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ABSTRACT. A phase-field model accounting for memory effects is considered. This

model consists of a hyperbolic integrodifferential equation coupled with a parabolic

differential inclusion. The latter relation rules the evolution of the phase field and

contains a time relaxation parameter which happens to be very small in the appli-

cations. A well-posed initial and boundary value problem for the evolution system is

introduced and the asymptotic behavior of its solution as the time relaxation goes to

zero is analyzed rigorously. Convergence results and error estimates are obtained under

suitable assumptions ensuring that the limit problem has a unique solution.

1. Introduction

Consider a two-phase system which occupies a bounded domain Ω cz R 3

until a given time T > 0. Denote by 3 its relative temperature (fixed in order

that 5 = 0 is the equilibrium temperature between the two phases) and by χ the

so-called phase-field, that is, an order parameter which could represent the local

proportion of one phase. To describe the evolution of the pair (θ,/), we have

recently introduced and studied the following system (see [7-9])

-A(k*3)=g in Ω x (0, Γ) (1.1)

μdtχ - vAχ + β(χ) 3 γ(χ) + λ3 in Ω x (0, T) (1.2)

coupled with the boundary and initial conditions

dn(k*3)=h and dnχ = 0 o n ^ x ( 0 , Γ ) (1.3)

3(0) = So and χ(0) = χ0 in Ω. (1.4)

Here * denotes the usual time convolution product over (0, T), defined by

(a*b)(t)= f a(s)b(t-s)ds, t e [0, T] (1.5)
Jo
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while dt and dn indicate the partial time derivative and the standard outward

normal derivative, respectively. Moreover, λ, μ, and v are positive constants,

φ, φ, k :]0, + oo[—» R are time-dependent memory kernels, β : R —> 2R is a

maximal monotone operator, and γ is a Lipschitz continuous function. We

further remind that the source term g depends both on the heat supply and on

the past histories of 5 and datum h may rely on the values attained by 9 for

negative times.

Equation (1.1) comes out from the energy balance when the internal

energy linearly depends on 9, χ and on their evolutions, while the constitutive

assumption on the heat flux is the linearized version of the Gurtin-Pipkin law

(proposed in [13] and recently reviewed in [14-15]). On the other hand,

equation (1.2) is an extended version of the phase-field relationship introduced

in [11] and [6] on the basis of the Ginzburg-Landau theory of phase transitions.

The corresponding system with the Fourier law for the heat flux and

without any memory term (i.e., (1.1-2) with k proportional to the Dirac mass

and φ = φ = 0) has been extensively studied. General existence results and

asymptotic analyses can be found in [17], [10], and in the review paper [16],

along with a list of references.

Coming back to (1.1-4), well-posedness and regularity of solutions were

essentially dealt with in [7-9] (see also [1], where the long time stability is

investigated as well). Besides, in [9] we showed that there exists a sequence of

problems (1.1-4) whose solutions converge to a solution to a hyperbolic phase

relaxation problem as the interfacial energy coefficient v tends to zero, provided

that γ = 0. The limit problem is formally obtained from (1.1-4) by setting

v = 0 and, as far as we know, the related uniqueness of solutions is still an

open issue.

Here we are going to examine carefully the asymptotic behavior of the

solution to (1.1-4) as the relaxation time μ goes to zero. From the physical

standpoint, the limit problem is interesting in itself, as pointed out in [6] within

the framework of the Fourier law (for an existence theorem see [19]).

Moreover, investigating asymptotics as μ \ 0 seems even more important than

the analysis done in [9] for μ is much smaller than v in the actual application

[11]. For these reasons, we study the question in detail and prove strong

convergences for the whole sequence of the variational solutions (9μ,χμ) as

μ \ 0. Also, strengthening a bit the regularity requirements on the data, some

error estimates of orders O(μ) and O(μ1/2) are obtained. All these results are

achieved under suitable conditions on λ, β, and γ which imply that the solution

to the limit problem is unique.

A plan of the paper follows. After some preliminaries, in the next section

an equivalent formulation of problem (1.1-4) is introduced on account of [9].

Then, referring to that formulation, the main results are stated. Section 3 is
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concerned with the uniqueness for the limit problem. Section 4 contains the

proof of the convergence theorem. Finally, in Section 5 the error estimates are

derived.

2. Main results

Let Ω dRN (N > 1) be a bounded, open, and connected set with

boundary Γ := dΩ of class C 2 1 and let T > 0. Set

Q:=Ωx}0, Γ[, Γ :=Γx]0,Γ[

and let the following constants and functions fulfill the assumptions listed

below.

Λ,ve]0,oo[ (2.1)

φeWι>ι(0,T), ψELx{0,T) (2.2)

keW2Λ{0,T), k(0)>0 (2.3)

y e C 0 ' 1 ^ ) , y(0)=0. ( 2 . 4 )

Moreover, we consider a maximal monotone operator

β : R -> 2R with β(0) 3 0. (2.5)

Next, we set for convenience

V = H\Ω), H = L2(Ω), and W = H2(Ω) (2.6)

and define the operator A : V -^ V by means of

v,(Au,v}v:=\ Vu-Vv Vu,veV. (2.7)

J
In the framework of the Hubert triplet (V,H,Vf), we introduce the

(formal) problem of finding (9,χ) such that

3)=finVf, a.e. in (0, T) (2.8)

μdtχ + v^χ 6 i/ a.e. in (0, T) and

f/ + v^χ + p = γ(χ) + Aθ in K;, a.e. in (0, T)

and for some p fulfilling p e β(χ) a.e. in Q (2.9)

5(0) = S0 and /(O)=/o (2.10)
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where μ is any strictly positive constant and the right hand sides of (2.8) and

(2.10) are given.

As mentioned in the Introduction, the basic theory for (2.8-10) is

developed in [7-8] where existence, uniqueness, and regularity results are

proved in a number of functional settings. Though the structure of (2.9) is

more general as far as nonlinearity is concerned, the kernels φ and ψ are not

considered there. On the contrary, in [9] these kernels are introduced and the

theory is completed along with the study of the asymptotic behavior as v \ 0,

using an alternative formulation of the problem which we recall briefly.

The state variable 9 is substituted with the integrated enthalpy w specified

by

w := 1 * e where e := 9 + λχ + φ * $ + ψ * χ. (2.11)

Since (2.11) gives

S + φ*9 = wt-λχ-ψ*χ (2.12)

it turns out that $ can be expressed in terms of wt and / by introducing the

so-called resolvent Φ of φ. This function is, by definition, the solution of

Φ + ψ * Φ = ψ (see, e.g., [12, Ch. 2, Sect. 3]) and allows us to rewrite (2.12) as

θ = K - h - Φ * *) - φ * K - λχ - ψ * /).

Moreover, setting

κι :=k{0)Φ + kf*Φ-kf (2.13)

κ2:=λk + k*ψ-λk*Φ-k*Φ*\l/ (2.14)

Ψ:=ψ-λΦ-Φ*ψ (2.15)

we note that (2.2-3) imply

Φ,κuκ2eWιι(0,T) and ΨeLι(0,T). (2.16)

Then, equations (2.8-9) formally become

wtt + k(0)Aw — f — κ\ * Aw — K2 * Aχ

μχt + vAχ + β(χ) 3 γ(χ) - λ2χ + λ{wt -Φ*wt-Ψ*χ)

in V', a.e. in (0, T), with the expected meaning for the latter. There, taking

μ = 0 leads to the elliptic differential inclusion

vAχ + β{χ) - γ(χ) + λ2χ 3 λ(wt -Φ*wt-Ψ*χ)

where the operator A reduces to —Δ with the Neumann homogeneous

boundary conditions. Since we are interested in the asymptotic behavior as
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μ \ 0, it seems quite natural to ask for a strong monotonicity condition on the

left hand side which is surely satisfied if the Lipschitz constant of γ is smaller

that λ2. From the physical point of view, this corresponds to require the latent

heat to be large enough. For the sake of convenience, we introduce a new

graph α, related to β, γ, and λ by

α(z) := β[z) - y{z) + λ2z Vz e R (2.17)

and state directly on α the conditions we need. We assume

α = δ / : R - > 2 R with α(0) s 0 (2.18)

j : R —> [0, +oo] is proper, convex, lower semicontinuous and y'(0) = 0 (2.19)

0/i " V2)(*i - *2) > Φ i - z 2 ) 2 Vzf e />(«), Vί/f. e α(z, ), i = 1,2 (2.20)

for some t > 0, where Z)(α) is the effective domain of α. In the sequel, for

zeD(a), the symbol α°(z) denotes the element of α(z) having minimum

modulus.

Thus we end up with the equivalent version of problem (2.8-10) (see [9,

Sect. 2] and observe that ξ takes the place of p - γ(χ) + λ2χ)

wtt + k(0)Aw = f -κ\*Aw-κ2*Aχ in V\ a.e. in (0, T) (2.21)

μχt + vAχ + ξ = λ(wt -Φ*wt-Ψ*χ) in V', a.e. in (0, T) (2.22)

χ G D(μ) and ξ e α(/) a.e. in Q (2.23)

w ( 0 ) = 0 , w , ( 0 ) = e 0 , and z ( 0 ) = χ 0 (2-24)

where ô •= θo + λ/0, and [9, Thm. 2.4] ensures that the following result holds.

PROPOSITION 2.1. Let μ > 0 and assume (2.1-3) αm/ (2.18-20). More-

over, let fμ, eo,μ, and χOμ satisfy

fμ e L !(0, T H) + ̂ ^ ( 0 , Γ; V) (2.25)

^ G i / , /o^eF, and j(χ^μ)eLι(Ω). (2.26)

exists a unique triplet (wμ,χμ,ζμ) with

wμ E W2Λ{0, T; V) Π C !([0, T]]H) Π C°([0, Γ]; F) (2.27)

^ G i/ 1 (0, Γ; Jϊ) Π C°([0, Γ]; F) n L2(0, Γ; PF) (2.28)

ζμeL2(0,T;H) (2.29)
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which fulfills (2.21-24) with f = fμ, e0 = eo,μ, and χo=χo,μ, i e.,

d]wμ + k(0)Awμ =fμ-κι* Awμ -κ2* Aχμ in V, a.e. in (0, T) (2.30)

μd,χμ + vAχμ + ζμ = λ(dtwμ-Φ*dtwμ-Ψ*χμ) in V, a.e. in (0, T) (2.31)

χμ e D(a.) and ξμ e u(χμ) a.e. in Q (2.32)

^ ( 0 ) = 0 , dtwμ(0) = eo,μ, and χμ(0) = χ^μ. (2.33)

In addition, if

fμ 6 Wι>ι(0, T H) + ^ ( O , Γ; V) with fμ(0) e H (2.34)

eo,μ e V (2.35)

then wμ enjoys the regularity conditions

wμ G ^2'°°(0, T H) Π Wι^(0, T; V). (2.36)

Furthermore, if

χo,μ e W and dnχ0^r = 0 (2.37)

χOiμeD(a)a.e.mΩ and <x°{χ^μ)eH (2.38)

then χμ and ξμ also satisfy

χμ e Wι^(0, T;H)ΠHι(0, Γ; V) nL°°(O, Γ; W) (2.39)

ξμeL«(0,T',H). D (2.40)

As stated in the Introduction, the aim of this paper is to study the

asymptotic behavior of the solution of the above problem as μ \ 0. There-

fore, from now on, we let μ vary, say, in (0,1) and denote by (wμ,χμ,ζμ) the

unique solution to problem (2.30-33) given by Proposition 2.1. This is the

solution that corresponds to the data fμ,eo,μ,χo,μ satisfying (2.25-26).

Here are the basic conditions allowing us to pass to the limit in (2.30-33)

as μ\0. Let

/ „ - > / i n L 1 ( 0 , Γ ; 7 / ) + ^ 1 ' 1 ( 0 , Γ ; F / ) (2.41)

in H (2.42)

vi H (2.43)

)\\v{Ω)^c (2-44)
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for some C > 0 and any μ e (0,1). Observe that no convergence is required

for {χ0 μ} since in the limit problem the third initial condition of (2.24) must be

removed.

THEOREM 2.2. Let the structural assumptions (2.1-3) and (2.18-20)

hold. Moreover, let fμ, eo,μ, Xo,μ,f and eo satisfy (2.41-44). Then there exists

one triplet (w,χ,ξ) such that the strong, weak, or weak* convergences listed

below hold.

wμ^w inCl([0,T];H)nC°([0,T};V) (2.45)

χμ^χ inL2(0,T;V) (2.46)

μl/2χμ^0 inL2(0,T;H) (2.47)

χμ-χ inL2(0,T;W) (2.48)

μχμ-0 inHl(0,T,H) (2.49)

ζμ-ξ inL2(0,T,H) (2.50)

μl/%-0 inL«(0,T',V). (2.51)

In addition, the triplet (w,χ,ξ) solves the problem

wtt + k(0)Aw = f -κλ*Aw-κ2*Aχ in V, a.e. in (0, T) (2.52)

vAχ + ξ = λ{wt -Φ*wt-Ψ*χ) in V', a.e. in (0, T) (2.53)

χ e D(μ) and ζ e oc(χ) a.e. in Q (2.54)

w(0) = 0 and w,(0) = e0. D (2.55)

Note that Theorem 2.2 ensures, in particular, the existence of a solution to

problem (2.52-55) whenever/and wo are as in the statement below. Indeed,

it is sufficient to choose approximating data fulfilling (2.25-26) and (2.41-

44). For instance, one can take fμ = / , eo,μ = e0, and χOμ = 0.

THEOREM 2.3. Let the structural assumptions (2.1-3) and (2.18-20) hold

and let f and eo satisfy

f e U (0, Γ; H) + W1'ι (0, Γ; V) (2.56)

eo e H. (2.57)

Then problem (2.52-55) has a unique solution. •
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From now on, (w,χ,ξ) denotes the solution to problem (2.52-55) cor-

responding to data / and eo

By strengthening the assumptions on the sequence of data, we can deduce

uniform bounds in stronger norms and prove error estimates.

THEOREM 2.4. Let the structural assumptions (2.1-3) and (2.18-20) hold

and let f, eo,μ, χOμ, f and eo satisfy (2.41-44). Assume moreover

+ \\e*Av ^ C' ( 2 5 8 )

for some C > 0 and any μ e (0,1). Then

\\Wμ\\w2^(0,T;H)f]Wι^{0,T V) ̂  ^1 (2-59)

for some C\ > 0 and any μ e (0, 1). If in addition, (2.37-38) are fulfilled and

there exists ζOμeH such that

ξo,μ 6 *(χo,μ) a.e. in Ω, \\χQJH + μ-WpAχ^ + ξo,μ - λe0J\H < C" (2.60)

for some C" > 0 and any μ e (0,1), then

Ml/2\\dtXμ\\L™(0,T H) + WdtXμ\\mθ,T V) + II^IIL-(0, Γ; W) ^ C2 ( 2 6 1 )

for some Cι > 0 and any μ e (0,1). •

REMARK 2.5. In view of Theorems 2.2 and 2.3, it is straightforward to

verify that (2.59) and (2.61) yield

wμ — w in W2' °° (0, T H) Π JVh °° (0, Γ; V)

besides (2.45-51). Hence, by compactness we recover the further strong

convergence

χμ^χ inC°([0,r|;K).

THEOREM 2.6. Let the structural assumptions (2.1-3) and (2.18-20) hold

and let fμ, eo,μ, χo,μ, f and e0 satisfy (2.41-44), (2.58), (2.37-38), and (2.60).

Then

\\xμ ~ x\\i?QW) ^ CΛM + fy) (2.62)

*μ) (2-63)
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where

εμ := \\eo,μ ~ eo\\H + \\fμ - f\\v{o,τ H)+w^φj v>) ( 2 6 4 )

for some C3, C4 > 0 and any μ e (0,1). •

REMARK 2.7. Observe that (2.41-42) and (2.58) entail

/ e ^ ' t C Γ / ί J + ^ ^ O J F'), /(0) e Jϊ, and e0 e V.

On the other hand, one could wonder about the existence of sequences {χOμ}
and {ξo,μ} fulfilling (2.37-38) and (2.60) as well as (2.44). To this concern, let
us point out that (cf. (2.20)) the unique solution χ0 μ e W of the elliptic problem

-Λχ^μ + ot(χo,μ) 9 λeo,μ a.e. in Ω (2.65)

^ 0 , ^ = 0 a.e. on Γ (2.66)

and ξ^μ :- λe^μ + AχOμ yield a proper example. Indeed, multiplying (2.65) by
χOμ and integrating by parts, with the help of (2.66), (2.18-20), and of the
definition of subdifferential, we obtain

I

and consequently (2.60) and (2.44) follow just from the boundedness of ||eo,μ|li/
given by (2.42).

REMARK 2.8. Our convergence results and error estimates have been
expressed in terms of (wμ,χμ) and (w,χ). Coming back to the original variable
$ in place of w (cf. (2.11-16)) and putting

-λχμ-Φ* dtwμ -Ψ*χμ

it turns out that (owing to the Young theorem quoted below)

9μ->S inL2(0,T;H)

l * ^ - > 1*5 in C°([0,Γ];F)

in the framework of Theorem 2.2, while (2.62-63) imply

for some C5, Cβ > 0 and any μ e (0,1). Π
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The next sections are devoted to the proofs of the above theorems. In

carrying out them, we use the notation < , •> for the duality pairing between V

and V and \-\v for the L2-norm of the gradient, namely

\v\2

v:= f \Vv\\ υ e V . (2.67)
JΩ

Setting also

Qt:=Ωx (0, t) for t e (0, T) (2.68)

we recall the formulas (which hold whenever they make sense)

(a * b)t = a(0)b + at*b and (a * b)t = b(0)a + a*bt (2.69)

the estimate coming from the Schwarz inequality and the well-known Young

theorem

* V\\L°>(0,T;X) ̂  II*IIL2(O,Γ)III?IIL2(O>Γ;^) ( 2 7 0 )

where A" is a real Banach space and p e [1, oo], and the elementary inequality

2ab<εa2 + -b2 Vα,6eR, Vε > 0. (2.72)
ε

Finally, we denote by the same symbol c, with possible subscripts, different

constants depending only on the coefficients λ, k(0), v, on the norms of the

kernels that are involved, and on the final time T, while further dependences

are specified explicitly.

3. Proof of Theorem 2.3

Let (w\,χι,ξ\) and (w2,/2>^2) be two solutions to (2.52-55) and set

w : = w i - w 2 , * : = * i - * 2 > ξ'•= ξ\ - ζi-

Writing down (2.52-55) for both triplets and taking the differences lead to

wtt + k(0)Aw — —κ\ * Aw — K2* Aχ (3.1)

vAχ + ξ = λ(wt -Φ*wt-Ψ*χ) (3.2)

w(0) = 0 and w,(0) = 0 (3.3)

with the equations fulfilled in V, a.e. in (0, T). Now we test (3.1) by 2dtw
ε,

where ε > 0 and wε is the F-valued solution of

wε(ή + εAwε(ή = w(ή in Vf, Vί e [0, T].
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Then we integrate over (0, t) for an arbitrary te]0,T\ and take
ε \ 0. Thanks to [8, Appendix] and owing to (2.69) and (3.3), we obtain

where

4

= -2<(κi * Aw){t), w(ή> - 2<(κ2 * Aχ)(t),w(t)> + Σ #
7=1

7i(0 = 2ιci(0) ί (Aw(s),w(s))ds
Jo

Let us treat each term on the right hand side of (3.4) separately and denote by
η and σ arbitrary positive numbers. Taking (2.7), (2.16), (2.67), and (2.70-72)
into account, we infer

2|<(fci *Aw)(t)Mt)>\ £?MOI 2r +

2\<(κ2 * Aχ)(t), w(ή>\ < η\W(t)\2

v + l- | | K 2 | | | ί ( 0 i ί ) ^ \χ(s)\2

vds (3.6)

(3.7)

> (3.8)

(3.9)

< [V(5)|2K<fc+f
Jo Jo

-

14(01 ί

<σ

l(«

I
•Ik

(01 <

\ * w)>

Jo

l ( * 2 *

ίlli to.

2|«c,(0)|

(s) 1 j/ίfe f

ή\2

vds +

Jo

J:
s(

l«2

Olϊ

k ω i

i + l|.

•M'
σjo

Jo

Γ 2

Jo F
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Now we test (3.2) with χ and integrate over (0, t) as before. Hence we have

v \'\χ(s)\2

vds+ I'<ζ(s),χ(s)>ds = I'λ<Wl(s),χ(s)>ds
Jo Jo Jo

- \'λ((Φ*Wt)(s),χ(s)}ds- \'λqψ*χ)(s),χ(s)}ds. (3.11)
Jo Jo

Thanks to (2.54) and (2.20), it turns out that

\
Jo Jo

while the three terms on the right hand side are treated as follows

Γ <Ms),χ(s)>ds <σ\' \\χ(s)\\2

Hds + ±- f \\wt(s)\\2

Hds
Jθ Jo 40"Jθ

['< - (Φ*Wι)(s),χ(ή>ds < σ I'\\χ(s)\\2

Hds + ±- ί | | ( Φ * w,)(s)\\2

Hds
Jo Jo 4 σ J o

\\Wι(s)\\2

Hds
Jo ^G Jo

- (Ψ*χ)(s),X(s)>ds < σ^ \\χ(s)\\2

Hds + ±\\Ψ\\ll{Oj) j ' \\χ(s)\\2

Hds.

Adding (3.11) to (3.4) and using (3.5-10) and the above estimates, we get

tf + k(0)\w(t)\2

v + v [' \χ{s)\2

vds + i f \\χ(s)\\ids
Jo Jo

2η\W(ή\2

v + c(η,σ) f (\w(s)\2

v + \\wt(s)\\2

H)ds
Jo

|χ(,)||> (3.12)

where c(η, σ) depends only on η, σ, λ, and the norms of the kernels. We now
choose first η = k(0)/4 and σ such that

2 V /

^ 4 a n d
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and, consequently, δ > 0 according to

1 1 P

N l f o ^ J and -\\Ψ\\2

Lψδ) < -.Nlfoo,*)^ J and

Therefore, (3.12) yields

έ + ̂  1̂ (01 K + 5 ^ bfWlκ* + !

<c\\
Jo

Hs)\2

v+\\wt(s)\\2

H)ds

provided t < δ. Thus, the Gronwall lemma implies w(ή = 0 and χ(ή =0

for any te [0,(5], i.e., w\{t) = w2(ή and χx(t) = χ2(ή for any te [0,£], and a

comparison in (3.2) gives ξλ(t) = ξ2(t) for a.a. ί e ( 0 , ί ) .

Therefore, we can easily conclude our proof by unique continuation. We

define

U := sup{ί e [0, T) : {wuχuξ\) = (^2,^2^2) on (0,ί)}

and argue by contradiction assuming t* < T. Then we can apply the above

procedure for te(t*,T] by exploiting the fact that the integrands of the

convolution products in (3.1-2) vanish in a prescribed time interval. Thus, we

find s o m e t* > t* s u c h t h a t w\ = w2, X\ = χ2, a n d ξλ = ξ2 in (t*,t*) a n d th i s

contradicts the definition of t%.

4. Proof of Theorem 2.2

It is convenient to split the proof into several steps because of some

technicalities which are essentially due to assumptions (2.2) and (2.16). To be

more precise, these minimal requirements entail a careful treatment of the terms

involving the kernel Ψ.

First a priori estimate. We test (2.30) with 2dtw
ε

μ, where wε

μ is the F-valued

function defined by

w£

μ(s) + εAwε

μ{s) = wμ(s) in V, "is e [0, T].

Then we integrate from 0 to t e [0, T] and take ε \ 0 as in Section 3, applying

[8, Appendix] and (2.33). We can argue exactly as in the first part of the

uniqueness proof (see (3.5-10)) taking σ = 1 at once. However, here we have

to deal with the source term coming from equation (2.30). This can be done

by splitting fμ into fμΛ + fμ^ with fμΛ e Lι(0, T H) and fa e Wι>ι(0, Γ; V),

and estimating the integrals this way
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2 \\fμΛ(s),dιWμ(s)}ds<2\' \\fμΛ(s)\\H\\dtWμ(s)\\HU (4-1)
Jo Jo

2 [' <fμt2(s),dtwμ(s)yds = 2</,,2(ί),HV(ί)> - 2 \'<dlfμt2(s),wμ(s)yds
Jo Jo

< η\K(t)\\2v +-H/Λ2(Ollκ' +2 Γ P*/Λ2Mllκ'KWIIκώ. (4.2)
7 Jθ

Then, as K M I l i H M 0 l κ +KίOII2/ and |K(ί) |β < T& \\dtwμ{s)\\2H
(since Wμ(0) = 0), we deduce that

+ 2 [V,,>)IUI<W*)II// + I I ^ Ϊ W I I K Ί I ^ W I I ^ Λ (4-3)

Jo

where c(η) is a constant depending only on η and on the quantities
Next, letting σ be an arbitrary positive number, we perform the scalar

product of (2.31) and of exp(—2σs)χμ(s), se [0, ί], at the same instant s and

then integrate with respect to s. Thus, thanks to (2.18-20) (note that 0 e α(0))

we obtain

v
Jo

'\'e-2σs\\χμ(s)\\2

Hds
Jo

+ λ f' \\e-°s{dtwμ -Φ*δtwμ-Ψ* χμ)(s)\\H\\e-σ%(s)\\Hds. (4.4)
Jo

Hence, introducing the general notation

v(ή := ̂ -σ/ϋ(ί) Vί G [0, T] (4.5)

for functions υ from the interval [0, T) to a Banach space X, one can easily

realize that (cf. (2.71-72))
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2H + v ['\Γμ(s)\2

vds + i f' \%{s)\\2

Hds
Jo Jo

(ί + ll*lli-(o,r))J II^WIIf Iko.Jltf+

since Ψ *χμ= Ψ * ̂ . Now we observe that the Schwarz inequality and (2.71)
imply

U\WT,){)\\H\\U)\\H\mw) ϊ\\Tμ{s)\\2

Hώ
O

) ϊ\\Tμ{s)\\2

H
JO

and fix σ in order to have

4Φ\\v{o,τ)=λfoe-σs\ns)\ds<t. (4.7)

This is always possible provided we take σ sufficiently large. Hence we have

^ §l l*o.J* + ^ £ - ( l + HφHi>(o,r)) J] \\dlWμ(s)\\2

Hds. (4.8)

Multiply (4.8) by M and add it to (4.3). Then choose η and M according
to

we finally get

for any te [0, T] and ^ G (0,1). Then an extended version of the Gronwall
lemma (see [3] or combine the two lemmas in [5, pp. 156-157]) enables us to
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conclude that

WWμ\\cι([0,T};H)nC°{[0,T};V) + μ\\Xμ\\c°{[0,T];H) + H#/JIL 2(0, T V)

< c(\\eo,μ\\2

H+μ\\χOJ2

H+ Wfμjl^T H) + WfμjU^T V'))' (4-9)

Also, by comparison in (2.30), on account of (2.16) we deduce that

\\dfwμ ~ fμ,\\\L<»(0,T;V')

< c(\\eo,μ\\2

H + μ\\χ0J
2H + \\fμjl(0,T;H) + ll/*2ll^U(0,Γ;K')) ( 4 ' 1 0 )

REMARK 4.1. After the proof of (4.9), a natural comment concerns the
possibility of applying the same argument to prove uniqueness, thus proposing
a variation to the method developed in Section 3.

Second a priori estimate. Assume for a moment that the graph α is a Lipschitz
continuous function. Then ξμ = a(χμ), whence, in particular, ξμ e L2(0, T\ V)
and (cf. (2.18))

\t<dtχμ(s),ξμ(s)}ds= f j{χμ{t))-\ j(Xθtμ)
Jo JΩ JΩ

f <Aχμ(s), ξμ(s))ds = f f «'(χμ)\Vχμ\
2 > 0.

JO JJQt

Therefore, testing (2.31) with ξμi one obtains

μ\\Λxμ(t))\\υw + [' UμWWlds £ μ\\J(χ0,μ)\\v{O) + \'(Fμ(s),ξμ(s))Hds
Jo Jo

where Fμ stands for the right hand side of (2.31) and belongs to L2(0,T,H)
thanks to (2.16) and (2.27-28). The resulting inequality still holds when α
satisfies (2.18-20). To check that, it suffices to approximate α by its Yosida
regularization (see [7-8]). Then, on account of (4.9) we infer

, T H)

Third a priori estimate. As we have just noted, the right hand side of (2.31) is
a function Fμ e L2(0, T H). Recalling (2.7) and (2.28), we see that we can use
the //-valued function Aχμ as a test function in (2.31). Arguing as above, with
the help of (2.26), (2.16), (4.9), and of well-known elliptic regularity results, it is
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not difficult to get

I

Besides, a comparison in (2.31) leads to

WfμjU'{o,T;V>)) (4 1 3 )

Weak convergences and first consequences. Let us split / into the sum fx + f2

with' /i eLι(0,T;H) and f2 e Wι>ι{0, T V). Then, without any loss of
generality (cfr. (2.41)), we can assume that

/„,!->/! inLι{0,T;H) and fμa -> f2 in Wλ*\θ, T V1). (4.14)

Thanks to (4.9-13), (2.42-44), and (4.14), it is clear that the estimates listed
below hold for some constant C and for any μe (0,1), namely,

: C (4.16)

: C (4.17)

: C (4.18)

: C (4.19)

: C (4.20)

: C (4.21)

with C obviously depending on an upper bound for the norms of the data.
Then, because of well-known compactness results, there exists a triplet

(w,χ, ξ) such that, at least for a subsequence of μ tending to 0,

wμ^w in ^ ' " ( O . Γ ^ n r t O . Γ F) (4.22)

χμ -^ χ in L2(0, T; W) (4.23)

ζμ-ξ inL2(0,T;H). (4.24)

In addition, owing to (4.14), (4.16), (4.19-20), and (4.23), we have
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dΐwμ ~ fμ, l Λ ™tt - h in L°° (0, T- V) (4.25)

μl/2Xμ^0 inL°°(0,:Γ;F) (4.26)

μχμ-0 mH\0,T H). (4.27)

This list covers, in particular, (2.48-51). Indeed, if we show that (w,χ, ξ) is a

solution to problem (2.52-55), the uniqueness result entails that the whole

family {(wμ,χμ,ξμ)} is convergent both in the sense specified above and in the

sense of further convergences that we are going to deduce throughout the

proof.

Observe now that, since ξμedj(χμ) a.e. in Q and j fulfills (2.19), the

definition of subdifferential ensures that j(χμ) < χμξμ a.e. in Q. Hence (4.17-

18) imply

Jί Λxμ) < c
Q

Therefore, (2.19), (4.23), and the convexity and lower semicontinuity of the

functional / : L2(Q) -> [0,+oo],

j(v) := j(p) if j(v) e Lι(Q), J{υ) := +oo otherwise

yield

J(χ) < limmf J(χμ) and j(χ)eLι(Q). (4.28)

Clearly, (w,χ,μ) fulfills (2.52-53) at least in the sense of F'-valued dis-

tributions. Let us check now that w belongs to C°([0,T\;V)Γ\Cι([0,T]]H)

and satisfies (2.55). Indeed, using (4.22), (2.33), the well-known compact

inclusion of V into H, and the generalized Ascoli theorem (see, e.g., [18, Thm.

3.1, p. 57]), we deduce the strong convergence

wμ-+w inC°([0,Γ];7/) (4.29)

whence the first condition (2.55). On account of (4.25), a similar reasoning

gives

ZtWμ ~ 1 * fμΛ - w, - 1 * A in C°([0, Γ]; V)

and, thanks to (4.14),

dtwμ-*wt inC°([0,T\',V). (4.30)

Consequently, the second initial condition in (2.55) follows easily from (2.33)

and (2.42). As w solves a Cauchy problem for a linear hyperbolic second
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order equation with right hand side in the space Lι(0, T H) + Wι>ι(0, T\ V)
and initial data in V x H, the related general theory (see, e.g., [2]) allows us to
conclude that w belongs to C°([0,T\;V)nCl([0,T\]H).

The remaining conditions stated in Theorem 2.2 are less trivial to prove
and the sequel of the section is devoted to check them. As far as (2.54) is
concerned, we make a remark at once. From (2.31) we derive the equality

if ί Λ = ~vIί ^/-fW'^+flMl*
+ λ\t<(dιwμ(s)-Φ*dtWμ)(s),χμ(s)yds-ί\ λ(Ψ*χμ)χμ (4.31)

JO JJQt

for any te(0,T] and μe(0,1). Then, from (4.31) we would like to infer

limsup ξμχ

2 \ \ \ \ λ(Ψ*χ)χ[ \ \ \
JQt JO JJQ,

since this inequality combined with (2.53) yields

limsup if ζμχμ< if ξχ (4.32)
μ\0 JjQt JjQt

so that (2.54) would follow from [4, Prop. 1.1, p. 42]. Let us examine the right
hand side of (4.31). The first term can be treated by lower semicontinuity
using (4.23). The second term is negative and the third one tends to 0 because
of (2.43). The fourth term is easily handled owing to (4.30) and (4.23) and
converges to the desired integral. Finally, the last term does not give any
trouble provided that Ψ e Wι>ι(0, T). In fact, in this case, from (4.17), (2.69),
and (2.71) it follows that the sequence {Ψ *χμ} is bounded in Hl(0,T-, W\
whence it converges strongly in L2(0,T;H) by compactness. Since our
assumption (2.2) ensures only that Ψ e Lι(0, T), we have to recover the strong
convergence for {χμ} in another way.

Strong convergences and conclusion. We take the difference between (2.30) and
(2.52) and test the resulting equation with the function 2δt(wμ — wε), where wμ

and wε are defined by

wε

μ(ή + εAwe

μ(ή = wμ(t) and wε(ή + εAwε(ή = w(ή W e [0, T\.

Aswμ-we C°([0, T];V)ΠCι([0, T];H), we can use [8, Appendix] and deduce
an inequality similar to (4.3) (by controlling the full F-norm in terms of the
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seminorm | \v and of the //-norm of the time derivative). Hence, one easily

finds out that

Rhμ + c \\\\d,(Wμ - w)(s)\\2

H + \\(Wμ - w)(s)\\2

v)ds
Jo

+ c\t\\(fμΛ-A)(s)\\H\\dι(wμ-W)(s)\\Hds
Jo

+ c f | |3 f(/A 2 - f2)(s)\\v,\\(wμ - w)(s)\\vds
Jo

+ c\\\{χμ-
Jo

χ){s)\\2

vds (4.33)

where R\φ are real numbers tending to 0 as μ \ 0 due to (2.41-42). Thanks

to the generalized Gronwall lemma (cf., e.g., [3] or [5]), it is straightforward to

verify that

\\d,(Wμ - w){t)\\2

H + \\{Wμ - WOWIIK < c,(Λ 2 ,^+ 11^ -x\\Uo,t;V)) (4-34)

for any t e (0, T] and for some numerical sequence {Ri,μ} going to 0 as μ \ 0.

Now, let us introduce the graph α# and the proper and lower semi-

continuous function j # by setting

α # ( z ) : = α ( z ) - - z , z e ΰ ( α ) , and j#(z) := j(z) - -z2, zeR

Owing to (2.18-20), j # is nonnegative and convex, α # = dj#, and α # fulfills

the same inequality (2.20) with ί/2 in place of /. Putting

from (2.32) we have ζμ e a#(χμ) a.e. in β, whence jφ(χμ) -j#(χ) < ζμ(χμ-χ)

a.e. in Q. We rewrite this in the equivalent form

2 (Xμ ~ Xf £ J# (X) - J* iXμ) + ίμiXμ ~ X) ~ ^ μ ~ X) Ά^ ^ Q' ^35">

On the other hand, in virtue of (4.22-24) and (2.31), we can deduce that

(μdtχμ + vA(χμ - χ) + ξμ - ίχ - Gμ - G^j (x, t) = 0 for a.a. (x, t) e Q (4.36)

where
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Gμ : = λ(d,(wμ -w)-Φ* d,(wμ -w)-Ψ*{χμ- χ))

G : = -vAχ - -χ + λ(wt -Φ*wt-Ψ*χ)

both belong to L2(0,T;H). Letting σ > 0 and multiplying (4.36) by the

function exp(—2σt)(χμ—χ)(x,ή, with the help of (4.35) we obtain

f dt(e-2σ'χμ

2(x, ή) + ve~2σ'(A(χμ - χ))(x, ή(χμ - x)(x, t) + ̂ ' { x , - χf(x, t)

e'2a'
lV(x, t) + μe-M((dlXμ)χ)(x, t) + e-2°'(j# (x) - jΦ (Xμ))(x, t)

+ e-2σ'(Gμ + G)(x, t){χμ - χ)(x, t) for a.a. (x, t) e Q. (4.37)

Integrating (4.37) over Qt and recalling (2.33) and the notation (4.5), calcu-

lations analogous to those of (4.4) and (4.6) lead to

1 \\Λμ\ι)\\H ^ v \\Λ.μ
* JO

• ^ α + ιι*ιiii(ofr))

X^-x)(s)\\2Hds ( 4 3 8 )

for any / G (0, T], with R3iμ(t) defined by

R3,μ :=xko,Ailljy+l e Uφ(x)-J#(Xμ))(x,s)dχds)
1 \JJQt /

+ ff e-2°s(μ(dtχμ)χ + G(χμ-χ))(x,s)dxds. (4.39)
JJQt

Then we can fix σ in order that (cf. (4.7) and (4.8)) λ\\Ψ\\Lι{OiT) < ίβ and get

l̂lyOiMlljϊ" "̂  II (%μ ~ X)(S)\\vds — c2{R3,μ(t) + H^^H7^ — w)||L2(o t H))' (4.40)

Let J*φ : L
2{Qt) —> [0, -foo] be the functional whose finite values are defined by

e-2σsj#(v(x,s))dxdsifveL2(Qt) and jΦ(v) e Lι{Qt).

As J*# is induced by j#, it is convex and lower semicontinuous. So, the weak

convergence χu-*χ in L2(Q) (see (4.23)) entails that (compare with (4.28))
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e-2σs(jΦ (/) -JΦ (xMx, s) dxds < 0.limsup
μ\0 JJQ

Hence, the second term in (4.39) tends to 0 as well as the other terms do
because of (2.43), (4.27), and (4.23). Moreover, note that

e-2σs(jφ(χ) -jAxμ))(x,s) <Λx(x,s)) for a.a. (x,s) e Q

and consequently (4.28), (4.20), (4.17) allow us to infer that the sequence {i?3,μ}
is bounded in L°°(0, Γ). Thus, in addition to

Λ3,rt0->° Vie (0,71 (4.41)

by the Lebesgue dominated convergence theorem we have that

R3iM-^0 inLl(0,T) as μ \ 0. (4.42)

We now multiply (4.40) by 2c\ and add the resulting inequality to (4.34).
We obtain

2cxc2 [ R4,μ(s) ds + 2cxc2Rχμ{t) + cxR2,μ (4.43)
Jo

where

Since we do not know whether {R3,μ} tends to 0 uniformly in [0, T], we
integrate (4.43) from 0 to τ e (0, T] and, at this point, we apply the Gronwall
lemma to deduce that

]\μ(t)dt < c(||Λ3,/.||L (o,r) + ^ ) Vτe (O,rj.

Then, owing to (4.42), the sequence {R4,μ} goes to 0 in L*(0, T) so that, due
to (4.43) and (4.41), R4,μ(t) -> 0 for any te (0, T] and (2.46-47) are proved.
Moreover, (2.45) follows plainly from (4.34).

Therefore, we are ready to get (4.32) (with the full limit and the equality
sign) and the subsequent property (2.54). Finally, since all terms in (2.52-53)
belong to L*(0, T\ V), both equations are satisfied in V almost everywhere in
(0, T) and we conclude.

5. Proof of Theorems 2.4 and 2.6

In this last section we let the generic constant c depend also on the norms
of the data, i.e., on the constants C, C , and C" appearing in (2.44), (2.58), and
(2.60).
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First of all, we observe that the right hand side of (2.30) belongs to

Wι>ι(0, T H) + W2Λ(0, T] V) and that its value at t = 0 belongs to H thanks

to (2.58), (2.36), (2.28), (2.16), (2.69), and (2.71). Then it turns out that

wμeCλφ, T\\ K)ίΊC2([0, T];H), which improves (2.36) and makes the next

argument rigorous. Remarking that d2

twμ(ϋ) = fμ(0), we differentiate (2.30) in

time and test the obtained equation with 2d2wμ, where wμ is defined by

wε

μ(t)+εAwε

μ(ή = wμ(t) V ί e ( 0 , r j .

Moreover, let fμ = fμΛ + fμ,2 where fμl and fμa satisfy

O.Γ K') — C'

Thanks to [8, Appendix] and (2.33), for any t e (0, T] we easily get

+ \Ί\dJμΛ(s)\\H\\dfwμ(s)\\Hds

JO

+ \\8ifμ,2(t)\U\3tMt)\\v+ 11̂ ,2(0)11 y. I K J

(1̂ 2 (0)1 + \\^2\\L^0

whence, owing to (2.58), using the trivial inequality ab < a{\ -f b1) for a,b > 0,

and replacing the seminorm with the full F-norm by adding 11^/^(^)11^ (which

is already bounded because of (4.15)), we can write

\\δtfμΛ(s)\\H)\\d^wμ(s)\\2

Hds

(l + \\dtfμt2(s)\\v,)\\διwμ(s)2

H\\ds
o

and (2.59) follows from an application of the Gronwall lemma.
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Next, assuming (2.60), we work on (2.31) proceeding formally. In fact, a
rigorous argument would need, e.g., the Yosida ε-regularization αε of α (ε > 0)
and the approximation of the initial datum χ0 μ in (2.33) by the solution χ% e
W to the elliptic problem

+ ίo^ a.e. in Ω

dnλlμ = 0 a.e. on Γ

which is well-defined because of the coerciveness property (cf. (2.20))

(αε(z!) - α£(z2))(z! - z2) > y ^ ( * i " ziΫ ^zuz2 eR, Vε > 0.

By (2.37-38) it is not difficult to check the convergences

Xθ,μ -> Xθ,μ i n y

AXθ,μ^AXθ,μ, «ε(Xθ,μ) - ξθ,μ in H

as ε \ 0, so that one can perform the computation below on the approximating
scheme and then pass to the limit via the methods used, for instance, in [7-8].

Let us come to the formal estimate. First we have to recover the initial
value of dtχμ from (2.31), (2.33) and to remark that the formal derivative α' is
bounded from below by € because of (2.20). Then we differentiate (2.31) in
time and take the scalar product with exp(-2σs)dtχμ(s) at the same instant
se (0, T), σ being a positive parameter. Observing that dt(Ψ *χμ) = ^/o,^ +
Ψ*dtχμ and recalling (4.5), the integration from 0 to t e (0, T] and already
familiar computations lead to

f \\dύΓμ(t)\\2H+v Γ ι ^
z Jo

2
- λeo,μ\\2

H

JO

Choosing a suitable σ, on account of (2.59-60) we get the bound

0, Γ K)

whose combination with (4.17) yields (2.61).
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Let us now prove Theorem 2.6. Estimate (2.62) can be derived by

repeating the arguments used in the proof of (4.9). In fact, consider (2.30) and

(2.52), take the difference, test it with an approximation of 2dt(wμ — w), and

integrate over (0,ί). Then, take the scalar product of the difference between

(2.31) and (2.53) with exp(-2σs)(χμ-χ)(s)9 se(0,t). Moreover, use (2.32),

(2.54), and (2.20). The modification with respect to the procedure followed in

the previous sections concerns the term coming from μdtχμ, which can be

handled on the right hand side this way

ιι> (5.0

Now, the first integral on the right hand side is controlled by the left hand side

of the formula corresponding to (4.6), while the last term of (5.1) gives a

further contribution. Moreover, we notice that, contrary to (4.9), the initial

value (χμ—χ)(0) does not provide any contribution to the right hand side.

Summing up, we obtain

\\wμ - w\\cι{[otτ\',H)nc»φ,τ\;V) + \\xμ ~ X\\L2(O,T;V) ^ CV

+ c(lko,/ι - e o | β + ll/̂ ,i -/illi>(o,r;#) + \\fμ,2 ~

from which (2.62) is easily achieved taking (2.61) and (2.64) into account.

Finally, we show (2.63). As before, we test the difference between (2.31)

and (2.53) by exp(-2σs)(χμ - χ)(s), but we do not integrate the resulting

equality with respect to s. Then, thanks to (2.71-72), we simply have

fora.a. ίe(0,Γ) . (5.3)

Taking the essential supremum and fixing σ such that |ϊΊlz.'(o, r> ^ <̂ /4, from

(5.3) and (5.2) we infer that

II*,! - X\\c«([0,T};y) £ Cβ2\\d>Xμ\\h(0,T;H)

+ C(\\eθ,μ - eO\\2

H + \\fμΛ - i
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for χμ — χ is continuous from [0, T] to V. Therefore, since ^ P ^ H ^ o T.H^ is
uniformly bounded thanks to (2.61), it turns out that (2.63) and Theorem 2.6
are completely proved.
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