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ABSTRACT. Let JO(X) = KO(X)/TO(X) be the /-group of a connected finite CW

complex X. Using Atiyah-Tall [5], we obtain two computable formulae of TO(X)^3

the localization of TO(X) at a prime p. Then we show how to use those two formulae

of TO(X)(p} to find the /-orders of elements of KΌ(X), at least the 2 and 3 primary

factors of the canonical generators of JO(CPm). Here CPm is the complex projective

space.

1. Introduction

Let JO(X) = KO(X)/TO(X) be the /-group of a connected finite CW
complex X, where KO(X) is the additive subgroup of the KO-ήng KO(X) of
elements of virtual dimension zero and TO(X) = {E - F e KO(X) : S(E 0 ri)
is fibre homotopy equivalent to S(F@n) for some neN}. Let ψk be the
Adams operations. Then Adams [1] and Quillen [13] showed that TO(X) =
WO(X) = VO(X). Here

(1)

where the intersection jrons over all functions / : N —> N and KSO(X)j =
(kfW(ψk -\)(u):ue KSO(X) and k e N>, and

f _
VO(X) = < x e KSO(X) : there exists u e KSO(X) such that

θk(χ) = ̂  ( 1 + M) 6 i + KSO(X) (x) Qfc for all k e N i (2)

where θk are the Bott exponential classes, and Q^ = {n/km : n,m e Z}.
For a prime /?, let JO(X),\ denote the localization of JO(X) at p. Since

JO(X) is a finite abelian group, JO(X),p^ is isomorphic to the /?-summand of
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JO(X). Moreover, since the localization is an exact functor on the category
of finitely generated abelian groups, JO(X)<p^ ^ KO(X),pJTO(X),py Using
Atiyah-Tall [5] we obtain two computable formulae of TO(X)^pγ The
significance of those two localized formulae of TO(X) is shown to find the
/-orders of elements of KO(CPm).

In §2 using the fact that KSO(X) is an orientable y-ring and the p-adic
completion KSO(X)p is an orientable p-adic y-ring, we define a natural ex-
ponential map Θ°k

r : KSO(2)(X) -> KSO(X)p for each positive integer k. If k
is odd, θ°k

r is the extension of θ°k

r: VectSO(2)(X) -» KSO(X) defined in Dieck
[6]. From the main theorem of [5], we obtain the commutative diagram in
Theorem 2.3.

Our main result is the following two formulae of TO(X), ^ which can be
obtained directly from Theorem 2.3.

TO(X\p) = (</Λ - l)(KSO(X)(p)). (Formula I)

( k
v t- if^n( v\ Ωor(v\ ' ^ _ ' /- 1 _ι_ v^c\( v\X E AθC/( A ) / _ \ , (//, (X) — G 1 ~τ Aol/lΛ ) _

\ / (p) Kp \ / 1 -)- W v //7

Ί

for some u ε KSO(X}n }. (Formula II)
J

Formula I (resp. Formula II) of TO(X)^ may be thought of as the local-
ization of WO(X) (resp. VO(X)) at p.

Let y = rξm(C)-2 where ξm(C) is the complex Hopf line bundle
over CPm. In §3 we apply Formulae I and II of TO(X)(p) to find

bm(Pm(y',™\'>^^'>™t)}> the /-order of Pm(y;m\,... ,mt) = m\y + ni2y2+
- +mty<jΞ^KO(CPm). Onder [10] has given the formula TO(X)(2} =

(ψ3 - l)(KO(X)^) by using Dieck [6] Ch. 11, and applied this formula to give
computation of the 2-primary factor of bm(y). We obtain sharper results in
giving a simple formula for the 2 and 3 primary factors of the /-orders of the
canonical generators of JO(CPm). Finally in §4 we show how Formulae I and
II of TO(X),p} can be used to compute the group JO(X) for our illustrative
example X = CP4.

2. Two computable formulae of

Let G be a finitely generated abelian group. For a prime p let G^) =
{g/m : g e G and m e Z with (/?, m) = 1} denote the localization of G at /?, then
G(p) is canonically isomorphic to Z^j ® G. Also, let Gp = lim G/pnG denote

n
the p-adic completion of G. Then Gp is canonically isomorphic to Zp ® G.
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For a rational number q,vp(q) denotes the exponent of p in the prime fac-
torization of q.

LEMMA 2.1. (i) Let G be a finite abelian group. Then the following
groups are canonically isomorphic:

G(p] ^Gp^ G(p)

where G(p) = {g e G : the order of g is a power of p}. Consequently, if g E G
has order m, then the order of g/\ in G^ which is equal to the order of\®g in
Gp is equal to pv^ml

(ii) If G is a finitely generated abelian group, then G^ is canonically
embedded in Gp.

PROOF. Clear.

Now, our aim is to show how to apply the work of Atiyah-Tall [5] to find
JO(X)(y Let KSO(d)(X) be the group obtained by symmetrization of the
semi-group VectSO(d}(X) of all isomorphic classes of real vector bundles over
X with structural group SO(dri) for n= 1,2, Λ . . KSO(d)(X) is monomor-
phically embedded in KO(X) as the subgroup of classes x such that ω\(x) = 0
and dim(x) = dn for some n E N, i.e.,

KSO(d}(X) = {E-FE KO(X) : dim(£ - F) = dn and E, F are orientable}.

Let KSO(d)(X) = {E- F eJίSO(d}(X} : dimE = άimF}. _[t is easy to

see that KSO(d)(X) = dZ® KSO(d)(X}_aκά KSO(d)(X) =KSO(l)(X) for
each d > 1. So, ̂ simplicity, we write KSO(X) instead^ of KSO(d}(X). It is
well known that KSO(X) is an orientable y-ring and KSO(X)p is an orientable
p-adic y-ring (see [5], or [6] Ch. 3).

Let k be an odd integer and / be a set of kih roots of unity u / 1 which
contains from each pair w, u~l exactly one element. The operations θ£r :
VectSO(2)(X] -^KSO(X) are defined in [6] and given by

θ°k

r(E) = kmλ-u(E)(l - uΓm = λ-u(E)(-ιΓlΓ (3)
ueJ UEJ

where 2m = dirn.E. θ™ does not depend on the choice of / [6].

If (fc,/0 = l then θ°k

r(E) is invertible in KSO(X)p. So θ°k

r can be
extended to KSO(2)(X) with values in KSO(X)p. Also, by using the fact that

θk

r is a natural exponential map, it can be shown that θk

r : KSO(X) — > 1 +

KSO(X}p where 1 + KSO(X)p is the multiplicative group of elements 1 + w

with w E KSO(X)p. The operations p% : KSO(X)p -> 1 + KSO(X}p are given
by

uεJ
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Now we shall show how to define θ™k and p^k for k > 1. If p φ 2 then

1/2 e Zp. So we may define θ%k : KSO(X) -> 1 + KSO(X\. by

-ι> " "

ez(E-F) =

Similarly, we may define

/«M = I Π >•»/«-

LEMMA 2.2 (,4fl analogue of Proposition 5.3 0/[5]). If (p,k) = 1
following diagram where i(x) = \ ® x is commutative:

KSO(X)

KSO(X)

REMARK. If (/?,/:) = 1, then Q^ c Z^. So, using Proposition 3.15.2 of [6]
and Examples 5.14 and 5.15 of [1]-Π, we see that θk

r agrees with Bott operation
θk which is denoted by pk in [1]-Π.

Now, we give our main theorem.

THEOREM 2.3. Let p be a prime number and kp be a generator of
(Z/p2Z)*, the group of units in Z//?2Z. Then the following diagram is
commutative:

0

KSO(X)(p}tΓ -?-> KSO(X)(p]/TO(X)(p}

p

o > κsb(x)pjΓ —^ i + κsό(x)pίΓ > o

Here the index Γ indicates that we factor out the image of (ψ p — 1) and q is the
quotient map.

PROOF. First, we show that rows and columns are well-defined and exact.
(a) Using Lemma 2.1, the fact that localization and completion are exact
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functors on the category of finitely generated abelian groups and the naturality
of Adams' operations, we have the following identifications:

KSO(X)(p)/(ψ*> - l)(KSO(X\p}) = KSO(X)(p)/((^ - \)(KSO(X)))(p)

~ *> - i)(κsb(x))\p)

' - l)(KSO(X)))p

= KSO(X}p/(^ - \)(KSO(X)p).

Hence, i : KSO(X)(p) -> KSO(X)p defined by i(x/m) = (m)~l ®x induces a

monomorphism ir : KSO(X)(p)Γ -> KSO(X)pΓ.
(b) By Theorem 4.5 of Atiyah-Tall [5], p™ induces an isomorphism

pζtΓ : KSb(X)^Γ -, l+KSO(X)ptΓ.

(c) To show that (i/Λ - l)(KSO(X)(p}) £ TO(x)(pY Let

^eKSO(X)(p}.

Then

fώk'E - E\ (\l/kpF - F\

\ m l \ m l

By Quillen [13], there is a fiberwise map of degree a power of kp between ψkpE
and E. So, by Dold's Theorem mod k in [1]-I we have

ke

p(ψk'E-E)eTO(X}

for some integer e. Since (p,kp) = 1, we have

\ m J kPm

Similarly,

!^r£ e τ°(χ\P}
and hence

Thus, we have an epimorphism q : KSO(X)(p^Γ —> KSO(X)(p^/TO(X)(pγ
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(d) It is easy to see that θ°k

r

p : KSO(X)(p} -> I + KSO(X)p given by
θ°k

r

p(x/m) = (θ°k

r

p(x)γ/m is an exponential map. Let

E-F

Then nS(E] is stably fibre homotopy equivalent to nS(F) for some n with
(p,n) = 1. So by [1]-(Π) Corollary 5.8,

θ(E - FΓ = *1+U) e 1 + KSO(X)p

for some ueKSO(X). Since (/>,«) = 1, (1 + w)1/wm = 1 + w e 1 +KSO(X)p

for some w e KSO(X)p. Hence

/£-^\ = £ _ l/m = _ ̂  1/IWIp \ m l p p

(l + u)1/nm ~ 1 + w '

Thus ^r induces a homomoφhism

) -+ ι+κsb(x)p>Γ.

Finally, we show the commutativity of our diagram.
Let x/m e KSO(X)(p}. Then θζ o q(x/m^(φkp - \)(KSO(X)(p])) =

θk

r(x/m + TO(X)(p)) = θk(x)llm + (φkp -_\}(\ H - K S O ( X ) p ) . On the other
hajid, (pζtΓ o ir)(χ/m + (*"> - \}(KSO(X](p]}) = pζtΓ(i(x/m) + (**> - 1)

(KSO(X)p)) = p°k

r

p(i(x/m)} + (φkp - 1)(1 + KSO(X)p. Now, the result follows
from Lemma 2.2. This completes the proof of Theorem 2.3.

COROLLARY 2.4 (Formula I of TO(X)(p]).

TO(X}(p] = (ψkp - \ ) ( K S O ( X ) ( p ] ) .

PROOF. Since θk

r o q = p°* Γ o /Γ, q is injective and hence an isomorphism.

So, TO(X\p) = (**> - l)(KSO(X\p)).

COROLLARY 2.5 (Formula II of TO(X)(p)).

TO(X)(p} = (x e KSO(X)(p) : θ°k

r

p(X) = t/Λ°, + ") e 1 + KSO(X)p

for some u e KSO(X) }•
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PROOF. Clearly, the right hand side of the above equality is a well-defined
subgroup of KSO(X)(py The fact that z> is injective implies that

i(κso(x\p)) n (tfΛ - \}(κsΌ(x)p) = i((ψk> - \)(κso(x\p))). (?)

The fact that p™ Γ is an isomorphism implies that

pζ(^ - \)(KSO(X)p) = 0/Λ - 1)(1 + KSO(X\). (8)

Now \Qt^xεTO(X)(p]. Then by Formula I of TO(X)(p},xe
0/Λ - \)KSO(X\p). Hence from (7) and (8)

n

for some u e KSO(X)p. _
If X is a finite CPΓ complex, then JO(X] is a finite abelian group. So, by

Lemma 2.1, the /^-primary factor of the order of x + TO(X) eJO(X) is the
order of jc + TO(X)^ e JO(X)^, the smallest power of /?, ̂ m such that ^m;c e

3. /-orders of elements of KO(CPm)

We will show howjto^use Formulae I and II of TO(X)^ to find the
/-orders of elements of KO(CPm). As we have shown in [9], we only need
to consider the case when m is even, that is m = 2t for some t e N. Let
Pm(y;mι,...9mt) = mλy + m2y

2 + - - - +mty
l e KO(CPm) = Z[y]

In order to find the /-order bm(Pm(y,m\,...,mt}) of Pm(y;m\,...,mt) the
following two lemmas will be useful.

LEMMA 3.1. Let kp be a generator of (Z//?2Z)*. If n e N, then
(i) v2(32"-l) = 3 + v2(π).
(ii) /w an odd prime p,

v (k2n - 1) =
p l + vp(n) i f 2 n = 0mod(p-l).

PROOF, (i) is well-known.
(ii) Let vp(k* - 1) = s. Then k* = 1 mod ps. If s > 1, then

is cyclic of order ps~l(p - 1) with generator /^ ([7], Theorem 2, p. 43). So, 2«

= X'H/7 - !)^ for some d E N with ( r f>/0 = 1 ([7]5 Lemma 3, p. 42). Hence,

LEMMA 3.2. Let kp be a generator of (Z//?2Z)* and r ,^eN with r > s.
Then



306 Mohammad OBIEDAT

(ii) For an odd prime /?, i

2r

0 /y/»2r+l .

PROOF, (i) ̂  v2(ΠU32' - 1)) = ΣU v2(32'' - 1) = ΣU(3 + "*(/)) -

(ii) If p > 2r + 1, then vp(k* - 1) = 0 for each i = j , . . . , r. Hence

-υU
/

If /> < 2r + 1, then ^ - 1 = Id for some de{l,...,r}.

= Σ 0
i=s

2/=Omod(/)-l)

But ) = v,(i). So

= Σ
ϊ=l

2r
Σ Σ

This completes the proof.
Now, let kp be an odd generator of (Z//?2Z)*, say ^ = 2^+1 (take

£2 = 3).

REMARK. We take kp to be odd only to reduce the work. Our argument
works equally well for the case when kp is even.

According to Formula I of TO(X)^, vp(bm(Pm(y;m\,... ,w,))) is the
smallest non-negative integer v such that

(9)

in KO(CPm)(p} for some u e KO(CPm)(pr
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From [2] Theorem 2.2, and [8] Lemma 3.6,

where

So, for r = 2,. . . , t

2rq

7-0

where

i\+ ~+hτ=j

Let w 6 (CPw)(/?). Then w = 01 j 4- ---- h fl^f for some αz e Z(/7). Using
(10), it is easy to see that the coefficient of yr in (1 -\l/kp)(u) is

ιwhere yr = — — + I.
L kp \

So, from (9), we need to find the smallest v which solves the following
system of equations in Z^:

r-l

l=Jr

where r = 1 , . . . , t.
The above system has the following solutions:

r (1-*/)... (1-λf)

where Mk \ (m\,..., mt) = m\ and for r = 2 , . . . , t
"•pi

r-l

ί/iii, ...,/«,) = Cr_M(l - A£< ί + l >). . . (I - k
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Now, ar e Z(/J) implies that Vp(ar) > 0. So

Ό > max v

is a necessary and sufficient condition on v so that (9) is satisfied. Hence, we
have:

THEOREM 3.3.

= max < Vp
r =l,. . . ,r l \ . = 1

Now, let us use Formula II.
Let θkp(Pm(y]mι,...,mt)) = 1 + a,\(m\, . . . ,mt)y+ + α^mi, . . . ,m,)/

for some α/(mι, . ..,mt)eZp (see [9], Theorem 2.2). vp(bm(Pm(y,m\, . . . ,ra,)))
is the smallest non-negative integer t; such that

θkt(Pm(y ,mι,. . .,/«,))'' = ^ in ! + ̂ (CPm), (11)

for some u e ΈO(CPm)p. Let M = έu H ----- h ί>r j' for some bt € "Lp. With the
above symbols, the coefficient of yr in \l/kp(u) is

To avoid excessive notation, we write θkp(Pm(y,m\, . . . ,mt))p =\+u.\y
+ ---- h α^r where α, involves quantities containing p in some way.

From (11), we have \+ψkf(jji) = \+d\yΛ ----- h r̂ yt where

i+s=n

Thus
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which implies that

Σ.*>o biCίs - ΣΊ'j Cr-^ibi Lk r(W l j β .. ?m,)

where Lk \ (m\,..., mt) = OL\ and for r = 2 , . . . , / ,

Now, bi eZp for / = 1 , . . . , t implies that

Vp(Lkf,r(mi,. . .,«,)) > Vp((k2

p - 1) ... (k2; - 1)).

So, we have:

THEOREM 3.4. vp(bm(Pm(y;m\,... ,mt))) is the smallest v such that

vp(Lkpίr(mι,...,mt)) > vp((k^ - l)...(/^ r- 1)) for each r = l , . . . , f .

Using Lemma 3.2 and any one of the above two theorems, we directly

obtain:

COROLLARY 3.5. If p>2t+\, then vp(bm(Pm(y;m\,... ,w/))) = 0.
Consequently,

JO(CPm) ^ 0 JO(CPm}(pγ

all primes p<m+\

From Theorem 3.3, to find bm(Pm(y;m\,...,mt}) we only need to find
vp(Mkpίr(m\,... ,ra,)) for r = 1 , . . . , f. Therefore, it may be a good problem if

one tries to obtain a general formula for vp(MkPs(m\,... ,mt}) in term of r,kp,

m\,...,mt. Next, we compute Vp(M^ ) Γ(0,... ,mr = 1,0,... ,0)) for /? = 2,3

and then we obtain simple formulae for the 2 and 3 primary factors of the

/-orders of the canonical generators of JO(CPm). These simple formulae

have been already conjectured in [9].

For /i = 1 , . . . , r, the /-order of yn + TO(CPm) is bm(Pm(y, 0 , . . . , mn =

Then Mk r = 0 for r < n, M^p^n — 1 and for r = n + 1 , . . . , ί,



310 Mohammad OBIEDAT

r-1

Mi — V^ C (\ — k2(i+lϊ} Π^A>,r— /_ W-ι,ιVl % )'-(*•

. ιwhere 7,- —— + 1.
L Λ/, j

Hence, from Theorem 3.3, we have

PROPOSITION 3.6. If p = 2 or 3,

r = n, . . . , t.

Recall that ki = 3. So we need to show that V2(M^^r) = r — n + Σs=n vι(s}

PROOF. We prove this proposition for p = 2 (the case p = 3 is similar),

ill that k2 = 3. So
r — n + 1 , . . . , /, where

.. / ?/ t

r-.J('-:

by induction on r. If r = n + 1 then v2(M3)Γ) = v2(
2n) = 1 + v2(n). So let

Λ + 1 < r < t. We claim that v2(33l'-Γ(Γ^.)(l - 32(/+1))... (1 - 32^-1))M3,/) >

v2(32r~3 ̂ f1^M3>r_i) for each max{7Γ,/ι} < / < r - 1. Suppose that

max{yr,«} < / < r — 1. Then by induction hypothesis and Lemma 3.2,

V2

_ + 3(r - i - 1) + i - n - v2(/) + ̂  v2(s).
/ s=n

On the other hand,

So, we need to show that v2(r

2ίz) + 2(r - / - 1) > v2(2/). But this follows

directly from the fact that v2(r^.) = v2(2/) - v2(r - i) if v2(2ι) > r - ί - 1. This
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completes the proof of our claim. Hence, v2(M3?r) = v2(32r~3P(r~1MM3?r_ι ) =

r — n + Σ^V2(s). This completes the proof.

Unfortunately, the above proof can not be used for p Φ 2, 3.

THEOREM 3.7. If p — 2 or 3 and 1 < n < t. Then

PROOF. Let p = 2, then v2(bm(y")) = max{v2(ΠL(1 - 32'')) - v2(M3,r) :
r = Λ, . . . , f} = max{2r - 2n + 2 + v2(2r) : r = «,..., t} = max{s - 2(n - 1) +

v2(s) : 2n < s < 2t}. The case p — 3 is similar.

REMARK. If Proposition 3.6 holds for some values of p other than 2 or 3,

then Theorem 3.7 also holds for those values of p.

4. An illustrative example JO(CP4)

If KO(X) = <Λ, . . . , yn\ then /6>PO(/?) = <«!,, = Λ +

= jn + TO(X)^y. So to compute /O(Ar)(/,), we need to find all relations

between αi^, . . . ,αn?/7, i.e., we need to find "sufficient" solutions for the
equation:

cιαι>p + - - - H - c π α Λ ) j p = 0 in JO(X)(p}, c ι , . . . , c « e Z . (12)

This implies that c\yλ -\ ----- h cn^w e TO(X),y Now using formulae I and II

of TO(X)^py one may try to find "sufficient" solutions for (12).

KO(CP4) = {aιy + a2y
2 :al,a2eZ,y*= 0}. So, JO(CP4)(p} = <αι,p -

j + TO(CP4)(p}, *2,p = y2 + TO(CP4)(p}y = <αι ί jp> + <α2,p>. Tojnd relations
between αιι/? and α2?/>, we need to solve cιαι5/, + c2α2ι/7 = 0 in JO(CP4)^py

JO(CP4)(2} = <α1|2 = ^ + TO(CP4)(2)> + <α2,2 = > + ΓO(CP4)(2)>.<αι,2>

is cyclic of order 64 and <α2>2> is cyclic of order 16. Also, 2α2?2 =

40αι,2^ Hence /O(CP4)(2) ^ Z/2Z0Z/64Z. Similarly, JO(CP4)(3} ^ Z/9Z
and /O(CP4)(5) ^ Z/5Z. Thus, by Corollary 3.5, we obtain a well-known

result:

THEOREM 4. 1 . JO(CP4) ^ Z/2Z 0 Z/64Z 0 Z/9Z 0 Z/5Z.
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