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ABSTRACT. Stationary measures for discrete-time interacting particle systems on the
one-dimensional lattice are considered. In our systems infinitely many particles can
change their states simultaneously, and the change of each particle state is affected by
particles on the surrounding sites. We extensively improve the relative entropy method
and make it applicable to such discrete-time particle systems generally. We prove that
the stationary measures for Ising models are given by a unique Gibbs state and those for
exclusion processes are given by canonical Gibbs states.

1. Introduction

In this paper we aim to establish a general way of analyzing stationary
measures for discrete-time interacting particle systems on the one-dimensional
lattice. In our systems the particles on sites of Z change their states at each
time according to a given probabilistic rule which satisfies the local equilibrium
condition. The number of sites at which changes occur simultaneously is
infinite, and the probability of changing a state at each site is affected by
the particles in the range of distance R from the focused particle. As such
processes we treat discrete-time stochastic Ising models and interactive
exclusion processes on the one-dimensional lattice Z. Applying the relative
entropy method carefully, we generally discuss a wide class of discrete-time
interacting particle systems satisfying the local equilibrium condition. We then
determine the structure of stationary measures for the Ising models and the
exclusion processes.

Many results have been obtained concerning time evolutions of interacting
particle systems (see [6] and the bibliography in [7]). However, in most cases,
their time parameters are continuous. We are interested in discrete-time inter-
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acting particle systems which allow states of particles to change at infinitely
many sites simultaneously. This setting is extremely different from the con-
tinuous-time cases which allow the change of state at only one site (or finitely

many sites) at an instant. This means that, for any interval [i,j] in Z, the

particles outside of [/, j] contribute to every term of the equilibrium equation
for the particles in [ί,j]. Hence, differently from the continuous-time cases, we

can not isolate the terms which are affected by the particles outside of [ i , j ] .

This makes the analysis difficult. Furthermore it unfortunately prevents us

from extending the present results to higher dimensional cases.
The well-known tools for the analysis of stationary measures for inter-

acting particle systems are the coupled Markov method ([5, 10]), the relative
entropy method ([3, 4, 11]) and recent technologies concerning the entropy of
probability density (see, e.g., [8, 9]). The relative entropy method is very
useful when one wants to assert that, if a stationary measure for the process is
once known, then every stationary measure has the same property as that of
the known measure. In this paper we improve and extend the relative entropy
method employed in [12], and make it applicable to general finite-range
interacting particle systems satisfying the natural conditions (FDl)-(FDS) in

the next section. This improved method provides us with parallel treatment of

stationary measures for the Ising models and the exclusion processes on the

one-dimensional lattice.
In the main body of this paper we restrict our argument to the stochastic

Ising models because the notations are rather simple, and in order to avoid

confusion with the exclusion processes. We will treat the exclusion processes
at the end.

In §2 we first give some notations and definitions, and introduce discrete-
time stochastic Ising models on Z satisfying the local equilibrium condition
together with a simple example. We then state Theorem 1 which determines
the structure of stationary measures for the Ising models. The proof of
Theorem 1 is given in § 3 by applying a series of lemmas whose proofs are in
§4. In §5 we give an example of such Ising model. These arguments also
work for exclusion processes. An application of our method to discrete-time
interactive exclusion processes is discussed in §6.

2. Definitions and results for stochastic Ising models

Let 3C = {-hi,— 1}Z be the space of spin-configurations on Z. For a
given η = ( . . .η_\η$η\...) e #", we consider that the spin-orientation at site
/ e Z is up [resp. down] if η. = +1 [resp. -1]. We endow 9C with the product
topology of the discrete topology on {+!,-!}. For / < y, i,j e Z, the set of

all basic cylinders , [Λ, α, + ι . . . q-\aj\j = {η e X : ηt = Λ/, i < / < j}, α / . . . α, ε
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{+1, -l}j~i+\ is denoted by #,- y . We put V = {0} U {\J.^ V^}. As Borel
structures on 9C we adopt J^y = σ(^/,7 ) and 38 = σ(#), where σ(#, j) [resp.

σ(<g)] is the σ-field generated by #ij7- [resp. #]. Given a = ί[α, Λ/+ι . . -Λ/-ια/]7

we define A<α> e #/,./, I <ί,j <J, to be an element of #/,/, which is rep-

resented such as /[&/ . . . bi-\ai . . . α/fy+i . . . ft/]/. A nested notation έ/<c<A<α>»
is sometimes abbreviated like rfcAα. For an arbitrarily fixed a e #,-,_/, which will

be clear in each context, we use a notation Σ/κ*>e#/y in order to indicate a
summation over all elements A<α> in #/}/ with α fixed.

Now let us introduce a random flip of spin-configuration on Z starting

from η. Let {/^ = P(η, •) | j/ e #"} be a set of probability measures on X. We
consider that P(η,a), ae&, is the probability that a configuration η at time

/ jumps into a set α c 3C at time f + 1. Hence if we assume P( ,ά) is -̂
measurable for every α e J*, we have a set of transition probabilities {P(η,ά)}
and can define a discrete-time Markov process on X under which each spin on
Z undergoes a random change of spin-orientations. Before describing more

precise properties of P(η,ά), it seems to be useful to give here an example of

such

EXAMPLE. Suppose 0 < 00,^,^ < 1 and set θ+\ = α0αι, θ-\ = o^βl.

For η = (.. >Ύ\-\ntf]\ •) let us write % = -̂ . Then it is easy to check that
the relation

(2.1) />(,, t[ήtήM . . . rjjlj] = αo1 .̂I% and

(2.2) ^(17, ̂ ! Π A2 Π . . . Π AH) = ]£=l P(η, As]

for As =is [ήis . . . ήjs]js with is+l -js>2

determines a probability measure P(η, ) on ^ (see (5.1)). This system

{P(η, •)} is a special case of the example given in Section 5 with R = 1, J0 = 0

(/J0 = αo) and J\ = -logl -^-} . In this process the change of spin-orientations
2 \Pι/

on the sites / and 7 with / — j\ > 2 is mutually independent from (2.2).

Below we describe the precise properties of P(η,a) which we require for
our discrete-time Ising models. We will call the corresponding Markov process

(DI) for short.
We introduce a Hamiltonian Jίf(a) as follows: Let .R be a positive integer

and {/o, J\ , - , JR} <= R- For « = / [«/ - ^/]7

 e *Ί ,y we define

which is the energy on the sites {/,...,./} for α = /[Λ, . . . Λ / ] y w.r.t. the self-
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potential JQ and the pair potentials Jr, r = 1 , . . . , R. We assume that our
transition rules Pη, ηe%, satisfy the following natural conditions (FD1)-

(FD5):

(FD1) P(η,a) = Pη(ά) > 0 for every η and a e ̂ tj\

(FD2) Given a e #,-,_/, P(η,a) is ^/_jRj+Λ-measurable as a function of η.
(Hence we can use a notation P(A, α), beΉj-Rj+R, in the below.)

(FD3) (i) For every α, α e #,-,_/ and A<*> e ^/_jRj +jR,

(2.3) exp{-^f(A<α>)}P(A<α>,α) - exp{-^(A

(ii) For every H>, we<gi+Rj-R, α<*>,5<*> e«Ί j7 and A < * > e

Vi-Rj+n, 7 - * > 2Λ,

(2.4)

(FD4) There exists a positive integer Λ^ (>Λ) such that values

f (if <c<&<«>», £<*<«»)

α, α

L = 0 or /?,

are independent of α and ά.

(FD5) There exists a constant M \ > 0 such that

for any αe #/,_,-, A<*>,A<*> e ^_L

0 < L < ̂ i + 3tf.

Let us give some comments on the above conditions. The condition
(FD2) means that the change of states on the sites {/, . . . ,7} is affected by the
spins at most on the sites {/ — /?,. . . ,y + P}. The condition (2.3) in (FD3) is
the usual local equilibrium condition, which plays an essential role in our proof.
The (FD4) states that changes of spin-orientations near the boundaries of each
interval are not affected by spins far from the boundaries. The last (FD5)
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requires some kind of uniformity of the rate of change of spin-orientations near
the boundaries.

We remark that the condition (FD4) is equivalent to the condition

(FD4')

because

P(Jrhn 7»hn\ ( . P(fίrhn ^hn\Λ ~l

and

P(dcba, cba) ~ P(dcba, cba)/P(cba, ba)

We will use (2.4) together with (FD4) and (FD5) for proving the necessity part
of Theorem 1 . We also remark that if we put w = w = 0 formally in (2.4)

then it reduces to (2.3) (see Concluding Remark 2). We will call the condition

(2.4) the "Finite-range Dynamic local equilibrium".

A probability measure v on S£ is called a Gibbs state associated with the
self-potential JQ and the pair potentials Jr, r = 1 , . . . , R, if its conditional

probability v{a\^c

ij}(η] of a e #/,, given Λfj = σ{«/,/|/ < / < / or j < I < J]

is equal to

Ξιj(η)~l exp[- tf d-R[η^R . . . η^ai . . . atfj+l . . . ηJ+R]j+R)],

where Ξij(η) is the normalizing factor which depends on i,j and η (see, e.g., [2,

6]). It is obvious that the above definition is equivalent to the following one:

v is called a Gibbs state if it satisfies

(2.5) v(*

for every α, a e %>ij and £<*> e <£i-R

The set of Gibbs states is written by .̂ In the one-dimensional case it is

known that & φ 0, and, moreover, $& — 1. We remark that if Pη satisfies

(2.3), then the condition v e ,̂ namely (2.5), is equivalent to the following

equation:

(2.6) v(A<α» P(A<α>, α) = v(A

for every α,αe^ ) 7 and A<*> e ^/_J

A probability measure v on 9C is said to be stationary for the Markov

process defined by the transition probabilities P(η, •), η e S£, if it satisfies

dv(η)f(η)=\ dv(η)\ P(r},dξ)f(ξ)
% J& J%
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for all bounded J^-measurable functions /. Let J be the set of stationary

measures for our process (DI).
Now we can state our theorem as follows.

THEOREM 1. Assume the conditions (FD1)-(FD5). Then J> = &, that is, a
probability measure v on & is stationary for the discrete-time stochastic Ising

model (DI) if and only if it is a Gibbs state associated with the potentials Jr,

r = 0 , l , . . . , Λ .

Thus stationary measures for (DI) is unique and coincides with a unique Gibbs

state with potentials Jr. As a corollary we have

COROLLARY 1. The stationary measure for the discrete-time stochastic Ising

model (DI) is reversible, that is,

(2.7) ί v(dη)f(η) \ P(η,dξ)g(ξ) = \ v(dη)g(η) \ P(η,dξ)f(ξ)
)% J9C J% J%

for all continuous functions f and g.

The analogous results also hold for discrete-time exclusion processes. We
describe them, Theorem 2 and its corollaries, in §6.

3. Proof of Theorem 1

We divide the proof into two parts, that is, a sufficiency part and a
necessity part. Most of this paper will be devoted to the proof of the necessity

part.

PROOF OF THE SUFFICIENCY PART. The sufficiency is almost obvious.

Indeed for α e Vij9 by (2.6),

v(A)P(A,α)
}y '

PROOF OF COROLLARY 1. For the proof it is sufficient to check (2.7) for the
case / = χa and g = χb, α, b e #, under the condition (2.6). But this is easy.
In fact, if α e ^/J5 b e #/,/, ί < I < j < J, then
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f v(d>l)xM ί P(n,dη'
JX JX

= f v(dη)P(η,b]
Ja

= f dv(η)P(η,a)= f v^k ίv) [ P(η,dη')χa(η'). D
J A J^ J^

In the rest of the section we prove the necessity part. In the following

discussion by μ we represent the unique Gibbs state with potentials Jr,

r — 0, . . . , R, and by v an arbitrary probability measure on 3C. We remark that

for μ it holds that

(3.2) μ(A<α»Wα>,α) = μ(A<α»Wα>,α), α,α 6 «/ι7 , A<α> E ̂ -_Λ,y+Λ

from (2.6). We use the notation Ψ(x) for the function xlogx, x > 0, with

^(0) = 0 as usual. The relative entropy of v with respect to μ on

{-N,-N+l,...,N-l,N}, W e N , is defined by

Suppose that the initial distribution of (DI) at t = 0 is v. Then the

distribution of (DI) at t = 1 is given by v( ) = §v(dη)P(η, •), and hence by (3.1)

for α e ^-NN

where

(3.5) ^-)

Therefore concerning the relative entropy of v we have an inequality



144 Hirotake YAGUCHI

by the convexity of Ψ. The difference is denoted by Λ^:

(3.6) AN(v) = IN(v) - HN(v) > 0, # = Λ + l , Λ + 2, . . . .

The key to the necessity part is to show that ΛN(V) = 0 if v is stationary
for (DI). We divide the argument into a series of lemmas, whose proofs are
given in the next section. The first step is to show that ΛN's are monotonically

increasing w.r.t. N:

LEMMA 1. Suppose v(a) > 0 for every nonempty aeΉ. Then we have

ΛN(v) >ΛN-ι(v).

The next step is to state that if v is stationary, then AN(V)'S are bounded
above.

LEMMA 2. Suppose v is stationary for (DI) and v(d) > 0 for all nonempty
a e Ή. Then there exists a positive constant c such that 0 < Λχ(v) < c for all

From Lemmas 1 and 2 we can show that

LEMMA 3. Suppose v is stationary for (DI) and v(a) > 0 for all nonempty
Ή. Define

,
> Σ;<*> X(c,y<v» g

where ce(g_N_2R-κ,,N+2R+κl, ve^-N+2R,N-2R and j><u> e^-ff-R-Kι,N+R+κ{

Let δ > 0 and γ > 0. Then for an arbitrarily fixed j>< >, if N is sufficiently
large, it holds that

Here Σc Σv ^ ^e summation over c and v satisfying g(c,y(υy) >δ.

This lemma states that if v is stationary then the sum of X(c, j<t>»'s over
c, y and t? which satisfy g(c,y(vy) > δ becomes very small as TV goes to infinity.
(Note that the function g is nonnegative.)

The following lemma reflects the strict concavity of the function log.

LEMMA 4. Suppose v(a) > 0 for all nonempty a e%>. Define g(c,y(v^) as
in Lemma 3. Then for each sufficiently small y > 0 we can choose δ > 0 such
that



Application of entropy analysis to discrete-time interacting particle systems 145

(3.8) if g(c,y(*y)<δ then 1 - <γ

for every j<r> w/fλ v fixed. Further we can take δ to be independent of c, v and N.

Using Lemmas 3 and 4 we can prove the next essential lemma:

LEMMA 5. Suppose v is stationary for (DI) and v(a) > 0 for all nonempty
α e #. Then lim^α, ΛN(v) = 0, and hence ΛN(v] = 0 for all N(>R).

We finally verify the assumption in the previous lemmas.

LEMMA 6. If v is stationary, then v(ά) > 0 for every nonempty a e ' t f .

PROOF OF THE NECESSITY PART OF THEOREM 1. By Lemma 6 we have
v(a) > 0 for a φ 0, and hence AN = 0 for all N by Lemma 5. Since Ψ is

'strictly convex, this means that the values
y

that is, they are independent of w e ^-

are the same for all w.
a
From this and (3.4) and

the stationarity of v we see that via) = — 7-̂  — ̂  for any H>. Let u. ύ e

€ -

Then

(3.9) v(awvu) =
X(awvu, wvu)
P(awvu, wvu)

P(awvύ, wvu)

P(awvu, wvu)
\-^* P(bάwvύ, awvu)

P(awvύ,

.-^
vίbawvu]

^ '

by (3.5). Especially if we take u = ύ in the above, we have

v^* P(bάwvu.awvu) ,
v(awvu) =

, wvu

Therefore applying the equalities

P(awvύ, wvu) _ exp{-Jf (awvu)} -Jf (rιι)}

P(awvu, wvu) exp{— 3tf (awvu)} -Jf (vu)}

(uy] / P(wvύ,

ύy, wv(u,y}/P(wvύ,

P(bάwvύ,

P(awvύ,
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which follow from (2.3) and (FD4'), to (3.9), we obtain

This yields v(riί)exp{-Jf(rfi)} = v(ι?«)exp{-^f(t?if)}. Hence (2.5) is proved.

D

4. Proofs of lemmas

In this section we give the proofs of lemmas which are used in the

preceding section. We frequently use notations such as ΉN, aw, Σα>

ΣϋU' ' instead of #_#,#, α<M>>, Σ«*<*>> Σ*<*> Σ*<*>'' ' ' resPectivelY for

brevity.

PROOF OF LEMMA 1. From (3.6) we have

Then by the concavity

(4.1) α - log(6/fl) + c - log(d/c)

<(a + c) log[(b + d)/(a + c)] (α, 6, c, rf > 0)

of log-function, it holds that

/ , ~\ -
(4.2)
v ^

^ v^ v^ /v^* v/^ Σ, ΣΛΣ, *(•>
and hence

(4-3) AN(V]

where -N+\(a]N_^ = _N+ι[a..N+\ . . .ajv-i]jv-i- Rewriting the sum X)a into the
form Σce^_, Σαβ^ and applying (4.1) again to Σa*, we finally get
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- ΣC Σ. (Σ; Σ; ̂ («.
T^y - Σ, Σ. *«• "

here we have used £* Σ * Jf(ac, wt?) = JΓ(c, ») and J]~ ^)Λ ^(αc, *) =

Σ, Σl Σ; x(ίc, *β) - Σ.- ̂ (^ «)• π
PROOF OF LEMMA 2. From the stationarity of v and £] - P(A, α) = 1 we

have

μ(a)

r—\ v^—>* V ( e l )
y y . v(ba)P(bά, a) log -^-(.
-^a *-^b μ(a)

Since

by (3.5), (3.6) is reduced to

ΣΔ^w

μ(aw) P(ba, aw]
x -̂ —— x —^ -̂μ(baw) P(a, w)

[by P(bά,ά) = P(ba,a)(μ(bά)/μ(ba)} from (3.2)]

Ξ Σ.Σ.ΣI ΣI Γ, x Γ2 x Γ3 x Γ4 x ΛT(α,Hθ x (-Γs).

Then the lemma follows from the facts (i) 0 < Γi, TS, T^ < 1 (because each

measurable set in the numerators is a subset of the corresponding denomi-

nator's), (ii) 72 is bounded above uniformly (because μ is a Gibbs state), (iii)
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-T5<e-> (by -Ψ(u)<e-^ (iv) ΣίΣ*tl=24R, and (v) Σ. Σ, *(«, "0 =
Σα v(α) = 1 (since v is stationary). Q

PROOF OF LEMMA 3. Just as (4.2) and the following in the proof of
Lemma 1 we have

> ΛN+R.

Therefore

P(c,yv)/X(c,yv)

Σ ί\—r * / \ λ i X—r * / •* v
> X(c,yv) log > _X(c,yv)—f v^/v, w λ ιv\Δ^y * >) °\Δ^y P(c,yv)/X(c,yv)J

g(c,yv)>δ

for arbitrarily fixed j< >. On the other hand, from Lemmas 1 and 2 it holds
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that

0 < ΛN+2R+Kl - ΛN+R < yδ

for all sufficiently large TV. Hence the lemma follows. Π

Let G be a constant defined by G = 22(3R+Kϊ\

PROOF OF LEMMA 4. Step 1. Let {y\v,y^v,...,yGv} be the set of all Xt>>
for a given v. For simplicity we use a notation Xk [resp. Pk] instead of
X(c,ykv) [resp. P(c,ykv)}> and assume that X\ = X(c,yv). For given c and v
we put te,ι = mm{Xk/Xι \ k = 1, . . . , G} and LCιV = max{Xk/Xι \ k = 1 , . . . , G}.
We first show that if δ < 2"1 log(l + Aff^l + GM\)~l) (M\ is the one given in
(FD5)) then 0 < inf{<fCjl,|0(c,yv) <δ} < sup{LCιV\g(c,yv) < δ} < oo, that is, for
all c and v satisfying g(c,yv) <δ (Xk/X\ys are bounded below and above
uniformly by some positive constants. If inf{tCiV\g(c,yv) < δ} = 0, then we
can choose a sequence ̂  =x£}/xF\ n= 1 ,2, . . . , such that lim^oo^

= 0. By renumbering the indices if necessary we can assume that lim^oo X^ /
X(^ = 0. In the following we omit the superfix (n) in X^ and P(£\ and put

x = ΣLiχ(k]> * = x-X2n} τhen we have

Xk

= log 1+Πτ

log 1+ — (

and
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1 ~ Ί ) ==

+f

which lead to a contradiction such as g(cn,yvn) > δ for sufficiently
large n. So inf{/C)i;|#(ί ,jt;) < δ] = 0 does not happen. Now suppose that
sup{Lc,v\g(c,yv) < δ} = oo does happen, and that we can choose a sequence

L(£Vn = χ(n}/χ("\ n = 1, 2, . . . , such that lim,^ X(^/x[n] = oo. Then, put-
ting x = x-x[n\

, ,
Γ +log + l o g

Ξ Z5 + Z6 + Z7

and

1 -^7 =

which lead to a contradiction such as g(cn,yvn] >δ for sufficiently large n.
Hence sup{LCjp|0(c,.yι?) < <5} = oo also does not happen.

Step 2. The rest of proof is easy. Let (5/) be a sequence satisfying ^i >
^2 > ^3 > — » 0. To complete the proof it is sufficient to show that
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supc,t?

as / — » oo. Suppose it is not true, and so, there exist cι and t?/, / = 1,2, . . . ,

such that

g(ci,yvϊ)<δi and

Without loss of generality we can assume that li

However this implies that

1 —

± XG\
+. — l

does not converge to zero because of the strict concavity of log-function and

the boundedness of (A^/A^'s. This is a contradiction. Π

PROOF OF LEMMA 5. Step 1. Since

HN(v) = HN(v)

P(aw,w)Ψ

(αw, w)
[by (3.2)],

where 7(αw, w) Ξ v

the difference (3.6) is reduced to

(4.4) ΛN(v) =

Let us show first

(4.5) li = 0.
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We have

v—r* v—>* v— v * v— \

~ Δ^b Δ^a a Δ^w * 2w» ve

\v(bάwv)P(bάwv, awv) - v(bawv)P(bawv, awv)\

and, using K\ in (FD4),

v(bawv) = y^^ _ yH«.. „ „ v(cybάwv)

X(cybawv,yv] [by (3.4)]

1

* *

Σ * V^* V^ P( A w

c,y 2-^y Z^v y ' P(cjAαwr,jί;) P(cybάwv, ybawv)

+ΣΦ Σ ^(^^)^(c37?άwt>'^flHΊz^c,^ A^I; ^ P(cybawv, ybawv)

= T(bάwv)

Therefore setting ά<*> = a<*> and α<* > = «<*> respectively in the above

yields

(4.6) <v ' ~ -

{\T(bάwv}\P(bάwv,awv} + \T(bawv)\P(bawυ,awv)

+ \S(bάwv)P(bawv, awv) — S(bawv)P(bawv,άwv)\]

Step 2. Let us show that SΊ = S2. Because

X(cybάwv, ybawv)

P(cybawv, ybawv)

v(dcybawv)P(dcybawv, cybάwv)

P(cybawv, ybawv)

P(dcybawv, cybawv) Qxp{—^f(dcybawv)}

P(cybάwv, ybawv) exp{ -^(dcybawv)}

v(dcybawv) x Up(a) x Ue(a)
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by (2.3), we have

51 = P(bάwv, awv) ]Γ*^ ̂ , P(wv, v) JΓ*^ v(dcybawϋ) Up(a) Ue(a)

and

52 = P(baw, άwv) Σ*cy Σ, P(wv, v) J^ v(dcybawv) Up(a) Ue(a).

From

L Y
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it holds that

rr ( \ r r / ~ \ J rr / \ rr / ~ \£/,(.) = C/Xα) and Ue(a) = U.(a)

Since

by (2.4), we finally have Si = S2.
Step 3. Let us show lim^oo T\

into three parts:
iΛΓ^oo T2 = 0. We split the term T\

= Σ;
where

= Σ;, Σ;
X(cybάwv,ybaw(ϋy)

X(cybάwv, J<r)) P(cybawv,

3 =3

,ybaw(vy) >δ
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As to V\ we have
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by (3.8), and so, by (3.4)

Σ * V* . V* - Y" ,P(bάwv,awv)Vιb £—ja.a /— /H'.H' /— »τ. r v 7 / 1

P(AάH>ι;,αH>ί)y^* vv ' ' Z-^c,y

Since P(bάwv,awv) < P(άwv, wv) and J]^ = 1,

ΣI Σ* - Σ* Σ Σ* Σ- Σ-Δ^b £-^a,a L^w Z— /r 1 έ-^c,y έ—sy ±-^v

Σ
*

y, b,a, w Σ'' - » - - Σ Σ-ίΣ*c,j),A,α, w Z—^t? Z_-Ί' ^Z—/j

by (3.7) for sufficiently large TV. Analogously, using (FD5),

Σ * ^* . y^* .b Z_-/α,α Z_-/>v, w

* v:
j, A, α, w Z— ĵ;

by (3.7). Summing up these estimates gives us

As we can take γ arbitrarily small, it follows that liniΛ^oo T\ = 0. Similarly
we can show that lim^oo T2 = 0. Thus (4.5) is verified.
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Step 4. Let us complete the proof. From the definition of X(a, w) and
y(α, w), for each wv and v it holds that

(4 8) Σ.* ΣI χ(™> wt)) = ΣI ΣI
and so

Σ«* ΣiU ΣMW***'™) ~ Π«**»

Hence ΛJ^(v) in (4.4) is equal to

Σ * Y^* V^ r v f ~~ \ vί ~~ \Λ\ μ(wv)P(wv,v)> > {Xfawv, wv) - Y(awv, wv)} log ' — 'α Z^,M> Z^,,«Λ v ' ' v ^ ;/ 6

whose log-part it bounded uniformly from (FD5) and (2.5) with v = μ.
Therefore liniΛ^oo Λ)y (v) = 0 follows from (4.5). Finally let us show that

liniΛ^oo Λ)J (v) = 0. If we put the value of (4.8) as fc(wί,ι?), we have

k(wv,v)

and each argument of Ψ is less than or equal to one. It is elementary to check
that for a given ε > 0 there exists a constant Mε > 0 such that | Ψ(u) — Ψ(v) | <
ε 4- Mε\u — v\ for every 0 < w, t; < 1. Hence for any fixed ε > 0 we have

1̂ 1 ̂  Σα* Σ^ Y.v^(^v)ε + Mε\X(awv,wv} - Y(awv,wv)\).

Since ΣSΣ.>^(^^) = 1 and £«* Σ^ 1 = 24*, we have the result. Q

PROOF OF LEMMA 6. This is almost obvious. Let a be in ^/j. Since

Σbe<g._R v(b) — 1, there exists an element A such that v(b) > 0. Then
v(α) ="5(2 > 0 by (3.5) and (FD1) with Λ<α<^» = A. Q

5. An example of the discrete-time Ising model

We give here an example of the discrete-time stochastic Ising models
satisfying the conditions (FD1)-(FD5). Its intuitive interpretation is given at
the end of this section.

Let 2£ = {(*, y) eZ2\x< y,y-x< R}, and set ^ = {o,x}^. We
endow δ with the topology given by the product of the discrete topology and

consider a Borel structure on £ as usual. Let α/ and βiy / = 0, 1,. . . ,/£, be
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numbers in (0, 1). Suppose that the configuration of spins on Z at time / is
ηG&. Then we attach the state o (permission) or x( prohibition) to each

( c, y) e 2£ as follows:

i) if ηχ — + 1? attach o [resp. x] to (x,x) with probability αo [resp. 1 — αo];

ii) if ηx = — 1, attach o [resp. x] to (x,x) with probability βQ [resp. 1 — /?0];

iii) if ηx = ηy for x Φ y, attach o [resp. x] to (x,y) with probability ay_x

[resp. 1 - αj,_J;

iv) if ηx φ ηy for x Φ y, attach o [resp. x] to (x,y) with probability βy_x

[resp. l-βy_x]'9

v) the random choices of o and x for (x, y) e 2£ are independent.

For each η the above rule defines a probability measure Qη on <f . As a time
evolution of spin-configurations on Z as time goes to t + 1 , we reverse the spin-

orientation on the site ί if and only if the state o is attached to all (x, y) e 3f

satisfying {x, .y} 3 /, i.e., to every (/ — R, / ) , . . . , ( / , / ) , . . . , (/ ,/ + /?). Thus the

transition probabilities Pη,ηe%, are determined through β .̂ It is easy to

check that each Pη satisfies (FD1)-(FD5) except (FD3). Let us check (FD3).
By the definition of P(η, •) = Pη( ), we have for α, α e ̂ ; and A<*> e Ήi-Rj

here α^ and 5# for k < i oτ k >j should be read as fe^. Therefore if we define

the above equals

which yields (2.3). Let w>, w,α<*>,α<*> and A<*> be as in (FD3)-(ii).
Since the set of sites at which reversal of spins occurs in P(A<α<H>»,α<H>» and
P(A<α<M>»,α<H>» is the same, and since the reversal of spins for w is the same,

it holds that
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i+R-l+r

Π
R
r=1 ex

Σ
i+R

k=i

J-R+r

k^R

which is (2.4). Therefore by Theorem 1 and the succeeding remark we know
that the stationary measure for the corresponding discrete-time stochastic Ising
model is unique and is given by the Gibbs state associated with the potentials

Λ,r = 0, . . . ,Λ.
We can interpret this example as an extended version of (2.1) and (2.2).

Indeed, letting δx( y) = 1 if x = y and =0 otherwise, define

El..

and

for As = is[ηis... ηjs}js with is -js-\> 2,

here Π means that the product over ηk_rηk should be taken only for the pairs

(nk-ritfki such that nk-r and ϊϊk belong to different As. Then it is elementary
to check that this inductively determines a probability measure P(η, •) on
9C> which coincides with the measure determined by Qη. In fact, denoting

i[ήi... ήk-ι\k-ι ^ k+ι [ήk+\ - ήj\j by ί[ήi - tfk-i * ^+ι ^/]yj we have

(5.1)
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- - ήj\j)

- *

and so on. We remark that P(η,AsΓ\As+ι) = P(η,As)P(η,As+ι) if 4+1 — js >

R+l.

6. Application to exclusion processes

In this section we apply the preceding argument to discrete-time interactive
exclusion processes on the one-dimensional lattice. In the processes particles
are located at most one on each site of Z, and each particle executes mutually
exclusive random walk to an unoccupied site situated within the range R.
Infinitely many particles can move simultaneously at time f = 0, 1, — The
movement of a particle is affected by the particles which are located within the
distance R from both of two related sites concerning the jump of particle. As
3C we take {0, 1}Z and consider that there exists a particle at site i iff ηi — 1 for
(...ηi_lηiηi+l...)G3ΐ. We use the notations given in the previous sections
without any comments.

Let ίf = {(x, y) e Z2 1 0 < y - x < R}. Each element of % indicates a
pair (x, y) of sites x and y at which the values ηx and ηy of (. . .η-\ηtfl\ . .)
might be exchanged. We put & — {0, 1} ,̂ and let ω(;c, y] denote the value of
ω e $ at (x, y) ε 2£ . (For convenience sake we set ω(x, y] — 0 if (x, y) φ 3?.}
Because we want to exchange values ηx and ηy for all (x, y)9s satisfying
ω(x,y) = 1, we extract an essential part δ* from δ by

<T = {ω e « : if ω(x, y) = 1 then ω(x,y) = 0 for all (x,y) e 3f

satisfying (x,y) Φ (x, y) and {x,y} Π {x, y} Φ 0}.

Then for η = (. . .η_\ntf\\ . . .) e #", by exchanging the values ηx and ηy iff
ω(x,y) = 1, we can associate each element ω of <ί* with a movement of
infinitely many particles starting from η. (We identify a jump of particle from
site x to y with an exchange of values ηx = 1 and ηy = 0.) Let Fω,ω E δ *,

denote the map from 3F to #" defined by Fω(^) = (. . .η'_ιijΌη[ - •) where

(^»^) = (^^J iff ω(x,.y) = 1, and ̂  = ηt otherwise.
A random movement of infinitely many particles starting from η is

introduced by indicating a map Fω,ωe<ί*, randomly. Let {Θη\η e %} be a
set of probability measures on δ satisfying Θη(β*} = 1. Suppose eη, η^θC, is
a random element which takes its value on δ and of which distribution is Θη.
(As such eη we can take an identity map on δ.) Then by considering a
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random map V£η, we have a random configuration Veη(η) ε 3C starting from η
whose distribution is controlled by Θη. For η ε 9C and A e ̂ , we define

(6.1) P(η, A] = Prob{ V€η(η) e A} = Θη{ω ε £ : Vω(η] ε A},

which is the probability that η jumps into a set A. In this way we can define a
set of transition probabilities {P(η,A)} and have a discrete time Markov
process on 9C under which each particle undergoes an interactive exclusive
random walk on Z. In the following we will refer to this process by (DX).

Let <?, j7 , / < 7, z',7 ε Z, be the set of all basic cylinders E c δ given by

£" = {ω e $ : ω(x, y) = exy for (x,y)e£?,i<x<y< y}, exy = 0 or 1,

and endow <? with the Borel structure generated by σ(<^,7), / < j. (It is easy to
see that <ί* is a measurable set.) We define E(x, y) just as ω(x, y) and put
E(x, y) = 0 if E(x, y) is not defined. We also set

g*j = {Eε gtj \ if E(x, y) = 1 then E(x,y) = 0 for all (x,y) e &

satisfying (x,y) Π (x, j) / 0 and (x, j)) 7^ (x, ̂ )}.

For ίe^ let F<£> denote an element of δ^jJ<iJ<J, such that
/r<£'>(x, _y) = £"(x, j) for every (x, _y) e J^ with i < x < y < j. We also define
Σp^y analogously to ΣA<*> Given E e S*+Rj_R let P^ : ̂ ί)7 -̂  ^/;7 be the map
defined by ^(f[α, . . . fl/]7 ) =/ [α . . . Λ ]7 where (a'x, a'y) = (ay, ax) iff E(x, y) = l,
and a'x = ax otherwise. For ae^tj, A<α> e ^/;/ and Ee$*+Rj_R, we set
P^(Λ<α» = A<P^(α)>. The definition of energy J f(α) for a is the same as
before except for ax = 0 or 1 .

We assume that our transition rule Θη, η e S£, whose example will be given
at the end, satisfy the following (FD1X)-(FD5X):

(FDlχ) Θη(g*} = 1 and θ(η,E) = Θη(E) > 0 for every η and E ε δ^.

(FD2X) Given E e δ*j, Θ(η,E) is ^_/?j+jR-measurable as a function of η.

(FD3X) (i) For every b ε %i-RJ+R and E ε <$*p

(2.3X) Θ(VE(b),E}^v{-tf(VE(b})} = 6>(*,£)exp{-^(A)},

(ii) For every b ε %i-RJ+R and D ε £*+2RJ_2R, ^</>> ε g^

(2.4X)

where

if D(x, y) = 1

(x, y) otherwise.
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(FD4X) There exists a positive integer K\(>2K) such that values

b e

e I

L = 0 or 2R,

are independent of b and E.

(FD5X) There exists a constant M\ > 0 such that

< M\

for any b e %>i-R-Lj +R+L, D e $* , £"</)>, £*</)> e S*_L ,+L and 0<

Notice that the exchange of particles on the sites {/ , . . . ,7} is influenced by the
particles on the sites at most {/ - R, . . . , j + R} from (FD2X). Therefore if b is
in &ij, then P( ,A) becomes ^z_2/?J+2JR-nιeasurable.

A probability measure v on ̂  is called a canonical Gίbbs state associated
with the potentials /r, r — 1, . . . , R, if it satisfies

(2.5X) v(£

for every a.άe^ij and A<*> e ^7/_jRj +jR, satisfying

(Notice that in (2.5X) the value of JQ in ^f( ) has no meaning because of (6.2).)
The set of such canonical Gibbs states is written by 9C. We remark that if
Θ( , •) satisfies (2.3X), then v e ̂ c is equivalent to the following equation:

(2.6,0 Θ(VE(b),E}v(VE(b)} = β(A,£)v(A), E e <f *y, b e VI-RJ+R.

The set of stationary measures for (DX) is denoted by /. Now we can state
the theorem as follows:

THEOREM 2. Assume the conditions (FD1X)-(FD5X). Then / = <§c, that
is} a probability measure v on 9C is stationary for the exclusion process ( DX) if
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and only if it is a canonical Gibbs state associated with the potentials Jr,r —

!,...,*.

It is known (see, e.g., [1, 2]) that the set of extremal points of the closed
convex set ^c in the topology of weak convergence is equal to the set

[μp - oo < p < oo}U{<50,<5ι}, where μp is the unique Gibbs state associated
with the potentials Jr,r= 1 , . . . ,Λ, with JQ = /?; and <5o [resp. δ\] is a Dirac
measure concentrated at 0 = (. . . 0000 . . .) [resp. 1 = (. . . 1 1 1 1 . . .)] e 3C.
Therefore we get the complete description of the stationary measures for (DX).

COROLLARY 2. ext,/ = {μp\ — oo < p < 00} U {OQ,OI}} where ext/" denotes
the totality of extremal points of /.

We can also prove that

COROLLARY 3. Every stationary measure for ( DX) is reversible.

Proofs for the sufficiency part of the theorem and the corollary 3 are just
the same as for (DI) by virtue of (6.1) and (2.6X). For the proof of necessity
part we have only to set

(3.4X) v(«)

where

(3.50 X(*,B)

and apply the preceding argument under the assumption v({0, 1}) = 0. (It is
easy to see that {0, l}e/Π^ c.) In this case IN(v) in (3.6) becomes

and ^(c,j<r» in Lemmas 3 and 4 should be replaced with

( F/rM - 1 ίg(c, ^C » log

where c e ^-N-2R-κ,,N+2R+κ^, C e <f*ΛΓ+3Λ .̂3^ and /"<*>£ £'LN_R_κ^N+R+Kλ.
Then the proofs given in Sections 3 and 4 go through parallelly after few
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modifications: (1) The constant G which will appear in the proof of Lemma 4
such as {/Γι<C>,/Γ2<C>,...,/ΓG<C>} varies depending on C, but they are
uniformly bounded from above. Hence we can apply the proof of Lemma 4
for each class of C whose G is the same. (2) In exclusion processes, differently
from stochastic Ising models, particles can not be born or disappear; and so a
configuration of particles on an interval can not change to another configuration
directly at one time. Hence the proof of Lemma 6 needs another discussion
under the assumption v({0, 1}) —0. However the proof is elementary.

PROOF OF LEMMA 6 FOR (DX) UNDER v({0, 1}) = 0. It is easy to see that if
a e <gtj is of the form α =, [VEn VE^ ...VEl (*)]_,- for some b e #/,/, v(A) > 0,
and {Ek}

n

k=l c #ϊ+RίJ_R, then v(α) > 0. This implies that if v(α) = 0, then
v(c) = 0 for every ceΉ satisfying Jtι(α) < |)ι(c) and tf0(α) < tto(c), where

Bι(β) = ΣL**> tto(β) = ΣLί1 -^) and so on

Now suppose V(Λ) — 0 for some a Φ 0. From the above fact we have

v(foeaΓ|Σ£-χV*^tt ι(<0 and Σ£-oo(l -**) ^ »o(«)}) = 0. This implies

v({* e ar| Σ2l-αo % < Si W or Σ£-«(l - **) < Ito(β)}) - I, and hence

//: 0\ \~^ttlW-l / r y X , \~^ilθ(β)-l f r y \ Λ

(6 3) Σ^i v(Zu) + Σ^i v(zo.ί) = 1,

where Zu = {̂  6 ΛΓ| Σ^-oo % = ?} and ZQ,, = {η e % | Σ£=-oo(l ~ %) = ^>
(Note that v(Zι |0) = v(Z0,o) = 0 from the assumption v({0,l}) = 0).

It is straightforward to show that if v(Zι)ί+έ/) = 0 for d — 1, . . . ,R, then
v(Zι^) = 0. Indeed for each η ε Z\^q choose Nη sufficiently large so that

Σ!K,+Λ Ik = 4 and Put : n =-Nn [η-N, - ^]ΛV Then define

Mitq = max{v(: η :) exp{^f(: 17 :)} 1 17 e Zι,J,

which is well-defined since v(3P) = 1. Suppose v(: ̂  :)exp{Jf(: ^ :)} =

Taking α to be : ή :=_Nή [ή_Nή . . ήNη]nή in (3.4X) we have

._ Σ,

by (2.3X) and v(Zlq+d) = 0, that is,

(: η :)
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which implies v(F/>(: ή :))exp{j f (F/>(: / / : ) ) } = M\,q for every D since
^D Θ(: ή :,D) = 1. Thus we know that v(: η :) exp{jf (: ̂  :)} = M\,q if : η : is
related to : ή : by : η := F/>(: ?/ :) for some /). By repeating this argument we
have v(: η :)exp{j f(: ?/ :)} = M\,q for all ?/ e Z\^q. But this is impossible if
M\^q > 0 since v(&) = 1; and so M\,q must be zero. Hence v(Zι^) = 0 if

v(Zu+έ/)=0 for < / = ! , . . . ,Λ
This argument gives us v(Zι^) = 0 for # = jf ι(α) - 1, . . . ,2, 1 because

v(Zι^+ ί/)=0 for q = th(α) - !,</ = !,...,# by (6.3). So we have

ΣJ^""1 v(Zu) - 0 in (6.3). Analogously we can show that Σ^"1 KA?)

— 0 by choosing ̂  sufficiently large so that Σ&IΛΓ +/?(1 - ^) — # and putting
A/0,0 = max{v(: η :) exp{^f (: η :) - ^(_# [!]#)} I ^/ e Z0,^}. Consequently the
l.h.s. of (6.3) reduces to zero, a contradiction. Therefore v(α) > 0 for any

a φ 0 if v is stationary and v({0, 1}) =0. Π

Finally we give an example of (DX) by defining {Θ(η, )\η e %}, of which
idea and interpretation are essentially the same as in §5 (see also (2.1) and

(2.2)). Let α/'s and β 's, i = 1, . . . ,Λ, be numbers in (0, 1). Suppose that the
configuration of particles on Z at time Ms η e 3C. Then we attach the state
o (permission) or x( prohibition) to each (*, y) e 2£ as follows:

i) if ηx=£ηy, attach o [resp. x] to ( x , y ) with probability ay-x [resp.

1 - <Xy-X]'9

ii) if ηχ = ηy, attach o [resp. x] to (x, y) with probability βy_x [resp.

i-^-J;
iii) The random choices of o and x are independent.

This rule defines a probability measure Qη on {o,x}^ which depends on
η. As time goes to t+ 1, we exchange the state ηx and ηy if the state o is
attached to (x, y) and the state x is attached to all ( jc, y) e 2£ satisfying

{x,y} Π {x, y} Φ 0 and (x,y) ¥= (x, y). This defines a probability measure Θη

on δ satisfying θη(δ*) = \. If we define

1 —

we can show just as in §5 that Θη satisfies (FD1X)-(FD5X). Thus, by Theorem

2, we know that the set / of stationary measures for the corresponding (DX)

is equal to the set ^c of canonical Gibbs states with pair potentials Jnr =

1 , . . . , R. Especially an extremal point of / which is different from <5o and δ\

is a Gibbs state with some self-potential /o

CONCLUDING REMARKS. 1. The proof of our theorem is making use of

the one-dimensionality of the configuration space S£ in the sense that the
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number of sites within the distance R from the boundary of each interval is
bounded uniformly. (This is used in the proofs of Lemmas 2, 4 and 5 as
estimates |J{+1,— 1}Λ(= 2jR)'s.) So our argument here does not go through
directly in higher dimensional cases.

2. We think that the conditions (2.3) and (2.4) in (FD3) should be

grasped as a special case of the following general "dynamic local equilibrium":

Let α,α e #/,_/ and Λ<*> e ^i-Rj+R. Then for every A c {/, / + 1, ... ,7}

a > a - α

where α|^ a\A is the element of ^ZJ such that spin-orientations on A are the
same as α and on J" = {/ , . . . , y} V4 the same as α, and so on. If A = {/ , . . . , 7}

[resp. = { / , . . . , / + ̂ } U {7 — JR, . . . , 7}], the above condition reduces to (2.3)
[resp. (2.4)].
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