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ABsTrRACT. We determine the group strucures of the 2-primary components of the
homotopy groups of the rotation group 7x(R,) for k = 17 and 18 by use of the fibration
Ru11/R, = S".

Introduction

We denote by R, the n-th rotation group. We know the homotopy
groups nx(R,) for k < 15 by [7]. According to [9] and [8], the group structures
of mx(R,) for k <22 and n <9 are known. For k =15 and 16, we know the
2-primary components of 7mx(R,) ([5]). We denote by nx(X :2) a suitablly
chosen subgroup of the homotopy group 7x(X) which consists of the 2-primary
component and a free part such that the index [mx(X) : m(X : 2)] is odd. The
purpose of the present note is to determine 7 (R, :2) for k=17 and 18.

Our method is the composition methods developed by Toda [17]. We
freely use generators and relations in the homotopy groups of spheres 7,4 (S")
for k < 18. In determining m;3(R, : 2), the precise informations of the gen-
erators of m,,15(S") for 10 < n < 12 ([14]) are essentially used. Our main tool
is to use the following exact sequence induced from the fibration R,.;/R, = S™:

(), Tt (™) D m(Ra) S m(Ruar) 2 7 (S™) S et (Ra),

where i: R, — Ry, is the inclusion, p: R,,; — S" is the projection and 4 is
the connecting map.
The metastable range is obtained from the splitting ([2]):

Tk (Ry) = ke (Roo) @ Ttk 1 (Van,n) fork<2n—1 and n>13,

where V,,, = Ru/Rnu—r for m >r is the Stiefel manifold.
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By use of this splitting and [13], we have nx(R, : 2) for k = 17 and 18 with
n > 13. So our main task is to determine the unstably metastable range, that
is to say, to determine mx(R,) for k=17 and 18 in the case 10 <n < 12.
Especially determinations of A(m3(S°)) and Ker{4 : m3(S'°) — 717(Ry0)}
play an essential role to get our result.

We use the notations and results of [5] and [17] freely. For an element
o € m(S"), we denote by [o] € mx(R,+1) an element satisfying p,[«] = «. Though
[¢] is only determined modulo Imi, = i,(m(R,)), we will sometimes give
restrictions on [o] to fix it more concretely. We set (o], = i.[o] € T (Rp),
where i: R, 1 — R, for n+1 <m is the inclusion. We state our result.

THEOREM 1. (i) m17(Rs : 2) = Zo{[n,)esvi, };
m7(Ra : 2) = Zo{[myl4e3vii } @ Zo{[13]esviy };
m7(Rs : 2) = Zg{[vilo10};
m17(Re : 2) = Zg{[v]so10} ® Zo{[vs|pg} ® Zo{[vs]vi} @ Za{[vs)ngeo}.
:2)
:2)

Il

(i) m7(Ry Zs{[V6+es]v1a} @ Zg{[vi];010} @ Zo{[vs|ots} ® Zo{[nelmrnss}s
m17(Rs : 2) = Zs{[Vs + eslgvia} @ Zs{[v3]go10} ® Za{[vs]gus}
D Zo{[nlgnsnts} ® Zs{[17]v1010} © Zo{[17]n7148};

m7(Ry : 2) = Zs{[11]gv1010} © Zo{[vsloug} @ Zo{[17)om714s}-
(it) m7(Rio 2 2) = Za{[17]19v7010} @ Zo{[17] 10117148 };

m7(Rur 1 2) = Zo{[t7])y1v7010} @ Zo{[17] 11117148}

m17(Ry : 2) = Zo{[17),mus} for n=12,13 and 14.
(iv) m7(Rys:2) = Z2{[l7]15’77ﬂ8} @ Z2{[’7124]’716}§

m7(Ris : 2) = Zo{ (1] 611708} © Zz{[’7124]16’716} ® Zo{[mislme}s

m7(Ri7 : 2) = Zo{[17)1777048 } ® Zo{[m15) 19716}

m7(Ris : 2) = Zo{[17) 151708} ® Z{[2117]};

117(Ra : 2) = Zo{[17) s} for n > 19.

THEOREM 2. (i) m13(R3 : 2) = Zr{[m,)&3};
mig(Ry : 2) = Zo{[n:)483} @ Zo{[13)53};
mig(Rs : 2) = Zg{[val7]} @ Zo{[13]583};
mg(Re : 2) = Zg{[valr)g} ® Za{[vs]osvis} @ Zo{[vs|ngpto}-

(
(
(ii) ms(R7:2) = Zis{[2[16,16]]lo11} ® Zs{[val7];} @ Zo{[vs],08Vi5};
m18(Rg : 2) = Z16{[2[16,16)]g011} ® Zs{[val7lg} @ Zo{[vs5]go8V15}
@ Zs{[11)¢7} @ Zo{[17]V7v15};
m18(Ry : 2) = Z16{[2[t6, 16)]9011 } @ Zs{[17]9L7} ® Za{[17]gV7v15}.

(i) mg(Rio : 2) = Zs{[[t9, 10]m17]} ® Zs{[n9210]};
mig(Ru1 : 2) = Zg{[e10]};
mig(Ri2 : 2) = Zig{[2011]} @ Zs{[e10]}, — 2[2011]}.
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(iv) ms(Ris:2) = Zg{[v}]};
ms(Ry : 2) = Zs{[v]),} for n=14 and 15;
mig(Ris : 2) = Zs{[v]) 16} @ Zs{[vis]};
ms(Ri7 : 2) = Zg{[vis]}1 };
ms(Ris : 2) = Za{[v1s] 15}
ms(Rio : 2) = Zo{[vis] o}
mg(Rn : 2) =0 for n=> 20.

1. Some relations among elements of #;(R,)

First of all, since R, is a Hopf space, we have the following formula;
(x+p)oy=aoy+pfoy
for «,f € nx(R,) and y € 1, (S%).
We recall a formula
Ad(ao XZP) =Ad(x)o p
for a € 11 (R,) and B e m(S/).

Let J : mx(Ruy1) — Mipns1(S™H1) be the J homomorphism ([18]). We have
a formula

J(aof)=J(@)oZ"p

for a € mj(Ry11) and B e m(SY).
Concerning the exact sequence (k),, the following formulae hold:

J(iB) = Z(J(B));
H(J[o]) = 2" q;
J(da) = [, 1),

where H : my i1 (S™) — M3 in1(S?**1) is the Hopf homomorphism and [ , 1,
is the Whitehead product with the identity class 1, of S".

Hereafter we only deal with the homotopy group =z (X :2) and it is
denoted by mi(X) for simplicity.

We recall the following elements given in [5); [#,] € n3(R3), [13] € n3(Ra),
[vs] € m3(Re), [n6] € 77(R7), [17] € m7(Rs), [vi] € mi0(Rs), [nses) € mia(Rg) and
[‘_’6 + 86] € 7[]4(R7).

The elements [;3] and [i7] are represented by the multiplications of the
quaternions and Cayley numbers, respectively. The relations of 414 and 413 in
(i) of the following lemma determine [n,] and [r], respectively. [vs] and [v3]
are unique. [#seg) and [Vg + & are fixed in (ii) of the lemma. The following
result is an improvement of that of [5].
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Lemma 1.1, (i) dig = 2[13] — (3]s, Ava = ([13] + alny)4)v’' for 0 <a <3,
Avs =0, Ang =0, Advg = 2["5]; dig = 2[17] - [”6]8’
Mg = [vslg + [17]o117 and Any = [17];,v7.

(i) J[i7] = o3, J[ng) = o', Jvs] = Ve + &6, J[v3] = vsas,
Jnses] = —a"a13 + Vev¥, and J[Vé + &) = a'01a.

(iil)  4([16,36]) = [vs]ng + 4[vile-
(iv) [n]vs = b[v3), for an odd integer b.
(V) [nlo’ = 4[vs + &6] + [vs];v3 + [n5es);-

Proor. (i) is obtained from Table 3 of [5].
J(17]) = o3 is the Hopf class. So, we have

22Jne) = Z(Jnelg) = 22J[17] — J (ind1g) = 209 = %0,

It follows J[ne] = o' since X2 : m14(S7) — m16(S°) is monic.

From the relations H(J[vs]) = vi1, H(Vs) =vi1 and H(e) =0, we have
J[vs] = V6 or ¥s +&6. Since the stable J-image of the 8-stem group is generated
by ¥+ ¢, we have J[vs] = Vs + &.

Since H : m15(S®) — m15(S°) has the kernel {5su¢} and since in the stable
10-stem group the J-image is trivial and nu # 0, the third relation is obtained
from the fact H(vsas) = Z(v4 A vs) = V3.

By [17], we have

H(J[nsee)) = ne12 = njyo13 + viy = H(a")ors + H(Vs)vi, = H(0" 013 + Veviy).-

So, J[nses] = 6”013 + Vevl, mod Im X = {26"513}. By Table 2 of [5], 2[nsce] €
i.m4(Rs). Then the fifth relation follows by choosing a representative of [1s¢).
Similarly the last relation is obtained from the relations

H(J[V6 + &) = V13 + €13 = 113014 = H(0'014)

and that Im X = {26704, ¥7v&} = J(Imi,), completing the proof of (ii).

In the exact sequence (10),, we know that mo(Re) = Zg{[vi]s} ®
Z,{[vs]n?} and mo(R7) = Zg{[v}],} by Table 2 of [5]. So we have A, 16] =
[vs]n2 + 4x[v}]s, where x =0 or 1. By [12], we have JA([16,1]) = [16, [t6, 16]] =
0. By Lemma 6.3, (7.10) and Theorem 7.3 of [17] and by (ii), we have

J([vslng) = (V6 + &) 0 iy = nges = 4vgog # 0

and J[v}]¢ = v¢g9. So we have x =1. This leads us to (iii).
Applying the J-homorphism J : m19(R7) — m17(S7), (iv) is obtained from
the relation ¢'vi4 = xv7010 for an odd integer x by (7.19) of [17].
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Since p,([nglo’ — 4[ve + €6]) = ngo' —4¥6 =0 (p. 64 of [17]), we have
s’ — 4[V6 + &) € ixmia(Rs) = Zs{[n56l,} ® Zo{[vs]yvi }
by Table 2 of [5]. So we have
[nela’ = 4[¥ + e6) + x[vs];v2 + ylnses),  for integers x and y.

We know ([17]) that esv;3 =0, 27 =9;vi; mod4o'ols and my(S7) =
Zg{c'014} ® Z4{rc7}. So, by (ii) and (iv), we have

20’014 = 40’014 + xV7v125 + 2y0’0’14 + y177v125.

Therefore y =1mod 4 and x is odd. By a choice of [#s&6]; modulo 4, we
can put y =1 and x =1 with J[ys&] in (ii) unchanged. This completes the
proof. [

LEMMA 1.2. (i) 4(Z0’) = 2[i7)0" + 4[V6 + &6]g + [vs]gva — [Ms¢6)s-
(i) dog = [17]0” + c[Ve + &6]g mod {[vs|gv3, [n5s]s} for an odd integer c.
(iii)  [msee)ma = 4[vslos + [vao'mals and [nses]oma = [vao'na);-
(iv)  [V6 + &6]m1a = [16](V7 + £7) mod {[vs];05, [vao'n14];}-
(v)  dog = [vsleos + [17]g¥7 + [17]087 + [17]90M14-
Proor. By Lemma 1.1,
A(Za’) = (2[r1] — [n6ls) 0 0" = 2[1]o” — 4[Fs + es]s — [vs)sv — [mseels-

This leads us to (i).
By Sugawara’s theorem ([16]), we have p,dos = ', and so

405 — [7]0" € i.ma(Ry) = Zs{[nsesls} ® Zs{[Vs + e6ls} ® Zo{[vs]svs }
by Table 2 of [5]. We have
Adog = [17)0” + x[Vs + €6]g + y[VS]gvé + z[ns5€6)g for integers x, y and z.
By [1] and [12], we have
JA(os) = |os, 18] = [15,18] © 015 = (205 — X6') 0 715

in 7 (S?) = Zie{0}} ® Zs{Z0' 0 015} ® Zs{rs}, where 2x5 = Vgv} mod 4Xc’0
o1s ([17]). Hence, by Lemma 1.1.(ii) and the fact egvlz6 =0, we have

(2053 — Za') o g15 = JA(0s) = 20% +xXa' oa15 — 2220 oays + (y + z)ﬁgvlz6.

So x is odd. This leads us to (ii).
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Since #2e; = 4vsos, we have
[n5e6lms — 4[vs]os € ixmis(Rs) = Zo{[vao'n14]6}
by Table 2 of [5]. So, by Proposition 2.1 of [5], we have

[nses|nig = 4[vslas + x[vac'n)s  and

[ns¢6]:114 = x[vac'n14), for x=0or I.
By Proposition 2.1 of [5], the exact sequence (15)g is the form:
ms(S%) = (Z,)* — (Z,) - 2@ (Z,)*.

This implies that 4 : 714(S%) — 7m15(Rg) is monic. By Lemma 1.2.(i), we have
A(Za'nys) = A(Za’)n14 = [se6lshi4 for one of the generators Zo'n,s of mi6(S?).
Then [nses)gn14 # 0, and hence we have x = 1. This leads us to (iii).

Since  p,([Vs + €6]mia — [M6](V7 + €7)) = Vern14 + €614 — M6V7 — 1687 = 0, we
have

[Vs + e6lim14 — (6] (V7 + &7) € ixm15(Rs) = {[va0'n14]7, [vs]708}

by Proposition 2.1 of [5]. This leads us to (iv).
By (7.4) of [17] and Lemma 1.1.(i), we have

Aoy = [vsloos + [17]g11708 = [vs]eas + [17]o¥7 + [t1]g€7 + [17]90 Mg
This completes the proof. [

Finally we show

LEMMA 1.3, [nsé6]ott1a = [vaa't14]g = 0, [16lo¥7 = 0, [16]ge7 = 0, [n6Jot7 = 0,
v3lovio = 0 and [17)90'n14 = [V6 + £6lgM1a-

Proor. By the proof of Lemma 1.2.(iii), we have the first relations.

By Lemma 1.1.(i), we have AVg = (14|77, des = [n6)ge7 and Adug = [nlgitr-
So we have the second, third and fourth relations.

By Lemma 1.1.(1) and (iv), 4v3 = [ne]gv3 = [v3]gv%. So we have the fifth
relation.

By Lemma 1.2.(ii),

A(osnys) = (dog)nyy = [17]0" M4 + [V6 + &s]gt1a + d[n15E6]gM14 ford=0orl.

So we have the last relation by the first. This completes the proof. [J
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2. Determination of m17(R,:2)

Since 7[17(R3) = 7Z17(S3), 7Z17(R4) = 7'E]7(R3) @7[]7(S3) and 7Z|7(S3) =
Z,{e3v}}, we have the first two of Theorem 1.(i).

For n > 4, we will determine the group 7;7(R,+1) by applying the exact
sequence

(17),  ms(S") S ma(Ry) 2 m7(Rus1) S Ker 4 — 0,

where Im p, = Ker4 for 4: m17(S") — m6(R,) and the results on this Ker 4
will be referred to Proposition 4.1 of [5].

In the exact sequence (17),, Kerd = Zg{viayo} for 4 : m7(S*) — m16(R4)
and m3(S*) = Zs{val7} ® Zr{vaV7vis} ® Zr{esv’,}. By Lemma 1.1.(i), we
have

A(val7) = A(va)ls = ([13] + aln,]4)v'ls = O,

because v'{s € v'{vs, 819,209} = —{v', s, 819} 0 2019 C 2m10(S>) 0 719 = 0.
We also have
A(vavrnis) = ([13] + alma]g)v'Vevia = ([13] + alnyly)esvi
and
A(£4V122) = (23] - [’72]4)33"%1 = [’72]483"121’

because v've = e3vi; by (7.12) of [17]. So we have m17(Rs) = Zg{[v3]o10}-

In the exact sequence (17)s, m5(S°) = Zo{vsasvis} @ Zo{vsngue} and so
we have A(mi3(S°%)) = 0 since 4vs =0 by Lemma 1.1.(i). Also we have that
Ker4 has a Zp-basis {vsa = p,[vsla} for o =3, ug and nges. Then the se-
quence (17)s splits, and m;7(Rg) is determined.

In the exact sequence (17)s, m15(S®) = Zis{[t,26)o11} and Kerd =
Zz{}]é,us} &) Z4{(V6 +86)V14} for 4: 7Z17(S6) — 77-'16(R6)- A(mg(SG)) is gen-
erated by A([is,16)011) = 4([16,26]) © 10. By Lemma 1.1.(iii),

A([16,16)) © T10 = [vs|ngaro + 4[v3]ea10 = [vs]vs + [vs|mgeo + 4[vi]¢a10,

because n§010=v§’+n889 by (7.3) and (7.4) of [17]. Therefore we have
Kerd = Zg{2[l6,16]011},

ixm17(Re) = Zg{[vil;010]} ® Zo{[vs]ys} ® Zo{[vs]yv5}
and the following exact sequence (17):

0 — im7(Re) — m7(R7) — Za{p,[V6 + &s]v1a} @ Zo{p.[nelnius} — 0.

In order to determine this extension, we recall the following result on the
fibering G,/SU(3) = §® from p. 166 of [8].
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LeMMa 2.1 (Mimura [8]). 4{Vevia) = i[V2|'v¥ in m7(Gy:2) = Zg
{(Teviad} ® Zr{<n2>ug}. Here {(a) for aem(S®) is an element satisfying
pilay = a for the projection p': G, — S® and [B)’ for B € mk(S?) is an element
satisfying p![B)’ = B for the projection p" :SU(3) — S°.

Now we show
LEMMA 2.2. (i) vsog;s = Vsées.

(i)  [vslosnys = [vs|es mod {[vac'ny4lens, [V‘%]s"%o} and
[V5]0377125 = [vs]nzes mod [V4‘7l’714]6’7125'

(ili) 4[Ve + &6]via = [vs];vs mod 4[v2],010 and [Vs + es|via is of order 8.

ProorF. We know the relation of (i) (p. 152 of [17]). Here we show
a proof given by Oda. We know vsag € {vs,2vg, v1 }; mod 2(vsog) and e&s €
{2vs,vg,m;,} mod 0. So we have vsogns € {vs,2vs,vi1}; o115 = vsZ{2v7, 10,
M13} 3 vseg mod vsXa'n s = 2(vsag)ns = 0. This leads us to (i).

We have [vs]agrys — [vsles € imis(Rs) = {[va0'nialgms, [Vilsvio} by Propo-
sition 4.1 of [5]. So we have (ii).

The double covering induces isomorphisms of 7 (Spin(n+ 1)) onto
nix(Ry+1) compatible with the projection homomorphisms to 7x(S"). So we
use the same notation [o] € 7 (Spin(n + 1)) as in 7 (Ry+1). Since gvis = 0 by
(7.13) of [17], we have p*([Vs +£6]v14) = VgV14 = pi<V6V14>. Let i': Gy —
Spin(7) and " : SU(3) — Spin(7) be the inclusions. Then, by the naturality,
we have i/ (Vgv14) = [V + &6]v1a mod i,m17(Re) and i”([v3]'v}) = [v3]v} = [vs]vi
mod i; (i*ﬂll(R5)) (o) Vlzl =O, because 7'[11(R5) ZZz{[l3]583} and [13]583V11 € 7[14(R5)
= Z16{[2v40"]} by Table 2 of [5]. Then Lemma 2.1 implies that 4[Vs + &6]vi4 =
[vs];vs mod 4i,m17(Rg) = {4[v}];010}. From the exact sequence (17)s, we have
the second half of (iii) and completes the proof. []

By the exact sequence (17); and Lemma 2.2, we have the group m7(R7).

Since 7x(Rg) = nx(R7) ® ni(S7), we have the group m17(Rs).

We consider the exact sequence (17);. First consider the image of 4
for generators of m;7(S®). By Lemma 1.2, we have A(Za'n?) = [nseslgnty =
(vao'N14lgt1s- By Lemma 1.1.(i) and (iv), we have

A("g) =g o V%: [’76]8"73 = [Vﬂsvﬁh A(ngey) = [melgnses and  Apg = [n6spr-
By Lemmas 1.2 and 1.1.(iv), we have
A(asnis) = A(os)niy = [17]0'n3y + [n6ls (V7 + €7)mys

= [‘7]‘7I’7124 + [nelgnres + [VZ]SV%O mod {[vs]gast;s, [vao'n14lgMa}-
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We see in Proposition 4.1 of [5], that these A-images are independent in
m6(Rg). Thus Kerd =0, and i, : m17(Rg) — m17(R9) is an epimorphism.

Next we consider Keri, = 4(m3(S?)), where m13(S?) = Zg{osvis} ®
Zg{vso11} ® Zr{ngue}. By Lemma 1.2.(ii), we have

A(osvis) = [17]0"'via + c[V6 + 6]gvia + J’[Vs]gvg + z[ns€6gVi4
= x[17]v1010 + c[Ts + slgvia + Y[vslgvs + 2’ [vE1g010,

because ¢'vi4 = xv7010 for an odd integer x by (7.19) of [17] and [7see)via €
ivm17(Rs) = Zg{[vlea0}-
By Lemma 1.1.(i) and (iv), we have

A(vsan1) = (2] = [n6lg)v1910 = 2[17]v1010 — [V3)s010
and A(ngug) = [nglgnsug. This determines the group 717(Ry). Next we show
LemMma 2.3. (l) [V‘ﬂga]o = 2[17]9V7O'10 and 4[V6 + 86]9v14 = 4[17]9V70'10.

(ii)  [Vs + e6ltmia = [16](V7 + &7) + [vs];08 mod [vaa'nial;,  [V6 + &slohia = [vs]oos
and [V5]90'8}7%5 = 4[17]91170'10.

(ii) [’7]9GIW|24 = [V + 86]9’7%4 = [vs]gosms.
(iv)  [vsloosms = [vsloes and [vslonses = [vslgvg = 4[t7lgvroio.
(v)  [6 + &slgvia = d17lgv7010 for an odd integer d.

ProOF. Since A(vsa11) = 2[17]vr010 — [v2]go10, we have the first half of
(i). So we have 4[vZ]yo10=0. Therefore, by the above calculation of
A(osvys), we have the second half of (i).

By Lemma 1.2.(iv), we can set [V + &)n4 = [16](V7 + €7) + X[vs];08 +
yvao'n); for x,y=0,1. By Lemma 1.3, we have [Vs+&ot1q =
[16]o(V7 + &7) + x[vs]qo8. So we have

4[Vs + e6lovia = [V6 + 6lonis = [nslo (V1 + &1)nfs + x[vs]oosnis.

Since [y (V7 + e7)nfs = [nglo(vy + 4vsa10) = [viloviy +4[vilyo10 = 0 by (i) and
Lemma 1.3, we have 4[Vs + &)gvia = x[vs]gosn%. By (i), we have x[vs]oasn?s =
4[17]gv7010. By the group structure of 717(Ry), we have 4[17]4v7010 # 0. Hence
we have x = 1 and this implies the first and third assertions of (ii). The second
relation follows from the first and Lemma 1.3. This leads us to (ii).

By the last relation of Lemma 1.3, we have the first equality of (iii). The
second relation of (ii) implies the second equality of (iii).

The first relation of (iv) follows from Lemmas 1.3 and 2.2.(ii). Then, by
(i1), we have
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[vslonses = [vsloasnis = 4[t7]gv7010.

By (i) and Lemma 2.2.(iii), [V5]9v§ = 4[17]yv7010. This leads us to (iv).

We recall 4(osvis) = x[17]v7010 + c[Ve + &gvia + y[vs|gvs + z'[v3]go10, Where
x, ¢ are odd integers and y, z’' are integers. So, by (i) and (iv), we have the
assertion of (v). This completes the proof. [

We consider the exact sequence (17),. By Lemmas 1.1.(v) and 2.3.(iii), we
have

A(o9n16) = 409 0 1y5= [Vs|oashys+ (170" N4+ [17]0v3 + [17]971788 = [17]gv3 + [17]g78.
We also have
A%y = [vsloTs + [17]gv;  and Ay = [vs]ges + [17]gnrs.

So, by Proposition 4.1 of [5], 4 is a monomorphism and i, is an epimorphism.
By Lemma 2.3.(iv), we have

A(aynis) = A(o9me)ms = llonies = 4[rlgviano = [vslevs,
4(v3) = A(V9)m = [vslgvg

and
A(n9e10) = 4(89)116 = [vslohges + 4[17]gv7010 = 0.

By Lemma 1.1.(i), dpg = [vs]ous + [17]gn715.  Since [19, 19]1717 = aon?s + v3+n9ti0,
we have

Ker 4 = Zy{n9€10} ® Z2{[19, 19]117}

for 4 :mg(S°) — m7(Ry) and we obtain the group 7m;7(Rjo).

Next we consider the exact sequence (17),,. By (4.7) of [5], we know
doyg = [209]. So i, is an epimorphism. In the exact sequence (10),,,
7t10(R10) = Za{[17];9v7} and mio(R11) = Zy{[17];,v7} by Table 2 of [5]. So we
have 4n,y = 2[17],yv7. By this result, we have A4(#,y011) = 2[17],4v7010. Since
J([t7)748) = Ontlpiqlinsg #0 for n>8, we have 49 or 4dego=0. This
determines the group m;7(Rp;).

In the exact sequence (17),,, 4(o11) = [17];;v7010 by Lemma 1.1.(i). By
Proposition 4.1 of [5], 4:m7(S"') — mg(R11) is a monomorphism. This
determines the group mi7(Ri12) = Zo{[t7],m718}. Since [17],m7u5 survives
stably, we have 4(m;3(S'?)) =0 and we obtain the groups 7y7(R,) for n =13
and 14.

In the exact sequence (17)4:

. * p
0 — m17(Ruia) = m7(Rys) Ea m17(S™) S mis(Rua),
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we have Aviy = [2v13] by (4.11) of [5]. So, by Proposition 4.1 of [5], we have
Ker4 = Zz{nf’4}. Therefore we settle the group m17(R;s).

By Table 2 of [5], we have 415 = [Vs + ¢6);5. We know the element [r,5] €
ni6(R16) of order 2 by Proposition 4.1 of [5]. In the exact sequence (17)s,
there exists an element [7,5],6 € 717(Ryi6). Since [17];,V7010 = 0, we have

Avis = [V + &6 15v14 = [17]3577010 = 0

by Lemma 2.3.(v). This determines the group 7;7(Rj¢).

By the results of mi6(Ry,), m17(Rn) = Zo{[17],n7u3} for n > 19 and by the
exact sequences (17), for n=16,17 and 18, we have the rest of Theorem
1. This completes the proof of Theorem 1.

In the above arguments determining 7;7(R,) for n = 11 and 12, we have
the following result.

LEMMA 2.4. A4y, = 2[17]10\17 and [Vé + 86]121114 = [17]]2\J70'|0 =0.

3. Determination of m5(R, :2)

First we recall the following result obtained from (10.7), Lemma 12.12
of [17] and Propositions 2.13.(7), 2.17.(7) and (11) of [15].

LemmA 3.1. (i) vep’ = 0 mod 2{sa7.
(i) "{13 = + 2017 and 6’14 = x{7018 for an odd integer x.
(i)  p3€12 = M3u4013 mod 28’

Since m13(S3) = Z,{&}, we have the groups m3(R,) for n =3 and 4.

In the exact sequence (18),, we recall Ker 4 = Zg{vs{7} for 4 : mi(S*) —
m7(Rs). We know m9(S*) = Z,{&} and we have 424 = A(14)& = [1,],& by
Lemma 1.1.(i). Since v4l7 € va{v7,8110,2010} € {v3,8110,2010}, we can take
[val;] as an element of {[v3],8110,2010}. We have 8[vql;] € 8{[v],8110,2010} =
—[V‘%] {8110,20'10,8117} 50 mod 0. This shows that 71?18(R5) = Zg{[V4C7]} @
Z,{[13)se3}. We show

LemMMA 3.2, J[v4{7) = {5016 mod vsés and J[vs(7]g = (6017.

ProoF. We know that H({s) = 8a9 by Lemma 6.7 of [17] and that
HJI[vs{7) = vola = 802 by (10.7) of [17]. So we have J[vl7] — {5016 €
Zn(S*) = {vsés,nsilg}. Since (o =0 in the stable 18-stem and xf is not
in the stable J-image, we have the first half. We know ve&y =0 (p. 148 of
[17]). This leads us to the second half and completes the proof. []

We show
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LemMa 3.3, (i) 2[vs]vs = [13]¢e3 and [13];e3 = 0.
(11) J[Z[lg, 15]] = 67.

Proor. By the exact sequence (11), for n = 5,6 and Table 2 of [5], we
have (i).

Since 711(R7) = Z{[2[t6, 16]]} ® Zof{[vs];vs}, ms(S7) = Zs{(7} ® Za{v7vis},
J([vs]vs) = (V6 + €6)via = Vev14 and Vjovis = 0, we have (ii) by the choice of a
representative [2[15,16]]. This completes the proof. [J

Next we show

Lemma 3.4. (i) [13),8 =0.

(ii) 2["6]08"15 = [13]653.
(i)  [valy]; = [n6](7 mod 8[2[ts, 16]]o11-

Proor. We know that & e {e3,2u1,v}} e m7(S?) (p. 97 of [17]) and
m2(R7) =0 (Table 2 of [5]). So we have [1],& € [13);{e3,2u1,v}} =
—{[13]7, 3,211} 0 v}, C m12(R7) o v3, = 0. This leads us to (i).

We know m15(S°) = Zy{vsagvis} @ Zo{vsnge} and m9(S°) = Zo{vs{sg} &
Z,{vsvgvig}. By the fact Avs=0 of Lemma 1.1.(i), 4(m3(S°)) =0 and
A(m9(S3)) =0. So we have [;3)48; #0 and that m3(Rs) is generated by
[val7lg, [Vslasvis, [vsinstte and  [13]¢8s. Since m9(S®) = Zr{veoovie} and
A(vea9vi6) = 2[vs|ogvis by Lemma 1.1.(i), the kernel of i, : m13(Rs) — mig(R7) is
0 or Z, generated by 2[vs]ogvis. Since [13)¢83 # 0 and [13],83 =0, [13]¢83 is a
non-zero kernel of i,. This leads us to (ii).

Since [r¢]v7 = b[v3]; by Lemma 1.1.(iv), we have

[n6)7 € [m6]{v7, 8110, 2010}
C {b[v3];, 8110, 2010}
3 b[v47]), mod [v2],718(S'°) + 711 (R7) 0 201;.
So we have [1g]¢; = b[vals]; mod 2[2[16,1)]o11. For [v3];e10 = [6]v7€10 = O,
[v3],V10 = [16)v7¥10 = 0 and 711 (R7) = Z{[2[16,16)]} by Table 2 of [5]. Therefore

we have [v4(7]; = [16](7 + 2x[2[t6, 16]]o11 for an integer x. We have p,[val7]; =
0 and p*[2[16,16]]()'11 = 2[16,16]0'11 is of order 8. Since

15Cs € ns{v6, 819, v9} = —{ns, V6, 819} 0 V19 C m10(S>) 0 v1p = 0,

we have p,[n]l; =#¢{7 =0. This leads us to (iii) and completes the
proof. [
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By Lemma 3.4.(ii) and its proof, we obtain the group m3(Re).
In the exact sequence (18),, we know mi5(S®) = Zi6{[16,%]011} and
A([16,16]011) = ([vs]ng + 4[v3le)ar0 = [vs]vg + [vs]nges + 4[v3lgo10.
By use of the fibering G,/SU(3) = S®, Mimura obtained the relation
8216, 16) Yo11 = ix[Vsngiis] in m13(G> : 2)
(p. 166 of [8]). By a parallel argument to the proof of Lemma 2.2, we have

LeMMA 3.5. 8[2[i,16]|010 = [vs],ng1to mod 4[vsl7], and [2[i6,16)]lon1 is of
order 16.

This lemma determines the group 7;3(R;). By Theorem 7.4 of [17], we
know that 7,411(S") = Zg{(,} ® Z2{VnVn4+s} for n=7,8 and 9. So we have
the group m;5(Rs).

In the exact sequence (18)g, 4 : m15(S®) — m17(Rg) is a monomorphism by
the argument determining 7;7(Rg). We show

LemMMa 3.6. (i) 4(g = 2[17)¢7 — [val7]g mod 8[2(s6, 16)]g011-
(i) [ng]v7vis = [vsl,08vis and A(Vgvie) = [n]sV1vis = [vs|gosvis.
ProorF. By Lemmas 1.1.(i) and 3.4.(iii), we have

ALy = 2[17)7 — [16ls¢7 = 2[11]¢7 — [val7]s mod 8[2[sg, 16]]go11-

This leads us to (i).
By Lemmas 2.3.(ii) and 1.2.(iii), we have

0= [?6 + 86177141115 = [176]v7v15 + [V5]70'3vl5 mod [V4O"l714]7v15 =0.

This leads us to the first half of (ii). The first equality of the second relation of
(ii) is directly obtained from Lemma 1.1.(i) and the first half implies the second
equality. This leads us to (ii) and completes the proof. [

By Lemma 3.6, we have the group mg(Rg). Next we show

LemMa 3.7. (i) [n6lol7 is of order 4.
(i) [vslgngpo is of order 2 and 8(2[is,16)o10 = [Vs],Mgtte + 4[val7];.

PrROOF. Since (1)o7 = 2[17]9{7, we have 4[n¢lol7 =0. Since J([17]9(7) =
09(1¢ is of order 8, we have (i).
Since 2228 = 2vskg, Lemma 3.1.(iii) implies

Hs€l4 = Nspe01s mod 2vskc.
By Lemma 1.1.(ii),

J([vslgngte) = (Vs + e8)mi6tt17 = Vg/ln + Mgy = W§ﬂ10019 = 4{go19 # 0.
This leads us to the first half of (ii).
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By Lemma 3.1.(ii), we have 4{9020 = 809{1s = 0. By Lemma 3.2, J[v4{7],
= +{;013 and it is of order 8. By Lemma 3.5, 82[i,]]a10 = [vs];75t0 +
4x[v4l7]; for x=0,1. So, by (i), Lemmas 1.1.(i), 3.2 and 3.3.(ii), we have

0 = 87018 = (V7 + &7)m 516 + 4xC7018 = 4(1 + x){7018.

This concludes x =1 and completes the proof. []

In the exact sequence (18)y, Kerd = Z,{ngei0} ® Z>{[19,1]n7} for
a: 71'18(S9) — 77:17(R9).

We know m9(S°) = Zg{o9vis} ® Zo{nou1}. By Lemmas 1.1.(1), 2.3.(ii)
and by the fact #n,03vis = V7vi5, we have

A(a9vie) = ([vslg + [17lgn7)o8v1s = [vs]oosvis + [17lgVrvis = [t7lgV7vis.
We have 4[v4{7]y = 4[ng]o{7 =0 by Lemmas 3.4.(iii) and 3.7.(i). So, by
Lemmas 1.1.(1) and 3.7.(i1), we have
A(ngp10) = [vslotuo + [17]9'7%/19 = 4([17)ol7 + 2[2[16, 26]]9a11)-
Therefore we have a short exact sequence
0— H — mg(Ry) » G—0,
where
H = Z16{[2[16,16]] 10011} @ Za{[17]10{7 + 212016, 6]} 10011 }
and
G = Zo{p.[nse10]} ® Zo{p.[[19,19]m17]}-

Now we recall the homotopy groups 7,13(S”) for 9 <n < 13. According
to Toda and Oda, we have the following

ProposiTioN 3.8 (Toda [17], Oda [14]).

(1) m(S°) = Zs{ool16} @ Za{not;o}
and Emy(S°) = Za{o10{17} ® Zo{n /iy, }-

(i) ms(S10) = Zs{e"} ®Zo{¢" £ 1"} ® Zo{moitn} = Zs{A'} ® Zo{1"}®
Zo{mo}, where H(Z') = H(2") = ngeao, H(A") =y, &= 1" + 1"
mod {a10{17,mofin} and A" = 2" +¢&" mod {a10{17, Moy} and 28" =
22" = a10{17 mod 201087

(i) Zmas(S'0) = Zy{Z1"} ® Zo{ 23"} ® Zo{ny finy} and mao(S) = Zg{¢'} @

Z{&' + 2"} @ Zo{ny fira}, where 28 = X&' 22 =XA", H(A') = ey,
H(E) =7y +éen and 41 = 4&' = o115s.
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(iv) 7m30(S'2) = Znp {12} @ Za{ZE + 481y} @ Za{ZE + 20} @ Zo{n1oi13}),
where H(13) = o3 mod 2093, 2¢' — 281, = + [12,012), 16£1; = 12,
221” = 8{2?729 mod T]12ﬁ13 and 8f2ﬂ29 = 221/ + 22£l mod O']zclg.

(v)  7m31(S) = Zs{&13} D Zs{A} @ Zo{ny3firs}, where H(A) =3, 24 =22}
and &f3139 = 4&13 + 44

(i) n%(S%) = Zs{v*} ® Zo{nia}, where v =E%v}, H(vis) = vy mod 2v3,
23— 2vje = * [133,v33], v* = =&, &' =4vx and TFN = 2v*.

Since HJ[n9€10] = #19€20, We have
J[nee10] = A" mod Z7y;(S°).
Since HJ([[19,19]#;7]) =0 and #j is not in the stable J-image, we have
J[19, 19]117] = x01017 for an integer x.

So the order of [nge10] is @ multiple of 8. Therefore, by the exact sequence
preceding to Proposition 3.8, we have

LEMMA 3.9. 2[nee10] = y[17],07 mod [2[16,16)] ;0011 for an odd integer y.

From Lemma 3.9, we have three possibilities of the group extension of
mig(Ri0); mis(Rio) & Zyy @ Zg, = Z3, PZsPZy or 2ZysD Zs ® L. To
determine the group extension, we shall settle the group mg(R,) in the
metastable range by using of the splitting theorem of [2].

By [3], we know m13(R,) = 0 for n > 20. By [6], we also know 7;3(R,,) for
n>14. We denote by RP} = RP"/RP*! the stunted real projective space
and by V, x the Stiefel manifold of k-frames in R”. By [2] and [3], we have

mig(Ri9) = mi9(Var,2) = mg(RPH) = Zs.

By the James periodicity theorem ([4]), we have

mig(Rig) = mg(Va1,3) = mio(RPZ) = m19(Z'*RPS) = 75 (RP3) = Z,4.
By [11], we have

mg(Ri7) = m9(Va1,a) = mo(RPE) = nf (RP*) = Zg
and
mg(Rig) = mio(Var s) = mg(RP3Y) = n (RPY) = Zs ® Zs.

By use of the exact sequences (18), for n =14 and 15, we have

mig(Ria) = mig(Rys) = Zg.
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In the exact sequence (15),;, we have 4(v13) = [vs];;08 by Proposition 2.1
of [5] and by Theorem 3.(i) of [6]. So, in the exact sequence (18),;, we have
A(v%) = [vs];308v1s = 0 by Lemma 3.6. Therefore we have

nig(Ri3) = Zs.

In the exact sequence (18),,, we have Ker4 = Z,{v%,} for 4 : m3(S'?) —

m17(R12).
Since 8J4(o12) = 8[u2,012) = 16&1, = 612{19 # 0 by Proposition 3.8, we
have (cf. [13])

n18(R12) = Zis{4(012)} ® Za.

In the exact sequence (18),;, we have 4oy = [17];;v7010, 4V =
[17];,v7710 = 0 and dey; = [17],v7¢10 =0 by Lemma 1.1.(i). So we can take
[2611] = 4012 by Lemma 3.10 of [5] and we have

mis(Ri) = Z47Z, (=Z4 @ Z; or Zy).

By the argument determining m17(Ry1), we know Kerd = Z,{[t]},
where 7 =7vj9 or g9. We know that m9(S'%) = Z{[110,110]} ® Za{m1oV11} ®
Z>{n10611} © Z2{ 10} by Theorem 7.2 of [17]. Then, by Lemma 2.4, we have

A(}]IOV“) = 2[17]101’7710 =0 and A(’hogll) = 2[17]IOV7810 =0.

By (12.25) of [17], we know the relation [t19, ;9] = 2610{17. By Theorem
5.1 of [10], we have

Apyg € A{m10, 811,201},
C {2[17]1v7, 8110, 2010}
D 2[17}10{v7, 8110, 2010}
3 2[17],0¢7 mod 2[17],4v7 © m18(S™°) + 711 (Rio) 0 2011 = {2[2[t6, 36]] 10011 }-

We assume that 7[18(R10) >Zi6 DLy DZ; or mig(Ry) XZn DLy D Z,.
By use of (18),,, we have mig(R11) = G?Z,, where the group G is not iso-
morphic to Z4. This contradicts the fact m;3(Ry)) = Z4?Z;. Thus we have

m18(Rio) = Z3 @ Zs

and it is generated by [[i9,19]7;;] and [nge10], Where 2[noei0] = [17];0(7 +

2[2[16, 26]] 10011 and 2{[ag, 19)1717] = [2[16, 36]]10011-
By [12], Lemma 3.9 and the group structure of m;3(Rjp), we have
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A[10,110] = [[19, 29]1117] + 2[119810],
Apyg = 2([17)1987 + 2[2[s6, 16]]10011)

and

I(l9, 10]717) = % 710817
Finally we have the following.

LemMma 3.10. (i) dg = 0.
(i)  Jlero] = 2’ mod Zmpg(S'0).
(iii) mg(Ri1) = Zs{[e10]}-
(iV) 8[20’11] = 4[810]12.

PrOOF. Assume that Avjp =0. Since H(A'+¢&') =, by Proposition
3.8.(iii), we have J[jo] = A’ + &' mod Znx(S'°). Suppose that [vyg] is of order
8 and 2[Vig] = [n9€10];;- Applying the J homomorphism to this relation, we
have 2(A' +¢') = £2" mod 2Zn(S'%) + Z%n2,(S°). So, by Proposition 3.8,
we have 2&'e {4¢',n,1,}. This is a contradiction. Therefore we have
mg(Ri) = Za{[V10]} ® Zo{[V10] £ [mee10],}-

On the other hand, by the group structure of m;5(R;2) and by the exact
sequence (18);,, we have the relation 8[2a11] = [Vi0]\, T [#9€10)5-

So we have 8J[20] = J[Vio);, = Jlmeerol, = (A + &) £ ZA”
mod X7 (S'%). By stabilizing this relation, we have 0 = 2X®1+ 2¢ +4X°)
mod {4X*°A,4¢,nia} by Proposition 3.8. Since X®1=2v* = -2¢, we have
4¢ +2& € {4¢,mia}. This is a contradiction and hence we have (i).

Since H(1') = &1, we have J[ejo] = A’ mod Zmpg(S'°). So [e10] is of order
8. This leads us to (ii) and (iii).

Since [201] is of order 16, we have (iv) by the exact sequence (18),,. This
completes the proof. [

By the exact sequence (18);; and Lemma 3.10, we have the group
7[18(R|2). We have 7[13(R13) = Zg{[v%2]}, where 2[\1%2] = 4([810]13 - 2[2011]13).
Since H(A) = v3; by Proposition 3.8.(v), we have J[v?)] = A mod Zn3(S'?) =
{&13, 22, m3/014}-

The rest of Theorem 2 is easily obtained. This completes the proof of
Theorem 2.

REMARK 1. Odd primary components of 7z, x(R,) for 16 <k <18 are
easily obtained from [8] and its method. These results with [5], Theorems 1
and 2 lead us to the following table. Here m + (r)* means Z, ®Z, ®--- ®
Z, (k+1 direct sums).
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n 3 4 5 6 7
me(Ry) || 6 | (6)° 2)* 504 + (2)* )’
m7(Ry) || 30 | (30)° 40 40 4 (2)° 8)*+(2)°
mg(Ry) || 30 | (30)% | 2520+ 2 | 2520+ 12+2 | 15120 + 8 +2

8 9 10 11 12 |13
)" (2) 240 + (2)% | (2)* 2 2

24+ (8)2 4+ (2)° 8+ (2)° 442 (2)? 2 2
15120 + 504 4 8 + (2)* | 45360 +8+2 | 90720+8 | 8 |240+4 | 8

14 15 16 17 18 | 19120
242 2% 2° | ©2*? 2 2 | 2
2 @ 2 | @*]| o+2] 2| 2
8 8 |24+8| 8 4 20

REMARK 2. As for direct proofs of Lemmas 2.2 and 3.5, we know the
following fact (cf. [10]); Let n>2 and k > 5. Assume that A0 f =0 and
nf=0 for fen(S’). Then, for any element 6 e {di,f,ny} C mxy1(Rs),
there exists an element ¢ € mx,1(R7) such that p.e=Xf and i.J = ne.

We recall the relation 2Vgvis = veVy = veg9. We set f = vsVg. Then we
have

{Al6, V5V3,216} D {Al6 o Vs, Vg, 2116}
D [vs]{21s, Vs, 2116}
3 [vs] V816

= [V5]V§ mod A o 7[17(55) + 27t17(R6) = {2[1’3]60’(0}.

We take & = [vs]vi. Then, ¢ is taken as 2[Vg + &]vi4 mod {elements of i,7m;7(Re)
of order 2 or 4}. This leads us to the first assertion of Lemma 2.2.(ii).
By a parallel argument to the above, we have the assertion of Lemma 3.5.

REMARK 3. We hope that direct proofs of the results Adejp =0 and
p.A[t10,110) = [19,19]77 can be found.
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