in this case, condition (3) of Theorem 1 is reduced to

μ(S(B)) < K for all balls B. For each compact set E c H, we can choose a

ball B satisfying E c S(B). Therefore, we have μ(E) < K for all compact

sets E c H, and thus μ is finite. Similarly, we can see that in case
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(/i + r)q/p + (β - m)q < 0, μ satisfies the above inequalities if and only if

μ = 0. In the inequality in (2) of Theorem 1, if m > *f, then, of course, we can

replace D£u and D™u by u and D™~*u respectively. Similarly, if m < /, then

we can replace DyU and D™u by Dί

y~
mu and u respectively.

We give a sufficient condition for a measure μ to satisfy the inequality.

PROPOSITION 2. Under the assumptions on p, q, r, / and m in Theorem 1, let

k be a nonnegative integer such that p(n + k) — In > 0. Suppose that there is a

constant K > 0 .swcA ί/zαί

' rln(?\ <T vM+*)Ql'P-q{n+m+k)

JH\W-Z\q{n+M)

for all w = (s, t) e H. Then, there is a constant C > 0 such that

for all u e ZΓP and for all multi-indices cc of order £.

PROOF. Let k be a nonnegative integer such that p(n + A:) — 2n > 0. Let

w G ̂  Then, Lemma 5 implies that

u{z) = -2ck+m f tm+k(D?u)(w)D*+lP2(w) dV(w)
JH

for all zeH. We will estimate |Z)αw|. The remark before Lemma 3 implies

that

\D u{z)\ < C f
JH

Let 0 < ε < 1/2. Then, by (3) of Lemma 1, we can choose a positive integer

N and a sequence {(,} in H such that 7/ = U7A-(C/) and any point in H

belongs to at most N of the sets D2ε(ζj). We shall write ζj = (ζj,ηj) with

ξj e R " " 1 and ηj > 0. Using (1) and (2) of Lemma 1, we have

fm+k

JDE{ζj) \W — Z\

m+k
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Since D™u is harmonic, a result in the proof of (1) of Lemma 2 (or Lemma 2 in

[4, Section 9]) implies that \D?u(w)\p < C/tn JD^ \D™u\pdV. Moreover, since

Dε(w) c D2ε(ζj) if w e De(ζj)9 (2) of Lemma 1 implies that

where the last inequality follows from Jensen's inequality. Thus, the choice of

{(,}, (1) and (2) of Lemma 1 imply that

\D*u(z)\<LCNι">

We note that the right-hand side of this inequality is finite. In fact, since

ue3ΓP, (2) of Lemma 2 implies that \D™u(w)\p < C/tn+pm. Moreover, since

\w — zI > t, the condition p(n + k) — 2n > 0 implies that the integrand is

dominated by l/\w — z\n+(<n+p^. Thus, the integrability of the function

1/1 M> — z\n+c{c > 0) guarantees that the right-hand side of the inequality is

finite.

Raising the inequality to the #-th power and integrating with respect to μ

in the variable z, we have

\D"u(z)\ qdμ{z)

Thus, Minkowski's integral inequality implies that

<C
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Therefore, by hypothesis we obtain

|Z>αw
JH

\D™u\ptrdv
<ιlp

This completes the proof.

In order to give a necessary condition for a measure μ to satisfy the
inequality in (2) of Theorem 1, we need the following lemma.

LEMMA 6. Let k be a nonnegative integer. Then, there exist constants

0 < σ < 1 and C > 0 such that \D$Pw(z)\ > C/tn+k~ι for all w=(s,ήeH and

zeS(Bσt(s)).

PROOF. Let w = (s, t) e H. Without loss of generality we may assume
that s = 0. If z = (JC, y) e H and \x\/(y + t) < 1 then,

p ( z ) - c

) (-iY\x\x\2J

Therefore, we have

_ r

βΓ(n/2)

7 + Λ2 + A: - 2) ! ( -

j + n-2)\

Now, we define a function gf on [0,1) by

^ j\Γ(n/2) (2j + n-2)l

Then

D:

Since ^(0)^0 and # is continuous on [0,1) (in fact, g(λ) = λ2~n(λn+k~2/
{1 + λ2}n/2){k)), there exist constants 0 < σ < 1 and Co > 0 such that \g(λ)\ >
Co if λ < σ, where the constants σ and Q depend only on n and A:. Let
z = (x, ^) e S(£σ,(0)). Then clearly |x|/(jμ + t) < σ and y < 2σt. Therefore,
we obtain

where the constant C depends only on n, k, and σ.



Carleson inequalities 169

PROPOSITION 3. Under the assumptions on p,q,rj and m in Theorem 1,

suppose that there is a constant C > 0 such that

α
H\iyyu

for all ue$~p. Then, there is a constant K>0 such that μ(S(Bt)) <
t <_ Rn-l

PROOF. Let s e Rn ι and t > 0. Put w = (s, t) and let A: be a nonnegative

integer such that (n + k - l)p > n + 2r + 2. Then, we see that DkPw e 3~p

and

f \
JH

In fact, since \Dk

yPw{z)\p < C/\w - z\{n+k~ι)p, the choice of k and the inte-

grability of the function l/|w - z\n+c(c> 0) guarantee that DkPw e 3~p. More-

over, if — 1 < r < 0 then Lemma 3 implies that

\D?«Pw{z)\>y'dV{z)

< Cr(«+m+k-l)p+n f y"

z^/— {n+m+k—\)p+n+r

because (n + m + k - \)p - n > 2r + 2 > 0. If r > 0 then the choice of k and

Lemma 3 also imply that

f \D™+kPw(z)\pyrdV(z) < Cr("+m+k-Vp+n+2r I ΐ——dV{z)
JH JH\W-Z\ +

ί< C r J^ dV{z)

s~if—{n+m+k—\)p+n+r

Therefore, we obtain the above assertions.

Put u = DkPw. Then, the above assertions and Lemma 6 imply that
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a \q/p

\Dmu(z)\pyrdV(z))
H y )

>c\ \D%z)\q dμ{z)
JH

JS(Bσt(s))

f
S(Bσt(s))

Thus, we obtain μ(S(Bσt(s))) < C^M+r^//7+^~w^, where C is independent of s
and t. Since s and t are arbitrary, we can replace / by t/σ. This implies that
μ(S(Bt(s))) < C { t / σ γ n + r ) q / p ^ - m ) q f o r a l l s e R n l a n d t > 0 .

PROOF OF THEOREM 1. (1) => (2) is trivial. (2) => (3) was already shown

in Proposition 3. We will show (3) =>• (1). Let c = (n + r)q/p + (t — m)q
and suppose that μ(S(Bη)) < Kηc for all balls Bη a Rnl. By Proposition 2,
it is sufficient to prove that there exists a nonnegative integer k such that
p(n + k) - 2n > 0 and $Hl/\w — z\γdμ(z) < Ctc~y for all w = (j, ί) e H, where
y = r̂(«-h ί + k). Let weH. Without loss of generality we may assume
that w=(0,ί), and A: will be determined later. Let Sj = S(B2jt(0))
(j > 0). Clearly, if z φ Sj-u ώen \w - z\ > 2j~xt(j > 1). Therefore,

dμ

Since γ — c = q(n + m + k) — (n + r)q/p, we can choose an integer k such that
γ - c> 0 and p(n + k)-2n> 0. It follows that \Hl/\w- z\γdμ(z) < Ctc~γ.

4. Derivative norms and harmonic conjugates of A77-functions

When p > 1, properties of the harmonic Bergman space bp have been
studied by Ramey and Yi [9]. We show that some of these properties are also
valid for 0 < p < 1. For each δ > 0, set Ωs = {z e H; y > δ} and denote by χs

the characteristic function of Ωs. We use the expression A « B meaning
that there is a constant C > 0 such that C~ιA < B < CA. We show that the
Bergman norm is comparable to "derivative norms". The following theorem
is a consequence of Theorem 1.
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THEOREM 4. Let 0 < p < 1 and £ be a nonnegative integer. Then

\\u\\p

for all u e b*.

PROOF. Let u e &. We note that \\/D"τδu - y*D*u\\p -» 0(δ -» 0). In

fact, since

= Γ(y -δ)* f |Z>"ιι(x,

f
JdH

the monotone convergence theorem implies that H ^ . D ^ M H —> ||<y
/Z)αM||/,. By

the definition of τ#, we have y*D*zsu(x, y) —> y^Dau(x, y) for each

(x, j ) G /ί. Hence, EgoroflF's Theorem implies that Wy^D^τsu — y^D*u\\p —> 0.

We show that derivative norms are dominated by Bergman norms. In (1)

of Theorem 1, we put q = p and m = r = 0. Then, there is a constant C > 0

such that J^ | Z ) a i ? | ^ < C j ^ M'rfK for all v e &~p if and only if there is

a constant K > 0 such that μ{S{Bt)) < Ktn+'* for all ftcR""1. Since

dμ = /PdV satisfies this condition (in fact, μ(S(Bt)) = J0

2' / ^ dxdy =

Ctn+*P), we have \\/DΛτδu\\p < C\\τδu\\p. Letting J -> 0, we obtain \\y^Dau\\p <

C\\u\\p. It follows that

Similarly, Theorem 1 also implies that ||«|| < CH^i)^!^. Therefore, we

conclude that

\\/D'yu\\p < Σ \\/Dau\\p * C\\u\\p < C'\\/l/yu\\p.
|α|=/

This completes the proof.

Given a harmonic function u on H, recall that functions M I , . . . , M Λ _ I are

called harmonic conjugates of u = un if

n

Σ Diuj = ° a n d D(uj = Diui (* ^ij ^n),
7=1

where JD7 = δ/δxy (1 < y < n - 1) and Dn = Dy = d/dy.

In [9], it was shown that harmonic conjugation is bounded on the har-

monic Bergman space bp when p>\. We show that this conjugation result is

also valid in the case of p < 1. That conjugation is bounded on the Bergman
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space on the unit disk for p < 1 was observed in [6]. An analogous result

holds for the upper half-space in all dimensions.

THEOREM 5. Let 0 < p < 1 and uebp. Then, there exist harmonic

conjugates u\,...,un-\ of u such that Uj ebp. Moreover, they are uniquely

determined and
n-\

\HP~ ΣNIp

PROOF. Let uebp and δ > 0. Let k be a nonnegative integer such that

p(n + k) — In > 0. Then, harmonic functions Vj on H (1 < y < n — 1) can be

defined by

vf(z) = 2ck [ tkτδu(w)DSjD*Pz(w)dV(w),
J H

where w = (s, t) = (s\,..., sn-\, t) and z = (*i, . . . , xw_i, y). In fact, since

\τδu(w)\ < CΓC for some 0 < c < l and \DSjD*Pz(w)\ < Crk/\w - z\n, the

absolute value of the integrand is dominated by t~c/\w — z\n. Therefore,

Lemma 3 implies that the right-hand side of the equality is well defined and

harmonic on H. Since DXjPz(w) = -DSjPz(w) (1 <j<n- 1), differentiating

through the integral, we have DjΌj = Djυf for all 1 < i,j < n — 1. Moreover,

since DyPz(w) = DtPz(w), Lemma 5 implies that

Dyvf(z) = DXj (-2c, J tkτδu(w)D^ιPz(w) dV(wή = DXjτδu(z).

Therefore, we obtain DnVj = DjZsu. Similarly, we can also show that (see [9])

n - l

7 = 1

Thus, these functions v\,... ,vδ

n_λ are harmonic conjugates of τδu.

We show that there is a constant C > 0 independent of δ and j such that

\\v^\\p < C\\u\\p. As in the proof of Proposition 2, we can show that there is a

constant C > 0 independent of δ and j such that

for all z e H. Integrating this inequality with respect to dV, we have

\rsu(W)\>dV(W).

Since p(n + k)-2n>0, we have \w - z\p(n+k) = \w - f|»+*(»+*>-»-<*< >
| w _ z\"tp(n+k)-n-cyc f0Γ s o m e Q<C< 1. Hence, Lemma 3 implies that there
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is a constant K > 0 such that

tp{n+k)-n

dV{z) S I |H.-z-|><»*)-

for all weH. Therefore, we obtain H ^ <

Now, we define functions Uj on Ω§ by

d V { z )

< C\\u\\

Then, the definition of uf implies that

ί \uf\pdV<c\ \u\pdV.
JΩΛ JH

Fix <50 > 0 and let δuδ2<δ0. Then, Dn(ufι - uf2) = Dju - Dju = 0 on Ωδo.

Therefore, the function up — up on Ω#o is independent of y. Put f(x) =

/(x, y) = w; • (x, y) — Uj2 (x, j ) (/ is independent of j ) . Since up, w;

bp(Ωs0,dV), Fubini's theorem implies that

oo > f \f\pdV = Γ f \f{x)\pdxdy =Γ dyl \f(x)\pdx.
JΩs0 Jδo JdH Jδo JδH

Therefore, we have 0 = f = up — up on Ω^. Thus, we can define harmonic

functions Uj on H by

Clearly, these functions wi,...,ww_i are harmonic conjugates of u on

H. Moreover, the monotone convergence theorem implies that

f \uj\pdV = hm\ Xδ\uj\pdV = ]im\ \uf\pdV<c\ \u\pdV.
JH

 δ->° JH
 s^° JΩδ JH

Thus, we obtain uj e bp and

7=1

By Theorem 4, we also obtain

IMI, < C\\yDyu\\p = C
n-\ n-\

7=1



174 Masahiro YAMADA

The proof of uniqueness of Uj is similar to that of Theorem 6.1 in [9]. (We use

Theorem 4 in stead of Theorem 4.4 in [9].)

By Theorems 4 and 5, we see that Bergman norms are also comparable to

tangential derivative norms. In the proof of Theorem 6.2 in [9], if we replace

Theorems 4.4 and 6.1 in [9] by Theorems 4 and 5 respectively, then the

following Theorem 6 is obtained. Therefore, we omit the proof.

THEOREM 6. Let 0 < p < 1 and £ be a nonnegative integer. Then,

|α|=ΛαΛ=0

for all u e b*>.
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