Positive solutions for a class of nonlinear elliptic problems

D. D. HAI

(Received May 12, 1997)

Abstract. This paper deals with multiplicity results of the boundary value problem

$$
\begin{gathered}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime}=-p(t)(\lambda f(u)+g(u)), a<t<b \\
u(a)=0=u(b)
\end{gathered}
$$

where f is ϕ-sublinear (superlinear) at $0, g$ is ϕ-superlinear (sublinear) at 0 and ∞, and λ is a positive parameter. Analogous results for systems will also be established.

1. Introduction

Consider the quasilinear elliptic boundary value problem

$$
\left\{\begin{array}{l}
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=-\left(\lambda|u|^{q-2} u+|u|^{\alpha-2} u\right), \quad x \in \Omega \tag{1.1}\\
u=0, \quad x \in \partial \Omega
\end{array}\right.
$$

where Ω is a bounded domain in R^{N} with smooth boundary $\partial \Omega, 1<q<p<$ $\alpha \leq p^{*}$, with $p^{*}=\frac{N p}{N-p}$ if $p<N$ and $p^{*}=\infty$ if $p=N$, and λ is a positive parameter.

Problem (1.1) with $p=2$ was considered in [1, 3, 5]. The general case $p>1$ has been studied in [2, 4, 7]. It was shown in [4, 7] that (1.1) has at least two positive solutions for $\lambda>0$ sufficiently small. These results were extended in [2], in which, assuming Ω to be a ball, the authors proved the existence of two positive radial solutions to (1.1) for $\lambda \in(0, \Lambda)$, where $\Lambda=$ $\sup \{\lambda>0:(1.1)$ has a positive radial solution $\}$. In this paper, we shall extend the multiplicity result in [2] to positive radial solutions of the general quasilinear elliptic problem

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\alpha\left(|\nabla u|^{2}\right) \nabla u\right)+\lambda f(u)+g(u)=0, \quad a<|x|<b \\
u=0, \quad|x| \in\{a, b\}
\end{array}\right.
$$

on an annulus, where $\alpha, f, g: R^{+} \rightarrow R^{+}$. Since we look for radial solutions, we shall consider the following boundary value problem

[^0]\[

\left\{$$
\begin{array}{l}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime}=-p(t)(\lambda f(u)+g(u)), \quad a<t<b \tag{1.2}\\
u(a)=u(b)=0
\end{array}
$$\right.
\]

where ϕ is an odd increasing homeomorphism on R, f is ϕ-sublinear (superlinear) at 0 and g is ϕ-superlinear (sublinear) at 0 and ∞. Similar results for systems will also be established. Note that the proof in [2] depends on scaling arguments and therefore does not apply to general quasilinear term and nonlinearities. We overcome this by first establishing a lower bound for the sup-norm of possible solutions of (1.2) and then define a suitable operator whose fixed points are positive solutions of (1.2). Our approach is based on degree theoretic argument and sub-supersolutions method.

2. Existence results

We first consider the case when f is ϕ-sublinear at 0 and g is ϕ-superlinear at 0 and ∞. We shall impose the following assumptions:
(A.1) $p:[a, b] \rightarrow(0, \infty)$ is continuous
(A.2) ϕ is an odd, increasing homeomorphism on R, and for each $c>0$, there exists a positive number $A_{c}>0$ such that

$$
\phi(c x) \geq A_{c} \phi(x)
$$

for every $x>0$.
(A.3) f, g are increasing, continuous functions on R^{+}such that

$$
\lim _{u \rightarrow 0} \frac{f(u)}{\phi(u)}=\infty, \quad \lim _{u \rightarrow \infty} \frac{g(u)}{\phi(u)}=\infty
$$

and

$$
\lim _{u \rightarrow 0} \frac{g(u)}{\phi(u)}=0
$$

Then we have
Theorem 2.1. Let (A.1)-(A.3) hold. Then there exists a positive number $\lambda^{*}>0$ such that (1.2) has at least two positive solutions for $\lambda<\lambda^{*}$, at least one for $\lambda=\lambda^{*}$ and none for $\lambda>\lambda^{*}$.

We first recall the following
Lemma 2.2. [6] Let u satisfy

$$
\left\{\begin{array}{l}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime} \leq 0, \quad a<t<b \\
u(a)=u(b)=0 .
\end{array}\right.
$$

Then

$$
u(t) \geq K|u|_{0} r(t)
$$

where $r(t)=\frac{1}{b-a} \min (t-a, b-t)$ and K is a positive constant. Here $|\cdot|_{0}$ denotes the sup-norm.

The next lemma gives a priori estimates for solutions of (1.2).
Lemma 2.3. There exist positive numbers C_{λ} and C, with $C_{\lambda} \rightarrow \infty$ as $\lambda \rightarrow \infty$, such that any nontrivial solution of

$$
\left\{\begin{array}{l}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime} \leq-p(t)(\lambda f(u)+g(u)), \quad a<t<b \tag{2.1}\\
u(a)=u(b)=0
\end{array}\right.
$$

satisfies

$$
C_{\lambda} \leq|u|_{0} \leq C .
$$

In the rest of the paper, we assume that $0<p_{0} \leq p(t) \leq p_{1}$ for every $t \in[a, b], f(u)=f(0)$ and $g(u)=g(0)$ for $u \leq 0$. We shall denote by $C_{k}, k=$ $1,2, \ldots$ various constants.

Proof of lemma 2.3. Let u satisfy (2.1). A comparison argument shows that $u \geq v$, where v is the solution of

$$
\left\{\begin{array}{l}
\left(p(t) \phi\left(v^{\prime}\right)\right)^{\prime}=-p(t)(\lambda f(u)+g(u)), \quad a<t<b \\
v(a)=v(b)=0 .
\end{array}\right.
$$

Note that

$$
v(t)=\int_{a}^{t} \phi^{-1}\left\{\frac{M-\int_{a}^{s} p(\tau)(\lambda f(u)+g(u)) d \tau}{p(s)}\right\} d s
$$

where M is such that $v(b)=0$.
Let $|v|_{0}=v\left(t_{0}\right)$ for some $t_{0} \in(a, b)$. Then $v^{\prime}\left(t_{0}\right)=0$ and we have

$$
u(t) \geq \int_{a}^{t} \phi^{-1}\left\{\frac{\int_{s}^{t_{0}} p(\tau)(\lambda f(u)+g(u)) d \tau}{p(s)}\right\} d s
$$

Let $\left[a_{1}, b_{1}\right] \subset(a, b)$. If $t_{0} \geq \frac{a_{1}+b_{1}}{2}$ then it follows from Lemma 2.2 that

$$
|u|_{0} \geq u\left(a_{1}\right) \geq\left(a_{1}-a\right) \phi^{-1}\left\{\frac{\lambda p_{0}\left(b_{1}-a_{1}\right)}{2 p_{1}} f\left(|u|_{0} \delta\right)\right\}
$$

where $\delta=K \min _{a_{1} \leq t \leq b_{1}} r(t)$, or

$$
\begin{equation*}
\frac{\phi\left(\frac{|u|_{0}}{a_{1}-a}\right)}{f\left(|u|_{0} \delta\right)} \geq \frac{\lambda p_{0}\left(b_{1}-a_{1}\right)}{2 p_{1}} \tag{2.2}
\end{equation*}
$$

If $t_{0} \leq \frac{a_{1}+b_{1}}{2}$ then by rewriting u as

$$
u(t) \geq \int_{t}^{b} \phi^{-1}\left\{\frac{\int_{t_{0}}^{s} p(\tau)(\lambda f(u)+g(u)) d \tau}{p(s)}\right\} d s
$$

we obtain

$$
\begin{equation*}
\frac{\phi\left(\frac{|u|_{0}}{b-b_{1}}\right)}{f\left(|u|_{0} \delta\right)} \geq \frac{\lambda p_{0}\left(b_{1}-a_{1}\right)}{2 p_{1}} \tag{2.3}
\end{equation*}
$$

Combining (2.2) and (2.3), we get

$$
\frac{\phi\left(|u|_{0} \gamma\right)}{f\left(|u|_{0} \delta\right)} \geq \frac{\lambda p_{0}\left(b_{1}-a_{1}\right)}{2 p_{1}}=\lambda C_{1}
$$

where $\gamma=\max \left(\frac{1}{a_{1}-a}, \frac{1}{b-b_{1}}\right)$, and hence

$$
\frac{\phi\left(|u|_{0} \delta\right)}{f\left(|u|_{0} \delta\right)} \geq \lambda C_{2}
$$

by (A.2). Since $\lim _{x \rightarrow 0} \frac{\phi(x)}{f(x)}=0$, it follows that there exists $C_{\lambda}>0$ with $C_{\lambda} \rightarrow$ ∞ as $\lambda \rightarrow \infty$ such that $|u|_{0} \geq C_{\lambda}$. Similarly, we have

$$
\begin{equation*}
\frac{\phi\left(|u|_{0} \delta\right)}{g\left(|u|_{0} \delta\right)} \geq C_{3} \tag{2.4}
\end{equation*}
$$

and therefore $|u|_{0} \leq C$ for some $C>0$ independent of λ.
From Lemmas 2.2 and 2.3, we see that u is a positive solution of (1.2) iff u satisfies

$$
\left\{\begin{array}{l}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime}=-p(t)(\tilde{f}(t, u, \lambda)+g(u)), \quad a<t<b \tag{2.5}\\
u(a)=u(b)=0
\end{array}\right.
$$

where $\tilde{f}(t, u, \lambda)=\lambda f\left(\max \left(u, \tilde{C}_{\lambda} r(t)\right)\right)$ and $\tilde{C}_{\lambda}=K C_{\lambda}$. Without loss of generality, we assume that C_{λ} is nondecreasing with respect to λ. For each $v \in$ $C[a, b]$, we define $u=A(\lambda, v)$ to be the solution of

$$
\left\{\begin{array}{l}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime}=-p(t)(\tilde{f}(t, v, \lambda)+g(v)), \quad a<t<b \\
u(a)=u(b)=0
\end{array}\right.
$$

Then is can be verified that $A(\lambda,):. C[a, b] \rightarrow C[a, b]$ is completely continuous and fixed points of $A(\lambda,$.$) are solutions of (2.5)_{\lambda}$.

Now we show the existence of a solution to $(2.5)_{\lambda}$ of $\lambda>0$ small.
Lemma 2.4. There exists a positive number $\bar{\lambda}>0$ such that $(2.5)_{\lambda}$ has a solution for $\lambda<\bar{\lambda}$.

Proof. Let u satisfy $u=\theta A(\lambda, u)$ for some $\theta \in[0,1]$ and let $t_{0} \in(a, b)$ be such that $u^{\prime}\left(t_{0}\right)=0$. By integrating, we obtain

$$
\begin{aligned}
u(t) & =\theta \int_{a}^{t} \phi^{-1}\left\{\frac{\int_{s}^{t_{0}} p(\tau)(\tilde{f}(\tau, u, \lambda)+g(u)) d \tau}{p(s)}\right\} d s \\
& \leq \int_{a}^{t} \phi^{-1}\left\{\frac{\int_{s}^{b_{0}} p(\tau)(\tilde{f}(\tau, u, \lambda)+g(u)) d \tau}{p(s)}\right\} d s
\end{aligned}
$$

and so

$$
\begin{equation*}
|u|_{0} \leq(b-a) \phi^{-1}\left\{\lambda \bar{p} f\left(\max \left(|u|_{0}, \tilde{C}_{\lambda}\right)+\bar{p} g\left(|u|_{0}\right)\right\}\right. \tag{2.5}
\end{equation*}
$$

where $\bar{p}=\frac{p_{1}}{p_{0}}(b-a)$.

p_{0}
From (A.2) and the fact that $\lim _{x \rightarrow 0} \frac{\phi(x)}{g(x)}=\infty$, is follows that there exists

$$
\begin{equation*}
\phi\left(\frac{r}{b-a}\right)>2 \bar{p} g(r) . \tag{2.6}
\end{equation*}
$$

Now, let $\bar{\lambda} \in(0,1)$ be such that

$$
\begin{equation*}
\phi\left(\frac{r}{b-a}\right)>2 \bar{\lambda} \bar{p} f\left(\max \left(r, \tilde{C}_{1}\right)\right) \tag{2.7}
\end{equation*}
$$

Adding (2.6) and (2.7), we obtain

$$
\phi\left(\frac{r}{b-a}\right)>\bar{\lambda} \bar{p} f\left(\max \left(r, \tilde{C}_{1}\right)\right)+\bar{p} g(r)
$$

which implies that

$$
\begin{equation*}
r>(b-a) \phi^{-1}\left\{\lambda \bar{p} f\left(\max \left(r, \tilde{C}_{\lambda}\right)\right)+\bar{p} g(r)\right\} \tag{2.8}
\end{equation*}
$$

for $\lambda \in(0, \bar{\lambda})$.

Combining (2.5) and (2.8), we deduce that $|u|_{0} \neq r$ and the existence of a fixed point of $A(\lambda, \cdot)$ follows from the Leray-Schauder fixed point Theorem.

The following nonexistence result is an immediate consequence of Lemma 2.3.

Lemma 2.5. \quad There is no positive solution to $(2.5)_{\lambda}$ for $\lambda>0$ large enough.
Let us define $\Lambda=\left\{\lambda>0:(2.5)_{\lambda}\right.$ has a solution $\}$ and let $\lambda^{*}=\sup \Lambda . \quad$ By Lemmas 2.4 and $2.5,0<\lambda^{*}<\infty$. By standard limiting processes, it follows that $(2.5)_{\lambda^{*}}$ has a solution $u_{\lambda^{*}}$.

We are now ready to give the
Proof of theorem 2.1. Let $0<\lambda<\lambda^{*}$. Since $u_{\lambda^{*}}$ is a supersolution and 0 is a subsolution for $(2.5)_{\lambda}$, there exists a solution u_{λ} of $(2.5)_{\lambda}$ with $0 \leq u_{\lambda} \leq u_{\lambda^{*}}$. We next establish the existence of a second solution. Define

$$
\begin{gathered}
\Theta=\left\{u \in C^{1}[a, b]: 0<u<u_{\lambda^{*}} \text { on }(a, b), u^{\prime}(b)>u_{\lambda^{*}}^{\prime}(b)\right. \\
\left.u^{\prime}(a)<u_{\lambda^{*}}^{\prime}(a), u^{\prime}(a)>0, u^{\prime}(b)<0\right\}
\end{gathered}
$$

and

$$
\Delta=\left\{u \in C[a, b]: 0 \leq u \leq u_{\lambda^{*}}\right\}
$$

We claim that $A(\lambda,):. \Delta \rightarrow \Theta$. Indeed, let $u=A(\lambda, v)$ with $v \in \Delta$. Then

$$
\begin{align*}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime} & =-p(t)\left(\lambda f\left(\max \left(v, \tilde{C}_{\lambda} r(t)\right)+g(v)\right)\right. \tag{2.9}\\
& \geq-p(t)\left(\lambda f\left(\max \left(u_{\lambda^{*}}, \tilde{C}_{\lambda^{*}} r(t)\right)+g\left(u_{\lambda^{*}}\right)\right)\right. \\
& =-p(t)\left(\lambda f\left(u_{\lambda^{*}}\right)+g\left(u_{\lambda^{*}}\right)\right) \\
& =\left(p(t) \phi\left(u_{\lambda^{*}}^{\prime}\right)\right)^{\prime}+p(t)\left(\lambda^{*}-\lambda\right) f\left(u_{\lambda^{*}}\right)
\end{align*}
$$

Let $t_{0} \in(a, b)$ be such that $u^{\prime}\left(t_{0}\right)=u_{\lambda^{*}}^{\prime}\left(t_{0}\right)$. By (2.9),

$$
p(t)\left(\phi\left(u^{\prime}\right)-\phi\left(u_{\lambda^{*}}^{\prime}\right)\right)>0 \text { on }\left(t_{0}, b\right]
$$

which implies that $u<u_{\lambda^{*}}$ on $\left(t_{0}, b\right)$ and $u^{\prime}(b)>u_{\lambda^{*}}^{\prime}(b)$. Similarly, $u<u_{\lambda^{*}}$ on $\left(a, t_{0}\right]$ and $u^{\prime}(a)<u_{\lambda^{*}}^{\prime}(a)$. By Lemma $2.2, u^{\prime}(a)>0, u^{\prime}(b)<0$ and the claim is proved. Since Θ is open, convex and $u_{\lambda} \in \Theta$, we infer that

$$
\operatorname{deg}(I-A(\lambda, .), \Theta, 0)=1
$$

On the other hand, since solutions of $(2.5)_{\lambda}$ and bounded in the C^{1}-norm uniformly on bounded intervals,

$$
\operatorname{deg}(I-A(\lambda, .), B(0, R), 0)=\text { constant }
$$

when R is large enough. Here $B(0, R)$ denotes the open ball centered at 0 with radius R in $C^{1}[a, b]$. By Lemma 2.5, the constant is zero and therefore

$$
\operatorname{deg}(I-A(\lambda, .), B(0, R) \backslash \bar{\Theta}, 0)=-1
$$

Hence $A(\lambda,$.$) has a fixed point u \notin \bar{\Theta}$, completing the proof of Theorem 2.1.

Next, we consider the case when f is ϕ-superlinear at 0 and g is ϕ-sublinear at 0 and ∞.

Assume
(A. 3^{\prime}) f, g are increasing continuous functions on R^{+}such that

$$
\lim _{u \rightarrow 0} \frac{f(u)}{\phi(u)}=0, \quad \lim _{u \rightarrow 0} \frac{g(u)}{\phi(u)}=\infty
$$

and

$$
\lim _{u \rightarrow \infty} \frac{g(u)}{\phi(u)}=0
$$

Then we have
Theorem 2.6. Let (A.1), (A.2) and (A.3') hold. Then there exists a positive number λ^{*} such that (1.2) has at least two positive solutions for $\lambda<\lambda^{*}$, at least one for $\lambda=\lambda^{*}$, and none for $\lambda>\lambda^{*}$.

The proof of Theorem 2.6 follows the same lines as that of Theorem 2.1, with Lemma 2.3 replaced by

Lemma 2.7. There exist positive numbers C_{λ} and C, with $C_{\lambda} \rightarrow 0$ as $\lambda \rightarrow \infty$, such that any nontrivial solution of

$$
\left\{\begin{array}{l}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime}=-p(t)(\lambda f(u)+g(u)) \\
u(a)=u(b)=0
\end{array}\right.
$$

satisfies

$$
C \leq|u|_{0} \leq C_{\lambda}
$$

Finally, we consider the following system

$$
\begin{cases}\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime}=-p(t)(\lambda f(v)+g(v)), & a<t<b \tag{2.10}\\ \left(q(t) \psi\left(v^{\prime}\right)\right)^{\prime}=-q(t)(\lambda h(u)+k(u)), & a<t<b \\ u(a)=u(b)=0, \quad v(a)=v(b)=0\end{cases}
$$

It is assumed that
(A.4) $q:[a, b] \rightarrow(0, \infty)$ is continuous.
(A.5) ψ is an odd, increasing homeomorphism on R, and for each $c>0$, there exists a positive number B_{c} such that

$$
\psi(c x) \geq B_{c} \psi(x)
$$

for every $x>0$.
(A.6) h, k are increasing, continuous functions on R^{+}such that

$$
\lim _{u \rightarrow 0} \frac{h(u)}{\psi(u)}=\infty, \quad \lim _{u \rightarrow \infty} \frac{k(u)}{\psi(u)}=\infty
$$

and

$$
\lim _{u \rightarrow 0} \frac{k(u)}{\psi(u)}=0
$$

Theorem 2.8. Let (A.1)-(A.6) hold. Then there exists a positive number $\lambda^{*}>0$ such that (2.10) has at least two positive solutions for $\lambda<\lambda^{*}$, at least one for $\lambda=\lambda^{*}$, and none for $\lambda>\lambda^{*}$.

We first establish a result analogous to Lemma 2.3 for the system (2.10).
Lemma 2.9. There exist positive numbers C_{λ} and C, with $C_{\lambda} \rightarrow \infty$ as $\lambda \rightarrow \infty$, such that any nontrivial solutions (u, v) of

$$
\begin{cases}\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime} \leq-p(t)(\lambda f(v)+g(v)), & a<t<b \\ \left(q(t) \psi\left(v^{\prime}\right)\right)^{\prime} \leq-q(t)(\lambda h(u)+k(u)), & a<t<b \\ u(a)=u(b)=0, \quad v(a)=v(b)=0 & \end{cases}
$$

satisfies

$$
C_{\lambda} \leq|u|_{0},|u|_{0} \leq C
$$

Proof. Let $K_{1}>0$ be such that $u(t) \geq K_{1}|u|_{0} r(t), t \in[a, b]$, for every u satisfying $\left(q(t) \psi\left(u^{\prime}\right)\right)^{\prime} \leq 0, u(a)=u(b)=0$. As in the proof of Lemma 2.3, we have

$$
\phi\left(\gamma|u|_{0}\right) \geq \lambda C_{1} f\left(\delta|v|_{0}\right)+C_{1} g\left(\delta|v|_{0}\right)
$$

and

$$
\psi\left(\gamma|v|_{0}\right) \geq \lambda C_{4} h\left(\delta_{1}|u|_{0}\right)+C_{4} k\left(\delta_{1}|u|_{0}\right)
$$

where $\delta=K \min _{a_{1} \leq t \leq b_{1}} r(t), \delta_{1}=K_{1} \min _{a_{1} \leq t \leq b_{1}} r(t),\left[a_{1}, b_{1}\right] \subset(a, b)$, and $\gamma=$ $\max \left(\frac{1}{a_{1}-a}, \frac{1}{b-b_{1}}\right)$.

If $|u|_{0} \geq|v|_{0}$ then $\psi\left(\gamma|v|_{0}\right) \geq \lambda C_{4} h\left(\delta_{1}|v|_{0}\right)$, and hence

$$
\frac{\psi\left(\delta_{1}|v|_{0}\right)}{h\left(\delta_{1}|v|_{0}\right)} \geq \lambda C_{5}
$$

which implies $|v|_{0} \geq C_{1, \lambda}>0$. Similarly, if $|u|_{0} \leq|v|_{0}$ then $|u|_{0} \geq C_{2, \lambda}>0$. In either case, $|u|_{0},|v|_{0} \geq C_{\lambda}$ where $C_{\lambda} \rightarrow \infty$ as $\lambda \rightarrow \infty$. The uniform bounds for u, v can be derived in a similar manner.

For $(\tilde{u}, \tilde{v}) \in C[a, b] \times C[a, b]$, Let $(u, v)=B(\lambda, \tilde{u}, \tilde{v})$ be the solution of

$$
\begin{cases}\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime}=-p(t)(f(t, \tilde{v}, \lambda)+g(\tilde{v})), & a<t<b \tag{2.11}\\ \left(q(t) \psi\left(v^{\prime}\right)\right)^{\prime}=-q(t)(h(t, \tilde{u}, \lambda)+k(\tilde{u})), & a<t<b \\ u(a)=u(b)=0, v(a)=v(b)=0, & \end{cases}
$$

where $\quad f(t, \tilde{v}, \lambda)=\lambda f\left(\max \left(\tilde{v}, \tilde{C}_{\lambda} r(t)\right), \quad h(t, \tilde{u}, \lambda)=\lambda h\left(\max \left(\tilde{u}, \tilde{C}_{\lambda} r(t)\right), \quad \tilde{C}_{\lambda}=\right.\right.$ $\min \left(K, K_{1}\right) C_{\lambda}$ and C_{λ} is given by Lemma 2.9. Then (u, v) is a solution of $(2.11)_{\lambda}$ iff (u, v) is a positive solution of (2.10).

The next Lemma gives existence of solutions to $(2.11)_{\lambda}$ for $\lambda>0$ small.
Lemma 2.10. There exists $\tilde{\lambda}>0$ such that $(2.11)_{\lambda}$ has a solution for $\lambda<\tilde{\lambda}$.
Proof of Lemma 2.10. Let (u, v) be a solution of $(u, v)=\theta B(\lambda, u, v)$ for some $\theta \in(0,1)$. Suppose that $0<q_{0} \leq q(t) \leq q_{1}$ for every $t \in[a, b]$. Then we have

$$
|u|_{0} \leq(b-a) \phi^{-1}\left\{\lambda \bar{p} f\left(\max \left(|v|_{0}, \tilde{C}_{\lambda}\right)\right)+\bar{p} g\left(|v|_{0}\right)\right\}
$$

and

$$
|v|_{0} \leq(b-a) \psi^{-1}\left\{\lambda \bar{q} h\left(\max \left(|u|_{0}, \tilde{C}_{\lambda}\right)\right)+\bar{q} k\left(|u|_{0}\right)\right\}
$$

where $\bar{p}=\frac{p_{1}(b-a)}{p_{0}}, \bar{q}=\frac{q_{1}(b-a)}{q_{0}}$.
Let $|(u, v)|_{0}=\max \left(|u|_{0},|v|_{0}\right)$. If $|u|_{0} \geq|v|_{0}$ then

$$
\phi\left(\frac{|u|_{0}}{b-a}\right) \leq \lambda \bar{p} f\left(\max \left(|u|_{0}, \tilde{C}_{\lambda}\right)\right)+\bar{p} g\left(|u|_{0}\right)
$$

while if $|u|_{0} \leq|v|_{0}$, we have

$$
\psi\left(\frac{|v|_{0}}{b-a}\right) \leq \lambda \bar{q} h\left(\max \left(|v|_{0}, \tilde{C}_{\lambda}\right)\right)+\bar{q} k\left(|v|_{0}\right)
$$

Choose $r>0$ so that

$$
\phi\left(\frac{r}{b-a}\right)>2 \bar{p} g(r), \quad \psi\left(\frac{r}{b-a}\right)>2 \bar{q} k(r)
$$

and let $\tilde{\lambda} \in(0,1)$ be such that

$$
\phi\left(\frac{r}{b-a}\right)>2 \tilde{\lambda} \bar{p} f\left(\max \left(r, \tilde{C}_{1}\right)\right), \quad \psi\left(\frac{r}{b-a}\right)>2 \tilde{\lambda} \bar{q} h\left(\max \left(r, \tilde{C}_{1}\right)\right) .
$$

Then it is easy to see that $|(u, v)|_{0} \neq r$ for $\lambda<\tilde{\lambda}$, and the Lemma follows from the Leray-Schauder fixed point Theorem.

Proof of Theorem 2.8. We shall only give a sketch of proof since the details are similar to that of Theorem 2.1. Define $\Lambda=\{\lambda>0$: $(2.11)_{\lambda}$ has a solution $\}$ and let $\lambda^{*}=\sup \Lambda$. By Lemmas 2.9 and $2.10,0<$ $\lambda^{*}<\infty$. By standard limiting processes $(2.11)_{\lambda^{*}}$ has a solution $\left(u_{\lambda^{*}}, v_{\lambda^{*}}\right)$. Let $\lambda \in\left(0, \lambda^{*}\right)$, then there exists a solution $\left(u_{\lambda}, v_{\lambda}\right)$ of $(2.11)_{\lambda}$ with $0 \leq u_{\lambda} \leq u_{\lambda^{*}}$ and $0 \leq v_{\lambda} \leq v_{\lambda^{*}}$.

Let

$$
\begin{aligned}
\Theta=\{ & (u, v) \in C^{1}[a, b] \times C^{1}[a, b]: 0<u<u_{\lambda^{*}}, 0<v<v_{\lambda^{*}}, \\
& \left.\frac{\partial u}{\partial n}>0, \frac{\partial\left(u_{\lambda^{*}}-u\right)}{\partial n}>0, \frac{\partial v}{\partial n}>0, \frac{\partial\left(v_{\lambda^{*}}-v\right)}{\partial n}>0 \text { at } a, b\right\},
\end{aligned}
$$

where n denotes the unit outer normal of (a, b). Then Θ is open, convex in $C^{1}[a, b] \times C^{1}[a, b]$ and $\left(u_{\lambda}, v_{\lambda}\right) \in \Theta$. As in the proof of Theorem 2.1, we obtain

$$
\operatorname{deg}(I-B(\lambda, .), B(0, R) \backslash \bar{\Theta}, 0)=-1
$$

for large R, where $B(0, R)$ denotes the open ball centered at 0 with radius R in $C^{1}[a, b] \times C^{1}[a, b]$, and the existence of a second solution follows.

References

[1] A. Ambrozetti, H. Brezis, and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
[2] A. Ambrozetti, J. Garcia Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal 137 (1996), 219-242.
[3] T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. A. M. S. 123 (1995), 3555-3561.
[4] L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 (1995), 1639-1648.
[5] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[6] H. Dang, R. Manasevich and K. Schmitt, Positive radial solutions for some nonlinear partial differential equations, Math. Nachr. 186 (1997), 101-113.
[7] J. Garcia Azorero and I. Peral Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math, J. 43 (1994), 941-957.

Department of Mathematics
Mississippi State University
Mississippi State, MS 39762 U.S.A.
E-mail address: dang@math.msstate.edu

[^0]: 1991 Mathematics Subject Classification. 34B15, 35J60.
 Key words and phrases. P-Laplacian, positive radial solutions, boundary value problem.

