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ABSTRACT. We consider the maps between classifying spaces of the form BK x BL —>

BG. If the restriction map BL -»• BG is a weak epimorphism, then the restriction on

BK is known to factor through the classifying spaces of the center of the compact Lie

group G. Replacing the weak epimorphism BL —> BG by the map BSU(ri) —> BU(n),

analogous results are obtained. The method of our proof is, however, different from

the one used for the discussion about weak epimorphisms. Namely we will use not

mapping spaces but admissible maps.

The first author [9] and [10] has studied the pairing problem of classifying
spaces for weak epimorphisms. In this paper we will consider the problem for
a map which is not a weak epimorphism. As a test map, we take the map
BSU(ri) —» BU(ri) induced from the inclusion / : SU(n) —> U(n). More pre-
cisely, for a connected compact Lie group K, we determine a subset of the
homotopy set [BK,BU(ri)]9 denoted by (Bi)L(BK,BU(n)), which consists of the
homotopy classes of maps α : BK —> BU(n) such that there exists a map (called
a pairing] μ : BK x BSU(ri) —> BU(n) satisfying μ\BK ~ α and μ\BSUtn\ — Bi.
We notice that [α] e (Bi)L(BK,BU(ri)) if and only if, for some μ, the following
diagram is homotopy commutative:

BSU(n)

Bi

BK x BSU(n) —ί—> BU(n)

BK

Our results will indicate that the group theoretical analog also holds for some
maps other than weak epimorphisms.
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THEOREM 1. For the inclusion i: SU(ri) —» U(n), if a connected compact

Lie group K is semi-simple, then any map in (Bi)L(BK,BU(ri)) is null
homotopic:

(Bi)±(BK,BU(n))=0

COROLLARY 2. Suppose Z(U(n)} denotes the center of U(ή). Then the
following hold:

(1) If κe(Bϊ)L(BU(k),BU(ri)), the map a factors through BZ(U(n)) up to
homotopy.

(2) Moreover, we have (Bί)L(BU(k),BU(n}) = Hom(U(k),Z(U(ri)}).

We recall [9, Proposition 1.1] that α e (Bί)L(BK,BU(ri)) if and only if the

map Bi: BSU(ri) -» BU(n) factors through map(BK,BU(n))0ί. The group K
can be replaced by any subgroup H of K, and if H is a /?-toral group for a

prime p, work of [6] and [16] shows that the mapping space map(BH,BU(n))β

with β ~ v\BH is mod p equivalent to the classifying space of the centralizer of a

group homomorphism p : H —» U(n) which induces the map β, that is β ~ ^/?.

In each of [9] and [10], the pairing problem is reduced to an argument of such
mapping spaces. In this paper, however, we do not use these mapping spaces.

Instead, admissible maps on the mod p cohomology will be used. We note
that this method works for the connected compact Lie groups at certain primes

or certain p-compact groups, and gives another proof for many cases discussed

in [9] and [10].
The admissible maps for other cohomology theories as well as the real-

izability as maps between classifying spaces have been studied. See, for

example, [1], [3], [7], [13] and [17, §2] etc.

Some of the results in this paper first appeared in the second author's

master thesis written under the direction of Professor Toshio Yoshida. The
second author would like to thank her advisor for his help and encouragement.

She would also like to thank Yusuke Kawamoto for his suggestions.

1. Admissible Maps and the Pairing Problem

For connected compact Lie groups G and K together with maximal tori TQ

and Tκ respectively, suppose H*(BG;VP) ^ H*(BTG>ΈP)
W(G} and H*(BK]¥P)

^H*(BTK ΈP)
W(K\ Here W(G) and W(K) denote the Weyl groups.

Recall that H*(BG',¥P) is isomorphic to H*(BTG;fp)
w(G\ for instance, if p

does not divide the order of W(G). For any map / : BG —» BK we have the

commutative diagram
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H*(BTK;VP)

/" r

Here φ is admissible [2] and [1]; namely for any w e W(G) we can find wf e
W(K) such that wφ = φwf.

Recall that H*(BTn;¥p) is a polynomial ring in n variables of degree 2.
Hence the admissible map φ over the Steenrod algebra can be regarded as
a rank(G) x rank(K) matrix. For instance, using the idea of [1, Proposition

2.16], one sees that the admissible self-maps for H*(BU(ri)',Έp) ^ H*(BTn;
Hp)Σn have the following types of n x n matrices:

an\

a2

la

b

and

\b b

b\
b

aj

Of course, the symmetric group Σn = W(U(n)) acts on H*(BT";¥P) by the
permutation representation.

A /7-compact group defined in [5] is a loop space X such that X is F^-finite
and that the classifying space BX is ¥p-complete. The /7-completion Gp of a

compact Lie group G is a /7-compact group if πo(G) is a /?-group. For odd
dimensional sphere S2n~l, it is known that its /7-completion has a loop structure
if n divides p — 1. This is an example of /7-compact groups other than compact
Lie groups. More examples are known as Clark-Ewing /7-compact groups
[15, §2]. We note here that H*(B(S2n~lYp F,) ^ H*(BTl;Vp)

z/n, and that the
admissible maps are similarly obtained for maps between classifying spaces of
^-compact groups X with H*(BX ΈP) ^ H*(BTX ΈP)

W(X}.

PROPOSITION 3. Let ί : SU(n) —> U(n) be the natural inclusion. Suppose
that for an odd prime p a space X is a connected p-compact group with maximal
torus TX and Weyl group W(X) such that the mod p cohomology H*(BX',¥P)
is ίsomorphic to the ring of invariants H*(BTχ;Έp)

w(x]. If f = (Bi)* and
ocef-L(BX,BU(n)p)y then α* : H*(BU(n);fp) -> H*(BX',ΈP) factors through
H*(BZ(U(n))',fp) over the Steenrod algebra.

PROOF. For α e fL(BX, BU(n)p ) there is a pairing map μ which gives the
following commutative diagram
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BSU(nYp

BK x BSU(n

BK

Assume rank(X) = k so that H*(BX;VP) ^ H*(BTk;Έp}
w(x]. We note

that H*(BU(n)',Vp)^H*(BTn;Vp)
w(u(n}} and H*(BSU(n);Vp) ^ H*(BTn~1',

Φp] w^su^ for any odd prime p. Consider the admissible map φ which gives
the commutative diagram

H*(BU(n);fp) ^^ H*(BX^p)®H*(BSU(n)^p)

We recall that φ can be regarded as a (k + n— I) x n matrix. If φx is
a k x n matrix expressing the admissible map which covers α* and φs is a
(n-l)xn matrix expressing the admissible map which covers /*, then the
(k + n — 1) x n matrix φ is decomposed as follows:

Φx

Φs

The (n — 1) x n matrix φs is given by the following:

1 0 -Γ

Φs =

0 1 -1

and W(SU(n)) is isomorphic to the symmetric group Σn. The representation
as a subgroup of GL(n-l,Vp) which makes H*(BSU(n);¥p) ^ H*(BTn~l\
^^w(su(n}} js generate(j by the permutation representation of Σn-\ together

with the following (n — 1) x (n — 1) matrix:

/ I

0

\o

0 -1\

1 -1

0 -I/
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For instance, if n = 4, the subgroup of GL(3,Fp) isomorphic to the symmetric
group is generated by the following matricies:

and

Since φ is admissible, for any σe W(SU(n)} we can find σ' e W(U(ri))
such that

Ik °VM = fM n<0 σ)\φs) \φs)

where Ik denotes the k x k identity matrix. For σ\,σιt W(SU(n)\ we see
that σ\φs = σ2φs implies σ\ = 02 Hence the set of (n — 1) x n matrices {σφs \
σe W(SU(ri))} has n\ elements. Consequently the admissibility of φ tells us
that φxσ

f = φx for any σ' e W(U(ri)). This implies that all column vectors
are the same:

Recall that the center Z(U(ri)) consists of the following diagonal matrices:

'C

c,
where ζeS1. So the admissible map φx which covers α* is expressed as the
product of two admissible maps:

a\

Thus we obtain the desired factorization of homomorphism:

H*(BZ(U(n));fp)

This completes the proof. Π
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REMARK. In Proposition 3, the prime p is assumed to be odd. When p =
2, the analogous result holds for n > 3, since in this case H*(BSU(n)\¥2) =
H*(BT»-l]¥2)

w(su(n)). If n = 2, however, we note that H*(BSU(2)]¥2) is a
polynomial ring generated by the degree 4 element which is not isomorphic to
the ring of invariants. This means that the admissibility won't work.

Note that Proposition 3 is a result about j^-maps, homomorphisms over
the mod p Steenrod algebra jtfp. We claim that there is an j/2-map

φ : /r(ΛC/(2);F2) - H *(*S£/(2);F2) ® H*(BSU(2);¥2)

such that each of the restrictions H*(BU(2)-,¥2) -> H*(BSU(2)-,¥2) is
induced from the map BSU(2) -+ BU(2). The j/2-map H*(BU(2);¥2) -+
H*(BSU(2);¥2) does not factor through H*(BZ(U(2));¥2) for degree reason.
The existence of the jtf2-map φ is merely algebraic. Geometrically, using
admissible maps on 2-adic K-theory, one can show that there is no map
BSU(Σ)2 x BSU(2)2 -> BU(2)2 whose restrictions are induced from the in-
clusion SU(2) -> U(2).

Here we recall that H*(BO(2)-,¥2) =¥2[w\,w2] with deg(wj) = i, and
H*(BU(2)]¥2) =¥2[c\,c2] with deg(ci} = 2i. Turning back to the existence
of φ, the j/2-map is obtained from the following observation: Doubling
the degree, we can see that the j/2-algebra structures of H*(BO(Σ)\¥2) and
H*(BSO(2);¥2) are same as those of H*(BU(2);¥2) and H*(BSU(2)]¥2)
respectively. Since SO(2) is abelian, there is a multiplication BSO(2) x
BSO(2) -> BSO(2), and the composition with BSO(2) -> BO(2) gives us a map

x BSO(2) -* JΪO(2)

Doubling the degree of the j/2-map obtained from this map produces the

2. Proof of the Main Result

Using Proposition 3, we will prove Theorem 1 and Corollary 2, which give
some results about a map other than a weak epimorphism. For connected
compact Lie groups L and G, a map EL — > BG is called a weαfc epimorphism
[11], if we have a fibration F -+ BL -+ BG such that /f*(ί2F;Q) is a finite
dimensional Q-module. The map BSU(n) — » BU(n) with F = Sl can not be a
weak epimorphism.

PROOF OF THEOREM 1. For β e (Bi)'L(BK,BU(n))9 if / = (&')£ and α =
, then
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Recall that i f/? does not divide the order of the Weyl group W(K), then
H*(BK]VP) ^ H*(BTK;VP)

W(K). In fact, it is known that if p is odd and K is
/?-torsion free, H*(BX-,¥p) is isomoφhic to the ring of invariants. Since K£ is
a connected/7-compact group, Proposition 3 implies that α* : H*(BU(ri);Fp) —>
H*(BKp

A;¥p) factors through H*(BZ(U(n));¥p). Notice that the restriction
β\Bτκ is induced from a homomorphism from TK into a maximal torus Tn of
U(n). Notice also that the homotopy set [BTκ,BTn\ is completely determined
by matrices whose entries are integer. Consequently β\BTκ must factor through
BZ(U(ri)). Since the connected compact Lie group K is semi-simple,
its universal covering K is a product group K\ x K.2 x - Kr where each 1-
connected Lie group KI (1 < / < r) is simple. Let q : K —> K be the projection.
A result of [8] shows [BK^BG] = 0 for any connected compact Lie group G
with rank (AT/) > rank((?). Since β\BTκ factors through BZ(U(ri)), we can show
that each of the maps BKi—>BU(ri) factors through BZ(U(ri)), using the
fibration BZ(U(n)) -» BU(n) -» B ( U ( n ) / Z ( U ( n ) ) ) . Hence, if rank(£/) > 2,
the restriction β Bq\B^. is null homotopic, since Z(U(n)} = Sl. If Kj = S3 =
SU(2) and ξ = β - Bq\B^ then ξ e (Bi)±(BSU(2),BU(n)). For an odd prime
p, an argument analogous to the one we used in the proof of Proposition 3 is
applicable:

H W Vp)

I
H"(BU(n);Fp) —^ H*(BS3;Fp)®H*(BSU(n);¥p)

For φχ with φ = ( .x } in the proof of Proposition 3 taking X =
\Φs /

we see φx = (a - a) for some integer a. Note that the Weyl group of S3 is
Z/2 = { + !}, and we have

In-ι\φ
„'

for some σ'εW(U(ri)). This implies —a —a so that a = 0. Consequently

β' By\BKi® ^OΓ any '• Therefore β\BTκ ^ 0 and hence β ~ 0 by a result of
[12]. D

PROOF OF COROLLARY 2. Suppose α e (Bi)^(BU(k),BU(n)}. If 7 : SU(k)
—> U(k) is the inclusion, we see that the composite map α Bj is contained in
(Bi)L(BSU(k},BU(n)}. Since SU(k) is simple, Theorem 1 implies α - .67 ~ 0.
Thus we see that the map α factors through BS1 up to homotopy:
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BSU(k)

BJ
1 \

BU(n)

where the map BS1 —» BU(n) is induced from the identification of S1 with the

center of U(ri). An argument analogous to the one used in [9] and [10] implies
the desired result. Π
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