On the existence of solutions of nonlinear boundary value problems at resonance in Sobolev spaces of fractional order

Thomas Runst*
(Received April 10, 1998)
(Revised June 18, 1998)

Abstract

The purpose of this paper is to prove existence results for a class of degenerate boundary value problems for second-order elliptic operators in the framework of Sobolev spaces of fractional order. The proofs apply generalized solvability conditions of Landesman-Lazer type, Leray-Schauder degree arguments and maximum principles.

1. Introduction and main result

Let $\Omega \subset \mathbf{R}^{n}$ be a bounded domain with C^{∞} boundary $\partial \Omega$. Let

$$
A u(x)=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\sum_{j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{j}}(x)\right)+c(x) u(x)
$$

be a second order elliptic differential operator with real C^{∞} functions $a_{i j}, c$ on $\bar{\Omega}$ satisfying the following properties:
(p1) $a_{i j}(x)=a_{j i}(x), i, j=1, \ldots, n, x \in \bar{\Omega}$.
(p2) There exists a positive constant C_{0} such that for all $x \in \bar{\Omega}$ and all $\xi \in \mathbf{R}^{n}$

$$
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq C_{0}|\xi|^{2}
$$

(p3) $c(x) \geq 0$ on $\bar{\Omega}$.
We consider the following class of degenerate boundary value problems for semilinear second-order elliptic differential operators

$$
\begin{equation*}
A u-\lambda_{1} u=g(u)+f \quad \text { in } \Omega, \quad B u=a \frac{\partial u}{\partial v}+b u=0 \quad \text { on } \partial \Omega \tag{P}
\end{equation*}
$$

[^0]in the framework of real-valued Bessel-potential spaces $H_{p}^{s}(\Omega)$, where B is a degenerate boundary operator. Here:
(p4) a and b are real-valued C^{∞} functions defined on $\partial \Omega$.
(p5) $\frac{\partial}{\partial v}=\sum_{i, j=1}^{n} a_{i j} n_{j} \frac{\partial}{\partial x_{i}}$ is the conormal derivative corresponding with the operator A, where $n=\left(n_{1}, \ldots, n_{n}\right)$ is the unit exterior normal to the boundary $\partial \Omega$.

Note that (\mathbf{P}) is called to be nondegenerate if and only if either $a \neq 0$ on $\partial \Omega$ or $a \equiv 0$ and $b \neq 0$ on $\partial \Omega$. If $a \equiv 1$ and $b \equiv 0$, then we have the Neumann problem. The case when $a \equiv 0$ and $b \equiv 1$ hold coincides with the Dirichlet problem. Furthermore, if $a\left(x^{\prime}\right) \neq 0$ on $\partial \Omega$, then we get the third boundary problem (or Robin problem). We remark that the so-called Lopatinskij-Shapiro complementary condition does not hold at the points $x^{\prime}=\partial \Omega$ with $a\left(x^{\prime}\right)=0$. By the main theorem for elliptic boundary value problems, see J. Wloka [17, Hauptsatz 13.1] there exists an equivalence between the ellipticity of a boundary value problem and the Fredholm property if one uses the usual boundary value spaces of Besov type $B_{p, p}^{s-1 / p}(\partial \Omega)$ for the boundary operators. To overcome these difficulties one introduces a subspace of $B_{p, p}^{1-1 / p}(\partial \Omega)$ which is associated to our degenerate boundary operator B. For more details, we refer to K. Taira [10] and [7].

We make the following three conditions (H1)-(H3):
(H1) $a\left(x^{\prime}\right) \geq 0$ and $b\left(x^{\prime}\right) \geq 0$ on $\partial \Omega$.
(H2) $b\left(x^{\prime}\right)>0$ on $M=\left\{x^{\prime} \in \partial \Omega: a\left(x^{\prime}\right)=0\right\}$.
(H3) $c(x) \geq 0$ in Ω, and $c \not \equiv 0$ in Ω.
Furthermore, g is a smooth real-valued function defined on \mathbf{R} which satisfies a linear growth condition, and λ_{1} denotes the first eigenvalue of A together with the homogeneous boundary condition $B u=0$. It is known that λ_{1} is positive and simple, see Taira [13]. Let $\varphi_{1} \in C^{\infty}(\bar{\Omega})$ be the associated eigenfunction satisfying $\varphi_{1}>0$ in Ω and $\left\|\varphi_{1} \mid L_{\infty}\right\|=1$. Thus we have $\operatorname{ker}_{B}\left(A-\lambda_{1} \mathrm{id}\right)=\operatorname{span}\left\{\varphi_{1}\right\}$. Note that the boundary condition $B u=0$ on $\partial \Omega$ implies that

$$
u=0 \quad \text { on } M=\left\{x^{\prime} \in \partial \Omega: a\left(x^{\prime}\right)=0\right\}
$$

if $b>0$ on M. Hence it holds

$$
\varphi_{1}=0 \quad \text { on } M, \quad \varphi_{1}>0 \quad \text { on } \bar{\Omega} \backslash M \text { and } \frac{\partial \varphi_{1}}{\partial v}<0 \quad \text { on } M .
$$

Boundary conditions of this type occur in multidimensional diffusion processes and Markov processes. We refer to K. Taira [10]. We treat solutions u of (\mathbf{P}) in the Bessel-potential spaces $H_{p}^{s}(\Omega), s>n / p, 1<p<\infty$. Recall that the spaces $H_{p}^{s}(\Omega)$ coincide with the classical Sobolev spaces $W_{p}^{s}(\Omega)$
if $s \in \mathbf{N}$. Throughout this paper, both u, f and g are assumed to be realvalued. Therefore we do not distinguish between a function spaces and its real part, and we use the same abbreviation.

In S. Ahmad [1, 2], S. B. Robinson and E. M. Landesman [5] and T. Runst and W. Sickel [8] the Dirichlet case was considered. Further results, by application of the bifurcation theory, may be found in the papers of A. Szulkin [9], K. Taira and K. Umezu [14], [8, 6.6] and the references therein.

Now we formulate an abstract solvability condition for problem (\mathbf{P}) similar to that in [5], [8, 6.4.5]. Here $\lambda_{2}>\lambda_{1}$ denotes the second eigenvalue.

Theorem. Assume that the conditions (H1)-(H3) are satisfied. Let $s>$ $\max (n / p, 1 / p+1)$ and $\rho>-1$, and let $g \in C^{\infty}(\mathbf{R})$ such that

$$
\begin{equation*}
0 \leq \liminf _{|t| \rightarrow \infty} \frac{g(t)}{t} \leq \limsup _{|t| \rightarrow \infty} \frac{g(t)}{t}<\lambda_{2}-\lambda_{1} \tag{1}
\end{equation*}
$$

Let $f \in H_{p}^{s-2}(\Omega) \cap B_{\infty, \infty}^{\rho}(\Omega) . \quad$ Then (P) has a solution $u \in H_{p}^{s}(\Omega)$ if the function f satisfies the following generalized Landesman-Lazer condition (GLL) with respect to the kernel $\operatorname{ker}_{B}\left(A-\lambda_{1}\right)$.
(GLL): If $\left\{u_{k}\right\}_{k=1}^{\infty} \subset H_{p}^{s}(\Omega)$ such that $\left\|u_{k} \mid L_{\infty}\right\| \rightarrow \infty$ and $u_{k} /\left\|u_{k} \mid L_{\infty}\right\| \rightarrow$ $\varphi= \pm \varphi_{1}$ in the $C^{1}(\bar{\Omega})$ norm, then there exists a number $K>0$ such that

$$
\operatorname{sign}(\varphi) \int_{\Omega}\left(g\left(u_{k}(x)\right)+f(x)\right) \varphi_{1}(x) d x \geq 0 \quad \text { for all } k \geq K
$$

Recall that $f \in B_{\infty, \infty}^{\rho}(\Omega), \rho>-1$, means that $(-\Delta+\mathrm{id})^{-1} f$ belongs to the Hölder-Zygmund spaces $\mathscr{C}^{\rho+2}(\Omega)=B_{\infty, \infty}^{\rho+2}(\Omega)$ (Δ : Laplacian). We note that our result with $s=2$ implies that (\mathbf{P}) has a solution $u \in W_{p}^{2}(\Omega)$ for $f \in L_{p}(\Omega)$, if (GLL) and $p>n$ hold.

This theorem is a generalization of the paper S. B. Robinson and T. Runst [6], see also [8, Subsection 6.4.5, Theorem 1], to the degenerate case. Furthermore, we can show that further solvability conditions can be viewed as special cases of this abstract result.

For example, if the limits

$$
\lim _{t \rightarrow \pm \infty} g(t)=g(\pm \infty)
$$

exist or are infinite, then the solvability condition of Landesman-Lazer type

$$
g(-\infty) \int_{\Omega} \varphi_{1}(x) d x<-\int_{\Omega} \varphi_{1}(x) f(x) d x<g(+\infty) \int_{\Omega} \varphi_{1}(x) d x
$$

implies (GLL).

2. Preliminaries

Linear theory, mapping properties

Let $\Omega \subset \mathbf{R}^{n}$ be a bounded and smooth domain with boundary $\partial \Omega$. Let $f \in H_{p}^{s-2}(\Omega)$. We consider the corresponding linear problem

$$
\begin{equation*}
A u=f \quad \text { in } \Omega, \quad B u=0 \quad \text { on } \partial \Omega \tag{1}
\end{equation*}
$$

in the framework of Bessel-potential spaces $H_{p}^{s}(\Omega)$. As usual, let for $s \in \mathbf{R}$ and $1<p<\infty$ the Bessel-potential space (or Sobolev spaces of fractional order) $H_{p}^{s}\left(\mathbf{R}^{n}\right)$ be given by

$$
H_{p}^{s}\left(\mathbf{R}^{n}\right)=\left\{h \in \mathscr{S}^{\prime}\left(\mathbf{R}^{n}\right):\left\|h\left|H_{p}^{s}\left\|=\mathscr{F}^{-1}\left(1+|\xi|^{2}\right)^{s / 2} \mathscr{F} h \mid L_{p}\right\|<\infty\right\}\right.\right.
$$

where \mathscr{F} and \mathscr{F}^{-1} denote the Fourier transform and its inverse, respectively, on the space of tempered distributions $\mathscr{S}^{\prime}\left(\mathbf{R}^{n}\right)$. We assume that f belongs to a Bessel-potential space $H_{p}^{s-2}(\Omega)$, the space of restrictions to Ω of functions in $H_{p}^{s-2}\left(\mathbf{R}^{n}\right)$.

Then the following existence and uniqueness result for problem (1) holds (cf. K. Taira [10, 11, 13] and T. Runst [7]):

Proposition 1. Let $(\mathrm{H} 1)-(\mathrm{H} 3)$ be satisfied. Then the map

$$
A: H_{p, B}^{s}(\Omega) \rightarrow H_{p}^{s-2}(\Omega)
$$

is an algebraic and topological isomorphism for all $s>1+1 / p$. Here

$$
H_{p, B}^{s}(\Omega)=\left\{u \in H_{p}^{s}(\Omega): B u=0 \text { on } \partial \Omega\right\} .
$$

We remark that this result was proved in [7] in the framework of the two scales of function spaces of Besov-Triebel-Lizorkin type, for definition and properties we refer to H. Triebel [16] and [8]. Especially, Proposition 1 holds in the case of Hölder-Zygmund spaces \mathscr{C}^{s} for $s>1$. Note that we have the continuous embedding

$$
H_{p}^{s}(\Omega) \hookrightarrow \mathscr{C}^{\varepsilon}(\Omega) \hookrightarrow L_{\infty}(\Omega)
$$

if $s-n / p>\varepsilon>0$.
Now we consider the mapping properties for superposition (or Němytskiǐ) operator

$$
T_{g}: u(x) \rightarrow g(u(x))
$$

which may be found in [8, 5.3.4].
In our later considerations, the next proposition is sufficient. For the sake of simplicity, we suppose that the (real-valued) function $g: \mathbf{R} \rightarrow \mathbf{R}$ is smooth,
i.e., $g \in C^{\infty}(\mathbf{R})$, but the results hold also under weaker smoothness assumptions. As usual an operator is called completely continuous if it is compact and continuous.

Proposition 2. Let g be a smooth function and $s>0$.
(a) Then there exists a positive constant c_{g} such that

$$
\begin{equation*}
\left\|g(u)\left|H_{p}^{s}(\Omega)\left\|\leq c_{g}\right\| u\right| H_{p}^{s}(\Omega)\right\|\left(1+\left\|u \mid L_{\infty}(\Omega)\right\|^{\max (0, s-1)}\right) \tag{2}
\end{equation*}
$$

holds for all $u \in H_{p}^{s}(\Omega) \cap L_{\infty}(\Omega)$. Furthermore, T_{g} is continuous from $H_{p}^{s}(\Omega) \cap$ $L_{\infty}(\Omega)$ into $H_{p}^{s}(\Omega)$.
(b) Let $\varepsilon>0$. Then T_{g} is a completely continuous map from $H_{p}^{s}(\Omega) \cap$ $L_{\infty}(\Omega)$ into $H_{p}^{s-\varepsilon}(\Omega)$.

We remark that part (b) is a consequence of (a), and the fact that the embedding

$$
\begin{equation*}
H_{p}^{s+\delta}(\Omega) \hookrightarrow H_{p}^{s}(\Omega), \quad \delta>0 \tag{3}
\end{equation*}
$$

is compact.

Maximum principles

The next results are important for our further considerations. We start with the following assertion which is a consequence of K. Taira and K. Umezu [15, Lemma 2.1] and [8, 3.5.4]:

Proposition 3. Assume that (H1)-(H3) are satisfied. Let $v \in$ $\bigcup_{\varepsilon>0} B_{\infty, \infty}^{1+\varepsilon}(\Omega)$. If $A v \geq 0$ in $\Omega, v \geq 0$ but $v \not \equiv 0$ in $\bar{\Omega}$, then v satisfies the following conditions:

$$
\begin{array}{ll}
\text { (a) } v=0 & \text { on } M=\left\{x^{\prime} \in \partial \Omega: a\left(x^{\prime}\right)=0\right\} . \\
\text { (b) } v>0 & \text { in } \bar{\Omega} \backslash M . \\
\text { (c) } \frac{\partial v}{\partial v}<0 & \text { on } M .
\end{array}
$$

(We use the symbol \geq in the sense of distributions, see [8, Definition 3.5.4]). The next lemma will be useful in the proof of our theorem. Therefore we apply arguments which are essentially the same as that due to S. Ahmad [2, Lemma 2.2] and [6] for the Dirichlet boundary condition. We recall that for $\varepsilon>0$ the continuous embedding

$$
B_{\infty, \infty}^{1+\varepsilon}(\Omega) \hookrightarrow C^{1}(\bar{\Omega})
$$

holds.

Lemma 1. There exists a positive number $d, d>\lambda_{1}$, such that if $q \in C(\bar{\Omega})$ satisfies

$$
\begin{equation*}
\lambda_{1} \leq q \leq d \quad \text { in } \Omega \tag{4}
\end{equation*}
$$

and $v \in \bigcup_{\varepsilon>0} B_{\infty, \infty}^{1+\varepsilon}(\Omega)$ for which

$$
\begin{equation*}
A v=q v \quad \text { in } \Omega, \quad B v=0 \quad \text { on } \partial \Omega \tag{5}
\end{equation*}
$$

and $v \not \equiv 0$, then either $v\left(x^{\prime}\right)=0$ on $M=\left\{x^{\prime} \in \partial \Omega: a\left(x^{\prime}\right)=0\right\}, v>0$ in $\bar{\Omega} \backslash M$ and $\frac{\partial v}{\partial v}<0$ on M, or $v\left(x^{\prime}\right)=0$ on $M, v<0$ in $\bar{\Omega} \backslash M$ and $\frac{\partial v}{\partial v}>0$ on M.

Proof. Step 1: First we consider the case, where $v \in \bigcup_{\varepsilon>0} B_{\infty, \infty}^{1+\varepsilon}(\Omega)$ is a solution of (5) such that $v \not \equiv 0$ and $v \geq 0$ in $\bar{\Omega} \backslash M$. If μ is a positive number large enough such that

$$
\mu+q(x)>0 \quad \text { for all } x \in \Omega
$$

then

$$
(A+\mu) v(x) \geq 0 \quad \text { for } x \in \Omega
$$

Now the claim follows from Proposition 3. Similarly, if v is a solution of (5) with $v \not \equiv 0$ and $v \leq 0$ in $\bar{\Omega} \backslash M$, then $v<0$ in $\bar{\Omega} \backslash M$ and $\frac{\partial v}{\partial v}>0$ on M.

Step 2: If the assertion of Lemma 1 is false, then we can find a sequence $\left\{q_{n}\right\}_{n=1}^{\infty} \subset C(\bar{\Omega})$ with

$$
\begin{equation*}
c \leq q_{n}(x) \leq \lambda_{1}+\frac{1}{n} \quad \text { for all } x \in \Omega \tag{6}
\end{equation*}
$$

and a corresponding sequence $\left\{v_{n}\right\}_{n=1}^{\infty} \subset \bigcup_{\varepsilon>0} B_{\infty, \infty}^{1+\varepsilon}(\Omega)$ such that $v_{n} \not \equiv 0$,

$$
\begin{equation*}
\left(A v_{n}\right)(x)=q_{n}(x) v_{n}(x) \quad \text { in } \Omega, \quad B v_{n}=0 \quad \text { on } \partial \Omega, \tag{7}
\end{equation*}
$$

and there exists a point $x_{n} \in \bar{\Omega} \backslash M$ such that $v_{n}\left(x_{n}\right)=0$. Without loss of generality we may assume that $\left\|v_{n} \mid C^{1}\right\|=1$ for all n. Applying the mapping properties of A, see Proposition 1 or [7], and compactness results of type (3), it follows that $v_{n} \rightarrow v_{0}$ as $n \rightarrow \infty$ in $C^{1}(\bar{\Omega})$ and $\left\|v_{0} \mid C^{1}\right\|=1$.

Step 3: We show that there is $x_{0} \in \bar{\Omega}$ such that either $x_{0} \in \bar{\Omega} \backslash M$ and $v_{0}\left(x_{0}\right)=0$ or $x_{0} \in M$ and $\frac{\partial v_{0}}{\partial \nu}\left(x_{0}\right)=0$. By (7) we have $B v_{0}=0$ on $\partial \Omega$. If our claim is false, we have either $v_{0}(x)>0$ for all $x \in \bar{\Omega} \backslash M$ and $\frac{\partial v_{0}}{\partial v}<0$ on M, or $v_{0}(x)<0$ for all $x \in \bar{\Omega} \backslash M$ and $\frac{\partial v_{0}}{\partial v}>0$ on M. Applying continuity arguments
this shows that v_{n} would have the same behaviour for n sufficiently large. This yields a contradiction.

Step 4: Using the boundedness of $\left\{q_{n}\right\}_{n=1}^{\infty}$ in $L_{2}(\Omega)$ and Mazur's theorem we may assume that $q_{n} \rightarrow q_{0}$ in $L_{2}(\Omega)$ (for a subsequence) which satisfies

$$
\begin{equation*}
c \leq q_{0}(x) \leq \lambda_{1} \quad \text { a.e. } \quad \text { in } \Omega \tag{8}
\end{equation*}
$$

Applying similar arguments as in S. Ahmad [2, p. 150] then we can deduce from (7) that

$$
\begin{equation*}
\left(A v_{0}\right)(x)=q_{0}(x) v_{0}(x) \quad \text { in } \Omega, \quad B v_{0}=0 \quad \text { on } \partial \Omega \tag{9}
\end{equation*}
$$

holds. Let φ_{1} be as above. By the properties of v_{0}, i.e., $\left\|v_{0} \mid C^{1}\right\|=1, v_{0} \not \equiv 0$, we may assume that there is $x_{1} \in \Omega$ with $v_{0}\left(x_{1}\right)>0$. (If necessary, one has to replace v_{0} by $-v_{0}$.) Furthermore, for sufficiently small $k>0$ we get $\varphi_{1}(x)-$ $k v_{0}(x)>0$ for all $x \in \Omega$. Let k^{*} be the supremum of all such k. Now we define a function z by $z(x)=\varphi_{1}(x)-k^{*} v_{0}(x)$. Then we have $z(x) \geq 0$ for all $x \in \Omega$ and, by the properties of v_{0} and $\varphi_{1}, \frac{\partial z}{\partial v} \leq 0$ on M. The definition of k^{*} shows that there is either a point $x^{*} \in \bar{\Omega} \backslash M$ such that $z\left(x^{*}\right)=0$, or a point $x^{*} \in M$ with $\frac{\partial z}{\partial v}\left(x^{*}\right)=0$. Finally, for $\gamma>0$ so large that $\gamma+q_{0}>0$ a.e. in Ω,

$$
(A+\gamma) z=\left(\gamma+q_{0}\right) z+\left(\lambda_{1}-q_{0}\right) \varphi_{1} \geq 0 \quad \text { in } \Omega, \quad B z=0 \quad \text { on } \partial \Omega,
$$

and maximum principle argument, see [8, 3.5.4], [11, Proposition 5.6] show that $z \equiv 0$. Hence Step 3 yields a contradiction to the properties of φ_{1}. The proof is finished.

For our further investigations, the following consequences of Lemma 1 suffices.

Corollary. Let all assumptions of Lemma 1 be satisfied, and let $v \in$ $\bigcup_{\varepsilon>0} B_{\infty, \infty}^{1+\varepsilon}(\Omega)$ be a solution of (5). Then $v \in \operatorname{ker}_{B}\left(A-\lambda_{1} \mathrm{id}\right)$.

Proof. By Lemma 1 we may conclude that either $v \equiv 0, v>0$ in $\bar{\Omega} \backslash M$ and $\frac{\partial v}{\partial v}<0$ on M, or $v<0$ in $\bar{\Omega}$ and $\frac{\partial v}{\partial v}>0$ on M. If $v \equiv 0$, then we are finished. Now we assume that $v>0$ on $\bar{\Omega} \backslash M$. The other case can be investigated similarly. We choose $k>0$ small enough such that $v-k \varphi_{1}>0$ in Ω. Now we use the same arguments as in the proof of Step 4 of Lemma 1. Thus the corollary is proved.

Let d^{*} be the supremum of all numbers $d>\lambda_{1}$, such that if $q \in C(\bar{\Omega})$ satisfies (4), then Lemma 1 holds. Now we prove that

$$
\begin{equation*}
d^{*}=\lambda_{2} \tag{10}
\end{equation*}
$$

For it one applies some known results concerning eigenvalue problems with indefinite weight functions, which may be found in [8, Proposition 6.4.5]. We refer also to A. Manes and A. M. Micheletti [4].

Let $q \in C(\bar{\Omega})$. Then the eigenvalue problem $\left(\mathrm{P}_{\mathrm{q}}\right)$ with real parameter μ is given by

$$
\begin{equation*}
A v=\mu q v \quad \text { in } \Omega, \quad B v=0 \quad \text { on } \partial \Omega . \tag{q}
\end{equation*}
$$

Now we are in position to prove (10).
Lemma 2. Let $0<\lambda_{1}<\lambda_{2} \leq \cdots$ denote the eigenvalues, each appearing as often in the sequence as its multiplicity, of

$$
\begin{equation*}
A u=\lambda u \quad \text { in } \Omega, \quad B u=0 \quad \text { on } \partial \Omega . \tag{11}
\end{equation*}
$$

Then $d^{*}=\lambda_{2}$ holds.
Proof. Let $u_{2} \in C^{\infty}(\bar{\Omega})$ be a nontrivial eigenfunction to the second eigenvalue. We know that φ_{1} is positive everywhere in Ω_{1}. Hence u_{2} has to change the sign on Ω. This gives $d^{*} \leq \lambda_{2}$. Now we suppose that d is an arbitrary number satisfying $\lambda_{1}<d<\lambda_{2}, q \in C(\bar{\Omega})$ with $\lambda_{1} \leq q \leq d$ in Ω, and that $v \in \bigcup_{\varepsilon>0} B_{\infty, \infty}^{1+\varepsilon}(\Omega)$ is a nontrivial solution of (9). Since $\mu=1$ is a positive eigenvalue of $\left(\mathrm{P}_{\mathrm{q}}\right)$, [8, Proposition 6.4.5(i)] implies that q is positive on a set of positive Lebesgue measure and $\mu_{k}(q)=1$ for some $k \geq 1$. It holds $\mu_{k}\left(\lambda_{2}\right)=$ $\lambda_{k} / \lambda_{2}$ for $k \geq 1$. By our assumption $q \leq d<\lambda_{2}$ in Ω, we can conclude from [8, Proposition 6.4.5(iii)] that $1=\mu_{2}\left(\lambda_{2}\right)<\mu_{2}(q)$ and $\mu_{1}(q)=1$. Applying [8 , Proposition 6.4.5(ii)] it follows that the corresponding nontrivial eigenfunction v is strictly positive (negative) on Ω. Now we choose a positive constant γ such that $\gamma+q>0$ in Ω. We obtain

$$
(A+\gamma) v=(q+\gamma) v
$$

in Ω. Thus either v or $-v$ satisfies the hypotheses of Lemma 1. This shows $d^{*} \geq \lambda_{2}$.

3. Proof of the main result, generalizations

Proof of the main result

Applying the results from the last section we can prove our main results.
Proof of Theorem. Step 1: From our assumptions we can conclude the existence of a positive number κ such that $\lambda_{1}+\kappa<\lambda_{2}$. Thus $\lambda_{1}+\kappa$ is not an eigenvalue of problem (11) in Section 2. For $\tau \in[0,1]$ we define a family of
boundary value problems

$$
A u=\left(\lambda_{1}+\tau \kappa\right) u+(1-\tau)(g(u)+f) \quad \text { in } \Omega, \quad B u=0 \quad \text { on } \partial \Omega .
$$

The arguments in [8, Lemma 6.4.2] show that it is sufficient to prove the existence of a positive number R such that if u_{τ} is a solution of $\left(\mathrm{P}_{\tau}\right)$, then

$$
\begin{equation*}
\left\|u_{\tau} \mid L_{\infty}\right\| \leq R \tag{1}
\end{equation*}
$$

where R is independent of $\tau \in[0,1]$. Therefore on applies Proposition 1 and Proposition 2. Afterwards we obtain that there is a constant $c>0$ such that

$$
\begin{equation*}
\left\|u_{\tau} \mid H_{p}^{s}\right\| \leq c \tag{2}
\end{equation*}
$$

holds for all solutions u_{τ} of problem $\left(P_{\tau}\right)$, when $\tau \in[0,1]$. Recall that the definition of κ implies the invertibility of the linear map $T=\mathrm{id}-\left(\lambda_{1}+\kappa\right) A^{-1}$ in $H_{p, B}^{s}(\Omega)$. Let c be given by (2). Since λ_{1} is the principal eigenvalue of A under homogeneous boundary condition $B u=0$ we can deduce from the index formula for compact linear operators, see [8, Subsection 6.2.3, Theorem 7],

$$
\begin{equation*}
\mathrm{d}_{\mathrm{LS}}\left[\mathrm{id}-h(0, \cdot), B_{2 c}, 0\right]=\mathrm{d}_{\mathrm{LS}}\left[\mathrm{id}-h(1, \cdot), B_{2 c}, 0\right]=-1 \tag{3}
\end{equation*}
$$

Here $h:[0,1] \times H_{p}^{s}(\Omega) \rightarrow H_{p}^{s}(\Omega)$ is the completely continuous operator which assigns to each $u \in H_{p}^{s}(\Omega)$ and $t \in[0,1]$ the unique solution $w \in H_{p}^{s}(\Omega)$ of the problem

$$
A w=\left(\lambda_{1}+\tau \kappa\right) u+(1-\tau)(g(u)+f) \quad \text { in } \Omega, \quad B w=0 \quad \text { on } \partial \Omega .
$$

Finally, (3) and the properties of the Leray-Schauder degree imply the solvability of (P).

Step 2: It remains to prove (2). Assume the contrary. Then there exists a sequence of numbers $\left\{\tau_{k}\right\}_{k=1}^{\infty} \subset[0,1]$ and a corresponding sequence of functions $\left\{u_{k}\right\}_{k=1}^{\infty} \subset H_{p}^{s}(\Omega)$ such that u_{k} satisfies $\left(\mathrm{P}_{\tau_{k}}\right)$ and $\left\|u_{k} \mid L_{\infty}\right\| \rightarrow \infty$ as $k \rightarrow \infty$. Without loss of generality we may suppose that $\left\|u_{k} \mid L_{\infty}\right\|>0$ for all $k \in \mathbf{N}$. Now we define the functions w_{k} by $w_{k}=u_{k} /\left\|u_{k} \mid L_{\infty}\right\|$. Consequently, we obtain

$$
\begin{equation*}
A w_{k}=q_{k}+f_{k} \quad \text { in } \Omega, \quad B w_{k}=0 \quad \text { on } \partial \Omega . \tag{4}
\end{equation*}
$$

Here we put

$$
q_{k}=\left(\lambda_{1}+\tau_{k} \kappa\right) w_{k}+\left(1-\tau_{k}\right) \frac{g\left(u_{k}\right)}{\left\|u_{k} \mid L_{\infty}\right\|}
$$

and

$$
f_{k}=\left(1-\tau_{k}\right) \frac{f}{\left\|u_{k} \mid L_{\infty}\right\|}
$$

We may assume that $\tau_{k} \rightarrow \tau \in[0,1]$. By our assumptions there exists $\sigma,-1<\sigma<0$, such that $f \in B_{\infty, \infty}^{\sigma}(\Omega)$. Now the linear growth condition on g and the mapping properties show that right-hand side of (4) is bounded in $B_{\infty, \infty}^{\sigma}(\Omega)$, independently of k. Note that $\left\|f_{k} \mid B_{\infty, \infty}^{\sigma}\right\|<c_{1}$ and $\left\|q_{k} \mid B_{\infty, \infty}^{\sigma}\right\| \leq$ $c^{\prime}\left\|q_{k} \mid L_{\infty}\right\| \leq c_{2}$. Thus we obtain the estimate $\left\|A w_{k} \mid B_{\infty, \infty}^{\rho}\right\|<M$ for some $M>0$, independently of $k \in \mathbf{N}$. Therefore, compactness arguments show that $w_{k} \rightarrow w$ as $k \rightarrow \infty$ in the $C^{1}(\bar{\Omega})$ norm by passing to a subsequence if necessary. Clearly, $\left\|w \mid L_{\infty}\right\|=1$. Applying the arguments from the proof of [8, Subsection in 6.4.5, Theorem 1] we derive that there is a $q \in C(\bar{\Omega})$ which satisfies $\lambda_{1} \leq q<\lambda_{2}$ in Ω, and w satisfies (P_{q}), i.e., we have

$$
A w=q w \quad \text { in } \Omega, \quad B w=0 \quad \text { on } \partial \Omega .
$$

Since $\left\|w \mid L_{\infty}\right\|=1$, it follows from Corollary in Section 2 that $w= \pm \varphi_{1}$. Thus we can apply condition (GLL) to $u_{k} /\left\|u_{k} \mid L_{\infty}\right\|$. Because of the definition of w_{k} and the properties of φ_{1}, we may assume that for all $k \geq K>0$ the function u_{k} is either strictly positive and $\lim _{k \rightarrow \infty} u_{k}=+\infty$ for all $x \in \Omega$, or strictly negative and $\lim _{k \rightarrow \infty} u_{k}=-\infty$ for all $x \in \Omega$. We suppose that the first alternative holds, the other case can be handled similarly. Now we compute the L_{2} inner product of $\mathrm{P}_{\tau_{\mathrm{k}}}$ with φ_{1} and simplify. Then we get

$$
\begin{equation*}
0=\tau_{k} \kappa \int_{\Omega} u_{k}(x) \varphi_{1}(x) d x+\left(1-\tau_{k}\right) \int_{\Omega}\left(g\left(u_{k}(x)+f(x)\right) \varphi_{1}(x) d x\right. \tag{5}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
0>\int_{\Omega}\left(g\left(u_{k}(x)+f(x)\right) \varphi_{1}(x) d x\right. \tag{6}
\end{equation*}
$$

which contradicts (GLL).
A careful look at our arguments reveals that an a priori bound has been established for $\tau \in(0,1)$ and that is trivial to include the case $\tau=0$. However, it is possible that the solution set corresponding to $\tau=1$ is unbounded, as it is in the linear case, where $g \equiv 0$ and $\int_{\Omega} g(x) \varphi_{1}(x) d x=0$. Thus we are left with the possibilities that there are infinitely many solutions, and the proof is finished, or that there is an a priori bound on the solutions for all $\tau \in(0,1)$. Thus (1) is proved, and by the first step we can finish the proof of our theorem.

Some remarks and examples

Remark 1. In S. Ahmad [1], the following two point boundary value problem was considered

$$
\begin{equation*}
-u^{\prime \prime}(x)-u(x)=g(u(x))+f(x), \quad x \in(0, \pi), \quad u(0)=u(\pi)=0 \tag{7}
\end{equation*}
$$

where $f \in L_{1}(0, \pi)$. It was proved that if g satisfies a linear growth condition of the type

$$
|g(t)| \leq c_{1}+c_{2}|t|
$$

where $c_{1}>0$ and $0<c_{2}<3$, then (7) is solvable if the following LandesmanLazer condition is satisfied:

$$
\begin{equation*}
g-\int_{0}^{\pi} \sin x d x<-\int_{0}^{\pi} f(x) \sin x d x<g_{+} \int_{0}^{\pi} \sin x d x \tag{*}
\end{equation*}
$$

where the finite or infinite values g_{-}and g_{+}are defined by

$$
\limsup _{t \rightarrow-\infty} g(t)=g_{-}, \quad \liminf _{t \rightarrow+\infty} g(t)=g_{+}
$$

Since the boundary value problem

$$
-u^{\prime \prime}(x)-u(x)=3 u(x)+\sin 2 x, \quad x \in(0, \pi), \quad u(0)=u(\pi)=0,
$$

has no solution, the growth condition (1) in Section 1 is sharp. Observe that in this case $\lambda_{2}-\lambda_{1}=3$, where λ_{1} and λ_{2} are the first two eigenvalues of

$$
-u^{\prime \prime}(x)=\lambda u(x), \quad x \in(0, \pi), \quad u(0)=u(\pi)=0
$$

i.e., the distance between λ_{2} and λ_{1} limits the linear growth of the nonlinear term g, see also P. Drábek [3].

Remark 2. The n-dimensional analogue of this assertion was proved by Ahmad [2]. Consider the condition of Landesman-Lazer type

$$
\begin{equation*}
g-\int_{\Omega} \varphi_{1}(x) d x<-\int_{\Omega} f(x) \varphi_{1}(x) d x<g_{+} \int_{\Omega} \varphi_{1}(x) d x \tag{**}
\end{equation*}
$$

where $g_{ \pm}$are defined as before. Assume that there is a constant $r_{0}>0$ such that

$$
\begin{equation*}
\frac{g(t)}{t}<\lambda_{2}-\lambda_{1} \quad \text { if }\left|t_{0}\right| \geq r_{0} \tag{8}
\end{equation*}
$$

It is not hard to check that these conditions which are used in [2] imply (GLL) in the nondegenerate case. Thus we can extend the Landesman-Lazer condition ($L^{* *}$) to degenerate boundary conditions. Note that the lower bound $\liminf _{|t| \rightarrow \infty} g(t) / t \geq 0$ is implicit in (LL ${ }^{* *}$), but not in (GLL).

Remark 3. One can prove that if $g_{ \pm}$exist or are infinite, and

$$
g_{-}<g(t)<g_{+} \quad \text { for all real } t
$$

then $\left(L^{* *}\right)$ is also necessary for the solvability of (\mathbf{P}).

Remark 4. Note that the growth condition

$$
\limsup _{|t| \rightarrow \infty} g(t) / t<\lambda_{2}-\lambda_{1}
$$

cannot be improved. This follows from the fact that

$$
A u-\lambda_{2} u=f \quad \text { in } \Omega, \quad B u=0 \quad \text { on } \partial \Omega
$$

is solvable if and only if the Fredholm condition $\int_{\Omega} f(x) \varphi_{2}(x) d x=0$ for every eigenfunction $\varphi_{2} \in \operatorname{ker}_{B}\left(A-\lambda_{2}\right)$ holds. Now we choose $g(t)=\left(\lambda_{2}-\lambda_{1}\right) t$.

Furthermore, one can give examples for which the set of function f satisfying ($L^{* *}$) may be empty. The next result is an analogue to $[8$, Subsection 6.4.5, Theorem 2], and can be proved similarly.

Corollary. Let $s>n / p, \rho>-1$, and let g be the smooth function from Theorem which satisfies the following additional properties.
(i) The finite limits $G_{-}=\liminf _{t \rightarrow-\infty} \operatorname{tg}(t)$ and $G_{+}=\liminf _{t \rightarrow+\infty} \operatorname{tg}(t)$ exist.
(ii) $G_{ \pm}>0$.

Let $f \in H_{p}^{s-2}(\Omega) \cap B_{\infty}^{\rho}(\Omega)$ with $\int_{\Omega} f(x) \varphi_{1}(x) d x=0$. Then (P$)$ has at least one solution $u \in H_{p}^{s}(\Omega)$.

Remark 5. Let $r_{0}>0$ be a constant. Suppose that $g(t) t \geq 0$ for all $|t| \geq$ r_{0}. Then the proof shows that one can replace (ii) by $G_{ \pm} \geq 0$.

Remark 6. Finally, we remark that one can prove analogous results in the framework of the two scales of function spaces of Besov-Triebel-Lizorkin type which cover many classical function spaces. We refer to [6] and [8, 6.4], where it was done in the case of nondegenerate boundary value problems.

References

[1] Ahmad, S., A resonance problem in which the nonlinearity may grow linearly, Proc. Amer. Math. Soc. 92 (1984), 381-384.
[2] Ahmad, S., Nonselfadjoint resonance problems with unbounded perturbations, Nonlinear Analysis TMA 10 (1986), 147-156.
[3] Drábek, P., On the resonance problem with nonlinearity which has arbitrary linear growth, J. Math. Anal. Appl. 127 (1987), 435-442.
[4] Manes, A., Micheletti, A. M., Un' estensione della teoria variazionale classica degli autovalori per operatori elliticci del secondo ordine, Boll. Un. Mat. Ital. 7 (1973), 285-301.
[5] Robinson, S. B., Landesman, E. M., A general approach to solvability conditions for semilinear elliptic boundary value problems at resonance, Diff. Int. Equations 8 (1995), 1555-1569.
[6] Robinson, S. B., Runst, T., Solvability conditions for semilinear elliptic boundary value problems at resonance with bounded and unbounded nonlinear terms, Advances in Diff. Equations 3 (1998), 595-624.
[7] Runst, T., Degenerate boundary value problems in Sobolev spaces of fractional order, Forschungserg. FSU Jena, Math/Inf/98/03 (1998).
[8] Runst, T., Sickel, W., Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. (de Gruyter Series in Nonlinear Analysis and Applications, 3) Berlin-New York: de Gruyter 1996.
[9] Szulkin, A., On the number of solutions of some semilinear elliptic boundary value problems, Nonlinear Analysis TMA 6 (1982), 95-116.
[10] Taira, K., Diffusion processes and partial differential equations. Boston-San Diego-New York-Berkeley-London-Sydney-Tokyo-Toronto: Academic Press 1988.
[11] Taira, K., Analytic semigroups and semilinear initial boundary value problems. (London Mathematical Society Lecture Notes Series, 223) London-New York: Cambridge University Press 1995.
[12] Taira, K., The Yamabe problem and nonlinear boundary value problems, J. Differential Equations 122 (1995), 316-372.
[13] Taira, K., Bifurcation for nonlinear elliptic boundary value problems I, Collectanea Mathematica 47 (1996), 207-229.
[14] Taira, K., Umezu, K., Bifurcation for nonlinear elliptic boundary value problems II, Tokyo J. Math. 19 (1996), 381-396.
[15] Taira, K., Umezu, K., Bifurcation for nonlinear elliptic boundary value problems III, Advances in Diff. Equations 1 (1996), 709-727.
[16] Triebel, H., Theory of function spaces. Basel Boston Stuttgart: Birkhäuser 1983; and Leipzig: Akad. Verlagsges. Geest \& Portig 1983
[17] Wloka, J., Partielle Differentialgleichungen. Stuttgart: Teubner 1982.

Friedrich-Schiller-Universität Jena
Fakultät für Mathematik und Informatik
D-07740 Jena
Germany
e-mail: runst@minet.uni-jena.de

[^0]: *partly supported by Deutsche Forschungsgemeinschaft, grant Tr 374/1-2
 1991 Mathematics Subject Classification. 35J65, 47H11, 47H15.
 Key words and phrases. Degenerate boundary value problems, Landesman-Lazer conditions, Leray-Schauder degree.

