Нікозніма Матн. J. 29 (1999), 1–11

Positive solutions for a class of nonlinear elliptic problems

D. D. HAI

(Received May 12, 1997)

ABSTRACT. This paper deals with multiplicity results of the boundary value problem $(p(t)\phi(u'))' = -p(t)(\lambda f(u) + g(u)), a < t < b$

$$u(a) = 0 = u(b),$$

where f is ϕ -sublinear (superlinear) at 0, g is ϕ -superlinear (sublinear) at 0 and ∞ , and λ is a positive parameter. Analogous results for systems will also be established.

1. Introduction

Consider the quasilinear elliptic boundary value problem

(1.1)
$$\begin{cases} div(|\nabla u|^{p-2}\nabla u) = -(\lambda |u|^{q-2}u + |u|^{\alpha-2}u), & x \in \Omega\\ u = 0, & x \in \partial\Omega, \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial \Omega$, $1 < q < p < \alpha \le p^*$, with $p^* = \frac{Np}{N-p}$ if p < N and $p^* = \infty$ if p = N, and λ is a positive parameter.

Problem (1.1) with p = 2 was considered in [1, 3, 5]. The general case p > 1 has been studied in [2, 4, 7]. It was shown in [4, 7] that (1.1) has at least two positive solutions for $\lambda > 0$ sufficiently small. These results were extended in [2], in which, assuming Ω to be a ball, the authors proved the existence of two positive radial solutions to (1.1) for $\lambda \in (0, \Lambda)$, where $\Lambda = \sup\{\lambda > 0 : (1.1)$ has a positive radial solution}. In this paper, we shall extend the multiplicity result in [2] to positive radial solutions of the general quasilinear elliptic problem

$$\begin{cases} \operatorname{div}(\alpha(|\nabla u|^2)\nabla u) + \lambda f(u) + g(u) = 0, \quad a < |x| < b \\ u = 0, \quad |x| \in \{a, b\} \end{cases}$$

on an annulus, where α , f, $g: \mathbb{R}^+ \to \mathbb{R}^+$. Since we look for radial solutions, we shall consider the following boundary value problem

¹⁹⁹¹ Mathematics Subject Classification. 34B15, 35J60.

Key words and phrases. P-Laplacian, positive radial solutions, boundary value problem.

D. D. HAI

(1.2)
$$\begin{cases} (p(t)\phi(u'))' = -p(t)(\lambda f(u) + g(u)), & a < t < b \\ u(a) = u(b) = 0, \end{cases}$$

where ϕ is an odd increasing homeomorphism on R, f is ϕ -sublinear (superlinear) at 0 and g is ϕ -superlinear (sublinear) at 0 and ∞ . Similar results for systems will also be established. Note that the proof in [2] depends on scaling arguments and therefore does not apply to general quasilinear term and nonlinearities. We overcome this by first establishing a lower bound for the sup-norm of possible solutions of (1.2) and then define a suitable operator whose fixed points are positive solutions of (1.2). Our approach is based on degree theoretic argument and sub-supersolutions method.

2. Existence results

We first consider the case when f is ϕ -sublinear at 0 and g is ϕ -superlinear at 0 and ∞ . We shall impose the following assumptions:

(A.1) $p:[a,b] \to (0,\infty)$ is continuous

(A.2) ϕ is an odd, increasing homeomorphism on R, and for each c > 0, there exists a positive number $A_c > 0$ such that

$$\phi(cx) \ge A_c \phi(x)$$

for every x > 0.

(A.3) f, g are increasing, continuous functions on R^+ such that

$$\lim_{u\to 0}\frac{f(u)}{\phi(u)}=\infty,\quad \lim_{u\to\infty}\frac{g(u)}{\phi(u)}=\infty$$

and

$$\lim_{u\to 0}\frac{g(u)}{\phi(u)}=0$$

Then we have

THEOREM 2.1. Let (A.1)–(A.3) hold. Then there exists a positive number $\lambda^* > 0$ such that (1.2) has at least two positive solutions for $\lambda < \lambda^*$, at least one for $\lambda = \lambda^*$ and none for $\lambda > \lambda^*$.

We first recall the following

LEMMA 2.2. [6] Let u satisfy

$$\begin{cases} (p(t)\phi(u'))' \le 0, & a < t < b \\ u(a) = u(b) = 0. \end{cases}$$

2

Then

$$u(t) \ge K|u|_0 r(t),$$

where $r(t) = \frac{1}{b-a} \min(t-a, b-t)$ and K is a positive constant. Here $|.|_0$ denotes the sup-norm.

The next lemma gives a priori estimates for solutions of (1.2).

LEMMA 2.3. There exist positive numbers C_{λ} and C, with $C_{\lambda} \to \infty$ as $\lambda \to \infty$, such that any nontrivial solution of

(2.1)
$$\begin{cases} (p(t)\phi(u'))' \leq -p(t)(\lambda f(u) + g(u)), & a < t < b \\ u(a) = u(b) = 0 \end{cases}$$

satisfies

$$C_{\lambda} \leq |u|_0 \leq C.$$

In the rest of the paper, we assume that $0 < p_0 \le p(t) \le p_1$ for every $t \in [a, b]$, f(u) = f(0) and g(u) = g(0) for $u \le 0$. We shall denote by $C_k, k = 1, 2, \ldots$ various constants.

PROOF OF LEMMA 2.3. Let u satisfy (2.1). A comparison argument shows that $u \ge v$, where v is the solution of

$$\begin{cases} (p(t)\phi(v'))' = -p(t)(\lambda f(u) + g(u)), & a < t < b \\ v(a) = v(b) = 0. \end{cases}$$

Note that

$$v(t) = \int_a^t \phi^{-1} \left\{ \frac{M - \int_a^s p(\tau) (\lambda f(u) + g(u)) \, d\tau}{p(s)} \right\} ds$$

where M is such that v(b) = 0.

Let $|v|_0 = v(t_0)$ for some $t_0 \in (a, b)$. Then $v'(t_0) = 0$ and we have

$$u(t) \geq \int_a^t \phi^{-1} \left\{ \frac{\int_s^{t_0} p(\tau) (\lambda f(u) + g(u)) \, d\tau}{p(s)} \right\} ds$$

Let $[a_1, b_1] \subset (a, b)$. If $t_0 \ge \frac{a_1 + b_1}{2}$ then it follows from Lemma 2.2 that $|u|_0 \ge u(a_1) \ge (a_1 - a)\phi^{-1} \left\{ \frac{\lambda p_0(b_1 - a_1)}{2p_1} f(|u|_0 \delta) \right\},$ where $\delta = K \min_{a_1 \leq t \leq b_1} r(t)$, or

(2.2)
$$\frac{\phi\left(\frac{|u|_0}{a_1-a}\right)}{f(|u|_0\delta)} \ge \frac{\lambda p_0(b_1-a_1)}{2p_1}.$$

If $t_0 \le \frac{a_1 + b_1}{2}$ then by rewriting *u* as $f_0^b = \int_0^b \int_0^s n(\tau) (\lambda f(u)) d\tau$

$$u(t) \geq \int_t^b \phi^{-1}\left\{\frac{\int_{t_0}^s p(\tau)(\lambda f(u) + g(u)) d\tau}{p(s)}\right\} ds,$$

we obtain

(2.3)
$$\frac{\phi\left(\frac{|u|_0}{b-b_1}\right)}{f(|u|_0\delta)} \ge \frac{\lambda p_0(b_1-a_1)}{2p_1}.$$

Combining (2.2) and (2.3), we get

$$\frac{\phi(|\boldsymbol{u}|_{0}\gamma)}{f(|\boldsymbol{u}|_{0}\delta)} \geq \frac{\lambda p_{0}(b_{1}-a_{1})}{2p_{1}} = \lambda C_{1},$$

where $\gamma = \max\left(\frac{1}{a_1 - a}, \frac{1}{b - b_1}\right)$, and hence $\phi(|u|_0 \delta)$

$$\frac{\phi(|u|_0\delta)}{f(|u|_0\delta)} \ge \lambda C_2$$

by (A.2). Since $\lim_{x\to 0} \frac{\phi(x)}{f(x)} = 0$, it follows that there exists $C_{\lambda} > 0$ with $C_{\lambda} \to \infty$ as $\lambda \to \infty$ such that $|u|_0 \ge C_{\lambda}$. Similarly, we have

(2.4)
$$\frac{\phi(|u|_0\delta)}{g(|u|_0\delta)} \ge C_3,$$

and therefore $|u|_0 \leq C$ for some C > 0 independent of λ .

From Lemmas 2.2 and 2.3, we see that u is a positive solution of (1.2) iff u satisfies

(2.5)_{$$\lambda$$}
$$\begin{cases} (p(t)\phi(u'))' = -p(t)(\tilde{f}(t,u,\lambda) + g(u)), & a < t < b \\ u(a) = u(b) = 0, \end{cases}$$

where $\tilde{f}(t, u, \lambda) = \lambda f(\max(u, \tilde{C}_{\lambda}r(t)))$ and $\tilde{C}_{\lambda} = KC_{\lambda}$. Without loss of generality, we assume that C_{λ} is nondecreasing with respect to λ . For each $v \in C[a, b]$, we define $u = A(\lambda, v)$ to be the solution of

Positive solutions for a class of nonlinear elliptic problems

$$\begin{cases} (p(t)\phi(u'))' = -p(t)(\tilde{f}(t,v,\lambda) + g(v)), & a < t < b \\ u(a) = u(b) = 0. \end{cases}$$

Then is can be verified that $A(\lambda, .): C[a, b] \to C[a, b]$ is completely continuous and fixed points of $A(\lambda, .)$ are solutions of $(2.5)_{\lambda}$.

Now we show the existence of a solution to $(2.5)_{\lambda}$ of $\lambda > 0$ small.

LEMMA 2.4. There exists a positive number $\overline{\lambda} > 0$ such that $(2.5)_{\lambda}$ has a solution for $\lambda < \overline{\lambda}$.

PROOF. Let u satisfy $u = \theta A(\lambda, u)$ for some $\theta \in [0, 1]$ and let $t_0 \in (a, b)$ be such that $u'(t_0) = 0$. By integrating, we obtain

$$u(t) = \theta \int_{a}^{t} \phi^{-1} \left\{ \frac{\int_{s}^{b_{0}} p(\tau)(\tilde{f}(\tau, u, \lambda) + g(u)) d\tau}{p(s)} \right\} ds$$
$$\leq \int_{a}^{t} \phi^{-1} \left\{ \frac{\int_{s}^{b_{0}} p(\tau)(\tilde{f}(\tau, u, \lambda) + g(u)) d\tau}{p(s)} \right\} ds$$

and so

(2.5)
$$|u|_0 \le (b-a)\phi^{-1}\{\lambda \bar{p}f(\max(|u|_0, \tilde{C}_{\lambda}) + \bar{p}g(|u|_0)\},\$$

where $\bar{p} = \frac{p_1}{p_0}(b-a)$.

From (A.2) and the fact that $\lim_{x\to 0} \frac{\phi(x)}{g(x)} = \infty$, is follows that there exists a positive number r such that

(2.6)
$$\phi\left(\frac{r}{b-a}\right) > 2\bar{p}g(r).$$

Now, let $\overline{\lambda} \in (0,1)$ be such that

(2.7)
$$\phi\left(\frac{r}{b-a}\right) > 2\bar{\lambda}\bar{p}f(\max(r,\tilde{C}_1)).$$

Adding (2.6) and (2.7), we obtain

$$\phi\left(\frac{r}{b-a}\right) > \bar{\lambda}\bar{p}f(\max(r,\tilde{C}_1)) + \bar{p}g(r),$$

which implies that

(2.8)
$$r > (b-a)\phi^{-1}\{\lambda \bar{p}f(\max(r,\tilde{C}_{\lambda})) + \bar{p}g(r)\}$$

for $\lambda \in (0, \overline{\lambda})$.

Combining (2.5) and (2.8), we deduce that $|u|_0 \neq r$ and the existence of a fixed point of $A(\lambda, \cdot)$ follows from the Leray-Schauder fixed point Theorem.

The following nonexistence result is an immediate consequence of Lemma 2.3.

LEMMA 2.5. There is no positive solution to $(2.5)_{\lambda}$ for $\lambda > 0$ large enough.

Let us define $\Lambda = \{\lambda > 0 : (2.5)_{\lambda}$ has a solution $\}$ and let $\lambda^* = \sup \Lambda$. By Lemmas 2.4 and 2.5, $0 < \lambda^* < \infty$. By standard limiting processes, it follows that $(2.5)_{\lambda^*}$ has a solution u_{λ^*} .

We are now ready to give the

PROOF OF THEOREM 2.1. Let $0 < \lambda < \lambda^*$. Since u_{λ^*} is a supersolution and 0 is a subsolution for $(2.5)_{\lambda}$, there exists a solution u_{λ} of $(2.5)_{\lambda}$ with $0 \le u_{\lambda} \le u_{\lambda^*}$. We next establish the existence of a second solution. Define

$$\Theta = \{ u \in C^1[a,b] : 0 < u < u_{\lambda} \cdot \text{ on}(a,b), u'(b) > u'_{\lambda} \cdot (b) \\ u'(a) < u'_{\lambda} \cdot (a), u'(a) > 0, u'(b) < 0 \},$$

and

$$\varDelta = \{ u \in C[a, b] : 0 \le u \le u_{\lambda^*} \}.$$

We claim that $A(\lambda, .) : \Delta \to \Theta$. Indeed, let $u = A(\lambda, v)$ with $v \in \Delta$. Then

(2.9)
$$(p(t)\phi(u'))' = -p(t)(\lambda f(\max(v, \tilde{C}_{\lambda}r(t)) + g(v)))$$
$$\geq -p(t)(\lambda f(\max(u_{\lambda^{*}}, \tilde{C}_{\lambda^{*}}r(t)) + g(u_{\lambda^{*}})))$$
$$= -p(t)(\lambda f(u_{\lambda^{*}}) + g(u_{\lambda^{*}}))$$
$$= (p(t)\phi(u'_{\lambda^{*}}))' + p(t)(\lambda^{*} - \lambda)f(u_{\lambda^{*}}).$$

Let $t_0 \in (a, b)$ be such that $u'(t_0) = u'_{1*}(t_0)$. By (2.9),

$$p(t)(\phi(u') - \phi(u'_{\lambda^*})) > 0 \text{ on } (t_0, b],$$

which implies that $u < u_{\lambda}$ on (t_0, b) and $u'(b) > u'_{\lambda}(b)$. Similarly, $u < u_{\lambda}$ on $(a, t_0]$ and $u'(a) < u'_{\lambda}(a)$. By Lemma 2.2, u'(a) > 0, u'(b) < 0 and the claim is proved. Since Θ is open, convex and $u_{\lambda} \in \Theta$, we infer that

$$\deg(I - A(\lambda, .), \Theta, 0) = 1.$$

On the other hand, since solutions of $(2.5)_{\lambda}$ and bounded in the C^1 -norm uniformly on bounded intervals,

$$\deg(I - A(\lambda, .), B(0, R), 0) = \text{constant},$$

when R is large enough. Here B(0, R) denotes the open ball centered at 0 with radius R in $C^{1}[a, b]$. By Lemma 2.5, the constant is zero and therefore

$$\deg(I - A(\lambda, .), B(0, R) \setminus \overline{\Theta}, 0) = -1.$$

Hence $A(\lambda, .)$ has a fixed point $u \notin \overline{\Theta}$, completing the proof of Theorem 2.1.

Next, we consider the case when f is ϕ -superlinear at 0 and g is ϕ -sublinear at 0 and ∞ .

Assume

(A.3') f,g are increasing continuous functions on R^+ such that

$$\lim_{u\to 0}\frac{f(u)}{\phi(u)}=0,\quad \lim_{u\to 0}\frac{g(u)}{\phi(u)}=\infty$$

and

$$\lim_{u\to\infty}\frac{g(u)}{\phi(u)}=0$$

Then we have

THEOREM 2.6. Let (A.1), (A.2) and (A.3') hold. Then there exists a positive number λ^* such that (1.2) has at least two positive solutions for $\lambda < \lambda^*$, at least one for $\lambda = \lambda^*$, and none for $\lambda > \lambda^*$.

The proof of Theorem 2.6 follows the same lines as that of Theorem 2.1, with Lemma 2.3 replaced by

LEMMA 2.7. There exist positive numbers C_{λ} and C, with $C_{\lambda} \to 0$ as $\lambda \to \infty$, such that any nontrivial solution of

$$\begin{cases} (p(t)\phi(u'))' = -p(t)(\lambda f(u) + g(u))\\ u(a) = u(b) = 0 \end{cases}$$

satisfies

$$C \leq |u|_0 \leq C_{\lambda}.$$

Finally, we consider the following system

(2.10)
$$\begin{cases} (p(t)\phi(u'))' = -p(t)(\lambda f(v) + g(v)), & a < t < b \\ (q(t)\psi(v'))' = -q(t)(\lambda h(u) + k(u)), & a < t < b \\ u(a) = u(b) = 0, & v(a) = v(b) = 0. \end{cases}$$

It is assumed that

(A.4) $q:[a,b] \to (0,\infty)$ is continuous.

(A.5) ψ is an odd, increasing homeomorphism on R, and for each c > 0, there exists a positive number B_c such that

$$\psi(cx) \geq B_c \psi(x)$$

for every x > 0.

(A.6) h, k are increasing, continuous functions on R^+ such that

$$\lim_{u\to 0}\frac{h(u)}{\psi(u)}=\infty,\quad \lim_{u\to\infty}\frac{k(u)}{\psi(u)}=\infty$$

and

$$\lim_{u\to 0}\frac{k(u)}{\psi(u)}=0.$$

THEOREM 2.8. Let (A.1)–(A.6) hold. Then there exists a positive number $\lambda^* > 0$ such that (2.10) has at least two positive solutions for $\lambda < \lambda^*$, at least one for $\lambda = \lambda^*$, and none for $\lambda > \lambda^*$.

We first establish a result analogous to Lemma 2.3 for the system (2.10).

LEMMA 2.9. There exist positive numbers C_{λ} and C, with $C_{\lambda} \to \infty$ as $\lambda \to \infty$, such that any nontrivial solutions (u, v) of

$$\begin{cases} (p(t)\phi(u'))' \le -p(t)(\lambda f(v) + g(v)), & a < t < b\\ (q(t)\psi(v'))' \le -q(t)(\lambda h(u) + k(u)), & a < t < b\\ u(a) = u(b) = 0, & v(a) = v(b) = 0 \end{cases}$$

satisfies

 $C_{\lambda} \leq |u|_0, |u|_0 \leq C.$

PROOF. Let $K_1 > 0$ be such that $u(t) \ge K_1 |u|_0 r(t)$, $t \in [a, b]$, for every u satisfying $(q(t)\psi(u'))' \le 0$, u(a) = u(b) = 0. As in the proof of Lemma 2.3, we have

$$\phi(\gamma|u|_0) \ge \lambda C_1 f(\delta|v|_0) + C_1 g(\delta|v|_0),$$

and

$$\psi(\gamma|v|_0) \ge \lambda C_4 h(\delta_1|u|_0) + C_4 k(\delta_1|u|_0),$$

where $\delta = K \min_{a_1 \le t \le b_1} r(t)$, $\delta_1 = K_1 \min_{a_1 \le t \le b_1} r(t)$, $[a_1, b_1] \subset (a, b)$, and $\gamma = \max\left(\frac{1}{a_1 - a}, \frac{1}{b - b_1}\right)$.

If $|u|_0 \ge |v|_0$ then $\psi(\gamma |v|_0) \ge \lambda C_4 h(\delta_1 |v|_0)$, and hence

$$\frac{\psi(\delta_1|v|_0)}{h(\delta_1|v|_0)} \ge \lambda C_5,$$

which implies $|v|_0 \ge C_{1,\lambda} > 0$. Similarly, if $|u|_0 \le |v|_0$ then $|u|_0 \ge C_{2,\lambda} > 0$. In either case, $|u|_0, |v|_0 \ge C_{\lambda}$ where $C_{\lambda} \to \infty$ as $\lambda \to \infty$. The uniform bounds for u, v can be derived in a similar manner. \Box

For $(\tilde{u}, \tilde{v}) \in C[a, b] \times C[a, b]$, Let $(u, v) = B(\lambda, \tilde{u}, \tilde{v})$ be the solution of

$$(2.11)_{\lambda} \qquad \begin{cases} (p(t)\phi(u'))' = -p(t)(f(t,\tilde{v},\lambda) + g(\tilde{v})), & a < t < b \\ (q(t)\psi(v'))' = -q(t)(h(t,\tilde{u},\lambda) + k(\tilde{u})), & a < t < b \\ u(a) = u(b) = 0, v(a) = v(b) = 0, \end{cases}$$

where $f(t, \tilde{v}, \lambda) = \lambda f(\max(\tilde{v}, \tilde{C}_{\lambda}r(t)), \quad h(t, \tilde{u}, \lambda) = \lambda h(\max(\tilde{u}, \tilde{C}_{\lambda}r(t)), \quad \tilde{C}_{\lambda} = \min(K, K_1)C_{\lambda}$ and C_{λ} is given by Lemma 2.9. Then (u, v) is a solution of $(2.11)_{\lambda}$ iff (u, v) is a positive solution of (2.10).

The next Lemma gives existence of solutions to $(2.11)_{\lambda}$ for $\lambda > 0$ small.

LEMMA 2.10. There exists $\tilde{\lambda} > 0$ such that $(2.11)_{\lambda}$ has a solution for $\lambda < \tilde{\lambda}$.

PROOF OF LEMMA 2.10. Let (u, v) be a solution of $(u, v) = \theta B(\lambda, u, v)$ for some $\theta \in (0, 1)$. Suppose that $0 < q_0 \le q(t) \le q_1$ for every $t \in [a, b]$. Then we have

$$|u|_{0} \leq (b-a)\phi^{-1}\{\lambda \bar{p}f(\max(|v|_{0}, \tilde{C}_{\lambda})) + \bar{p}g(|v|_{0})\}$$

and

$$|v|_{0} \leq (b-a)\psi^{-1}\{\lambda \bar{q}h(\max(|u|_{0}, \tilde{C}_{\lambda})) + \bar{q}k(|u|_{0})\},\$$

where $\bar{p} = \frac{p_1(b-a)}{p_0}$, $\bar{q} = \frac{q_1(b-a)}{q_0}$. Let $|(u,v)|_0 = \max(|u|_0, |v|_0)$. If $|u|_0 \ge |v|_0$ then

$$\phi\left(\frac{|u|_0}{b-a}\right) \leq \lambda \bar{p} f(\max(|u|_0, \tilde{C}_{\lambda})) + \bar{p} g(|u|_0),$$

while if $|u|_0 \le |v|_0$, we have

$$\psi\left(\frac{|v|_0}{b-a}\right) \leq \lambda \bar{q}h(\max(|v|_0, \tilde{C}_\lambda)) + \bar{q}k(|v|_0),$$

Choose r > 0 so that

$$\phi\left(\frac{r}{b-a}\right) > 2\bar{p}g(r), \quad \psi\left(\frac{r}{b-a}\right) > 2\bar{q}k(r),$$

and let $\tilde{\lambda} \in (0, 1)$ be such that

$$\phi\left(\frac{r}{b-a}\right) > 2\tilde{\lambda}\bar{p}f(\max(r,\tilde{C}_1)), \quad \psi\left(\frac{r}{b-a}\right) > 2\tilde{\lambda}\bar{q}h(\max(r,\tilde{C}_1)).$$

Then it is easy to see that $|(u,v)|_0 \neq r$ for $\lambda < \tilde{\lambda}$, and the Lemma follows from the Leray-Schauder fixed point Theorem. \Box

PROOF OF THEOREM 2.8. We shall only give a sketch of proof since the details are similar to that of Theorem 2.1. Define $\Lambda = \{\lambda > 0 :$ $(2.11)_{\lambda}$ has a solution $\}$ and let $\lambda^* = \sup \Lambda$. By Lemmas 2.9 and 2.10, $0 < \lambda^* < \infty$. By standard limiting processes $(2.11)_{\lambda^*}$ has a solution $(u_{\lambda^*}, v_{\lambda^*})$. Let $\lambda \in (0, \lambda^*)$, then there exists a solution $(u_{\lambda}, v_{\lambda})$ of $(2.11)_{\lambda}$ with $0 \le u_{\lambda} \le u_{\lambda^*}$ and $0 \le v_{\lambda} \le v_{\lambda^*}$.

Let

$$\Theta = \left\{ (u,v) \in C^1[a,b] \times C^1[a,b] : 0 < u < u_{\lambda^*}, 0 < v < v_{\lambda^*}, \\ \frac{\partial u}{\partial n} > 0, \frac{\partial (u_{\lambda^*} - u)}{\partial n} > 0, \frac{\partial v}{\partial n} > 0, \frac{\partial (v_{\lambda^*} - v)}{\partial n} > 0 \text{ at } a, b \right\},$$

where *n* denotes the unit outer normal of (a, b). Then Θ is open, convex in $C^{1}[a, b] \times C^{1}[a, b]$ and $(u_{\lambda}, v_{\lambda}) \in \Theta$. As in the proof of Theorem 2.1, we obtain

$$\deg(I - B(\lambda, .), B(0, R) \setminus \overline{\Theta}, 0) = -1,$$

for large R, where B(0, R) denotes the open ball centered at 0 with radius R in $C^{1}[a, b] \times C^{1}[a, b]$, and the existence of a second solution follows.

References

- [1] A. Ambrozetti, H. Brezis, and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
- [2] A. Ambrozetti, J. Garcia Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal 137 (1996), 219-242.
- [3] T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. A. M. S. 123 (1995), 3555-3561.
- [4] L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 (1995), 1639–1648.
- [5] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.

Positive solutions for a class of nonlinear elliptic problems

- [6] H. Dang, R. Manasevich and K. Schmitt, Positive radial solutions for some nonlinear partial differential equations, *Math. Nachr.* 186 (1997), 101-113.
- [7] J. Garcia Azorero and I. Peral Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, *Indiana Univ. Math, J.* 43 (1994), 941–957.

Department of Mathematics Mississippi State University Mississippi State, MS 39762 U.S.A. E-mail address: dang@math.msstate.edu