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ABSTRACT. This paper is concerned with minimax estimation of variance when n

samples y\,...,yn are independently normally distributed with common variance.

Here it is assumed that (E(yι),... ,E(yn)) is known to lie in an ellipsoid. A new class

of estimators which are quadratic in yι,..., yn are introduced and the minimax

estimators are explicitly given. The case of i.i.d. sample with 7V(0,σ2) is discussed as a

special case where the ellipsoid degenerates to the origin. In this case our minimax

estimator provides the minimum mean squared error estimator of σ2.

1. Introduction

This paper is concerned with minimax estimation of variance in a model

which is closely related to a nonparametric regression. We consider a sim-

plified model. Let yt (i = l,...,/ι) be independently distributed as N(μhσ
2),

where both the mean vector (μλ,... ,μn) and the variance σ2 are unknown. The

mean vector is assumed to lie in an ellipsoid

μf<rσ2 (1)

with fixed constants 0 < λ\ < < λn and a fixed value r > 0. Speckman [21]

introduced such a model by considering a simplified formulation of spline

smoothing in nonparametric regression. Let the observation yt be taken at a

design point tie[a,b]. Suppose that >>/=/(*/) + £/> where / is a smooth

function, and δ, is distributed with mean 0 and unknown variance σ2. It is

assumed t h a t / h a s a bounded square integrable qth derivative, and a squared

norm for / is defined by \\f{q)\\2 = £\f{q\t)\2dt. Let 9>* be the space of

natural polynomial splines of degree 2q—\ with knots {/i,...,ίπ}, and

{φx,...,φn} be the basis introduced by Demmler-Reinsch [6]. If / = ΣβkΨk e
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Sf«, then | | / ( ^ | | 2 = E 4 ^ , where λk is the norm for φk for 1 < k < n. Note
that 0 = λ\ = = λq < λq+\ < " < λn, and that {φλ,..., φq} spans the space
of polynomials of degree q. Thus a restriction such as Σk=q+ι λkβl < rσ2

implies that a tradeoff between residual variance and deviation of residuals
derived from removing polynomial trend is governed by r. Estimating the
function / is referred to as curve estimation. Cubic spline smoothing approach
was also discussed by Reinsch [18], Wahba [23], and an excellent survey was
given by Silverman [20]. The minimax approach for curve estimation was
introduced by Speckman [21]. A study of comparing these two approaches
was made by Carter-Eagleson [3]. The estimation problems of the mean when
it is assumed to lie in a hyperrectangle or more generally a quadratically
convex set were discussed by Donoho-Liu-MacGibbon [7]. One-dimensional
problems are referred to as a bounded mean, which were discussed by Casella-
Strawderman [4] and Bickel [1].

In a usual regression analysis, researcher's attention is paid mostly on the
estimation of the mean, and the variance is usually estimated in terms of
the sum of squares of the residuals. On the contrary, if a well-performing
estimator of variance is available in advance, we can expect that it often
provides more reliable inference on the mean. Actually σ2 is required to
explore smoothing parameter choice for curve estimation; see Craven-Wahba
[5], Silverman [20], and Hall-Titterington [13]. In nonparametric regression,
difference-based estimators were proposed by Rice [19], Gasser-Sroka-Jennue-
Steimmetz [11]. Also the asymptotically minimum mean squared error and
optimal convergence rate of estimators were discussed by Buckley-Eagleson-
Silverman [2], Hall-Marron [14] and Hall-Kay-Titterington [12]. Ohtaki [17]
provided a multivariate extension of the estimators proposed by Gasser-Sroka-
Jennue-Steimmetz [11] and Ohtaki [16].

The present paper deals with minimax estimation among various methods
of estimating the variance in advance to the estimation of the mean. Minimax
estimators are defined by choosing an estimator for which the maximum of
expected loss over a given parameter space is as small as possible. We will
restrict our consideration on a class of properly selected estimators which
satisfies a particular criterion. Nevertheless, such a class may occasionally
contain the best estimator over wider class of estimators. Minimax estimators
of variance was discussed first by Buckley-Eagleson-Silverman [2] and Fujioka
[9, 10] followed them up. In their discussion estimators of σ2 are assumed to
be quadratic in yx,... ,yn and to satisfy a bias condition E{σ2} - σ2 = 0 for all
σ2 > 0 at μ = (μu ... ,μn) — 0. The resultant estimator takes the form

<72 =
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with qj > 0 for 1 < j < n. Estimators of the above form often appear in a
nonparametric regression. For example, the kernel-type estimators by Hall-
Marron [14] and the difference-based estimators by Hall-Kay-Titterington [12]
take the above form. These estimators have asymptotically optimal properties.
However, as is shown in §2, an estimator of the form

σ-{

Σ n
(2)

is superior to σ2(0;q\,... ,qn) over all μeRn and σ2 > 0 in view of the
quadratic loss function.

The choice (2) is also reasonable in both Bayesian and non-Bayesian
frameworks. Assume that a prior distribution on μ is N(0,xσ2Λ~ι), where A
is diagonal with diagonal components 0 < λ\ < < λn. Then it holds that
Έ{σ2(x]qι,... ,qn)} = σ2 for all σ2 > 0 which is a property of unbiased-
ness. Further, the underlying assumption of smoothness (1) may be expressed
in terms of the prior distribution on μ; see Lindley-Smith [15], and Efron-
Morris [8]. On the other hand, in non-Bayesian frame-work, such a form
(2) will remove the bias E{σ2(x;qu.. ,?„)} - σ2 = Σ?=ι Qj{μj - xσ2/λj)/
( Σ y t i φ ( l + *M/)) for all σ2 > 0 at μ=(±^xσ2/λλ,...,+ y/xσ2/λn).

In our study, an explicit expression of the minimax estimator of σ2 based
on the form (2) is obtained, and its risk properties are derived. The present
paper is organized in the following way. In § 2, the notion of minimaxity is
presented, and the superiority of our estimators is demonstrated. In §3, an
alternative proof for x = 0 is presented. The argument is also valid for x > 0.
In §4, the minimax solution for 0 < x < 2/(^>l/"~

1) is obtained, and it is shown
that the minimax risk of minimax estimators is a simple function of minimax
solutions. In §5, five special cases are described in details. Especially in the
case r = +0, the best minimax estimator among 0 < x < 2/(J2λγι) is obtained
when x = 2/(^A/~

1), and the resultant estimator σ2 = Σy2/{n + 2) is the
minimum mean squared error estimator. The minimax estimator when the
mean is known to lie in a sphere is also discussed. In this case, the minimax
solution is obtained for any x, and the best minimax estimator over 0 < x < oo
is shown to be σ2 = ]Γ yf/(n + 2-1- r/2).

2. A minimax approach

In this section, a minimax approach to the estimation problem of σ2 is
introduced. Unknown parameters (σ2,μ) are assumed to be contained in the
following subset of R+ x Rn,
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Θ- j(σ2,/ι)G R+xRw ^/ l^ 2 <rσ 2 ,σ 2 >θj . (3)

Our interest is to estimate σ2 when the mean is known to lie in an ellipsoid.
We consider a quadratic loss function defined by

The risk function is denoted as RL(σ2;σ2,/ι) = E{L(σ2,σ2) | σ2,/ι}.
The quantity σ4RL(σ2; <τ2,/ι) is the mean squared error of σ2, and can be

decomposed into the sum of the squared bias and the variance of σ2. The
estimator σ2(x;q\,... ,qn) is quadratic in in the sample yt. Therefore, its bias
and variance are straightforward. The risk function can be explicitly written
as

,qχ,...,qn),σ ,μ) =

(4)

The following proposition shows that the estimator σ2(x\q\,... ,qn) has
smaller risk than the estimator σ2(0;#i,... ,qn).

PROPOSITION 1. (i) If ( Σ ^ ) 2 - 2Σ<lϊ < 0, it holds that

RL(σ2(x;qu... ,qn)',σ2,μ) < RL(σ2(0;qu... ,qn);σ2,μ)

on the whole space of μ and σ2 for any x > 0.
(ii) If (]Γqι)2 — 2^2qf>0, there exists an upper bound x*(q\,...,qn) > 0

such that

RL(σ2(x;qu ... ,^);σ2,/ι) < RL(σ2(0;qu.. .,qn);σ2,μ)

forO<x<x*(qu...,qn)

on the whole space of μ and σ2.

(iii) The above upper bound x*(q\,... ,qn) can be chosen as 4λ\/(n-2)
uniformly in fei,...,^)eRJ.

PROOF, (i) From the expression (4), we can express the risk difference as

RL(σ2(0;tfi,... ,^);σ2,/ι) - RL{σ2(x;qu ... ,^);σ2,/ι)
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where

A = <) { ( Σ

Since both 4̂ and 2? are minimized at /ι = 0, it holds that A + xB > A$ + JC2?O

on the whole space of μ and σ2, where A§ — 4Q^#, )Q^gf) and ^o = ( Σ # * M )

( 2 Σ <7? - ( Σ ^ ) 2 ) If ( Σ <HΫ ~ 2 Σ qf < 0, then Λo > 0 and £ 0 > 0. Thus

it holds that A + xB > 0 for any x > 0.

(ii) If ( £ # ) 2 -2Σ<lΐ>Q, * e n ^ 0 > 0 and Bo < 0. Letting

x*(qι,... ,qn) = -Ao/Bo, we have the assertion.

(iii) The above upper bound x*(q\,...,qn) is expressed as

The two inequalities Ai Σ^/A < Σ ^ ^ ^ Σ ^ A and Σ9? ^ (Σ9/)2 ^
/iΣ^? for any to,...,^)eR^ lead to x*(^,... ,qn) > 4λx/{n - 2). This
completes the proof.

Next, we will discuss the maximum of risk function of σ2{χ-,q\,... ,qn)

over the parameter space θ

M{x\qu...,qn) := max KL(σ2(x,qu ... ,qn);σ2,μ).
(σ2,μ)eθ

An adequate estimator will be expected to have smaller risk uniformly on

the whole parameter space Θ. We introduce an approach of choosing an

estimator for which the maximum of its risk function is as small as possible.

DEFINITION 1. The estimator σ2(x;qx,... ,qn) is said to be minimax if

(#i> ^qn) achieves the minimum of M{x\ q\,...,qn) among all estimators of

the form d2{x\q\,..:,qn). We call the value of M(x;q{,... ,qn) the minimax

risk of σ2(x;qu ... ,qn). In addition, we will call (<7i, ,<7W) the minimax

solution.

For any given σ2, the parameter space (3) can be regarded as a polyhedron

in the space of μ j v . . , μ 2 . Let /|(°> := (0, . . . ,0), and /ι« := (0, . . . ,0,//f\

0,... ,0), where μf' — yjrσ2/λi for \ < i < n. These points lie on the

coordinate axes of R", and correspond to extreme points of the above
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polyhedron. Since the risk function (4) is a convex function of μ\,... , μ 2 , it is

maximized at one of the extreme points of the convex polyhedron. Thus we

can rewrite

M(x',qu...,qn) = max RL((T2(x,^,...,^);σ2,/ί ( / )). (5)
0<i<n

For x = 0, the maximum of the risk function of σ2(x; q\,..., qn) over Θ will be

achieved at one of n points μ^ for 1 < / < n. In fact, Buckley-Eagleson-

Silverman [2] discussed a minimax approach based on

i, . . . , ? Λ ) = max R L ( σ 2 ( 0 , ^ , . . . , ? Λ ) ; * V ° ) . (6)
l<<

Moreover, from (4) it is seen that RL(σ 2 (x,#i, . . . ,qn)\σ2,μ^) is a continuous

function of x. We will restrict our attention on x for which we can express

M(x;qu...,qn) as

= max ( ^ ^ Σ J L i g / / ^ M ^ A + 2ΣjLlg?a

^ ' ^ ( Σ L ( i A ) ) 2

Actually, this requires that 0 < x < 2/(^A /"
1), which will be assumed in our

results.

Next, following Buckley-Eagleson-Silverman [2], the problem of mini-

mizing M(x;q\,. ..,qn) will be reduced to that of minimizing a quadratic form

of # ! , . . . , # „ , in terms of the Lagrange multiplier. Define a function

(
lr(ii x^qi

l=\ l=\

with a Lagrange mutiplier η. Note that the problem of minimizing

M{x; q\,..., qn) is invariant under multiplying q\,..., qn by a constant.

Replacing qj by ηqj/(4σ4) and multiplying L by \6σ4/η2, we obtain

,...,ηqn/(4σ4))

Consequently, our problem can be reduced to that of minimizing

H(x;qu...,qn) = max Hi(x;qu... ,qn)
\<i<n
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with respect to (q\,... ,qn) e R", where

l=\ λl l=\

3. Minimax solution for x = 0

The minimax estimator of the form σ 2 (0;^i,. . . ,qn) is obtained by

minimizing

H(0;qu •..,qn) = r1 π m ( f t/λ,(r)) 2 + 2 ^ ( i ? " 2?/)

with A/(r) = λ, (l + 4/l//r)~1/2 for i = 1,... ,/i and r > 0. Buckley-Eagleson-

Silverman [2] at first minimized H(0;q\,... ,qn) over the space {(^i,... ,qn) \

vddi\\<i<n{qi/λi(r)) = oc} for fixed α > 0 and then proposed using numerical

computations for the remaining minimization over α > 0. Thus their

expression of minimax estimators involves a redundant quantity α. Fujioka [9]

followed up this work, and gave an explicit expression of the minimax

estimator. However, the minimax problem for x > 0 is so complicated that

their technique is no longer applicable.

We give an alternative argument valid for obtaining the minimax solution

for x > 0. We begin with summarizing the result for x = 0.

THEOREM 1. Let r® be a unique solution of an equation r2 = 2 Σ / = 1 M r )

(λi(r) - λι(r)) for 2<i<n, and put r^ = 0 and r^n+ι) = oo. Then the min-

imax solution for r^ < r < r^+1^ (1 < / < ή) is expressed as

H_λjir) forj<i

1 for j > i.

P R O O F . R e w r i t e t h e f u n c t i o n H(0;q\,.. .,qn) a s

We consider the problem of minimizing i/(0;#i , . . . ,qn) with respect to

(qι,..., qn) G R£. Note that JΪ, (0; q\,...,qn)> ///(0; qu...,qn) is equivalent

to qi/λi{r) > qj/λj(r) for / Φ j . Define subsets of R^ by

Si : = {(?!, . ..,qn)eRl\ H(0;qu. . . , ? „ ) = Hi(0;qu.. .,qn)}

= {(?! , . ..,qn)eRl\ qi/λiif) > qi/k(r) for 1 < / < n}.
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From the fact that R" = \J"=ιSi together with the definition of Si, the problem

of minimizing H(0;q\,... ,qn) on R" can be reduced to that of seeking for

(#!,...,#«) which attains

or equivalently,

min min H(0;qu . . . ,qn)
\<i<n(qι,...,qn)eSi

min min i//(0;#i, . . . ,qn).
\<i<n (qι,...,qn)εSi

It is easily seen that the function ///(0;#i,... ,qn) is minimized over R" when

qj = qf(r) with

1 for j Φ i

for 1 < i < n. If (tf(/}(r),..., q$(r)) belongs to Sf, the function /f,(0; qu...,qn)

is minimized over Si at that point. Unless (q\ (r),... ,qn (r)) belongs to Si,

the function i/, (0;<7i,... ,qn) is minimized over Si at one of the boundary

points of Sj. Since the contours of i//(0; q\,...,qn) are ellipsoid surfaces with

its center at ( ^ ( r ) , . . . ,q$(r)), the location of (q^(r),.. .,q{n\r)) is substantial

for the problems of minimizing Hi(0;q\,... ,qn). It is straightforward that

ίί?,M/λ«,(r) >q?(r)βf{r) or equivalently,

//,_!((>; ?«(r),. . . ,««(r)) > JΪ,(0; ^ ( r ) , . . . , q® (r)) for 2 < / < n. (8)

Therefore, (q[ι\r),...,qn\r))φSi for 2 < i < n. This implies that the mini-

mum of i//(0; q\,...,qn) over 5, is achieved at a point on the boundary of SΊ .

By the definition of 5/ for 1 < / < n, Si is the intersection of n — 1 half-spaces

in R", and can be expressed as

The boundary of Si is a union of hypersurfaces {(#i,... ,qn) e R" |

#;(0;<7i,. . . , $ „ ) = Hk(0;qu. ..,qn)> Hι(0;qu. ..,?„) for / * *,/} for A: # i.

Moreover, ( ^ ( r ) , . . . ,^°(r)) satisfies inequalities qf (r)/λx(r) > > qf_x(r)/

λi-ι(r) > tf^MA +iίr) > > q$(r)/λn(r) or equivalently,

? « ( r ) ) > - . > ^ - 1 ( 0 ; ί « H

(r), . . . ,?W(r)) > > fΓn(O; ^ ( r ) , . . . , « » ( r ) ) . (9)

From the inequalities (8) and (9), it follows that ( ^ ( r ) , . . . ,qH\r)) e SΊ for

2 <i <n. Since the contours of i/, (0;#i, . . . ,^n) are ellipsoid surfaces with
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center (qy ( r ) , . . . ,#„ (r)) in Si, the minimum of Hi (0;q\,... ,qn) over the

hypersurface

{(tfi,... ,qn) e Rl I Hi(0;qu... ,qn) =

is achieved at a point within Si for 2 < / < «. Therefore, the minimum of

i//(0;#i,... ,qn) over S, is achieved at a point on the boundary of Si for

2 < i <n. Note that values of two functions 7/,(0; q\,..., qn) and

H\{0\q\,...,qn) coincide with each other on the boundary SiΠS, . Con-

sequently, we have only to seek for {qi,...,qn) which attains the minimum of

H\ (0; q\,..., qn) over Si. Again, note that the location of (qψ(r),..., qfi(r))

is substantial for minimizing H\(0;q\,..., qn). Since (qγ^ ( r ) , . . . , ^i^(r))

satisfies

it follows that ( ^ ( r ) , . . . , ^ 1 ^ ) ) lies in SiUS2. If r < A2\ it holds that

q\l)(r)/λι(r)>q{

2

l\r)/λ2(r). Therefore, ( ^ ( r ) , . . . , ^ ^ ) ) lies in Su and

minimizes fΓi(0;^i,... ,qn) over Si. If r(2) < r, the point (q^\r),...,q£\r))

satisfies

H2(0;qγ\r),... 4')(r)) > ^(O ^^r),... ,^>(r)),

and lies outside of Si. Thus the minimum of H\(0;q\,... ,#„) over Si is

achieved at a point on S1ΠS2. We can obtain the point achieving

the minimum of H\(0; q\,..., qn) over the hypersurface {(q\,..., qn) 6 R+ |

as

2(r)
τ>L/(Π tor / < 2

for 7 > 2.

If r^ <r< r^\ {qψ{r),.. .,q{n\r)) lies in Su and minimizes # i (0 ; 0 1 , . . . , #„)

over Si. On the other hand, if r ( 3 ) < r, it holds that

Thus the point ( ^ ( r ) , . . . ,qίk\r)) lies outside of Si Π S2, and the minimum of

//Ί(0; # 1 , . . . , ^n) over Si is achieved at a point on Si Π S2 Π S3. This procedure

can be repeated as follows. Let

λ'{r)

 7 λ j ( r ) f o r j < i

for j > i
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for 2 < i < n. If r® < r < fi+x\ we have

{qf{r),... ,$W(r)) = arg min H^O qu...,?,).
tei,. .,^)eSi

In fact, if r(/) < r < r(/+1), then the minimum of H\ over {(#i,... ,qn) e R" |

Hι(0;qu... ,?„) = • = Hi(0;qu.. .,$„)} is achieved at ( ^ ( r ) , . . . ,?i°(r)), and

(ί(i°W,...,ϊi°(r)) lies in ΠLi^/ Now let Su be

> >Hn{0-qu...,qn)}

for 1 < / < n. It is concluded that if r^ < r < r^ι+λ\ we have

arg min H(0;qu ... ,qn) = arg min Hι(0',qu...,qn)
(qι,...,qn)eRn

+ {qu...,qn)eS{

= arg min
{q\,...,qn)eSu

for 1 < / < n. The minimax solutions qj \r) and cjj (r) are calculated in
adjacent intervals of r, and also they coincide with each other at r = r^. Thus
r(/) can be obtained as a solution of the equation $~ι\r) =q{(\r). This
completes the proof.

The way of obtaining the minimax solution for x = 0 is summarized as the
following three stages.
Stage 1: To compute the quantities

( ^ ( r ) , . . . ,?«(r)) = arg min W j i i , . . . ,qn)
{qι,...,qH)eRl

for \ <i<n.
Stage 2: To check the inequalities

> Jϊ ί + 1 (0; ? «(r ) , . . . , ?«(r)) > > ^ ^ ( r ) , . . . , ?«(r)) (10)

and

ί^r),...,?«(r)) (11)

for 1 < i < n.
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Stage 3: To compute

( ί ί ° M , . ί ί f W ) = arg^ m i n J Ϊ ^ O f i , . . . , q H )
{qι,...,qn)eSu

for 1 < i < n.

In Stage 1, we specify the centers of ellipsoid surfaces which yield contours

of functions Hi(0;q\,... ,qn) for \<i<n. The inequalities in Stage 2 will

give us the locations of the centers obtained in Stage 1. The center

(tfίV), -,qn\r)) lies in Sx U S2, and the other centers ( ^ ( r ) , . . . ,?i°(r)) lie in

Si. Thus our problem can be reduced to that of minimizing H\(0; q\,..., qn)

• on Si, more precisely, that of minimizing i/i(0; # i , . . . , qn) on Su for 1 < / < n,

which is calculated in Stage 3.

4. Minimax solution for * > 0

In this section the minimax solution for x > 0 is discussed. In fact our

discussion in the proof of Theorem 1 is valid for this general case. The next

assumption is required in order to apply the first two stages described in the

end of §3.

ASSUMPTION 1.

The following lemma gives us (#1, ,#«) which achieves the minimum of

Hi(x;qi,...,qn) over R" for \<i<n, which is the first stage for the case

x> 0.

LEMMA 1. Under Assumption 1, Hi(χ-,q\,... ,qn) is minimized over R"

when qj = qf* (x, r) with

// + V X — V ί:\

where

_ (r2 + 5/l/r + 2λf)w — ((w + 2λiw)r + λ(W + /l?f)x

with i; = (Σ/#/^Γ)(Σ/^/^/ )" and w = (Σι*iXf) -

PROOF. First, let δ = ζ ? = 1 ςy/Ay- and w = (^/A,-)(E7=i <ljlλj) - τ h e n the
quantity #; is expressed as qt = δuλj, and the other q/s satisfy the relation
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ΣjΦiqj/λj =δ(\ —u). Further, we have

Hi(x\ qι,...,qi_ι, δuλt, qi+\ ,...,qn)

= δ2{(ru - x)2 + (4rλi + 2λ2)u2} - 4δ(x + λtu) + 2 ̂ (q2 - 2q}).

The minimum of the last term in the above expression of H\{x\ q\,...,qn) with

respect to qj (j φ ί) under the constraint ΣjΦiqj/λj =δ(l — u) is attained at

qj = qj(u,δ) with

qj{u,δ) = 1 + (wδ(l -u)- υ)λjι for j Φ i,

and the minimum value is 2(wδ(\ - ύ) - v)2w~ι - 2(n — 1). Then we have

Hi(xiqι(u,δ),...,qi-ι(u,δ),δuλi,qi+ι(u,δ),...,qn(u,δ))

= δ2{(ru - x)2 + 4rλiU2 + 2A2w2 + 2w(l - u)2}

Next, the minimum of Hi(x;qx(u,δ),... ,q^ι(u,δ),δuλhqM(u,δ),... ,^Λ(«,<J))

with respect to δ is attained at δ = δ(ύ) with

c / v 2(A| - U)M -\-2X-\-2V

olu) = = =•,
(ru- x)2 + (4rλt + 2A2)w2 + 2w(l - u)2

and the minimum is given by -4G(u) +2υ2w~ι -2(n-\) where

G(u)= ίM "" '
(ru - xf + (4rλi + 2λ2)u2 + 2w(l - w)2 '

Let ύ = arg maxMG(w). Then, q^ (x,r) for 1 <j <n will be obtained as

7 ' 1 1 + (w<5(w)(l — M) — t;)Aj~ for j Φ i.

Now we will seek for ύ and δ(ύ). Differentiating the logarithm of G(u) and

equating the derivative to zero, we have

λi — v u(r2 + 4rλi + 2Λ,2 + 2vv) — (rx + 2w)
; (ru — x)2 + 4rA/M2 + 2λ2u2 + 2w(l — u)2

Consequently, we obtain

(r + λi — v)x2 + (rv -
M =

(r2 - n; + 5rA, + 2λf + 2w)x + r2t; + 4rλ/i; + 2^ w + 2λfv
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and

1 5 -
(r2 - rv 4- 5rλ, + 2Λ2 + 2w)x + r2t; + 4rλjV + 2

Now we must check the condition 0 < u < 1. Note that Assumption 1 can be

written as 0 < x < 2λiw/(w + λiv). The denominator of u, equivalently, that of

1 — ύ is expressed as

x

The numerators of ύ and 1 - ύ is expressed as

and

(r -h Λ)x2 + π; + r - be + 2Afw + vxl x
1 W + AVj \W + AjV

2 / 2 JΛiw-r5λiV 2λ;V
2 2vx2+ r 2 +

\

respectively. Hence 0 < u < 1 by Assumption 1. The equality (12) leads us

to

(r2 + 4r/l/ + 2/12 + 2w)δ - (rx + 2w)

_ (r2 + 5rλ, + 2A2 + 2w)x + r2ϋ + 4rλ, i; + 2A, w -f 2λ?i?

(2^ r + λf + w)x2 - 2wrx + (r2 4- 4rAf- + 2λf)w

Similarly it can be verified that δ{ύ) > 0 under Assumption 1. Finally we

obtain an explicit expression of qy(x,r) in terms of ξ^ι\x,r). It can be seen

that

S(ύ)ύ= r + λ' + X~V

 2ξ
{i\x,r)

and

wδ{ϋ){l-ύ)-v = xξ{i\x,r).

This proves the assertion.
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REMARK 1. It can be verified that ξ^ (x, r) > 0 under Assumption 1. Let

w(r2 + Srλi + 2λ])
x(r) :=

r(w + 2λiV) + λ\ (w + λ, i?, ) '

Then, it holds that ξ®(x, r) > 0 if and only if x < jc(r). In addition, from the
inequality 2/(ΣλJx) < x(r), it is seen that that ξ{ί)(x,r)>0 if 0 < x <
^/(Σ^Γ 1)- Such a property will yield convenient inequalities in the follow-
ing Lemma 2. Taking the limit, we obtain x(+0) = 2/(Σλϊl) τ h u s

Assumption 1 is inevitable for Lemma 2.

ASSUMPTION 2.

Σ λτι * ™*H (Λ - ^) Σ λr2)and ί έ ^r1) ^4 f Σ Ar2)
/=i ι<ι<n\ lφi ) y/=1 y γ/ = 1 y

Assumption 2 will avoid extreme unbalance in λ, 's, and exclude unrealistic
assignments of λ, 's. It is not a severe restriction on λ, 's unless n is small.

LEMMA 2. Under Assumptions 1-2 the quantities ( ^ ( Λ : , Γ ) , . . . , ^ ( J C , Γ ) )

satisfy the inequalities

>Hi+l(x;qi')(x,r),...,qM(x,r)) > • • • > Hn{x;qf(x,r),... ,?«(*,!•))

and

^/_1(x;?{' )(J f,r),...,?«(J C >r)) > Ht{χ-,qf(x,r),...,qV>{x,r)). (13)

PROOF. Recall that

±1 -1 |
The first term is substantial to prove the assertion. Since ξw (JC, r) > 0 under
Assumption 1 by Remark 1, we have

qf{x,r) > >

and
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l+jξ^(x,ή>q(p(x,r). (14)

If we can prove that for 1 < j < n

^ ή -2xδ(ΰ)>0 (15)

then the inequalities (14) imply (13). Since the left-hand side of (15) is

decreasing in j , it is sufficient to prove (15) for j = n. Write the denominator

of ξ(*\x,r) as V. Then V is the denominator of ύ, which is positive by

the proof of Lemma 1. Setting W\ := (r + 4xξ{i)(x,r))V and W2 :=

(4-2xδ(ύ))V, we have

W\ = (Iλir2 + (A? - 3w - 8λfv)r - 4λtw - 4λ]v)x2

+ 2w{r2 + KU, r + 4A,2)x + w(r3 + 4A, r 2 + 2A?r),

W2 = 2r(v - λi - r)x2 - {2vr2 + 8(w + / ?

Thus it follows that

WX +λnW2 = (W + 2λnvW + (r -
w H~

where

2λf - λiλn)r + λi(3w + λiV + λ] - λiλn)}

\2 ( 2λjW
x +Z2 — — x

) \W + λV

Zx = 2λiϊ2 + λfr,

Z2 = (2λnr
2 + (2λiλn + 4w + Sλiv)r + 4wλt + 4λ2v)x

+ 2(w + λnv)r2 -h Sλn{w ?

Assumption 2 implies that H> + λjV + A? - Az/l« > 0 for any /, and that w —

4λ2w2/(w + λiv)2 > 0. Also, Assumption 1 implies that 2λi/(w + λiv) — x > 0.

The remaining terms are all positive. Consequently, W\ + λn W2 > 0. This

completes the proof.
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Stage 3 described in the end of § 3 implies that we have only to minimize

H\(x; q\,...,qn) with respect to q\,...,qn under the constraints

Let Ui = (qi/λi)(Σΐ=\ qιlh)~X for 1 < / < n. Then, the quantities wi,...,

satisfy relation

(mi - x)2 + Arλ\u\ = - = (ruk - x)2 +

Let c2r2 + x2 be the common value. Then u\ solves the equation (ru — x)2

ArλiU2 = c2r2 + x2, whose positive solution is given by

x + Vχ2 + r(r

Before describing a theorem which gives the minimax solution for x > 0

we will prepare some notations. Define sequences by Vk = (Σ?=k+\ ̂ JX)

(Σ/U+i λT2Vl> wk = ( Σ L t + i λT2)~l for 1 < A: < « - 1, and ϋΛ = wn = 0. Let
c w := argmaxci*A:(c), where

iχ+vir + yi. _i fλ, — ̂ )w, ίc)
F*(c):=

for 1 <k <n— 1, and let c(") be the solution of the equation Σ"=χ Ui{c) = 1.

Note that c^ (k = 1 , . . . , H ) are functions of (x,r). Define

and τ>(c) := w ^ ( c ) ( l ~ Σ/=i ui(c)) ~ υk f° r 1 <k<n. Now define functions

# W ) by
_ ( A ) Γ4(^H(cW)Ay for;<A:

( ) j fory>ifc

for 1 < 7"^ «.

The following theorem gives an explicit expression of the minimax solution

for 0 < x 1

THEOREM 2. Let r(fc)(x) be a unique solution ofqγ~X\x,r) =qf\x,r) for

2 < k < n, and put rw(x) = 0, r ("+ 1 )(x) = oo. Then under Assumptions 1-2 the
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minimax solution for r^k\x) < r < r^k+ι\x) (1 <k <ή) can be expressed as
qj{x,r)=qf\x,r) for 1 < j < n.

Expressions of the minimax estimators obtained in Theorem 2 have distinct
forms on intervals [r^k\x),r^k+ι\x)} of r. Two expressions corresponding
to the adjacent intervals [rk~ι(x),r^(x)] and [r^k\x),r^k+x\x)) coincide at
r = r^(jc). Thus we h a v e ^ f " 1 ^ * , ^ * ) ) = qf\χ^k\x)) for j Φ 1, although

rW{x) is determined by qf"l){x,r^k\x)) =qf\x,r(k\x)).

PROOF. Lemmas 1 and 2 complete the first two stages, respectively. We
have only to minimize H\{χ-,q\,... ,qn) with respect to (#i, . . . , # „ ) under the
constraints (16) for 1 < k <n. First we consider the case that 1 <k <n— 1.
Under the constraint (16), the quantity qj for 1 < j < k is a function of c and
δ = Σΐ=\aι/λι, and can be written as qj = qj(c,δ), where qj(c,δ) =δuj(c)λj.
Thus the function H\ is a function of (c,δ,qk+\,qn), and we have

Hi (x; q χ ( c , δ ) , . . . , qk{c, δ), qk+x , . . . , q n )

By definitions of δ and Uj(c) the quantities qj for k H-1 < j <n satisfy a relation

Σ/Lfc+i /̂/̂ / = ^(1 ~ Σ/^=i uj(c)) The minimum of the last term in the above
expression of H\(x\q\,...,qn) with respect to qk+\,..., qn under the constraint

l is attained at φ = φ(c,<ϊ) with

for

and the minimum value is given by 2 ( ^ ^ ( 1 - Σ/Li "yW) ~~ vk)2wk

l — 2{n — k)
Then, we have

δ2 \ c2r2 + x 2 + 2
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Next, the function Hι(x',qι(c,δ),...,qk(c,δ),qk+ι(c,δ),...,qn(c,δ)) is mini-

mized with respect to δ when δ = δ/c(c), and the minimum is given by

H(qι(c,δk(c)),... ,qk(c,δk(c)),qk+ι(c,δk(c)),.. ,qn(c,δk(c)))

+ Σj=ι λjujjc) +

c*r* + * 2 + 2Σjl, λfuj(c)2 + 2wk(l - Σ/li "y(

+ 2^V-2(«-fc). (17)

The above expression can be written as —4Fk(c) + 2υ\w~^x -2(n-k). There-

fore this minimization problem reduces to the maximization of Fk(c) with

respect to c. Next, we consider the case that k = n. From the constraint (16)

for k = n, the q/s can be expressed as qj = δuj(c^)λj for 1 < j <n, where c^

is the solution of the equation Σj=i Uj(c) = \. Then, H\(x\q\,... ,qn) is a

function of δ, and is expressed as

Hi (x; qx (δ),..., qn{δ)) = δ2 U"»r2 + x2 + 2 £ λ2

Uj(c^)2 j

The function Hi (q\ (δ),..., qn(δ)) is minimized when δ = δn (c^), and

the minimum value is given by -4Jx + £/Li λjuj(c{n))} {c{n)2r2 + x24-

^ j L ^ ^ ) 2 } ' 1 Finally replacing c in qj(cδk(c)) by c ^ for corre-
J }

j ^ 1 - Finally replacing c in qj(c,δk(c)) by c ^ for corre-

sponding intervals of r, [r^, r^+ 1)] for 1 < A: < n, we obtain (^i,..., qn) which

provides the minimax estimator of σ2. This completes the proof.

REMARK 2. Assumption 1 is a sufficient condition for (7). Let

( n \ 2 n n

Σ Γ - 4 j Σ τ + 2 Σ ^ - 2 ^
Then, it follows that H(x; q\,..., qn) - H0(x; q\,..., qn) = maxi<i<n(rqi/λi)

(rqt/λi — 2xΣQilh) is a decreasing function of x. We have only to show that

for x = x

max RL(σ2(x;qι(x, r ) , . . . ,qn(x, r)); σ2,/ι(/))
1</<A1

> RL(«72(x;9,(x, r ) , . . . ,^(x, r ) ) ; σ 2 , ^ 0 ' ) . (18)

The above inequality will be demonstrated in §5.4.

To illustrate the form of minimax solutions given in Theorem 2, we present
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1.25 Γ

1.2

1.15

1.1

1.05

3(2)

0.05 0.1 0.15 0.2

Fig. 1. The components of the minimax solution on the r-interval (0,0.2] for Λ: = l/(J2 h l) —

0.364 in the case n = 3. We set (Ai,A2,A3) = (1,1.1,1.2). The values of r®(x) are given by

r(2)(jc) = 0.0307, r& = 0.0924. The graphs of qf(x, r) are described with labels ' 7 ( 0 " at the right,

respectively. Three thick curves yield components of the resultant minimax solution.

simple figures of qj(x,r) as functions of r in the case n = 3. We set
(^1,̂ 2,̂ 3) = (1,1.1,1.2). Three values of x are chosen as one of representative
value x= 1/(Σ ^z"1)' a n ( * t w o boundary values of Assumption 1. Note that
the cases of the latter two value of x will be described in the next section.

The minimax risk of our minimax estimator is rather simple as we see in
the following Proposition 2, despite of complicated expression for minimax
solutions in Theorem 2. This simple form of the minimax risk was also
obtained by Fujioka [9], and its properties were discussed by Fujioka [10].

PROPOSITION 2. The minimax risk of σ2(x\qx{x,r),... ,qn(x,r)) is given by

_ 2
M(x;qx(x,r),.. .,qn(x,r)) = ^ n a , _W1 ,

PROOF. It can be shown by Theorem 2 that if r^k\x) < r <

έ f ( * , r) = δk{c^) Σ uj(cW)λj + {n-k)
7=1

- V k
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for \<k<n. Recalling that Σ]=iqf\x,r)/λj•= δk(c^), we have

Yflf \x, r)(l + x/λj) = δk(cW) (x + vk + J2(λj - vk)uj(c))
; = i V 7=1 /

+ 2v2

kw]-ι-2(n-k).

On the other hand, from (17), it can be seen that

H{x;~qf\x,r),.. .,#*>(*, ή) = -2δk{c^) ίx + vk + £ ( λ , - vk)Uj(c)\

+ 2v2

kWk-
χ - 2(n - k).

Hence, we obtain

H{χ-rqf\xΛ ... ,?«)(*, r)) = -2Σqf\x,r){\ + x/λj). (19)
7=1

A relation

M(x;qf)(x,r),...£\x,ή)

H(x;qf\x,r),... ,qP{x,r)) +4Σj=iϊf \x,r)(l + x/λj)

together with (19) proves the assertion.

We will fully examine five special cases in the last section, and will give
illustrative figures of components of minimax solutions.

5. Special cases

In this section we consider five special cases; (a) r < r^2\x), (b) r —» oo, (c)
x = 0, (d) x = 2/(ΣλJι), (e) λ\ = = λn. Among these five cases, the case
(a) is very important from a view-point of practical applications. The
minimax estimator treated in the present paper was originally introduced for
the spline smoothing method in nonparametric regression. Thus the mean
function is required to change slowly. This requirement indicates implicitly the
assumption that r is small. In the case (b) we will concentrate on sufficiently
large r. Then the mean vector is no longer restricted. This situation is
somewhat theoretically interesting, even though it may be unrealistic. Note
that both cases (c) and (d) are the boundary cases allowed under Assumption
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1. In the case (e) the mean is restricted in a sphere. Minimax solutions can
be obtained for any x > 0.

5.1. The case (a): r <

The quantity #j (
minimax solution, and its explicit form is given by

The quantity #j (x,r) given in Lemma 1 itself provides us with the

where

(i) , = (r2 + Sλxr + 2λ\)wχ - ((wt + 2λλυx)r +

( 2 A r + A f + ) 2 2 + (

An interesting special case is r = +0. Taking the limit of the above
expression, we have

Thus we obtain a variety of minimax estimators σ2(x;qx(x, +0),. . . ,qn(x, +0))
for 0 < x < 2/(Σλyι). The minimax risk of the minimax estimator is given
by

M(x;q1(x,+0),...,qn(x,+0))= —

and is minimized over 0 < x < 2/(^2,λJι) when x = 2/(]Γ λjι). The resultant
estimator of σ2 is σ2 = Σy}/(n + 2), and its minimax risk is given by
2/(« + 2).

The case r = +0 implies that the mean μ vanishes. In other words, the
sample y\,..-,yn is assumed to be independent and identically distributed as
7V(0, σ2). This case is very similar to the standard theory of statistics. Our
result shows that the estimator σ2 = ^2yf/(n-\-2) is the best minimax esti-
mator. The counterpart of the standard theory of statistics is that this
estimator is the minimum mean squared error estimator of σ2. Thus we can
expect that the restriction (2) on the form of estimators may not exclude good
estimators in a wider class.
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5.2. The case (b): r -> oo

When r > r ^ ( x ) , the minimax solution is expressed as

$W(x, r) = ^ ( ^ ) W y ( c ^ ) ^ for 1 < j < n

where c ^ is the solution of ΣUJ(C) = 1. For sufficiently large r, the functions
M/(c)'s can be approximated by c commonly in j . Thus we have c^ = \/n
approximately. The common factor in the form of #j (x,r) can be
neglected. When r tends to infinity, the limit of the minimax estimator is given
by

Σ j + nx

j1)for 0 < x < 2/(^2 λj1). The minimax risk is obviously infinite. Actually, we
have

- ? ^
λ, + nx]

5.3. The case (c): x = 0

We substitute x = 0 formally for the minimax solution in Theorem
2. Note that uj[c) = c{\ + 4λj/r)-i/2 = cλj(r)/λ,. We can evaluate c ^ =
argmaxcFfc(c) explicitly as

(k) =

Also, we obtain

δ_[k) _ Vk (r2 + 2 ΣL k{r)2) + 2wk (ΣL MΌ A ) (Σ/1I

and τic(c^) = 0. These calculations yields an explicit expression of the
minimax solution for x = 0. The resultant expression of^(0, r) coincides with
that given by Fujioka [9] which is summarized in Theorem 1 in the present
paper. A graph of each component of the minimax solution #y(0,r) is given in
Figure 2. The case n = 3 is one of the simplest, but it is sufficient to
comprehends fundamental features of minimax solutions for a general n.
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1.05

0.95

0.85

3(2)

0.05

Fig. 2. The components of the minimax solution for x = 0. The values of r® (x) are given by

i&)(x) = 0.0248, r^(x) = 0.0734.

By Proposition 2, the minimax risk is given by

M(0;qf\0,r),...,qW(0,r)) =
2(Σ4,0 2 E/li k{rf)

Fundamental properties of the minimax risk for x = 0 were discussed by
Fujioka [10].

5.4. The case (d): x =

First we will show that r^x\x) = = r^n\x) = 0. From the argument in
the case (a), we have qf\x, +0) = 1 for 1 < j < n. By the definition of r(w)(x)
it suffices to prove that qy(x,-hθ) = 1 for \<j<n. The quantity is
determined by ΣUJ{C^) = 1. Approaching r to zero, we have

\*+/> (r

j=i
41

In the case x = 2/(ΣλJx), it holds that lim r^+ 0r(r + 4λj)c^2 = 0 for 1 <j <
n. Thus it is verified that limr^+o u0n)) = l/(λj<Σλϊl)> a n d a l s o t h a t

limr^+oδn(cW) = Σλ7l Therefore, we obtain ^π )(x,+0) = 1 for 1 <j < n,
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1.06

1.04

1.02

0.98

0.96

3(2)

2(1)

0.94 0.05 0.1 0.15 0.2

Fig. 3. The components of the minimax solution for x = 2/(ΣλJι)= 0.729. The values of r® (x)

are given by r^(x) = r&(x) = 0.

which implies that An\x) = 0. By Theorem 2, the minimax solution is given
by

$H)(x, r) = δn(c^)Uj(c^)λj for 1 < j < n

for any r > 0. The resultant estimator is given by

Thus the minimax solution has a single piece of form. Figure 3 is depicted on
the same setup as that of Figures 1 and 2 for their comparisons.

By Proposition 2, its minimax risk is given by

On the other hand, the risk at μ = μW is given by

By Remark 2, the inequality (18) is valid for 0 < x <
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5 . 5 . T h e c a s e ( e ) : λ ι = - - = λ n = l

Let λi approach to 1 for 1 < i < n simultaneously. The mean will be

restricted within the sphere J ] μ 2 ^ rσl- Assumption 1 implies that 0 < x <

2/n. Note that u\(c) = = un(c). By the definition of c^n\ we have

uj(cW) = l/n for 1 <j < n. It is straightforward that δn{c^) = 2n2(x+l)/

{n2x2 - Inrx + r1 + 4r + In). Hence, we have

Λ) ; (JC r) = - = - ^ 5 — - — T-t— — for 1 < j < n.
Hj v ' } n2x2-2nrx + r2+4r + 2n J

On the other hand, from the case (a) we have

l iL + ill^)^^) for 7= 1

l+xξW{x,r)

where

*(!)/ Λ (r2 + 5r + 2)wι-((wι+2vι)r
C l X ' r j (2r + 1 + wi)x2 - 2wxrx + (r2 + Ar +

Taking the limit in the above minimax solutions, we have #j ^ (x, +0) =

^ M ) (x,+0) = 2(X+ l)/(nx2 + 2) for l < y < « . By Theorem 2 the above

equality implies that r ^ = = r ^ = 0, and the minimax solution is given

by qj(x,r) = ^ n ) ( x , r ) = δ(c^)uj(c^) for any r > 0. The resultant estimator is

σ2 = ^2yf/n(l +x), and its minimax risk is given by

i r»τ/-2 2 fiu (r-nx)2+4r + 2n
hm R L σ V ^ =

for 0 < x < 2/n. By Remark 2, the minimax estimator for 2/n < x may

not be obtained based on (7). Fortunately, the minimax estimator σ2 =

Σy}/n(\ + x) achieves simultaneously the minimum of the risk at μ = μ(°\

Note that its risk at μ = μ^ is given by (nx2 + 2)/{/ι(l +x) 2 } . Therefore,

the minimax risk is given by

τ ^ τ / ~ 2 2 (i)^ Ur-nx)2+4r + 2n nx2

max R L σ > 2 / j =max<^ « 2 ( l + x ) 2 '«( l+jc) 2 J

for x > 0. The best minimax estimator over x > 0 is obtained when x =

(Γ + 4)/2Λ, and the resultant estimator is σ2 = Σ yf/(n + 2 + r / 2 )

Finally we discuss requirements imposed on Λ/s in the present study. The

requirement that Λ/s are all distinct is assumed for mathematical convenience,
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similar to their ordering condition, 0 < λ\ < < λn. As is seen in §5.5, by
taking the limit, we can assure that Theorem 2 is valid for general case that
some of λfs are the same. On the other hand, Assumption 2 can be replaced
in a different way by modifying of the present proof of Lemma 2, or by finding
alternative proofs.
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