Quantum deformations of certain prehomogeneous vector spaces III

Atsushi Kamita
(Received April 21, 1999)

Abstract

We apply our previous result [14] to the classical groups, and construct quantum analogues of the coordinate algebras of certain prehomogeneous vector spaces as non-commutative algebras equipped with actions of the quantized enveloping algebras. We also give explicit descriptions of the non-commutative counterparts for the generators of the defining ideals of the closures of orbits including basic relative invariants. In particular, quantum analogues of a quadratic form and the determinant of a symmetric matrix are naturally obtained.

0. Introduction

Let L be a connected reductive algebraic group over the complex number field \mathbf{C}, and let I be the Lie algebra of L. We denote by $U_{q}(\mathbb{I})$ the quantum deformation of the enveloping algebra $U(\mathrm{l})$ of I constructed by Drinfel'd [1] and Jimbo [5]. It is a Hopf algebra over the rational function field $\mathbf{C}(q)$. By Lusztig [6] any finite dimensional l-module V has a quantum deformation V_{q} as a $U_{q}(\mathrm{l})$-module. In order to investigate quantum analogues of results concerning geometric structure of V such as L-orbits, we need also a quantum deformation of the coordinate algebra $A(V)$. In this paper we shall construct a quantum deformation $A_{q}(V)$ of the coordinate algebra $A(V)$ for certain prehomogeneous vector spaces V, and give counterparts for the defining ideals of the closures of L-orbits on V and their canonical generator systems.

More generally, let X be an affine variety endowed with an action of L. Then $A(X)$ is a right $A(L)$-comodule whose coaction

$$
\tau: A(X) \rightarrow A(X) \otimes A(L)
$$

is an algebra homomorphism. Thus we obtain a locally finite left $U(\mathrm{l})$-module structure on $A(X)$ satisfying

[^0]Key words and Phrases: quantum groups, highest weight modules, semisimple Lie algebras.

$$
u \cdot(m n)=\sum_{i}\left(u_{i}^{(1)} \cdot m\right)\left(u_{i}^{(2)} \cdot n\right)
$$

for $u \in U(\mathrm{l}), m, n \in A(X)$ and $\Delta(u)=\sum_{i} u_{i}^{(1)} \otimes u_{i}^{(2)}$, where Δ is the comultiplication of $U(\mathrm{I})$.

Hence it is natural to define a quantum deformation $A_{q}(V)$ of the coordinate algebra $A(V)$ of an L-module V to be a $\mathbf{C}(q)$-algebra satisfying the following conditions:
(i) $A_{q}(V)$ is generated by the quantum deformation V_{q}^{*} of V^{*} satisfying quadratic homogeneous fundamental relations.
(ii) $A(V)$ is the limit of $A_{q}(V)$ when q tends to 1 .
(iii) The action of $U_{q}(\mathrm{I})$ on V_{q}^{*} is uniquely extended to a $U_{q}(\mathrm{I})$-module structure on $A_{q}(V)$ satisfying

$$
u \cdot(m n)=\sum_{i}\left(u_{i}^{(1)} \cdot m\right)\left(u_{i}^{(2)} \cdot n\right)
$$

for $u \in U_{q}(\mathrm{l}), m, n \in A_{q}(V)$ and $\Delta(u)=\sum_{i} u_{i}^{(1)} \otimes u_{i}^{(2)}$.
In our previous paper [14], we gave a method to construct quantum deformations of $A_{q}(V)$ for prehomogeneous vector spaces V of parabolic types. We have also shown there that there exist counterparts for the defining ideals of the closures of L-orbits on V and their canonical generator systems inside $A_{q}(V)$. When V is a regular prehomogeneous vector space, the generator of the defining ideal of the closure of the one-codimensional orbit is the basic relative invariant, and we obtain a quantum deformation of the basic relative invariant in this case.

Our aim is to give the explicit descriptions of $A_{q}(V)$ for prehomogeneous vector spaces V of classical parabolic types by using the method of our previous paper. (For exceptional types, see Morita [15].)

In the case of a prehomogeneous vector space of parabolic type associated to the simple Lie algebra of type A where $L=G L_{m}(\mathbf{C}) \times G L_{n}(\mathbf{C}), V=M_{m n}(\mathbf{C})$ (the action is defined by $\left(l_{1}, l_{2}\right) \cdot v=l_{1} v^{t} l_{2}$ for $\left.\left(l_{1}, l_{2}\right) \in L, v \in V\right)$, the quantum deformation $A_{q}(V)$ obtained by our method coincides with the object investigated by Hashimoto-Hayashi [2], Noumi-Yamada-Mimachi [8] and TaftTowber [11]. If $m=n$, then V is regular and $f(v)=\operatorname{det}(v)(v \in V)$ is a basic relative invariant. Its quantum deformation obtained by our method also coincides with the q-analogue of the determinant treated in [2], [8] and [11].

In the case of a prehomogeneous vector space of parabolic type associated to the simple Lie algebra of type D where $L=G L_{n}(\mathbf{C}), V=\left\{v \in M_{n}(\mathbf{C}) \mid\right.$ $\left.{ }^{t} v=-v\right\}$ (the action is defined by $l \cdot v=l v^{t} l$ for $l \in L, v \in V$), we obtain quantum deformations of $A(V)$ and a basic relative invariant Pfaffian which again coincide with the objects treated in Strickland [10].

There are two other cases.
(I) The regular prehomogeneous vector space of parabolic type associated to the simple Lie algebra of type B and D :
$L=S O_{m}(\mathbf{C}) \times \mathbf{C}^{\times}, V=M_{m 1}(\mathbf{C})=\mathbf{C}^{m}$, and the action of L is defined by

$$
(l, z) \cdot v=z l v \quad((l, z) \in L, v \in V)
$$

Under the realization

$$
S O_{m}(\mathbf{C})=\left\{\left.l \in S L_{m}(\mathbf{C})\right|^{t} l K l=K\right\}
$$

where K is a symmetric non-singular matrix, the basic relative invariant is given by $f(v)={ }^{t} v K v$.
(II) The regular prehomogeneous vector space of parabolic type associated to the simple Lie algebra of type C :
$L=G L_{n}(\mathbf{C}), V=\left\{\left.v \in M_{n}(\mathbf{C})\right|^{t} v=v\right\}$, and the action of L is defined by

$$
l \cdot v=l v^{t} l \quad(l \in L, v \in V)
$$

$f(v)=\operatorname{det}(v)$ is a basic relative invariant.
In these two cases we obtain the following results.
Theorem 0.1. For the regular prehomogeneous vector space V of type (I), a quantum deformation $A_{q}(V)$ of $A(V)$ is given by the following.
(i) Case of type $B_{n}(2 n-1=m)$.
(a) $A_{q}(V)$ is an algebra over $\mathbf{C}(q)$ generated by $Y_{i}(1 \leq i \leq m)$ satisfying the fundamental relations

$$
Y_{j} Y_{i}= \begin{cases}q^{-2} Y_{i} Y_{j} & (i<j, i+j \neq 2 n) \\ Y_{i} Y_{j}+\frac{q^{-2}-1}{q+q^{-1}} Y_{n}^{2} & (i=n-1, j=n+1) \\ Y_{i} Y_{j}+\left(-q^{2}\right)^{j-n-1} \frac{q^{-2}-1}{q+q^{-1}} Y_{n}^{2} & \\ \quad+\left(q^{-2}-q^{2}\right) \sum_{t=1}^{j-n-1}\left(-q^{2}\right)^{t-1} Y_{i+t} Y_{j-t} & (j>n+1, i+j=2 n)\end{cases}
$$

(b) Let $K_{r}^{ \pm 1}, E_{s}, F_{s}(1 \leq r \leq n, 2 \leq s \leq n)$ be the canonical generators of the quantized enveloping algebra $U_{q}(\mathrm{l})$. The action of $U_{q}(\mathrm{l})$ on $A_{q}(V)$ is given as follows.

$$
K_{r} \cdot Y_{i}= \begin{cases}q^{2} Y_{i} & (r=i+1 \text { or } n+1 \leq i=2 n-r<2 n-1) \\ q^{-2} Y_{i} & (2 \leq r=i \leq n-1 \text { or } 1=r<i<2 n-1 \\ q^{-4} Y_{i} & (r=i=1) \\ Y_{i} & \text { or } n+1 \leq i=2 n+1-r)\end{cases}
$$

$$
\begin{aligned}
& E_{s} \cdot Y_{i}= \begin{cases}Y_{i-1} & (1 \leq i=s \leq n-1 \text { or } n+1 \leq i=2 n+1-s) \\
\left(q+q^{-1}\right) Y_{i-1} & (i=n=s) \\
0 & (\text { otherwise })\end{cases} \\
& F_{s} \cdot Y_{i}= \begin{cases}Y_{i+1} & (1 \leq i=s-1 \leq n-1 \text { or } n+1 \leq i=2 n-s) \\
\left(q+q^{-1}\right) Y_{i+1} & (i=n=s) \\
0 & (\text { otherwise }) .\end{cases}
\end{aligned}
$$

(c) The quantum deformation of the basic relative invariant of V is given by

$$
Y_{n}^{2}-\left(q+q^{-1}\right)\left(1+q^{-2}\right) \sum_{i=1}^{n-1}\left(-q^{-2}\right)^{i-1} Y_{n-i} Y_{n+i}
$$

(ii) Case of type $D_{n}(2 n-2=m)$.
(a) $A_{q}(V)$ is an algebra over $\mathbf{C}(q)$ generated by $Y_{i}(1 \leq i \leq m)$ satisfying the fundamental relations

$$
Y_{j} Y_{i}= \begin{cases}q^{-1} Y_{i} Y_{j} & (j>i, i+j \neq 2 n-1) \\ Y_{i} Y_{j} & (j=n, i=n-1) \\ Y_{i} Y_{j}+\left(q^{-1}-q\right) \sum_{t=1}^{j-n}(-q)^{t-1} Y_{i+t} Y_{j-t} & (j>n, i+j=2 n-1)\end{cases}
$$

(b) Let $K_{r}^{ \pm 1}, E_{s}, F_{s}(1 \leq r \leq n, 2 \leq s \leq n)$ be the canonical generators of the quantized enveloping algebra $U_{q}(\mathrm{l})$. The action of $U_{q}(\mathrm{l})$ on $A_{q}(V)$ is given as follows.
$K_{r} \cdot Y_{i}= \begin{cases}q Y_{i} & (r=i+1 \text { or } r=n=i+2 \text { or } r=2 n-i-1>1) \\ q^{-1} Y_{i} & (r=i>1 \text { or } r=2 n-i<m \\ q^{-2} Y_{i} & (r=i=1) \\ Y_{i} & \text { or } r=n=i-1 \text { or } 1=r<i<2 n-2) \\ Y_{i} & \text { (otherwise }),\end{cases}$
$E_{s} \cdot Y_{i}= \begin{cases}Y_{i-1} & (1 \leq i=s \leq n-1 \text { or } n+1 \leq i=2 n-s \leq m) \\ Y_{n-1} & (i-1=n=s) \\ Y_{n-2} & (i=n=s) \\ 0 & \text { (otherwise) },\end{cases}$
$F_{s} \cdot Y_{i}= \begin{cases}Y_{i+1} & (1 \leq i=s-1 \leq n-2 \text { or } n \leq i=2 n-s-1 \leq m) \\ Y_{n} & (i+2=n=s) \\ Y_{n+1} & (i+1=n=s) \\ 0 & (\text { otherwise }) .\end{cases}$
(c) The quantum deformation of the basic relative invariant of V is given by

$$
\sum_{i=1}^{n-1}\left(-q^{-1}\right)^{i-1} Y_{n-i} Y_{n+i-1}
$$

Theorem 0.2. For the regular prehomogeneous vector space V of type (II), a quantum deformation $A_{q}(V)$ of $A(V)$ is given by the following.
(i) $A_{q}(V)$ is an algebra over $\mathbf{C}(q)$ generated by $Y_{i j}(1 \leq i \leq j \leq n)$ satisfying the fundamental relations

$$
Y_{i j} Y_{l m}= \begin{cases}q Y_{l m} Y_{i j} & (l<i<m=j \\ & \text { or } l=i<m<j) \\ q^{2} Y_{l m} Y_{i j} & (l<i=m=j \\ Y_{l m} Y_{i j} & \text { or } l=i=m<j) \\ Y_{l m} Y_{i j}+\left(q-q^{-1}\right) Y_{l j} Y_{i m} & (l<i \leq j<m) \\ q Y_{l m} Y_{i j}+q\left(q-q^{-1}\right) Y_{l j} Y_{i i} & (l<i<m<j) \\ Y_{l m} Y_{i j}+\left(q^{2}-q^{-2}\right) Y_{l i} Y_{l j} & (l<i=m<j) \\ Y_{l m} Y_{i j}+\left(q-q^{-1}\right)\left(Y_{l i} Y_{m j}+q Y_{l j} Y_{m i}\right) & (l<m<i<j) \\ Y_{l m} Y_{i j}+q^{-1}\left(q^{2}-q^{-2}\right) Y_{l i}^{2} & (l=m<i<j) \\ Y_{l m} Y_{i j}+\left(q^{2}-q^{-2}\right) Y_{l i} Y_{m i} & (l<m<i=j) .\end{cases}
$$

(ii) Let $K_{r}^{ \pm 1}, E_{s}, F_{s}(1 \leq r \leq n, 1 \leq s \leq n-1)$ be the canonical generators of the quantized enveloping algebra $U_{q}(\mathrm{I})$. The action of $U_{q}(\mathrm{I})$ on $A_{q}(V)$ is given as follows.

$$
\begin{aligned}
& K_{r} \cdot Y_{i j}= \begin{cases}q Y_{i j} & (r=i-1<j-1 \text { or } i<j-1=r) \\
q^{-1} Y_{i j} & (r=i<j-1 \text { or } i<j=r<n) \\
q^{2} Y_{i j} & (r=i-1=j-1) \\
q^{-2} Y_{i j} & (r=i=j<n \text { or } i<j=r=n) \\
q^{-4} Y_{i j} & (i=j=r=n) \\
Y_{i j} & (\text { otherwise }),\end{cases} \\
& E_{s} \cdot Y_{i j}= \begin{cases}Y_{i+1, j} & (s=i<j) \\
Y_{i, j+1} & (i<j=s) \\
\left(q+q^{-1}\right) Y_{i, j+1} & (i=j=s) \\
0 & (\text { otherwise }),\end{cases} \\
& F_{s} \cdot Y_{i j}= \begin{cases}Y_{i-1, j} & (s+1=i<j) \\
\left(q+q^{-1}\right) Y_{i-1, j} & (s+1=i=j) \\
Y_{i, j-1} & (i<j=s+1) \\
0 & (\text { otherwise }) .\end{cases}
\end{aligned}
$$

(iii) The quantum deformation of the basic relative invariant of V is given by

$$
\sum_{\sigma \in S_{n}}\left(-q^{-1}\right)^{l(\sigma)} Y_{1, \sigma(1)} Y_{2, \sigma(2)} \cdots Y_{n, \sigma(n)}
$$

where $l(\sigma)=\sharp\{(i, j) \mid 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}$, and $Y_{j i}=q^{-2} Y_{i j}$ for $i<j$.
I would like to express my gratitude to Toshiyuki Tanisaki and Yoshiyuki Morita.

1 Generalities

Let g be a simple Lie algebra over the complex number filed \mathbf{C} with Cartan subalgebra \mathfrak{h}. Let $\Delta \subset \mathfrak{h}^{*}$ and $W \subset G L(\mathfrak{h})$ be the root system and the Weyl group respectively. We denote the set of positive roots by Δ^{+}and the set of simple roots by $\left\{\alpha_{i}\right\}_{i \in I_{0}}$, where I_{0} is an index set. For each $\alpha \in \Delta$ let \mathfrak{g}_{α} be the corresponding root space. We set $\mathfrak{n}^{ \pm}=\bigoplus_{\alpha \in \Delta^{+}} \mathfrak{g}_{ \pm \alpha}$.

For $i \in I_{0}$ we denote the simple reflection corresponding to i by $s_{i} \in W$. Let $():, \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbf{C}$ be the invariant symmetric bilinear form such that $(\alpha, \alpha)=$ 2 for short roots α. Set $d_{i}=\frac{\left(\alpha_{i}, \alpha_{i}\right)}{2}\left(i \in I_{0}\right), a_{i j}=\frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}\left(i, j \in I_{0}\right)$.

For a subset I of I_{0} we set $\Delta_{I}=\Delta \cap \sum_{i \in I} \mathbf{Z} \alpha_{i}, W_{I}=\left\langle s_{i} \mid i \in I\right\rangle, \mathrm{I}_{I}=\mathfrak{h} \oplus$ $\left(\bigoplus_{\alpha \in \Delta_{I}} \mathfrak{g}_{\alpha}\right)$, and $\mathfrak{n}_{I}^{ \pm}=\bigoplus_{\alpha \in \Delta^{+} \backslash \Delta_{I}} \mathfrak{g}_{ \pm \alpha}$. Let L_{I} be the algebraic group corresponding to \mathfrak{l}_{I}.

The quantized enveloping algebra $U_{q}(\mathfrak{g})$ (Drinfel'd [1], Jimbo [5]) is an associative algebra over the rational function field $\mathbf{C}(q)$ generated by the elements $\left\{E_{i}, F_{i}, K_{i}^{ \pm 1}\right\}_{i \in I_{0}}$ satisfying the following relations:

$$
\begin{gathered}
K_{i} K_{j}=K_{j} K_{i}, \\
K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, \\
K_{i} E_{j} K_{i}^{-1}=q_{i}^{a_{i j}} E_{j}, \\
K_{i} F_{j} K_{i}^{-1}=q_{i}^{-a_{j j}} F_{j}, \\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}}, \\
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} E_{i}^{1-a_{i j}-k} E_{j} E_{i}^{k}=0 \quad(i \neq j), \\
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} F_{i}^{1-a_{i j}-k} F_{j} F_{i}^{k}=0 \quad(i \neq j),
\end{gathered}
$$

where $q_{i}=q^{d_{i}}$, and

$$
[m]_{t}=\frac{t^{m}-t^{-m}}{t-t^{-1}}, \quad[m]_{t}!=\prod_{k=1}^{m}[k]_{t}, \quad\left[\begin{array}{c}
m \\
n
\end{array}\right]_{t}=\frac{[m]_{t}!}{[n]_{t}![m-n]_{t}!} \quad(m \geq n \geq 0)
$$

The Hopf algebra structure on $U_{q}(\mathfrak{g})$ is defined as follows. The comultiplication $\Delta: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g})$ is the algebra homomorphism satisfying
$\Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \Delta\left(E_{i}\right)=E_{i} \otimes K_{i}^{-1}+1 \otimes E_{i}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes 1+K_{i} \otimes F_{i}$.
The counit $\varepsilon: U_{q}(\mathfrak{g}) \rightarrow \mathbf{C}(q)$ is the algebra homomorphism satisfying

$$
\varepsilon\left(K_{i}\right)=1, \quad \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0
$$

The antipode $S: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ is the algebra antiautomorphism satisfying

$$
S\left(K_{i}\right)=K_{i}^{-1}, \quad S\left(E_{i}\right)=-E_{i} K_{i}, \quad S\left(F_{i}\right)=-K_{i}^{-1} F_{i}
$$

The adjoint action of $U_{q}(\mathfrak{g})$ on $U_{q}(\mathfrak{g})$ is defined as follows. For $x, y \in$ $U_{q}(\mathfrak{g})$ write $\Delta(x)=\sum_{k} x_{k}^{(1)} \otimes x_{k}^{(2)}$ and set $\operatorname{ad}(x)(y)=\sum_{k} x_{k}^{(1)} y S\left(x_{k}^{(2)}\right)$. Then ad : $U_{q}(\mathfrak{g}) \rightarrow \operatorname{End}_{\mathbf{C}(q)}\left(U_{q}(\mathfrak{g})\right)$ is an algebra homomorphism.

We define subalgebras $U_{q}\left(\mathfrak{n}^{ \pm}\right), U_{q}(\mathfrak{h})$ and $U_{q}\left(\mathfrak{l}_{I}\right)$ for $I \subset I_{0}$ by

$$
\begin{gathered}
U_{q}\left(\mathrm{n}^{+}\right)=\left\langle E_{i} \mid i \in I_{0}\right\rangle, \quad U_{q}\left(\mathrm{n}^{-}\right)=\left\langle F_{i} \mid i \in I_{0}\right\rangle, \\
U_{q}(\mathfrak{h})=\left\langle K_{i}^{ \pm 1} \mid i \in I_{0}\right\rangle, \quad U_{q}\left(\mathrm{l}_{I}\right)=\left\langle K_{i}^{ \pm 1}, E_{j}, F_{j} \mid i \in I_{0}, j \in I\right\rangle .
\end{gathered}
$$

For $i \in I_{0}$ we define an algebra automorphism T_{i} of $U_{q}(\mathrm{~g})$ (see Lusztig [6]) by

$$
\begin{aligned}
& T_{i}\left(K_{j}\right)=K_{j} K_{i}^{-a_{i j}}, \\
& T_{i}\left(E_{j}\right)= \begin{cases}-F_{i} K_{i} & (i=j) \\
\sum_{k=0}^{-a_{j j}}\left(-q_{i}\right)^{-k} E_{i}^{\left(-a_{i j}-k\right)} E_{j} E_{i}^{(k)} & (i \neq j),\end{cases} \\
& T_{i}\left(F_{j}\right)= \begin{cases}-K_{i}^{-1} E_{i} & (i=j) \\
\sum_{k=0}^{-a_{i j}}\left(-q_{i}\right)^{k} F_{i}^{(k)} F_{j} F_{i}^{\left(-a_{j j}-k\right)} & (i \neq j),\end{cases}
\end{aligned}
$$

where

$$
E_{i}^{(k)}=\frac{1}{[k]_{q_{i}}!} E_{i}^{k}, \quad F_{i}^{(k)}=\frac{1}{[k]_{q_{i}}!} F_{i}^{k} .
$$

Then T_{i} satisfy the braid relations. In other words, if $s_{i} s_{j} \in W$ has order m, then

$$
\underbrace{T_{i} T_{j} \cdots}_{m}=\underbrace{T_{j} T_{i} \cdots}_{m} .
$$

We often use the following formulas (see [6]):

$$
\begin{gather*}
T_{i} T_{j}\left(F_{i}\right)=F_{j} \quad\left(a_{i j}=a_{j i}=-1\right) \tag{1.1}\\
T_{i} T_{j} T_{i}\left(F_{j}\right)=F_{j}, \quad T_{j} T_{i} T_{j}\left(F_{i}\right)=F_{i} \quad\left(a_{i j}=-1, a_{j i}=-2\right) \tag{1.2}
\end{gather*}
$$

For $w \in W$ we choose a reduced expression $w=s_{i_{1}} \cdots s_{i_{k}}$, and set $T_{w}=$ $T_{i_{1}} \cdots T_{i_{k}}$. It is known that T_{w} dose not depend on the choice of the reduced expression.

For $I \subset I_{0}$ let w_{I} be the longest element of W_{I} and set

$$
U_{q}\left(\mathfrak{n}_{I}^{-}\right)=U_{q}\left(\mathfrak{n}^{-}\right) \cap T_{w_{I}}^{-1} U_{q}\left(\mathfrak{n}^{-}\right)
$$

Let w_{0} be the longest element of W and take a reduced expression $w_{I} w_{0}=$ $s_{i_{1}} \cdots s_{i_{r}}$ of $w_{I} w_{0}$. We set

$$
\beta_{k}=s_{i_{1}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right), \quad Y_{\beta_{k}}=T_{i_{1}} \cdots T_{i_{k-1}}\left(F_{i_{k}}\right)
$$

for $k=1, \ldots, r$. Then it is known that $\left\{\beta_{k} \mid 1 \leq k \leq r\right\}=\Delta^{+} \backslash \Delta_{I}$, and that $\left\{Y_{\beta_{1}}^{d_{1}} \cdots Y_{\beta_{r}}^{d_{r}} \mid d_{1}, \ldots, d_{r} \in \mathbf{Z}_{\geq 0}\right\}$ is a basis of $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$. This basis depends on the choice of the reduced expression of $w_{I} w_{0}$ in general. The subalgebra $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$ is stable under the adjoint action of $U_{q}\left(\mathfrak{l}_{I}\right)$. For $\mu \in \sum_{\alpha \in \Delta} \mathbf{Z} \alpha$ we set

$$
U_{q}\left(\mathfrak{n}_{I}^{-}\right)_{\mu}=\left\{y \in U_{q}\left(\mathfrak{n}_{I}^{-}\right) \mid \operatorname{ad}\left(K_{i}\right) y=q^{\left(\mu, \alpha_{i}\right)} y \text { for all } i \in I_{0}\right\}
$$

Assume that $\mathfrak{n}_{I}^{+} \neq\{0\}$ and $\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=\{0\}$. Then $\left(L_{I}, \mathfrak{n}_{I}^{+}\right)$is a prehomogeneous vector space. Moreover, \mathfrak{n}_{I}^{+}consists of finitely many L_{I}-orbits $C_{0}, C_{1}, \ldots, C_{t}$ satisfying the closure relation

$$
\{0\}=C_{0} \subset \overline{C_{1}} \subset \cdots \subset \overline{C_{t}}=\mathfrak{n}_{I}^{+} .
$$

Set $\mathscr{I}\left(\overline{C_{p}}\right)=\left\{f \in \mathbf{C}\left[n_{I}^{+}\right] \mid f\left(\overline{C_{p}}\right)=0\right\}$. We denote by $\mathscr{I}^{m}\left(\overline{C_{p}}\right)$ the subspace of $\mathscr{I}\left(\overline{C_{p}}\right)$ consisting of homogeneous elements with degree m. For $p=0,1, \ldots$, $t-1$, we have the following:
(i) $\mathscr{I}^{m}\left(\overline{C_{p}}\right)=0$ for $m \leq p$,
(ii) $\mathscr{I}^{p+1}\left(\overline{C_{p}}\right)$ is an irreducible I_{I}-module,
(iii) $\mathscr{I}\left(\overline{C_{p}}\right)$ is generated by $\mathscr{I}^{p+1}\left(\overline{C_{p}}\right)$ as an ideal of $\mathbf{C}\left[\mathfrak{n}_{I}^{+}\right]$.

In this case we can regard $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$as a quantum deformation of the coordinate algebra $\mathbf{C}\left[\mathfrak{n}_{I}^{+}\right]$of \mathfrak{n}_{I}^{+}. By $\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=0$ we have the following (see [14]).

Proposition 1.1. The generators Y_{β} for $\beta \in \Delta^{+} \backslash \Delta_{I}$ do not depend on the choice of the reduced expression of $w_{I} w_{0}$, and they satisfy quadratic fundamental relations.

Since $\mathbf{C}\left[\mathrm{n}_{I}^{+}\right]$is a multiplicity free \mathfrak{l}_{I}-module, there exist unique $U_{q}\left(\mathrm{I}_{I}\right)$ submodules $\mathscr{I}_{q}\left(\overline{C_{p}}\right)$ and $\mathscr{I}_{q}^{p+1}\left(\overline{C_{p}}\right)$ of $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$satisfying $\left.\mathscr{I}_{q}\left(\overline{C_{p}}\right)\right|_{q=1}=\mathscr{I}\left(\overline{C_{p}}\right)$ and $\left.\mathscr{I}_{q}^{p+1}\left(\overline{C_{p}}\right)\right|_{q=1}=\mathscr{I}^{p+1}\left(\overline{C_{p}}\right)$.

Theorem 1.2. (see [14]) $\mathscr{I}_{q}\left(\overline{C_{p}}\right)=U_{q}\left(\mathfrak{n}_{I}^{-}\right) \mathscr{I}_{q}^{p+1}\left(\overline{C_{p}}\right)=\mathscr{I}_{q}^{p+1}\left(\overline{C_{p}}\right) U_{q}\left(\mathfrak{n}_{I}^{-}\right)$.
In the remainder of this paper we shall give explicit descriptions of $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$ and $\mathscr{I}_{q}^{p+1}\left(\overline{C_{p}}\right)$ for a classical simple Lie algebra g.

2. Quantum determinants of quantum square matrices

In this section we apply the method in [14] to the case where $\mathfrak{g}=\mathfrak{s l}_{n+1}(\mathbf{C})$ and $\mathfrak{l}_{I} \simeq\left\{\left(g_{1}, g_{2}\right) \in \mathfrak{g l}_{k}(\mathbf{C}) \times \mathfrak{g l}_{n+1-k}(\mathbf{C}) \mid \operatorname{tr} g_{1}+\operatorname{tr} g_{2}=0\right\}$. Since the quantum deformation we obtain by our method is not new, we shall only state the results and omit the proofs.

We label the vertices of the Dynkin diagram of \mathfrak{g} as follows.

Hence we have $I_{0}=\{1,2, \ldots, n\}$. Set $I=I_{0} \backslash\{k\}$, where $k-1 \leq n-k$. Then we have $\mathfrak{n}_{I}^{+} \neq\{0\}$ and $\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=\{0\}$. There exist $k+1 L_{I}$-orbits $C_{0}, C_{1}, \ldots, C_{k}$ on \mathfrak{n}_{I}^{+}, where $C_{p}=\left\{x \in \mathfrak{n}_{I}^{+} \mid \operatorname{rank}(x)=p\right\}$. Then we have the closure relation $\{0\}=C_{0} \subset \overline{C_{1}} \subset \cdots \subset \overline{C_{k}}=\mathfrak{n}_{I}^{+}$.

We fix a reduced expression

$$
w_{I} w_{0}=\left(s_{k} s_{k+1} \cdots s_{n}\right)\left(s_{k-1} s_{k} \cdots s_{n-1}\right) \cdots\left(s_{1} s_{2} \cdots s_{n-k+1}\right) .
$$

For $i=1,2, \ldots, k$ and $j=1,2, \ldots, n+1-k$ we define $\beta_{i j} \in \Delta^{+} \backslash \Delta_{I}$ by

$$
\beta_{i j}=\alpha_{k-i+1}+\alpha_{k-i+2}+\cdots+\alpha_{k}+\alpha_{k+1}+\cdots+\alpha_{k+j-1},
$$

and set

$$
Y_{i j}=T^{(k)} T^{(k-1)} \cdots T^{(k-i+2)} T_{k-i+1} T_{k-i+2} \cdots T_{k-i+j-1}\left(F_{k-i+j}\right),
$$

where we set $T^{(s)}=T_{s} T_{s+1} \cdots T_{n-k+s}$. Note that $Y_{i j} \in U_{q}\left(\mathfrak{n}_{I}^{-}\right)_{-\beta_{i j}}$.
By Yamane [13], we have

$$
Y_{i j} Y_{l m}= \begin{cases}q Y_{l m} Y_{i j} & (i=l, j<m \text { or } i<l, j=m) \tag{2.1}\\ Y_{l m} Y_{i j} & (i<l, j>m) \\ Y_{l m} Y_{i j}+\left(q-q^{-1}\right) Y_{l j} Y_{i m} & (i<l, j<m) .\end{cases}
$$

Fix $p=0,1, \ldots, k-1$. For two sequences $\left\{i_{1}, i_{2}, \ldots, i_{p+1}\right\},\left\{j_{1}, j_{2}, \ldots\right.$, $\left.j_{p+1}\right\} \subset \mathbf{N}$ satisfying

$$
\begin{equation*}
1 \leq i_{1}<i_{2}<\cdots<i_{p+1} \leq k, \quad 1 \leq j_{1}<j_{2}<\cdots<j_{p+1} \leq n+1-k \tag{2.2}
\end{equation*}
$$

we set

$$
\left|\begin{array}{ll}
i_{1} & i_{2} \cdots i_{p+1} \\
j_{1} & j_{2} \cdots j_{p+1}
\end{array}\right|=\sum_{\sigma \in S_{p+1}}(-q)^{l(\sigma)} Y_{i_{1}, j_{\sigma(1)}} Y_{i_{2}, j_{\sigma(2)}} \cdots Y_{i_{p+1}, j_{\sigma(p+1)}}
$$

where $l(\sigma)=\sharp\{(i, j) \mid i<j, \sigma(i)>\sigma(j)\}$.
We can prove the following result. Details are omitted.
Lemma 2.1. We have

$$
\left.\begin{aligned}
& \operatorname{ad}\left(F_{r}\right)\left|\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{p+1} \\
j_{1} & j_{2} & \cdots & j_{p+1}
\end{array}\right| \\
& \quad=\left\{\begin{array}{lllll}
\left\lvert\, \begin{array}{lllll}
i_{1} & i_{2} & \cdots & i_{t}+1 & \cdots
\end{array} i_{p+1}\right. \\
j_{1} & j_{2} & \cdots & j_{t} & \cdots
\end{array} j_{p+1}\right.
\end{aligned}\left|\begin{array}{c}
\text { if there exists } t \in\{1,2, \ldots, p+1\} \\
\text { such that } i_{t}=k-r<i_{t+1}-1,
\end{array}\right| \begin{array}{llllll}
i_{1} & i_{2} & \cdots & i_{t} & \cdots & i_{p+1} \\
j_{1} & j_{2} & \cdots & j_{t}+1 & \cdots & j_{p+1}
\end{array} \right\rvert\, \begin{gathered}
\text { if there exists } t \in\{1,2, \ldots, p+1\} \\
\text { such that } j_{t}=r-k<j_{t+1}-1
\end{gathered}, ~ \begin{aligned}
& \text { otherwise, }
\end{aligned}
$$

$$
\operatorname{ad}\left(E_{r}\right)\left|\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{p+1} \\
j_{1} & j_{2} & \cdots & j_{p+1}
\end{array}\right|
$$

$$
=\left\{\left.\begin{array}{lllclc}
\left\lvert\, \begin{array}{ccccc}
i_{1} & i_{2} & \cdots & i_{t}-1 & \cdots
\end{array} i_{p+1}\right. \\
j_{1} & j_{2} & \cdots & j_{t} & \cdots & j_{p+1}
\end{array}\left|\quad \begin{array}{c}
\text { if there exists } t \in\{1,2, \ldots, p+1\} \\
\text { such that } i_{t-1}+1<i_{t}=k-r+1
\end{array}\right| \begin{array}{lllccc}
i_{1} & i_{2} & \cdots & i_{t} & \cdots & i_{p+1} \\
j_{1} & j_{2} & \cdots & j_{t}-1 & \cdots & j_{p+1}
\end{array} \right\rvert\, \begin{array}{c}
\text { if there exists } t \in\{1,2, \ldots, p+1\} \\
\text { such that } j_{t-1}+1<j_{t}=r-k+1
\end{array},\right.
$$

for $r \in I$, and

$$
\operatorname{ad}\left(K_{r}\right)\left|\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{p+1} \\
j_{1} & j_{2} & \cdots & j_{p+1}
\end{array}\right|=q^{-\sum_{t=1}^{p+1}\left(\beta_{i, j, j}, \alpha_{r}\right)}\left|\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{p+1} \\
j_{1} & j_{2} & \cdots & j_{p+1}
\end{array}\right|
$$

for $r \in I_{0}$.

We set

$$
\begin{gathered}
\psi_{p}=\left|\begin{array}{cccc}
k-p & k-p+1 & \cdots & k \\
1 & 2 & \cdots & p+1
\end{array}\right|, \\
J_{q, p}=\sum \mathbf{C}(q)\left|\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{p+1} \\
j_{1} & j_{2} & \cdots & j_{p+1}
\end{array}\right|,
\end{gathered}
$$

where the summation runs through the sequences $\left\{i_{1}, i_{2}, \ldots, i_{p+1}\right\},\left\{j_{1}, j_{2}, \ldots\right.$, $\left.j_{p+1}\right\}$ satisfying (2.2).

Corollary 2.2. For $p=0,1, \ldots, k-1, J_{q, p}$ is an irreducible highest weight $U_{q}\left(I_{I}\right)$-module with highest weight vector ψ_{p}.

Proof. From Lemma 2.1, it is clear that $J_{q, p}=\operatorname{ad}\left(-_{q}\left(I_{I}\right)\right) \psi_{p}$ and $\operatorname{ad}\left(E_{r}\right) \psi_{p}=0$ for any $r \in I$. Since a finite dimensional highest weight module is irreducible, the statement holds.

The highest weight of $J_{q, p}$ coincides with that of $\mathscr{I}^{p+1}\left(\overline{C_{p}}\right)$. Therefore $J_{q, p}$ is a quantum deformation of $\mathscr{I}^{p+1}\left(\overline{C_{p}}\right)$. By Theorem 1.2 we have $U_{q}\left(\mathfrak{n}_{I}^{-}\right) J_{q, p}=J_{q, p} U_{q}\left(\mathfrak{n}_{I}^{-}\right)$, and this two sided ideal of $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$is a quantum deformation of the defining ideal $\mathscr{I}\left(\overline{C_{p}}\right)$ of the closure of C_{p}.

If $k-1=n-k$, the prehomogeneous vector space ($L_{I}, \mathfrak{n}_{I}^{+}$) is regular, and the generator $\psi_{k-1}=\sum_{\sigma \in S_{k}}(-q)^{l(\sigma)} Y_{1, \sigma(1)} Y_{2, \sigma(2)} \cdots Y_{k, \sigma(k)}$ of the quantum deformation of $\mathscr{I}\left(\overline{C_{k-1}}\right)$ is the quantum deformation of the basic relative invariant.

Hence we obtain the following known result by our method.
Theorem 2.3. (Hashimoto-Hayashi [2], Noumi-Yamada-Mimachi [8], TaftTowber [11])
(i) A quantum deformation $A_{q}\left(\mathfrak{n}_{I}^{+}\right)$of the coordinate algebra $A\left(\mathfrak{n}_{I}^{+}\right)$of \mathfrak{n}_{I}^{+}is generated by $Y_{i j}(1 \leq i \leq k, 1 \leq j \leq n+1-k)$ satisfying the fundamental relations (2.1).
(ii) The action of $U_{q}\left(\mathrm{l}_{I}\right)$ on $A_{q}\left(\mathfrak{n}_{I}^{+}\right)$is given as follows. For $r \in I_{0}$ and $s \in I$,

$$
\begin{aligned}
& K_{r} \cdot Y_{i j}=q^{-\left(\alpha_{r}, \beta_{i j}\right)} Y_{i j}, \\
& E_{s} \cdot Y_{i j}= \begin{cases}Y_{i, j-1} & (s=k+j-1) \\
Y_{i-1, j} & (s=k-i+1) \\
0 & (\text { otherwise }),\end{cases} \\
& F_{s} \cdot Y_{i j}= \begin{cases}Y_{i, j+1} & (s=k+j) \\
Y_{i+1, j} & (s=k-i) \\
0 & (\text { otherwise }) .\end{cases}
\end{aligned}
$$

(iii) When $k-1=n-k, \sum_{\sigma \in S_{k}}(-q)^{l(\sigma)} Y_{1, \sigma(1)} Y_{2, \sigma(2)} \cdots Y_{k, \sigma(k)}$ is a quantum deformation of the basic relative invariant.

3. Quantum Pfaffians of quantum alternating matrices

In this section we apply the method in [14] to the case where $\mathfrak{g}=\mathfrak{o}_{2 n}(\mathbf{C})$ and $\mathfrak{l}_{I} \simeq \mathfrak{g l}_{n}(\mathbf{C})$. Since the quantum deformation obtained by our method is not new, we shall only state the results and omit the proofs.

We label the vertices of the Dynkin diagram of g as follows.

Hence we have $I_{0}=\{1,2, \ldots, n\}$. Set $I=I_{0} \backslash\{n\}$. Then we have $\mathfrak{n}_{I}^{+} \neq\{0\}$ and $\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=\{0\}$. Then there exist $\left[\frac{n}{2}\right]+1 L_{I}$-orbits $C_{0}, C_{1}, \ldots, C_{[n / 2]}$ on n_{I}^{+}, where $C_{p}=\left\{x \in \mathfrak{n}_{I}^{+} \mid \operatorname{rank}(x)=2 p\right\}$. We have the closure relation $\{0\}=C_{0} \subset \overline{C_{1}} \subset \cdots \subset \overline{C_{[n / 2]}}=\mathrm{n}_{I}^{+}$.

We fix a reduced expression

$$
w_{I} w_{0}=\left(s_{\delta(1)} s_{n-2} \cdots s_{1}\right)\left(s_{\delta(2)} s_{n-2} \cdots s_{2}\right) \cdots\left(s_{\delta(n-2)} s_{n-2}\right) s_{\delta(n-1)}
$$

where

$$
\delta(t)= \begin{cases}n & \text { if } t \text { is odd } \\ n-1 & \text { if } t \text { is even }\end{cases}
$$

Let $1 \leq i<j \leq n$. we define $\beta_{i j} \in \Delta^{+} \backslash \Delta_{I}$ by

$$
\beta_{i j}=\left\{\begin{array}{rlr}
\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j-1} \\
& +2 \alpha_{j}+2 \alpha_{j+1}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n} & \\
\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{n-2}+\alpha_{n} & (j \leq n-1) \\
(j=n)
\end{array}\right.
$$

and set

$$
Y_{i j}=T^{(1)} T^{(2)} \cdots T^{(n-j)} T_{\delta(n-j+1)} T_{n-2} \cdots T_{n-j+i+1}\left(F_{n-j+i}\right)
$$

where $T^{(s)}=T_{\delta(s)} T_{n-2} T_{n-3} \cdots T_{s}$ for $s=1,2, \ldots, n-2$. If $j-i=1$, we set

$$
T_{\delta(n-j+1)} T_{n-2} \cdots T_{n-j+i+1}\left(F_{n-j+i}\right)=F_{\delta(n-j+1)} .
$$

Note that $Y_{i j} \in U_{q}\left(\mathfrak{n}_{I}^{-}\right)_{-\beta_{i j}}$.

Lemma 3.1. We have

$$
Y_{i j} Y_{l m}=\left\{\begin{array}{lc}
& (l<i<m=j \tag{3.1}\\
q Y_{l m} Y_{i j} & \text { or } l<i=m<j \\
& \text { or } l=i<m<j) \\
Y_{l m} Y_{i j} & (l<i<j<m) \\
Y_{l m} Y_{i j}+\left(q-q^{-1}\right) Y_{l j} Y_{i m} & (l<i<m<j) \\
Y_{l m} Y_{i j} & (l<m<i<j) .
\end{array}\right.
$$

Fix $p=0,1, \ldots,\left[\frac{n-2}{2}\right]$.
For the sequence $\left\{i_{1}, i_{2}, \ldots, i_{2 p+2}\right\} \subset \mathbf{N}$ satisfying

$$
\begin{equation*}
1 \leq i_{1}<i_{2}<\cdots<i_{2 p+2} \leq n \tag{3.2}
\end{equation*}
$$

we set

$$
\left|i_{1} i_{2} \cdots i_{2 p+2}\right|=\sum_{\sigma \in \hat{S}_{p p+2}}\left(-q^{-1}\right)^{l(\sigma)} Y_{i_{\sigma(1)}, i_{\sigma(2)}} Y_{\left.i_{\sigma(3)}\right) i_{\sigma(4)}} \cdots Y_{i_{\sigma(2 p+1)}, i_{\sigma(2 p+2)}},
$$

where $\hat{S}_{2 p+2}=\left\{\sigma \in S_{2 p+2} \mid \sigma(2 k-1)<\sigma(2 k+1), \sigma(2 k-1)<\sigma(2 k)\right.$ for all $\left.k\right\}$.

Proposition 3.2. We have

$$
\begin{aligned}
& \operatorname{ad}\left(F_{r}\right)\left|\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{2 p+2}
\end{array}\right| \\
& =\left\{\left.\begin{array}{llllll}
\mid i_{1} & i_{2} & \cdots & i_{t}-1 & \cdots & i_{2 p+2}
\end{array} \right\rvert\, \begin{array}{c}
\text { if there exists } t \in\{1,2, \ldots, 2 p+2\} \\
0
\end{array}\right. \\
& \operatorname{ad}\left(E_{r}\right)\left|i_{1} \quad i_{2} \cdots i_{2 p+2}\right| \\
& =\left\{\begin{array}{llllll}
\mid i_{1} & i_{2} & \cdots & i_{t}+1 & \cdots & i_{2 p+2} \mid \\
0 & & \begin{array}{c}
\text { if there exists } t \in\{1,2, \ldots, 2 p+2\} \\
\text { such that } r
\end{array} \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

for $r \in I$, and

$$
\operatorname{ad}\left(K_{r}\right)\left|i_{1} \quad i_{2} \cdots i_{2 p+2}\right|=q^{-\sum_{i=1}^{p+1}\left(\beta_{i_{2 t-1}, i_{2} t}, \alpha_{r}\right)}\left|i_{1} i_{2} \cdots c c c c\right|
$$

for $r \in I_{0}$.

We set

$$
\begin{aligned}
& \psi_{p}=|n-2 p-1 n-2 p \cdots n|, \\
& J_{q, p}=\sum \mathbf{C}(q)\left|i_{1} i_{2} \cdots i_{2 p+2}\right|
\end{aligned}
$$

where the summation runs through the sequence $\left\{i_{1}, i_{2}, \ldots, i_{2 p+2}\right\} \subset \mathbf{N}$ satisfying (3.2).

By Proposition 3.2 we have the following.
Proposition 3.3. For $p=0,1, \ldots,\left[\frac{n-2}{2}\right], J_{q, p}$ is an irreducible highest weight $U_{q}\left(I_{I}\right)$-module with highest weight vector ψ_{p}.

The highest weight of $J_{q, p}$ coincides with that of $\mathscr{I}^{p+1}\left(\overline{C_{p}}\right)$, hence $J_{q, p}$ is a quantum deformation of $\mathscr{I}^{p+1}\left(\overline{C_{p}}\right)$. By Theorem 1.2, the two sided ideal $U_{q}\left(\mathfrak{n}_{I}^{-}\right) J_{q, p}=J_{q, p} U_{q}\left(\mathfrak{n}_{I}^{-}\right)$is a quantum deformation of the defining ideal $\mathscr{I}\left(\overline{C_{p}}\right)$ of the closure of C_{p}.

If n is even, the prehomogeneous vector space $\left(L_{I}, \mathrm{n}_{I}^{+}\right)$is regular, and the generator $\psi_{(n-2) / 2}$ of the quantum deformation of $\mathscr{I}\left(\overline{C_{(n-2) / 2}}\right)$ is the quantum deformation of the basic relative invariant.

Therefore we have the following known result by our method.
Theorem 3.4. (Strickland [10])
(i) A quantum deformation $A_{q}\left(\mathfrak{n}_{I}^{+}\right)$of the coordinate algebra $A\left(\mathfrak{n}_{I}^{+}\right)$of \mathfrak{n}_{I}^{+} is generated by $Y_{i j}(1 \leq i<j \leq n)$ satisfying the fundamental relations (3.1).
(ii) The action of $U_{q}\left(\mathrm{l}_{I}\right)$ on $A_{q}\left(\mathrm{n}_{I}^{+}\right)$is given as follows. For $r \in I_{0}$ and $s \in I$,

$$
\begin{aligned}
& K_{r} \cdot Y_{i j}=q^{-\left(\alpha_{r}, \beta_{i j}\right)} Y_{i j}, \\
& E_{s} \cdot Y_{i j}= \begin{cases}Y_{i+1, j} & (s=i, j>i+1) \\
Y_{i, j+1} & (s=j) \\
0 & (\text { otherwise }),\end{cases} \\
& F_{s} \cdot Y_{i j}= \begin{cases}Y_{i-1, j} & (s=i-1) \\
Y_{i, j-1} & (s=j-1>i) \\
0 & (\text { otherwise }) .\end{cases}
\end{aligned}
$$

(iii) When n is even, $\psi_{(n-2) / 2}$ is the quantum deformation of the basic relative invariant.

4. Quantum quadratic forms on quantum vector spaces

In this section we apply the method in [14] to the case where $\mathfrak{g}=\mathfrak{o}_{m+2}(\mathbf{C})$ and $\mathrm{I}_{I} \simeq \mathbf{o}_{m}(\mathbf{C}) \times \mathbf{C}$.

Assume $m=2 n-1$. We label the vertices of the Dynkin diagram of \mathfrak{g} as follows.

Hence we have $I_{0}=\{1,2, \ldots, n\}$. Set $I=I_{0} \backslash\{1\}$. Then $\mathfrak{n}_{I}^{+} \neq\{0\}$ and $\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=\{0\}$. There exist three L_{I}-orbits C_{0}, C_{1}, C_{2} on \mathfrak{n}_{I}^{+}satisfying the closure relation $\{0\}=C_{0} \subset \overline{C_{1}} \subset \overline{C_{2}}=\mathrm{n}_{I}^{+}$.

Fix the reduced expression $w_{I} w_{0}=s_{1} s_{2} \cdots s_{n} s_{n-1} s_{n-2} \cdots s_{1}$, and for $i=1$, $2, \ldots, m$ we define $\beta_{i} \in \Delta^{+} \backslash \Delta_{I}$ and $Y_{i}=Y_{\beta_{i}} \in U_{q}\left(\mathfrak{n}_{I}^{-}\right)_{-\beta_{i}}$ as in Section 1. Note that

$$
\beta_{i}= \begin{cases}\alpha_{1}+\alpha_{2}+\cdots+\alpha_{i} & (1 \leq i \leq n) \\ \alpha_{1}+\alpha_{2}+\cdots+\alpha_{2 n-i}+2 \alpha_{2 n-i+1}+\cdots+2 \alpha_{n} & (n+1 \leq i \leq 2 n-1) .\end{cases}
$$

Lemma 4.1. For $r \in I$ we have

$$
\begin{aligned}
& \operatorname{ad}\left(F_{r}\right) Y_{i}= \begin{cases}Y_{i+1} & (1 \leq i \leq n-1, r=i+1 \\
\left(q+q^{-1}\right) Y_{n+1} & \text { or } n+1 \leq i \leq 2 n-1, r=2 n-i) \\
0 & (\text { otherwise })\end{cases} \\
& \operatorname{ad}\left(E_{r}\right) Y_{i}= \begin{cases}Y_{i-1} & (1 \leq i \leq n-1, r=i \\
\left(q+q^{-1}\right) Y_{n-1} & (i=n=r) \\
0 & \text { or } n+1 \leq i \leq 2 n-1, r=2 n-i+1)\end{cases} \\
& \text { (otherwise }) .
\end{aligned}
$$

Proof. Since $\oplus_{i} \mathbf{C}(q) Y_{i}$ is a $U_{q}\left(\mathrm{l}_{I}\right)$-module (see [14]), we have $\operatorname{ad}\left(F_{r}\right) Y_{i}$ $=0$ if $\beta_{i}+\alpha_{r} \notin \Delta^{+} \backslash \Delta_{I}$ and $\operatorname{ad}\left(E_{r}\right) Y_{i}=0$ if $\beta_{i}-\alpha_{r} \notin \Delta^{+} \backslash \Delta_{I}$. Therefore we have only to deal with the cases $r=i+1$ or $2 n-i$ for F_{r} and $r=i$ or $2 n-i+1$ for E_{r}.

Let $r=i+1 \in I . \quad$ We have $\operatorname{ad}\left(F_{i+1}\right) Y_{i}=F_{i+1} Y_{i}-q^{2} Y_{i} F_{i+1} . \quad$ Since $F_{i+1}=$ $T_{1} T_{2} \cdots T_{i-1}\left(F_{i+1}\right)$, we obtain

$$
\operatorname{ad}\left(F_{i+1}\right) Y_{i}=T_{1} T_{2} \cdots T_{i-1}\left(F_{i+1} F_{i}-q^{2} F_{i} F_{i+1}\right)=T_{1} T_{2} \cdots T_{i-1} T_{i}\left(F_{i+1}\right)=Y_{i+1} .
$$

Let $r=2 n-i \in I$ and $r \neq n$. We have $F_{r}=T_{1} T_{2} \cdots T_{n} T_{n-1} \cdots T_{2 n-i+1}$. $\left(F_{2 n-i-1}\right)$ by (1.1). By using this formula we obtain

$$
\begin{aligned}
\operatorname{ad}\left(F_{r}\right) Y_{i} & =F_{r} Y_{i}-q^{2} Y_{i} F_{r} \\
& =T_{1} T_{2} \cdots T_{n} T_{n-1} \cdots T_{2 n-i+1}\left(F_{2 n-i-1} F_{2 n-i}-q^{2} F_{2 n-i} F_{2 n-i-1}\right) \\
& =T_{1} T_{2} \cdots T_{n} T_{n-1} \cdots T_{2 n-i+1} T_{2 n-i}\left(F_{2 n-i-1}\right) \\
& =Y_{i+1} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \quad r=2 n-i=n, \quad \text { we have } \quad \operatorname{ad}\left(F_{r}\right) Y_{i}=\left[F_{n}, Y_{n}\right]=T_{1} T_{2} \cdots T_{n-1} . \\
& \begin{aligned}
\left(\left[T_{n-1}^{-1}\left(F_{n}\right), F_{n}\right]\right) . & \text { Since } T_{n-1}^{-1}\left(F_{n}\right)=F_{n-1} F_{n}-q^{2} F_{n} F_{n-1}(\text { see [4]), we have } \\
{\left[T_{n-1}^{-1}\left(F_{n}\right), F_{n}\right] } & =\left(q+q^{-1}\right)\left(F_{n-1} F_{n}^{(2)}-q F_{n} F_{n-1} F_{n}+q^{2} F_{n}^{(2)} F_{n-1}\right) \\
& =\left(q+q^{-1}\right) T_{n}\left(F_{n-1}\right) .
\end{aligned}
\end{aligned}
$$

Therefore we obtain $\operatorname{ad}\left(F_{n}\right) Y_{n}=\left(q+q^{-1}\right) Y_{n+1}$.
Let $r=i \in I$ or $r=2 n-i+1<n$. Since $\operatorname{ad}\left(E_{r}\right) Y_{i-1}=0$ and $Y_{i}=$ $\operatorname{ad}\left(F_{r}\right) Y_{i-1}$, we have

$$
\begin{aligned}
\operatorname{ad}\left(E_{r}\right) Y_{i} & =\operatorname{ad}\left(E_{r}\right)\left(\operatorname{ad}\left(F_{r}\right) Y_{i-1}\right) \\
& =\left(q_{r}-q_{r}^{-1}\right)^{-1} \operatorname{ad}\left(K_{r}-K_{r}^{-1}\right) Y_{i-1}+\operatorname{ad}\left(F_{r}\right)\left(\operatorname{ad}\left(E_{r}\right) Y_{i-1}\right) \\
& =\left(q_{r}-q_{r}^{-1}\right)^{-1}\left(q^{2}-q^{-2}\right) Y_{i-1} .
\end{aligned}
$$

Since $q_{r}=q$ if $r=n$ and $q_{r}=q^{2}$ if $r<n$, the statement holds.
Let $r=2 n-i+1=n$. We have $\operatorname{ad}\left(E_{n}\right) Y_{n}=\left(q+q^{-1}\right) Y_{n-1}$ and $Y_{i}=$ $Y_{n+1}=\left(q+q^{-1}\right)^{-1} \operatorname{ad}\left(F_{n}\right) Y_{n}$. Therefore we obtain

$$
\begin{aligned}
\operatorname{ad}\left(E_{n}\right) Y_{n+1}= & \left(q+q^{-1}\right)^{-1} \operatorname{ad}\left(E_{n}\right)\left(\operatorname{ad}\left(F_{n}\right) Y_{n}\right) \\
= & \left(q+q^{-1}\right)^{-1}\left(q_{n}-q_{n}^{-1}\right)^{-1} \operatorname{ad}\left(K_{n}-K_{n}^{-1}\right) Y_{n} \\
& +\left(q+q^{-1}\right)^{-1} \operatorname{ad}\left(F_{n}\right)\left(\operatorname{ad}\left(E_{n}\right) Y_{n}\right) \\
= & \left(q^{2}-q^{-2}\right)^{-1}\left(Y_{n}-Y_{n}\right)+\operatorname{ad}\left(F_{n}\right) Y_{n-1} \\
= & Y_{n} .
\end{aligned}
$$

Proposition 4.2. We have

$$
Y_{j} Y_{i}= \begin{cases}q^{-2} Y_{i} Y_{j} & (i<j, i+j \neq 2 n) \tag{4.1}\\ Y_{i} Y_{j}+\frac{q^{-2}-1}{q+q^{-1}} Y_{n}^{2} & (i=n-1, j=n+1) \\ Y_{i} Y_{j}+\left(-q^{2}\right)^{j-n-1} \frac{q^{-2}-1}{q+q^{-1}} Y_{n}^{2} & \\ +\left(q^{-2}-q^{2}\right) \sum_{i=1}^{j-n-1}\left(-q^{2}\right)^{t-1} Y_{i+t} Y_{j-t} & (i \leq n-2, i+j=2 n) .\end{cases}
$$

Proof. Let $1 \leq i \leq n-1, i<j<2 n-i$ or $n \leq i<j \leq 2 n-1$. We show $Y_{j} Y_{i}=q^{-2} Y_{i} Y_{j}$ by induction on $t=j-i$. If $t=1$, we have

$$
Y_{i+1} Y_{i}-q^{-2} Y_{i} Y_{i+1}=T\left(T_{k}\left(F_{k^{\prime}}\right) F_{k}-q^{-2} F_{k} T_{k}\left(F_{k^{\prime}}\right)\right)
$$

where $T=T_{1} \cdots T_{i-1}, k=k^{\prime}-1=i$ if $i \leq n-1$, and $T=T_{1} \cdots T_{n-1} T_{n} \cdots$ $T_{2 n-i+1}, k=k^{\prime}+1=2 n-i$ if $i \geq n$. Since we have

$$
T_{k}\left(F_{k^{\prime}}\right) F_{k}-q^{-2} F_{k} T_{k}\left(F_{k^{\prime}}\right)=c \sum_{s=0}^{1-a_{k k^{\prime}}}(-1)^{s}\left[\begin{array}{c}
1-a_{k k^{\prime}} \\
s
\end{array}\right]_{q_{k}} F_{k}^{1-a_{k k^{\prime}}-s} F_{k^{\prime}} F_{k}^{s}
$$

for some $c \in \mathbf{C}(q)$, we obtain $Y_{i+1} Y_{i}-q^{-2} Y_{i} Y_{i+1}=0$. Assume that $t>1$ and the statement is proved up to $t-1$. We have

$$
Y_{j}=\left(q+q^{-1}\right)^{-\delta_{j, n+1}} \operatorname{ad}\left(F_{l}\right) Y_{j-1}=\left(q+q^{-1}\right)^{-\delta_{l, n+1}}\left(F_{l} Y_{j-1}-q^{-\left(\beta_{j-1}, \alpha_{l}\right)} Y_{j-1} F_{l}\right)
$$

where $l=j$ if $j \leq n$, and $l=2 n-j+1$ if $j>n$. Since $t>1$, we have $\left[F_{l}, Y_{i}\right]$ $=\operatorname{ad}\left(F_{l}\right) Y_{i}=0$ by Lemma 4.1. By the inductive hypothesis on t, we obtain

$$
\begin{aligned}
Y_{j} Y_{i} & =\left(q+q^{-1}\right)^{-\delta_{l, n+1}}\left(F_{l} Y_{j-1}-q^{-\left(\beta_{j-1}, \alpha_{l}\right)} Y_{j-1} F_{l}\right) Y_{i} \\
& =q^{-2}\left(q+q^{-1}\right)^{-\delta_{l, n+1}} Y_{i}\left(F_{l} Y_{j-1}-q^{-\left(\beta_{j-1}, \alpha_{l}\right)} Y_{j-1} F_{l}\right) \\
& =q^{-2} Y_{i} Y_{j}
\end{aligned}
$$

Next we prove $Y_{n+1} Y_{n-1}=Y_{n-1} Y_{n+1}+\frac{q^{-2}-1}{q+q^{-1}} Y_{n}^{2}$. From Lemma 4.1 we have $Y_{n+1}=\left(q+q^{-1}\right)^{-1}\left[F_{n}, Y_{n}\right]$ and $Y_{n}=F_{n} Y_{n-1}-q^{2} Y_{n-1} F_{n}$. By the preceding paragraph we have $Y_{n} Y_{n-1}=q^{-2} Y_{n-1} Y_{n}$. Hence

$$
\begin{aligned}
{\left[Y_{n+1}, Y_{n-1}\right] } & =\left(q+q^{-1}\right)^{-1}\left[\left[F_{n}, Y_{n}\right], Y_{n-1}\right] \\
& =\left(q+q^{-1}\right)^{-1}\left(q^{-2}\left(F_{n} Y_{n-1}-q^{2} Y_{n-1} F_{n}\right) Y_{n}-Y_{n}\left(F_{n} Y_{n-1}-q^{2} Y_{n-1} F_{n}\right)\right) \\
& =\frac{q^{-2}-1}{q+q^{-1}} Y_{n}^{2}
\end{aligned}
$$

Let $i+j=2 n, i \leq n-2$. From Lemma 4.1 we have

$$
Y_{j}=F_{i} Y_{j-1}-q^{2} Y_{j-1} F_{i}, \quad Y_{i+1}=F_{i} Y_{i}-q^{2} Y_{i} F_{i}
$$

Since $Y_{j-1} Y_{i}=q^{-2} Y_{i} Y_{j-1}$, we have

$$
\begin{align*}
{\left[Y_{j}, Y_{i}\right] } & =\left[F_{i} Y_{j-1}-q^{2} Y_{j-1} F_{i}, Y_{i}\right] \\
& =q^{-2}\left(F_{i} Y_{i}-q^{2} Y_{i} F_{i}\right) Y_{j-1}-q^{2} Y_{j-1}\left(F_{i} Y_{i}-q^{2} Y_{i} F_{i}\right) \\
& =q^{-2} Y_{i+1} Y_{j-1}-q^{2} Y_{j-1} Y_{i+1} \tag{4.2}
\end{align*}
$$

By using (4.2) and $\left[Y_{n+1}, Y_{n-1}\right]=\frac{q^{-2}-1}{q+q^{-1}} Y_{n}^{2}$, we obtain inductively

$$
\left[Y_{j}, Y_{i}\right]=\left(-q^{2}\right)^{j-n-1} \frac{q^{-2}-1}{q+q^{-1}} Y_{n}^{2}+\left(q^{-2}-q^{2}\right) \sum_{s=1}^{j-n-1}\left(-q^{2}\right)^{s-1} Y_{i+s} Y_{j-s} .
$$

Finally we prove $Y_{j} Y_{i}=q^{-2} Y_{i} Y_{j}$ for $1 \leq i \leq n-1,2 n-i<j \leq 2 n-1$ by induction on $t=j-(2 n-i)$. Let $t=1$. Since $F_{i} Y_{i}-q^{-2} Y_{i} F_{i}=\operatorname{ad}\left(F_{i}\right) Y_{i}=$ $0, \quad Y_{j}=\operatorname{ad}\left(F_{i}\right) Y_{2 n-i}=F_{i} Y_{2 n-i}-q^{2} Y_{2 n-i} F_{i}$ and (4.2), we have

$$
\begin{aligned}
Y_{j} Y_{i}-q^{-2} Y_{i} Y_{j} & =\left(F_{i} Y_{2 n-i}-q^{2} Y_{2 n-1} F_{i}\right) Y_{i}-q^{-2} Y_{i}\left(F_{i} Y_{2 n-i}-q^{2} Y_{2 n-i} F_{i}\right) \\
& =\left[F_{i},\left[Y_{2 n-i}, Y_{i}\right]\right] \\
& =\left[F_{i}, q^{-2} Y_{i+1} Y_{2 n-i-1}-q^{2} Y_{2 n-i-1} Y_{i+1}\right] .
\end{aligned}
$$

From Lemma $4.1\left[F_{i}, Y_{2 n-i-1}\right]=0=\left[F_{i}, Y_{i+1}\right]$, hence we obtain $Y_{j} Y_{i}-q^{-2} Y_{i} Y_{j}$ $=0$ for $t=1$. Assume that $t>1$ and the statement is proved up to $t-1$. Since $Y_{j}=F_{2 n-j+1} Y_{j-1}-q^{2} Y_{j-1} F_{2 n-j+1}$ and $\left[F_{2 n-j+1}, Y_{i}\right]=0$, we obtain

$$
\begin{aligned}
Y_{j} Y_{i} & =\left(F_{2 n-j+1} Y_{j-1}-q^{2} Y_{j-1} F_{2 n-j+1}\right) Y_{i} \\
& =q^{-2} Y_{i}\left(F_{2 n-j+1} Y_{j-1}-q^{2} Y_{j-1} F_{2 n-j+1}\right)=q^{-2} Y_{i} Y_{j} .
\end{aligned}
$$

We set

$$
\psi=Y_{n} Y_{n}-\left(q+q^{-1}\right)\left(1+q^{-2}\right) \sum_{i=1}^{n-1}\left(-q^{-2}\right)^{i-1} Y_{n-i} Y_{n+i}
$$

Since $\beta_{n-i}+\beta_{n+i}=2 \beta_{n}$ for any i, we have $\psi \in U_{q}\left(\mathfrak{n}_{I}^{-}\right)_{-2 \beta_{n}}$.
Proposition 4.3. For $r \in I$ we have

$$
\operatorname{ad}\left(F_{r}\right) \psi=0, \quad \operatorname{ad}\left(E_{r}\right) \psi=0
$$

Proof. We shall prove $\operatorname{ad}\left(F_{r}\right) \psi=0$. Let $r=n-k$. If $k=0$, we obtain

$$
\begin{aligned}
\operatorname{ad}\left(F_{n}\right) \psi= & \left(\operatorname{ad}\left(F_{n}\right) Y_{n}\right) Y_{n}+K_{n} Y_{n} K_{n}^{-1}\left(\operatorname{ad}\left(F_{n}\right) Y_{n}\right) \\
& -\left(q+q^{-1}\right)\left(1+q^{-2}\right)\left(\operatorname{ad}\left(F_{n}\right) Y_{n-1}\right) Y_{n+1} \\
= & \left(q+q^{-1}\right) Y_{n+1} Y_{n}+\left(q+q^{-1}\right) Y_{n} Y_{n+1}-\left(q+q^{-1}\right)\left(1+q^{-2}\right) Y_{n} Y_{n+1} \\
= & 0
\end{aligned}
$$

If $k>0$, we obtain

$$
\begin{aligned}
\operatorname{ad}\left(F_{n-k}\right) \psi= & -\left(q+q^{-1}\right)\left(1+q^{-2}\right)\left(\left(-q^{-2}\right)^{k}\left(\operatorname{ad}\left(F_{n-k}\right) Y_{n-k-1}\right) Y_{n+k+1}\right. \\
& \left.+\left(-q^{-2}\right)^{k-1} K_{n-k} Y_{n-k} K_{n-k}^{-1}\left(\operatorname{ad}\left(F_{n-k}\right) Y_{n+k}\right)\right) \\
= & -\left(q+q^{-1}\right)\left(1+q^{-2}\right)\left(\left(-q^{-2}\right)^{k} Y_{n-k} Y_{n+k+1}\right. \\
& \left.+\left(-q^{-2}\right)^{k-1} q^{-2} Y_{n-k} Y_{n+k+1}\right) \\
= & 0 .
\end{aligned}
$$

Similarly we can prove $\operatorname{ad}\left(E_{r}\right) \psi=0$.
By Lemma 4.1 and Proposition 4.3, we have the following:
Proposition 4.4. $\quad \sum_{1 \leq i \leq 2 n-1} \mathbf{C}(q) Y_{i}$ and $\mathbf{C}(q) \psi$ are irreducible highest weight $U_{q}\left(I_{I}\right)$-modules.

The highest weight of $\mathbf{C}(q) \psi$ coincides with that of $\mathscr{I}^{2}\left(\overline{C_{1}}\right)$. Hence, $\mathbf{C}(q) \psi$ is a quantum deformation of $\mathscr{I}^{2}\left(\overline{C_{1}}\right)$. By Theorem 1.2 the two sided ideal $U_{q}\left(\mathfrak{n}_{I}^{-}\right) \psi=\psi U_{q}\left(\mathfrak{n}_{I}^{-}\right)$is a quantum deformation of the defining ideal $\mathscr{I}\left(\overline{C_{1}}\right)$ of the closure of C_{1}. Similarly, $\sum_{1 \leq i \leq 2 n-1} \mathbf{C}(q) Y_{i}$ is the quantum deformation of $\mathscr{I}^{1}\left(\overline{C_{0}}\right)$. Moreover, the generator ψ of the quantum deformation of $\mathscr{I}\left(\overline{C_{1}}\right)$ is the quantum deformation of the basic relative invariant.

Therefore we have the following.
Theorem 4.5. (i) A quantum deformation $A_{q}\left(\mathfrak{n}_{I}^{+}\right)$of the coordinate algebra $A\left(\mathfrak{n}_{I}^{+}\right)$of \mathfrak{n}_{I}^{+}is generated by $Y_{i}(1 \leq i \leq 2 n-1)$ satisfying the fundamental relations (4.1).
(ii) The action of $U_{q}\left(\mathrm{I}_{I}\right)$ on $A_{q}\left(\mathfrak{n}_{I}^{+}\right)$is given as follows. For $r \in I_{0}$ and $s \in I$,

$$
\begin{aligned}
& K_{r} \cdot Y_{i}=q^{-\left(\alpha_{r}, \beta_{i}\right)} Y_{i}, \\
& E_{s} \cdot Y_{i}= \begin{cases}Y_{i-1} & (1 \leq i=s \leq n-1 \text { or } n+1 \leq i=2 n+1-s) \\
\left(q+q^{-1}\right) Y_{i-1} & (i=n=s) \\
0 & (\text { otherwise }),\end{cases} \\
& F_{s} \cdot Y_{i}= \begin{cases}Y_{i+1} & (1 \leq i=s-1 \leq n-1 \text { or } n+1 \leq i=2 n-s) \\
\left(q+q^{-1}\right) Y_{i+1} & (i=n=s) \\
0 & (\text { otherwise }) .\end{cases}
\end{aligned}
$$

(iii) ψ is the quantum deformation of the basic relative invariant.

Next we deal with the case $m=2 n-2$. We label the vertices of the Dynkin diagram of g as follows.

Hence we have $I_{0}=\{1,2, \ldots, n\}$. Set $I=I_{0} \backslash\{1\}$. Then $n_{I}^{+} \neq\{0\}$ and $\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=\{0\}$. There exist three L_{I}-orbits C_{0}, C_{1}, C_{2} on \mathfrak{n}_{I}^{+}satisfying the closure relation $\{0\}=C_{0} \subset \overline{C_{1}} \subset \overline{C_{2}}=\mathfrak{n}_{I}^{+}$.

We fix a reduced expression $w_{I} w_{0}=s_{1} s_{2} \cdots s_{n-1} s_{n} s_{n-2} s_{n-3} \cdots s_{2} s_{1}$. For $i=$ $1,2, \ldots, 2 n-2$ we define $\beta_{i} \in \Delta^{+} \backslash \Delta_{I}$ and $Y_{i}=Y_{\beta_{i}} \in U_{q}\left(\mathfrak{n}_{I}^{-}\right)_{-\beta_{i}}$ as in Section 1.

Note that

$$
\beta_{i}= \begin{cases}\alpha_{1}+\alpha_{2}+\cdots+\alpha_{i} & (1 \leq i \leq n-1) \\ \alpha_{1}+\alpha_{2}+\cdots+\alpha_{n-2}+\alpha_{n} & (i=n) \\ \alpha_{1}+\alpha_{2}+\cdots+\alpha_{2 n-i-1} & (n+1 \leq i \leq 2 n-2) \\ \quad+2 \alpha_{2 n-i}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n} & \end{cases}
$$

Since the arguments are simpler than and similar to the case $m=2 n-1$, we omit the proofs.

Lemma 4.6. For $r \in I$ we have
$\operatorname{ad}\left(F_{r}\right) Y_{i}= \begin{cases}Y_{i+1} & (1 \leq i \leq n-2, r=i+1 \text { or } n \leq i \leq 2 n-2, r=2 n-i-1) \\ Y_{n} & (i=n-2, r=n) \\ Y_{n+1} & (i=n-1, r=n) \\ 0 & (\text { otherwise }),\end{cases}$
$\operatorname{ad}\left(E_{r}\right) Y_{i}= \begin{cases}Y_{i-1} & (1 \leq i \leq n-1, r=i \text { or } n+1 \leq i \leq 2 n-2, r=2 n-i) \\ Y_{n-1} & (i=n+1, r=n) \\ Y_{n-2} & (i=n, r=n) \\ 0 & \text { (otherwise }) .\end{cases}$
Proposition 4.7. We have

$$
Y_{j} Y_{i}= \begin{cases}q^{-1} Y_{i} Y_{j} & (j>i, i+j \neq 2 n-1) \tag{4.3}\\ Y_{i} Y_{j} & (j=n, i=n-1) \\ Y_{i} Y_{j}+\left(q^{-1}-q\right) \sum_{t=1}^{j-n}(-q)^{t-1} Y_{i+t} Y_{j-t} & (i \leq n-2, i+j=2 n-1)\end{cases}
$$

We set

$$
\psi=\sum_{i=1}^{n-1}\left(-q^{-1}\right)^{i-1} Y_{n-i} Y_{n+i-1} .
$$

Since $\beta_{n-i}+\beta_{n+i-1}$ dose not depend on i, we have $\psi \in U_{q}\left(\mathfrak{n}_{I}^{-}\right)_{-\left(\beta_{n-1}+\beta_{n}\right)}$.
Proposition 4.8. For $r \in I$ we have

$$
\operatorname{ad}\left(F_{r}\right) \psi=0, \quad \operatorname{ad}\left(E_{r}\right) \psi=0
$$

Proposition 4.9. $\quad \sum_{1 \leq i \leq 2 n-2} \mathbf{C}(q) Y_{i}$ and $\mathbf{C}(q) \psi$ are irreducible highest weight $U_{q}\left(\mathrm{I}_{I}\right)$-modules.

The $U_{q}\left(\mathrm{I}_{I}\right)$-module $\sum_{1 \leq i \leq 2 n-2} \mathbf{C}(q) Y_{i}$ (resp. $\left.\mathbf{C}(q) \psi\right)$ is a quantum deformation of $\mathscr{I}^{1}\left(\overline{C_{0}}\right)$ (resp. $\left.\mathscr{I}^{2}\left(\overline{C_{1}}\right)\right)$.

Theorem 4.10. (i) A quantum deformation $A_{q}\left(\mathfrak{n}_{I}^{+}\right)$of the coordinate algebra $A\left(\mathfrak{n}_{I}^{+}\right)$of \mathfrak{n}_{I}^{+}is generated by $Y_{i}(1 \leq i \leq 2 n-2)$ satisfying the fundamental relations (4.3).
(ii) The action of $U_{q}\left(\mathrm{l}_{I}\right)$ on $A_{q}\left(\mathfrak{n}_{I}^{+}\right)$is given as follows. For $r \in I_{0}$ and $s \in I$,
$K_{r} \cdot Y_{i}=q^{-\left(\alpha_{r}, \beta_{i}\right)} Y_{i}$,
$E_{s} \cdot Y_{i}= \begin{cases}Y_{i-1} & (1 \leq i=s \leq n-1 \text { or } n+1 \leq i=2 n-s \leq m) \\ Y_{n-1} & (i-1=n=s) \\ Y_{n-2} & (i=n=s) \\ 0 & \text { (otherwise) },\end{cases}$
$F_{s} \cdot Y_{i}= \begin{cases}Y_{i+1} & (1 \leq i=s-1 \leq n-2 \text { or } n \leq i=2 n-s-1 \leq m) \\ Y_{n} & (i+2=n=s) \\ Y_{n+1} & (i+1=n=s) \\ 0 & \text { (otherwise) } .\end{cases}$
(iii) ψ is the quantum deformation of the basic relative invariant.

5. Quantum determinants of quantum symmetric matrices

In this section we apply the method in [14] to the case where $\mathfrak{g}=\mathfrak{s p}_{2 n}(\mathbf{C})$ and $\mathfrak{l}_{I} \simeq \mathrm{gl}_{n}(\mathbf{C})$.

We label the vertices of the Dynkin diagram of \mathfrak{g} as follows.

Hence we have $I_{0}=\{1,2, \ldots, n\}$. Set $I=I_{0} \backslash\{n\}$. Then $\mathfrak{n}_{I}^{+} \neq\{0\}$ and $\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=\{0\}$. There exist $n+1 L_{I}$-orbits $C_{0}, C_{1}, \ldots, C_{n}$ on \mathfrak{n}_{I}^{+}satisfying the closure relation $\{0\}=C_{0} \subset \overline{C_{1}} \subset \cdots \subset \overline{C_{n}}=\mathfrak{n}_{I}^{+}$.

We fix a reduced expression

$$
w_{I} w_{0}=\left(s_{n} s_{n-1} \cdots s_{1}\right)\left(s_{n} s_{n-1} \cdots s_{2}\right) \cdots\left(s_{n} s_{n-1}\right) s_{n} .
$$

Let $1 \leq i \leq j \leq n$. We define $\beta_{i j} \in \Delta^{+} \backslash \Delta_{I}$ by

$$
\beta_{i j}=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j-1}+2 \alpha_{j}+2 \alpha_{j+1}+\cdots+2 \alpha_{n-1}+\alpha_{n},
$$

and set

$$
Y_{i j}=c_{i, j} T^{(1)} T^{(2)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1}\left(F_{n-j+i}\right),
$$

where $T^{(s)}=T_{n} T_{n-1} \cdots T_{s}$ for $s=1,2, \ldots, n-1$ and

$$
c_{i, j}= \begin{cases}q+q^{-1} & (1 \leq i=j \leq n) \\ 1 & (1 \leq i<j \leq n)\end{cases}
$$

Note that $Y_{i j} \in U_{q}\left(\mathfrak{n}_{I}^{-}\right)_{-\beta_{i j}}$.
Lemma 5.1. For $r \in I$, we have

$$
\begin{aligned}
\operatorname{ad}\left(F_{r}\right) Y_{i j} & = \begin{cases}c_{i, j} Y_{i-1, j} & (r+1=i \leq j) \\
Y_{i, j-1} & (i<j=r+1) \\
0 & (\text { otherwise }),\end{cases} \\
\operatorname{ad}\left(E_{r}\right) Y_{i j} & = \begin{cases}Y_{i+1, j} & (r=i<j) \\
c_{i, j} Y_{i, j+1} & (i \leq j=r) \\
0 & (\text { otherwise }) .\end{cases}
\end{aligned}
$$

Proof. Similarly to the proof of Lemma 4.1, we have only to deal with the cases $r+1=i$ or $r+1=j$ for F_{r} and $r=i$ or $r=j$ for E_{r}.

Let $r+1=i \leq j$. By using (1.1) we have

$$
F_{i-1}=T^{(1)} T^{(2)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1}\left(F_{n-j+i-1}\right)
$$

Hence, we obtain

$$
\begin{aligned}
\operatorname{ad}\left(F_{i-1}\right) Y_{i j}= & F_{i-1} Y_{i j}-q_{n-j+i} Y_{i j} F_{i} \\
= & c_{i, j} T^{(1)} T^{(2)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1} \\
& \times\left(F_{n-j+i-1} F_{n-j+i}-q_{n-j+i} F_{n-j+i} F_{n-j+i-1}\right) \\
= & c_{i, j} T^{(1)} T^{(2)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1} T_{n-j+i}\left(F_{n-j+i-1}\right) \\
= & c_{i, j} Y_{i-1, j} .
\end{aligned}
$$

Let $i+1<j=r+1$. By using (1.1) and (1.2) we have

$$
\begin{aligned}
F_{j-1} & =T^{(1)}\left(F_{j}\right)=T^{(1)} \cdots T^{(n-j)}\left(F_{n-1}\right) \\
& =T^{(1)} \cdots T^{(n-j)} T_{n} T_{n-1} T_{n}\left(F_{n-1}\right) \\
& =T^{(1)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1} T_{n} T_{n-1} \cdots T_{n-j+i+2}\left(F_{n-j+i+1}\right) .
\end{aligned}
$$

Since

$$
Y_{i j}=T^{(1)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1} T_{n} T_{n-1} \cdots T_{n-j+i+2}\left(F_{n-j+i}\right),
$$

we have

$$
\begin{aligned}
\operatorname{ad}\left(F_{j-1}\right) Y_{i j}= & F_{j-1} Y_{i j}-q Y_{i j} F_{j-1} \\
= & T^{(1)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1} \\
& \times T_{n} T_{n-1} \cdots T_{n-j+i+2}\left(F_{n-j+i+1} F_{n-j+i}-q F_{n-j+i} F_{n-j+i+1}\right) \\
= & T^{(1)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1} T_{n} T_{n-1} \cdots T_{n-j+i+2} T_{n-j+i}\left(F_{n-j+i+1}\right) .
\end{aligned}
$$

On the other hand, by the braid relations we have

$$
\begin{aligned}
Y_{i, j-1}= & T^{(1)} \cdots T^{(n-j)} T^{(n-j+1)} T_{n} T_{n-1} \cdots T_{n-j+i+2}\left(F_{n-j+i+1}\right) \\
= & T^{(1)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1} T_{n} T_{n-1} \cdots T_{n-j+i+2} \\
& \times T_{n-j+i} T_{n-j+i-1} \cdots T_{n-j+1}\left(F_{n-j+i+1}\right) \\
= & T^{(1)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1} T_{n} T_{n-1} \cdots T_{n-j+i+2} T_{n-j+i}\left(F_{n-j+i+1}\right) .
\end{aligned}
$$

Therefore we obtain $\operatorname{ad}\left(F_{j-1}\right) Y_{i j}=Y_{i, j-1}$.
Assume $i+1=j=r+1$. Since $F_{j-1}=T^{(1)} \cdots T^{(n-j)}\left(F_{n-1}\right)$, we have $\operatorname{ad}\left(F_{j-1}\right) Y_{i j}=\left[F_{j-1}, Y_{i j}\right]=T^{(1)} \ldots T^{(n-j)} T_{n}\left[T_{n}^{-1}\left(F_{n-1}\right), F_{n-1}\right] . \quad$ On the other hand,

$$
\begin{aligned}
Y_{i, j-1} & =\left(q+q^{-1}\right) T^{(1)} T^{(2)} \cdots T^{(n-j)} T^{(n-j+1)}\left(F_{n}\right) \\
& =\left(q+q^{-1}\right) T^{(1)} T^{(2)} \cdots T^{(n-j)} T_{n} T_{n-1}\left(F_{n}\right) \\
& =\left(q+q^{-1}\right) T^{(1)} T^{(2)} \cdots T^{(n-j)} T_{n}\left(F_{n} F_{n-1}^{(2)}-q F_{n-1} F_{n} F_{n-1}+q^{2} F_{n-1}^{(2)} F_{n}\right) \\
& =T^{(1)} T^{(2)} \cdots T^{(n-j)} T_{n}\left(\left[F_{n} F_{n-1}-q^{2} F_{n-1} F_{n}, F_{n-1}\right]\right) .
\end{aligned}
$$

Since $T_{n}^{-1}\left(F_{n-1}\right)=F_{n} F_{n-1}-q^{2} F_{n-1} F_{n}$ (see [4]), the statement holds.
Let $r=i<j$. We have $\operatorname{ad}\left(E_{i}\right) Y_{i+1, j}=0$ and $Y_{i j}=c_{i+1, j}^{-1} \operatorname{ad}\left(F_{i}\right) Y_{i+1, j}$, hence

$$
\begin{aligned}
\operatorname{ad}\left(E_{i}\right) Y_{i j} & =c_{i+1, j}^{-1} \operatorname{ad}\left(E_{i}\right)\left(\operatorname{ad}\left(F_{i}\right) Y_{i+1, j}\right) \\
& =c_{i+1, j}^{-1}\left(q_{i}-q_{i}^{-1}\right)^{-1} \operatorname{ad}\left(K_{i}-K_{i}^{-1}\right) Y_{i+1, j}+c_{i+1, j}^{-1} \operatorname{ad}\left(F_{i}\right)\left(\operatorname{ad}\left(E_{i}\right) Y_{i+1, j}\right) \\
& =c_{i+1, j}^{-1}\left(q-q^{-1}\right)^{-1}\left(q_{n-j-i-1}-q_{n-j-i-1}^{-1}\right) Y_{i+i, j} \\
& =Y_{i+1, j} .
\end{aligned}
$$

Let $i \leq j=r$. We have

$$
\begin{aligned}
\operatorname{ad}\left(E_{j}\right) Y_{i j} & =\operatorname{ad}\left(E_{j}\right)\left(\operatorname{ad}\left(F_{j}\right) Y_{i, j+1}\right) \\
& =\left(q_{j}-q_{j}^{-1}\right)^{-1} \operatorname{ad}\left(K_{j}-K_{j}^{-1}\right) Y_{i, j+1}+\operatorname{ad}\left(F_{j}\right)\left(\operatorname{ad}\left(E_{j}\right) Y_{i, j+1}\right) .
\end{aligned}
$$

If $i<j, \operatorname{ad}\left(E_{j}\right) Y_{i, j+1}=0$. Hence we obtain

$$
\operatorname{ad}\left(E_{j}\right) Y_{i j}=\left(q-q^{-1}\right)^{-1}\left(q-q^{-1}\right) Y_{i, j+1}=Y_{i, j+1}
$$

If $i=j$, we have

$$
\begin{gathered}
\operatorname{ad}\left(F_{i}\right)\left(\operatorname{ad}\left(E_{i}\right) Y_{i, i+1}\right)=\operatorname{ad}\left(F_{i}\right) Y_{i+1, i+1}=\left(q+q^{-1}\right) Y_{i, i+1} \\
\operatorname{ad}\left(K_{i}-K_{i}^{-1}\right) Y_{i, i+1}=Y_{i, i+1}-Y_{i, i+1}=0
\end{gathered}
$$

Hence we obtain $\operatorname{ad}\left(E_{i}\right) Y_{i i}=\left(q+q^{-1}\right) Y_{i, i+1}$.
Proposition 5.2. We have

$$
Y_{i j} Y_{l m}= \begin{cases}q_{n-j+i} Y_{l m} Y_{i j} & (l<i \leq m=j) \tag{5.1}\\ q_{n-m+l} Y_{l m} Y_{i j} & (l=i \leq m<j) \\ Y_{l m} Y_{i j} & (l<i \leq j<m) \\ Y_{l m} Y_{i j}+\left(q-q^{-1}\right) Y_{l j} Y_{i m} & (l<i<m<j) \\ q Y_{l m} Y_{i j}+q\left(q-q^{-1}\right) Y_{l j} Y_{i i} & (l<i=m<j) \\ Y_{l m} Y_{i j}+\left(q^{2}-q^{-2}\right) Y_{l i} Y_{l j} & (l=m<i<j) \\ Y_{l m} Y_{i j}+\left(q-q^{-1}\right)\left(Y_{l i} Y_{m j}+q Y_{l j} Y_{m i}\right) & (l<m<i<j) \\ Y_{l m} Y_{i j}+q^{-1}\left(q^{2}-q^{-2}\right) Y_{l i}^{2} & (l=m<i=j) \\ Y_{l m} Y_{i j}+\left(q^{2}-q^{-2}\right) Y_{l i} Y_{m i} & (l<m<i=j) .\end{cases}
$$

Proof. We shall prove $Y_{i j} Y_{l m}=q_{n-j+i} Y_{l m} Y_{i j}$ for $l<i \leq m=j$ by induction on $t=i-l$. For $t=1$ we have $Y_{l m}=c_{i, j}^{-1} \operatorname{ad}\left(F_{i-1}\right) Y_{i j}=$ $c_{i, j}^{-1}\left(F_{i-1} Y_{i j}-q_{n-j+i} Y_{i j} F_{i-1}\right)$. Since $F_{i-1}=T^{(1)} T^{(2)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1}$. ($F_{n-j+i-1}$), we obtain

$$
\begin{aligned}
Y_{i j} Y_{l j}- & q_{n-j+i} Y_{l j} Y_{i j} \\
= & -c_{i, j}^{-1} q_{n-j+i}\left(Y_{i j}^{2} F_{i-1}-\left(q_{n-j+i}^{-1}+q_{n-j+i}\right) Y_{i j} F_{i-1} Y_{i j}+F_{i-1} Y_{i j}^{2}\right) \\
= & -c_{i, j} q_{n-j+i} T^{(1)} T^{(2)} \cdots T^{(n-j)} T_{n} T_{n-1} \cdots T_{n-j+i+1} \\
& \times\left(F_{n-j+i}^{2} F_{n-j+i-1}-\left(q_{n-j+i}+q_{n-j+i}^{-1}\right) F_{n-j+i} F_{n-j+i-1} F_{n-j+i}+F_{n-j+i-1} F_{n-j+i}^{2}\right) \\
= & 0 .
\end{aligned}
$$

Assume that $t>1$ and the statement is proved up to $t-1$. From Lemma 5.1, we have $\left[F_{l}, Y_{i j}\right]=\operatorname{ad}\left(F_{l}\right) Y_{i j}=0$. By the inductive hypothesis on t, we have $Y_{i j} Y_{l+1, j}=q_{n-j+i} Y_{l+1, j} Y_{i j}$. Therefore we obtain

$$
\begin{aligned}
Y_{i j} Y_{l j} & =Y_{i j}\left(\operatorname{ad}\left(F_{l}\right) Y_{l+1, j}\right)=Y_{i j}\left(F_{l} Y_{l+1, j}-q Y_{l+1, j} F_{l}\right) \\
& =q_{n-j+i}\left(F_{l} Y_{l+1, j}-q Y_{l+1, j} F_{l}\right) Y_{i j}=q_{n-j+i} Y_{l j} Y_{i j} .
\end{aligned}
$$

Let $l=i \leq m<j$. We show $Y_{l j} Y_{l m}=q_{n-m+l} Y_{l m} Y_{l j}$ by induction on $t=$ $j-m$. For $t=1$, from the proof of Lemma 5.1 we have

$$
F_{m}=T^{(1)} \ldots T^{(n-m-1)}\left(F_{n-1}\right)=T\left(F_{n-m+l}\right),
$$

where $T=T^{(1)} \cdots T^{(n-m-1)} T_{n} T_{n-1} \cdots T_{n-m+l} T_{n} T_{n-1} \cdots T_{n-m+l+1}$. If $l=m$, we have $\quad Y_{m m}=\operatorname{ad}\left(F_{m}\right) Y_{m, m+1}=\left[F_{m}, Y_{m, m+1}\right] \quad$ and $\quad Y_{m, m+1}=T^{(1)} \cdots T^{(n-m-1)}$. $T_{n}\left(F_{n-1}\right)$. Hence we obtain

$$
\begin{aligned}
Y_{m j} Y_{m m}-q_{n} Y_{m m} Y_{m j}= & -Y_{m, m+1}^{2} F_{m}+\left(q^{2}+1\right) Y_{m, m+1} F_{m} Y_{m, m+1}-q^{2} F_{m} Y_{m, m+1}^{2} \\
= & T^{(1)} \cdots T^{(n-m-1)} T_{n}\left(-F_{n-1}^{2} T_{n}^{-1}\left(F_{n-1}\right)\right. \\
& \left.+\left(q^{2}+1\right) F_{n-1} T_{n}^{-1}\left(F_{n-1}\right) F_{n-1}-q^{2} T_{n}^{-1}\left(F_{n-1}\right) F_{n-1}^{2}\right) \\
= & q^{2} T^{(1)} \cdots T^{(n-m-1)} T_{n}\left(F_{n-1}^{3} F_{n}-\left(q^{2}+1+q^{-2}\right) F_{n-1}^{2} F_{n} F_{n-1}\right. \\
& \left.+\left(q^{2}+1+q^{-2}\right) F_{n-1} F_{n} F_{n-1}^{2}-F_{n} F_{n-1}^{3}\right) \\
= & 0 .
\end{aligned}
$$

If $l<m$, we have $Y_{l m}=\operatorname{ad}\left(F_{m}\right) Y_{l, m+1}=F_{m} Y_{l, m+1}-q Y_{l, m+1} F_{m}$ and $Y_{l, m+1}=$ $T\left(F_{n-m+l-1}\right)$. Hence we obtain

$$
\begin{aligned}
Y_{l j} Y_{l m}-q_{n-m+l} Y_{l m} Y_{l j}= & -q\left(Y_{l, m+1}^{2} F_{m}-\left(q+q^{-1}\right) Y_{l, m+1} F_{m} Y_{l, m+1}+F_{m} Y_{l, m+1}^{2}\right) \\
= & -q T\left(F_{n-m+l-1}^{2} F_{n-m+l}-\left(q+q^{-1}\right) F_{n-m+l-1} F_{n-m+l}\right. \\
& \left.\times F_{n-m+l-1}+F_{n-m+l} F_{n-m+l-1}^{2}\right) \\
= & 0
\end{aligned}
$$

Assume that $t>1$ and the statement is proved up to $t-1$. If $l=m$, we have $0=\operatorname{ad}\left(F_{m}\right) Y_{m j}=F_{m} Y_{m j}-q^{-1} Y_{m j} F_{m}$. Therefore by the inductive hypothesis on t we obtain $Y_{m j} Y_{m m}=Y_{m j}\left[F_{m}, Y_{m, m+1}\right]=q^{2}\left[F_{m}, Y_{m, m+1}\right] Y_{m, j}=q_{n} Y_{m m} Y_{m j}$. If $l<m$, we have $0=\operatorname{ad}\left(F_{m}\right) Y_{m j}=\left[F_{m}, Y_{m j}\right]$. Hence we obtain $Y_{l j} Y_{l m}=$ $Y_{l j}\left(F_{m} Y_{l, m+1}-q Y_{l, m+1} F_{m}\right)=q\left(F_{m} Y_{l, m+1}-q Y_{l, m+1} F_{m}\right) Y_{l j}=q_{n-m+l} Y_{l m} Y_{l j}$.

Let $l<i \leq j<m$. We show $Y_{i j} Y_{l m}=Y_{l m} Y_{i j}$ by induction on $t=m-j$. For $t=1$, we have

$$
\left[Y_{i j}, Y_{l m}\right]=c_{i, j} T\left(\left[T_{n-j+l-1} \cdots T_{n-j} T_{n} \cdots T_{n-j+i+1}\left(F_{n-j+i}\right), F_{n-j+l-1}\right]\right),
$$

where $T=T^{(1)} \cdots T^{(n-j-1)} T_{n} \cdots T_{n-j+l}$. By the braid relations, we have

$$
\begin{aligned}
T_{n-j+l-1} \cdots T_{n-j} T_{n} \cdots T_{n-j+i+1}\left(F_{n-j+i}\right) & =T_{n} \cdots T_{n-j+i+1} T_{n-j+l-1} \cdots T_{n-j}\left(F_{n-j+i}\right) \\
& =T_{n} \cdots T_{n-j+i+1}\left(F_{n-j+i}\right) .
\end{aligned}
$$

Since $F_{n-j+l-1}=T_{n} \cdots T_{n-j+i+1}\left(F_{n-j+l-1}\right)$ and $\left[F_{n-j+i}, F_{n-j+l-1}\right]=0$, we obtain $\left[Y_{i j}, Y_{l m}\right]=0$ for $t=1$. Assume that $t>1$ and the statement is proved up to $t-1$. Since $Y_{i j}=\operatorname{ad}\left(F_{j}\right) Y_{i, j+1}$ and $\left[F_{j}, Y_{l m}\right]=\operatorname{ad}\left(F_{j}\right) Y_{l m}=0$, by the inductive hypothesis on t we obtain $Y_{i j} Y_{l m}=Y_{l m} Y_{i j}$.

Let $l<i<m<j$. We prove $\left[Y_{i j}, Y_{l m}\right]=\left(q-q^{-1}\right) Y_{l j} Y_{i m}$ by the induction on $t=i-l$. When $t=1$, we have $Y_{l s}=\operatorname{ad}\left(F_{i-1}\right) Y_{i s}=F_{i-1} Y_{i s}-q Y_{i s} F_{i-1}$ for $s=m, j$. Since $Y_{i j} Y_{i m}=q Y_{i m} Y_{i j}$ and $Y_{i m} Y_{l j}=Y_{l j} Y_{i m}$, we obtain

$$
\begin{aligned}
{\left[Y_{i j}, Y_{l m}\right] } & =\left[Y_{i j}, F_{i-1} Y_{i m}-q Y_{i m} F_{i-1}\right] \\
& =q Y_{i m}\left(F_{i-1} Y_{i j}-q Y_{i j} F_{i-1}\right)-q^{-1}\left(F_{i-1} Y_{i j}-q Y_{i j} F_{i-1}\right) Y_{i m} \\
& =\left(q-q^{-1}\right) Y_{l j} Y_{i m} .
\end{aligned}
$$

Assume that $t>1$ and the statement is proved up to $t-1$. By Lemma 5.1 we have $\left[F_{l}, Y_{i s}\right]=0$ for $s=m, j$. Hence we have

$$
\begin{aligned}
{\left[Y_{i j}, Y_{l m}\right] } & =\left[Y_{i j}, \operatorname{ad}\left(F_{l}\right) Y_{l+1, m}\right]=\left[Y_{i j}, F_{l} Y_{l+1, m}-q Y_{l+1, m} F_{l}\right] \\
& =F_{l}\left[Y_{i j}, Y_{l+1, m}\right]-q\left[Y_{i j}, Y_{l+1, m}\right] F_{l}=\left(q-q^{-1}\right)\left(F_{l} Y_{l+1, j} Y_{i m}-q Y_{l+1, j} Y_{i m} F_{l}\right) \\
& =\left(q-q^{-1}\right)\left(F_{l} Y_{l+1, j}-q Y_{l+1, j} F_{l}\right) Y_{i m}=\left(q-q^{-1}\right)\left(\operatorname{ad}\left(F_{l}\right) Y_{l+1, j}\right) Y_{i m} \\
& =\left(q-q^{-1}\right) Y_{l j} Y_{i m} .
\end{aligned}
$$

Similarly, we can prove $Y_{i j} Y_{l m}=q Y_{l m} Y_{i j}+q\left(q-q^{-1}\right) Y_{l j} Y_{i i}$ for $l<i=m<j$.
Let $l<m<i<j$. We prove the statement by induction on $t=i-m$. We have $\left[Y_{i j}, Y_{l m}\right]=\left[Y_{i j}, \operatorname{ad}\left(F_{m}\right) Y_{l, m+1}\right]=\left[Y_{i j}, F_{m} Y_{l, m+1}-q Y_{l, m+1} F_{m}\right]$. If $t=$ $1, Y_{m j}=F_{m} Y_{i j}-q Y_{i j} F_{m} \quad$ and $\quad Y_{i j} Y_{l i}=q Y_{l i} Y_{i j}+q\left(q-q^{-1}\right) Y_{l j} Y_{i i}$. Therefore [$\left.Y_{i j}, Y_{l m}\right]$ is equal to

$$
\begin{aligned}
& q Y_{l i}\left(F_{m} Y_{i j}-q Y_{i j} F_{m}\right)-q^{-1}\left(F_{m} Y_{i j}-q Y_{i j} F_{m}\right) Y_{l i} \\
& \quad+q^{-1} F_{m}\left(Y_{i j} Y_{l i}-q Y_{l i} Y_{i j}\right)-q\left(Y_{i j} Y_{l i}-q Y_{l i} Y_{i j}\right) F_{m} \\
& =q Y_{l i} Y_{m j}-q^{-1} Y_{m j} Y_{l i}+\left(q-q^{-1}\right)\left(F_{m} Y_{l j} Y_{i i}-q^{2} Y_{l j} Y_{i i} F_{m}\right)
\end{aligned}
$$

Since $\left[F_{m}, Y_{l j}\right]=\operatorname{ad}\left(F_{m}\right) Y_{l j}=0$, we have

$$
\begin{aligned}
{\left[Y_{i j}, Y_{l m}\right] } & =q Y_{l i} Y_{m j}-q^{-1} Y_{m j} Y_{l i}+\left(q-q^{-1}\right) Y_{l j}\left(F_{m} Y_{i i}-q^{2} Y_{i i} F_{m}\right) \\
& =q Y_{l i} Y_{m j}-q^{-1} Y_{m j} Y_{l i}+\left(q-q^{-1}\right)\left(q+q^{-1}\right) Y_{l j} Y_{m i} \\
& =\left(q-q^{-1}\right)\left(Y_{l i} Y_{m j}+q Y_{l j} Y_{m i}\right) .
\end{aligned}
$$

We have used $\left[Y_{m j}, Y_{l i}\right]=\left(q-q^{-1}\right) Y_{l j} Y_{m i}$ for the last step. Assume that $t>1$ and the statement is proved up to $t-1$. By $\left[F_{m}, Y_{i j}\right]=0=\left[F_{m}, Y_{l s}\right]$ for $s=$
i, j, we obtain

$$
\begin{aligned}
{\left[Y_{i j}, Y_{l m}\right] } & =F_{m}\left[Y_{i j}, Y_{l, m+1}\right]-q\left[Y_{i j}, Y_{l, m+1}\right] F_{m} \\
& =\left(q-q^{-1}\right)\left(F_{m}\left(Y_{l i} Y_{m+1, j}+q Y_{l j} Y_{m+1, i}\right)-q\left(Y_{l i} Y_{m+1, j}+q Y_{l j} Y_{m+1, i}\right) F_{m}\right) \\
& =\left(q-q^{-1}\right)\left(Y_{l i}\left(F_{m} Y_{m+1, j}-q Y_{m+1, j} F_{m}\right)+q Y_{l j}\left(F_{m} Y_{m+1, i}-q Y_{m+1, i} F_{m}\right)\right) \\
& =\left(q-q^{-1}\right)\left(Y_{l i} Y_{m j}+q Y_{l j} Y_{m i}\right) .
\end{aligned}
$$

Here we have used the inductive hypothesis for the second equality.
Let $l=m<i<j$. We have $\left[Y_{i j}, Y_{l l}\right]=\left[Y_{i j},\left[F_{l}, Y_{l, l+1}\right]\right]$. Assume $i-l=$

1. Then we have $Y_{l j}=F_{l} Y_{i j}-q Y_{i j} F_{l}$ and $Y_{i j} Y_{l i}=q Y_{l i} Y_{i j}+q\left(q-q^{-1}\right) Y_{l j} Y_{i i}$.

Hence we have

$$
\begin{aligned}
{\left[Y_{i j}, Y_{l m}\right]=} & q^{-1} F_{l}\left(Y_{i j} Y_{l i}-q Y_{l i} Y_{i j}\right)-\left(Y_{i j} Y_{l i}-q Y_{l i} Y_{i j}\right) F_{l} \\
& -q^{-1}\left(F_{l} Y_{i j}-q Y_{i j} F_{l}\right) Y_{l i}+Y_{l i}\left(F_{l} Y_{i j}-q Y_{i j} F_{l}\right) \\
= & \left(q-q^{-1}\right)\left(F_{l} Y_{l j} Y_{i i}-q Y_{l j} Y_{i i} F_{l}\right)-q^{-1} Y_{l j} Y_{l i}+Y_{l i} Y_{l j} \\
= & \left(q-q^{-1}\right)\left(F_{l} Y_{l j} Y_{i i}-q Y_{l j} Y_{i i} F_{l}\right) .
\end{aligned}
$$

By Lemma 5.1 we have $F_{l} Y_{l j}-q^{-1} Y_{l j} F_{l}=\operatorname{ad}\left(F_{l}\right) Y_{l j}=0$. Hence we obtain

$$
\begin{aligned}
{\left[Y_{i j}, Y_{l m}\right] } & =\left(q-q^{-1}\right) q^{-1} Y_{l j}\left(F_{l} Y_{i i}-q^{2} Y_{i i} F_{l}\right)=\left(q-q^{-1}\right) q^{-1} Y_{l j}\left(\operatorname{ad}\left(F_{l}\right) Y_{i i}\right) \\
& =\left(q-q^{-1}\right) q^{-1}\left(q+q^{-1}\right) Y_{l j} Y_{l i}
\end{aligned}
$$

Assume $i-l>1$, then we have $\left[F_{l}, Y_{i j}\right]=0$. By the preceding paragraph, $\left[Y_{i j}, Y_{l, l+1}\right]=\left(q-q^{-1}\right)\left(Y_{l i} Y_{l+1, j}+q Y_{l j} Y_{l+1, i}\right)$. Therefore we obtain

$$
\begin{aligned}
{\left[Y_{i j}, Y_{l m}\right] } & =\left[F_{l},\left[Y_{i j}, Y_{l, l+1}\right]\right]=\left(q-q^{-1}\right)\left[F_{l}, Y_{l i} Y_{l+1, j}+q Y_{l j} Y_{l+1, i}\right] \\
& =\left(q-q^{-1}\right)\left(q^{-1} Y_{l i}\left(\operatorname{ad}\left(F_{l}\right) Y_{l+1, j}\right)+Y_{l j}\left(\operatorname{ad}\left(F_{l}\right) Y_{l+1, i}\right)\right) \\
& =\left(q-q^{-1}\right)\left(q^{-1} Y_{l i} Y_{l j}+Y_{l j} Y_{l i}\right)=\left(q^{2}-q^{-2}\right) Y_{l i} Y_{l j} .
\end{aligned}
$$

Let $l<m<i=j$. We show the statement by induction on $t=i-m$. Assume $t=1$. We have $Y_{i i} Y_{l i}=q^{2} Y_{l i} Y_{i i}$, hence $\left[Y_{i i}, Y_{l m}\right]$ is equal to

$$
\begin{aligned}
{\left[Y_{i i}, F_{m} Y_{l i}-q Y_{l i} F_{m}\right] } & =q Y_{l i}\left(F_{m} Y_{i i}-q^{2} Y_{i i} F_{m}\right)-q^{-2}\left(F_{m} Y_{i i}-q^{2} Y_{i i} F_{m}\right) Y_{l i} \\
& =q Y_{l i}\left(\operatorname{ad}\left(F_{m}\right) Y_{i i}\right)-q^{-2}\left(\operatorname{ad}\left(F_{m}\right) Y_{i i}\right) Y_{l i} \\
& =\left(q+q^{-1}\right)\left(q Y_{l i} Y_{m i}-q^{-2} Y_{m i} Y_{l i}\right) \\
& =\left(q^{2}-q^{-2}\right) Y_{l i} Y_{m i} .
\end{aligned}
$$

Assume that $t>1$ and the statement is proved up to $t-1$. By Lemma 5.1 we have $\left[F_{m}, Y_{s i}\right]=0$ for $s=l, i$. Therefore we obtain

$$
\begin{aligned}
{\left[Y_{i i}, Y_{l m}\right] } & =\left[Y_{i i}, F_{m} Y_{l, m+1}-q Y_{l, m+1} F_{m}\right]=F_{m}\left[Y_{i i}, Y_{l, m+1}\right]-q\left[Y_{i i}, Y_{l, m+1}\right] F_{m} \\
& =\left(q^{2}-q^{-2}\right)\left(F_{m} Y_{l i} Y_{m+1, i}-q Y_{l i} Y_{m+1, i} F_{m}\right) \\
& =\left(q^{2}-q^{-2}\right) Y_{l i}\left(F_{m} Y_{m+1, i}-q Y_{m+1, i} F_{m}\right) \\
& =\left(q^{2}-q^{-2}\right) Y_{l i}\left(\operatorname{ad}\left(F_{m}\right) Y_{m+1, i}\right)=\left(q^{2}-q^{-2}\right) Y_{l i} Y_{m i} .
\end{aligned}
$$

Here we have used the inductive hypothesis on t for the third equality.
Let $l=m<i=j$. Since $Y_{l l}=\operatorname{ad}\left(F_{l}\right) Y_{l, l+1}=\left[F_{l}, Y_{l, l+1}\right]$, we have $\left[Y_{i i}, Y_{l l}\right]$ $=\left[Y_{i i},\left[F_{l}, Y_{l, l+1}\right]\right]$. If $i-l=1$, then $Y_{i i} Y_{l, l+1}=q^{2} Y_{l, l+1} Y_{i i}$. Hence, $\left[Y_{i i}, Y_{l l}\right]$ is equal to

$$
\begin{aligned}
& Y_{l, l+1}\left(F_{l} Y_{i i}-q^{2} Y_{i i} F_{l}\right)-q^{-2}\left(F_{l} Y_{i i}-q^{2} Y_{i i} F_{l}\right) Y_{l, l+1} \\
& \quad=Y_{l i}\left(\operatorname{ad}\left(F_{l}\right) Y_{i i}\right)-q^{-2}\left(\operatorname{ad}\left(F_{l}\right) Y_{i i}\right) Y_{l i} \\
& \quad=\left(q+q^{-1}\right)\left(1-q^{-2}\right) Y_{l i}^{2}=q^{-1}\left(q^{2}-q^{-2}\right) Y_{l i}^{2}
\end{aligned}
$$

If $i-l>1$, we have $\left[F_{l}, Y_{i i}\right]=\operatorname{ad}\left(F_{l}\right) Y_{i i}=0$. From the preceding paragraph we have $\left[Y_{i i}, Y_{l, l+1}\right]=\left(q^{2}-q^{-2}\right) Y_{l i} Y_{l+1, i}$, hence

$$
\begin{aligned}
{\left[Y_{i i}, Y_{l l}\right] } & =\left[F_{l},\left[Y_{i i}, Y_{l, l+1}\right]\right]=\left(q^{2}-q^{-2}\right)\left[F_{l}, Y_{l i} Y_{l+1, i}\right] \\
& =\left(q^{2}-q^{-2}\right)\left(\left(F_{l} Y_{l i}-q^{-1} Y_{l i} F_{l}\right) Y_{l+1, i}+q^{-1} Y_{l i}\left(F_{l} Y_{l+1, i}-q Y_{l+1, i} F_{l}\right)\right) \\
& =\left(q^{2}-q^{-2}\right)\left(\left(\operatorname{ad}\left(F_{l}\right) Y_{l i}\right) Y_{l+1, i}+q^{-1} Y_{l i}\left(\operatorname{ad}\left(F_{l}\right) Y_{l+1, i}\right)\right) \\
& =\left(q^{2}-q^{-2}\right) q^{-1} Y_{l i}^{2} .
\end{aligned}
$$

For $j>i$ we define $Y_{j i}$ by $Y_{j i}=q^{-2} Y_{i j}$. For $p=0,1, \ldots, n-1$ we set

$$
\begin{aligned}
& \psi_{p}^{-}=\sum_{\sigma \in S_{p+1}}\left(-q^{-1}\right)^{l(\sigma)} Y_{1, \sigma(1)} Y_{2, \sigma(2)} \cdots Y_{p+1, \sigma(p+1)} \in U_{q}\left(\mathfrak{n}_{I}^{-}\right)_{-} \sum_{t=1}^{p+1} \beta_{\beta_{t}}, \\
& \psi_{p}^{+}=\sum_{\sigma \in S_{p+1}}\left(-q^{-1}\right)^{l(\sigma)} Y_{i_{1}, i_{\sigma(1)}} Y_{i_{2}, i_{\sigma(2)}} \cdots Y_{i_{p+1}, i_{\sigma(p+1)}} \in U_{q}\left(\mathfrak{n}_{I}^{-}\right)_{-} \sum_{t=0}^{p} \beta_{n-m-t}
\end{aligned}
$$

where $i_{s}=n-p-1+s$.
Proposition 5.3. Let $r \in I$. For $p=0,1, \ldots, n-1$, we have

$$
\operatorname{ad}\left(F_{r}\right) \psi_{p}^{-}=0, \quad \operatorname{ad}\left(E_{r}\right) \psi_{p}^{+}=0
$$

In order to prove Proposition 5.3 we need the following lemma.

Lemma 5.4. Let $t=1,2, \ldots, p$ and $a_{t+2}, a_{t+3}, \ldots, a_{p+1} \in\{1,2, \ldots, p+1\}$. We set $A=\left\{\sigma \in S_{p+1} \mid \sigma(t) \leq t-1, \sigma(t+1) \geq t, \sigma(s)=a_{s}(s>t+1)\right\}$. For $1 \leq$ $i_{1}<i_{2}<\cdots<i_{p+1} \leq n$, we have

$$
\begin{equation*}
\sum_{\sigma \in A}\left(-q^{-1}\right)^{l(\sigma)} Y_{i_{1}, i_{\sigma(l)}} \cdots Y_{i_{t-1}, i_{\sigma(t-1)}} Y_{i_{\sigma(t)}, i_{\sigma(l+1)}}=0 \tag{5.2}
\end{equation*}
$$

Proof. We prove the statement by induction on t. Set

$$
\begin{aligned}
A\left(t ; a_{t+2}, \ldots, a_{p+1}\right) & =\left\{\sigma \in S_{p+1} \mid \sigma(t) \leq t-1, \sigma(t+1) \geq t, \sigma(s)=a_{s}(s>t+1)\right\}, \\
f(t, \sigma) & =\left(-q^{-1}\right)^{l(\sigma)} Y_{i_{1}, i_{\sigma(1)}} \cdots Y_{i_{t-1}, i_{\sigma(t-1)}} Y_{i_{\sigma(t)}, i_{\sigma(t+1)}},
\end{aligned}
$$

and for a subset B of S_{p+1}

$$
f(t, B)=\sum_{\sigma \in B} f(t, \sigma) .
$$

For $t=1$ we have $A\left(1 ; a_{3}, \ldots, a_{p+1}\right)=\varnothing$, hence the statement holds.
For $t=2$ we have $f\left(2, A\left(2 ; a_{4}, \ldots, a_{p+1}\right)\right)=f\left(2, A_{1}\right)+f\left(2, A_{2}\right)$, where

$$
\begin{aligned}
& A_{1}=\left\{\sigma \in A\left(2 ; a_{4}, \ldots, a_{p+1}\right) \mid 1<\sigma(1)<\sigma(3)\right\}, \\
& A_{2}=\left\{\sigma \in A\left(2 ; a_{4}, \ldots, a_{p+1}\right) \mid 1<\sigma(3)<\sigma(1)\right\} .
\end{aligned}
$$

For $\sigma \in A_{2}$ set $\tau=\sigma(1,3)$, then $\tau \in A_{1}, l(\tau)=l(\sigma)-1$ and

$$
Y_{i_{1}, i_{\sigma(1)}} Y_{i_{1}, i_{\sigma(3)}}=q Y_{i_{1}, i_{\sigma(3)}} Y_{i_{1}, i_{\sigma(1)}}=q Y_{i_{1}, i_{[(1)}} Y_{i_{1}, i_{t(3)}} .
$$

Hence we obtain $f\left(2, A_{2}\right)=-f\left(2, A_{1}\right)$, and the statement holds.
Assume that $t>2$ and the statement is proved up to $t-1$. We have

$$
f\left(t, A\left(t ; a_{t+2}, \ldots, a_{p+1}\right)\right)=\sum_{j=1}^{7} f\left(t, B_{j}\right),
$$

where B_{j} is the subset of $A\left(t ; a_{t+2}, \ldots, a_{p+1}\right)$ given by

$$
\begin{aligned}
& B_{1}=\{\sigma \mid \sigma(t)=t-1, t \leq \sigma(t+1)<\sigma(t-1)\}, \\
& B_{2}=\{\sigma \mid \sigma(t)=t-1, t \leq \sigma(t-1)<\sigma(t+1)\}, \\
& B_{3}=\{\sigma \mid \sigma(t)=t-1, \sigma(t-1)<t-1\}, \\
& B_{4}=\{\sigma \mid \sigma(t)<t-1, t \leq \sigma(t+1)<\sigma(t-1)\}, \\
& B_{5}=\{\sigma \mid \sigma(t)<t-1, t \leq \sigma(t-1)<\sigma(t+1)\}, \\
& B_{6}=\{\sigma \mid \sigma(t)<\sigma(t-1) \leq t-1\}, \\
& B_{7}=\{\sigma \mid \sigma(t-1)<\sigma(t)<t-1\} .
\end{aligned}
$$

For $\sigma \in B_{2}$, set $\tau=\sigma(t-1, t+1)$. Then we have $\tau \in B_{1}, l(\tau)=l(\sigma)+1$ and

$$
Y_{i_{t-1}, i_{\sigma(t-1)}} Y_{i_{\sigma(t)}, i_{\sigma(t+1)}}=q^{-1} Y_{i_{\sigma(t)}, i_{\sigma(t+1)}} Y_{i_{t-1}, i_{\sigma(t-1)}}=q^{-1} Y_{i_{t-1}, i_{t(t-1)}} Y_{i_{t(t)}, i_{(t+1)}} .
$$

Hence we obtain $f\left(t, B_{2}\right)=\sum_{\sigma \in B_{2}} f(t, \sigma)=-\sum_{\tau \in B_{1}} f(t, \tau)=-f\left(t, B_{1}\right)$.
Let $\sigma \in B_{3}$. We set $s=\sigma(t+1)$, then $\sigma \in A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right)$ and

$$
f(t, \sigma)=q^{-2} Y_{i_{1}, i_{\sigma(1)}} \cdots Y_{i_{t-2}, i_{\sigma(t-2)}} Y_{i_{\sigma(t-1)}, i_{t-1}} Y_{i_{\sigma(t)}, i_{s}}=q^{-2} f(t-1, \sigma) Y_{i_{t-1}, i_{s}} .
$$

Hence we obtain

$$
f\left(t, B_{3}\right)=q^{-2} \sum_{s=t}^{p+1} f\left(t-1, C_{1}(s)\right) Y_{i_{-1}, i_{s}},
$$

where $C_{1}(s)=\left\{\sigma \in A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right) \mid \sigma(t)=t-1\right\}$.
For $\sigma \in B_{4}$ we set $\tau=\sigma(t-1, t)$ and $\rho=\tau(t, t+1)$. Then we have $\tau \in$ $A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right)$, and $\rho \in A\left(t-1 ; r, a_{t+2}, \ldots, a_{p+1}\right)$, where $s=\sigma(t+1)$ and $r=\sigma(t-1)$. Since $l(\tau)=l(\sigma)-1, l(\rho)=l(\sigma)-2$ and

$$
\begin{aligned}
Y_{i_{t-1}, i_{\sigma(t-1)}} Y_{i_{\sigma(t)}, i_{\sigma(t+1)}} & =Y_{i_{\sigma(t)}, i_{\sigma(t+1)}} Y_{i_{t-1}, i_{\sigma(t-1)}}+\left(q-q^{-1}\right) Y_{i_{\sigma(t)}, i_{\sigma(t-1)}} Y_{i_{t-1}, i_{\sigma(t+1)}} \\
& =Y_{i_{\rho(t-1)}, i_{\rho(t)}} Y_{i_{t-1}, i_{r}}+\left(q-q^{-1}\right) Y_{i_{t(t-1)}, i_{t(t)}} Y_{i_{t-1}, i_{s}},
\end{aligned}
$$

we have

$$
f(t, \sigma)=q^{-2} f(t-1, \rho) Y_{i_{t-1}, i_{r}}+\left(q^{-2}-1\right) f(t-1, \tau) Y_{i_{t-1}, i_{s}} .
$$

Hence we have

$$
f\left(t, B_{4}\right)=q^{-2} \sum_{s=t}^{p+1} f\left(t-1, B_{1}^{\prime}(s)\right) Y_{i_{t-1}, i_{s}}+\left(q^{-2}-1\right) \sum_{s=t}^{p+1} f\left(t-1, B_{2}^{\prime}(s)\right) Y_{i_{t-1}, i_{s}},
$$

where $\quad B_{1}^{\prime}(s)=\left\{\sigma \in A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right) \mid t \leq \sigma(t)<s\right\} \quad$ and $\quad B_{2}^{\prime}(s)=$ $\left\{\sigma \in A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right) \mid s<\sigma(t)\right\}$. Similarly, for $\sigma \in B_{5}$ we have $\rho \in$ $B_{2}^{\prime}(s)$ and $f(t, \sigma)=f(t-1, \rho) Y_{i_{t-1}, i_{s}}$, where $s=\sigma(t-1)$. Therefore we have

$$
f\left(t, B_{5}\right)=\sum_{s=t}^{p+1} f\left(t-1, B_{2}^{\prime}(s)\right) Y_{i_{t-1}, i_{s}} .
$$

Hence we obtain

$$
f\left(t, B_{4}\right)+f\left(t, B_{5}\right)=q^{-2} \sum_{s=t}^{p+1} f\left(t-1, C_{2}(s)\right) Y_{i_{t-1}, i_{s}}
$$

where $C_{2}(s)=\left\{\sigma \in A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right) \mid t \leq \sigma(t)\right\}=B_{1}^{\prime}(s) \cup B_{2}^{\prime}(s)$ (disjoint).

Let $\sigma \in B_{6}$. We set $\tau=\sigma(t, t+1), \rho=\tau(t-1, t+1), s=\sigma(t-1)$ and $r=$ $\sigma(t)$. Then we have $\rho \in A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right), \tau \in A\left(t-1 ; r, a_{t+2}, \ldots, a_{p+1}\right)$, $l(\rho)=l(\sigma)+2, \quad l(\tau)=l(\sigma)+1, \quad$ and $f(t, \sigma)=q^{2} f(t-1, \rho) Y_{i_{-1}, i_{s}}+\left(q^{2}-1\right) f$. $(t-1, \tau) Y_{i_{t-1}, i_{r}}$. Hence we obtain

$$
f\left(t, B_{6}\right)=q^{2} \sum_{s=1}^{t-2} f\left(t-1, B_{3}^{\prime}(s)\right) Y_{i_{t-1}, i_{s}}+\left(q^{2}-1\right) \sum_{r=1}^{t-2} f\left(t-1, B_{4}^{\prime}(s)\right) Y_{i_{t-1}, i_{s}}
$$

where $B_{3}^{\prime}(s)=\left\{\sigma \in A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right) \mid s<\sigma(t-1), t \leq \sigma(t)\right\}$ and $B_{4}^{\prime}(s)=$ $\left\{\sigma \in A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right) \mid \sigma(t-1)<s, t \leq \sigma(t)\right\}$. Similarly, for $\sigma \in B_{7}$ we have $\rho \in B_{4}^{\prime}(s)$ and $f(t, \sigma)=f(t-1, \rho) Y_{i_{t-1}, i_{s}}$, where $s=\sigma(t-1)$. Hence we have

$$
f\left(t, B_{7}\right)=\sum_{s=1}^{t-1} f\left(t-1, B_{4}^{\prime}(s)\right) Y_{i_{t-1}, i_{s}} .
$$

We set $C_{3}(s)=\left\{\sigma \in A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right) \mid t \leq \sigma(t)\right\}$. Since $C_{3}(s)=B_{3}^{\prime}(s) \cup$ $B_{4}^{\prime}(s)$ (disjoint) and $B_{4}^{\prime}(t-1)=A\left(t-1 ; t-1, a_{t+2}, \ldots, a_{p+1}\right)$, we obtain

$$
\begin{aligned}
f\left(t, B_{6}\right)+f\left(t, B_{7}\right) & =q^{2} \sum_{s=1}^{t-2} f\left(t-1, C_{3}(s)\right) Y_{i_{t-1}, i_{s}}+f\left(t-1, B_{4}^{\prime}(t-1)\right) Y_{i_{t-1}, i_{t-1}} \\
& =q^{2} \sum_{s=1}^{t-2} f\left(t-1, C_{3}(s)\right) Y_{i_{t-1}, i_{s}} .
\end{aligned}
$$

We have used the inductive hypothesis on t for the last step.
Therefore we obtain

$$
\begin{aligned}
f\left(t, A\left(t ; a_{t+2}, \ldots, a_{p+1}\right)\right)= & q^{-2} \sum_{s=t}^{p+1}\left(f\left(t-1, C_{1}(s)\right)+f\left(t-1, C_{2}(s)\right)\right) Y_{i_{t-1}, i_{s}} \\
& +q^{2} \sum_{s=1}^{t-2} f\left(t-1, C_{3}(s)\right) Y_{i_{t-1}, i_{s}} .
\end{aligned}
$$

Since $A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right)=C_{1}(s) \cup C_{2}(s)$ (disjoint), by the inductive hypothesis on t, we have $f\left(t-1, C_{1}(s)\right)+f\left(t-1, C_{2}(s)\right)=$ $f\left(t-1, A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right)\right)=0$. Hence we have only to show $\sum_{s=1}^{t-2} f\left(t-1, C_{3}(s)\right) Y_{i_{t-1}, i_{s}}=0$.

We set $C(\gtrless s)=\left\{\sigma \in A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right) \mid \sigma(t)=t-1, \sigma(t-1) \gtrless s\right\}$ for $1 \leq s \leq t-2$. Then we have $A\left(t-1 ; s, a_{t+2}, \ldots, a_{p+1}\right)=C(>s) \cup C(<s) \cup$ $C_{3}(s)$ (disjoint). By using inductive hypothesis on t, we have

$$
f\left(t-1, C_{3}(s)\right)=-f(t-1, C(>s))-f(t-1, C(<s)) .
$$

For $\sigma \in C(<s)$ set $\tau=\sigma(t-1, t+1)$ and $r=\sigma(t-1)$. Then we have $l(\tau)=$ $l(\sigma)+1$ and $\tau \in C(>r)$. Since $Y_{i_{\sigma(t-1)}, i_{(t)}} Y_{i_{t-1}, i_{s}}=q^{-1} Y_{i_{r(t-1)}, i_{\tau(t)}} Y_{i_{t-1}, i_{r}}$, we have $f(t-1, \sigma) Y_{i_{t-1}, i_{s}}=f(t-1, \tau) Y_{i_{t-1}, i_{r}}$. Therefore we obtain

$$
\begin{aligned}
\sum_{s=1}^{t-2} f\left(t-1, C_{3}(s)\right) Y_{i_{t-1}, i_{s}} & =-\sum_{s=1}^{t-2} f(t-1, C(>s)) Y_{i_{t-1}, i_{s}}-\sum_{s=1}^{t-2} f(t-1, C(<s)) Y_{i_{t-1}, i_{s}} \\
& =-\sum_{s=1}^{t-2} f(t-1, C(>s)) Y_{i_{t-1}, i_{s}}+\sum_{r=1}^{t-2} f(t-1, C(>r)) Y_{i_{t-1}, i_{r}} \\
& =0
\end{aligned}
$$

Let us show Proposition 5.3.
By Lemma 5.1, it is clear that $\operatorname{ad}\left(F_{r}\right) \psi_{p}^{-}=0$ for $r>p$ and $\operatorname{ad}\left(E_{r}\right) \psi_{p}^{+}=0$ for $r<n-p$.

Let $r \leq p$. We shall show $\operatorname{ad}\left(F_{r}\right) \psi_{p}^{-}=0$. We set for $\sigma \in S_{p+1}$ and $y \in$ $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$

$$
g\left(\sigma, j_{1}, y, j_{2}\right)=\left(-q^{-1}\right)^{l(\sigma)} K_{r} Y_{i, \sigma(1)} \cdots Y_{j_{1}, \sigma\left(j_{1}\right)} K_{r}^{-1} y Y_{j_{2}, \sigma\left(j_{2}\right)} \cdots Y_{p+1, \sigma(p+1)}
$$

and for a subset A of S_{p+1}

$$
g\left(A, j_{1}, y, j_{2}\right)=\sum_{\sigma \in A} g\left(\sigma, j_{1}, y, j_{2}\right)
$$

We have

$$
\begin{aligned}
\operatorname{ad}\left(F_{r}\right) \psi_{p}^{-}= & \sum_{j=i}^{p+1} g\left(S_{p+1}, j-1, \operatorname{ad}\left(F_{r}\right) Y_{j, \sigma(j)}, j+1\right) \\
= & \left(q+q^{-1}\right) g\left(A_{1}, r, Y_{r, r+1}, r+2\right)+q^{-2} g\left(A_{2}, r, Y_{r, r}, r+2\right) \\
& +g\left(B, r, Y_{r, \sigma(r+1)}, r+2\right)+\sum_{j \neq r+1} g\left(C(j), j-1, Y_{j, r}, j+1\right)
\end{aligned}
$$

where $A_{1}=\{\sigma \mid \sigma(r+1)=r+1\}, A_{2}=\{\sigma \mid \sigma(r+1)=r\}, \quad B=\{\sigma \mid \sigma(r+1) \neq r$, $r+1\}$, and $C(j)=\{\sigma \mid \sigma(j)=r+1\}$.

Let $\sigma \in A_{2}$. If $\sigma(r)=r+1$, we have $l(\sigma)=l(\tau)+1$ and $Y_{r, \sigma(r)} K_{r}^{-1} Y_{r r}=$ $q^{4} Y_{r, \tau(r)} K_{r}^{-1} Y_{r, r+1}$, where $\tau=\sigma(r, r+1)$. On the other hand, we have $Y_{r, \sigma(r)} K_{r}^{-1} Y_{r r}=Y_{\sigma(r), \sigma(r+1)} Y_{r r} K_{r}^{-1} \quad$ if $\quad \sigma(r) \leq r-1, \quad$ and $\quad Y_{r, \sigma(r)} K_{r}^{-1} Y_{r r}=$ $q^{4} Y_{\sigma(r), \sigma(r+1)} Y_{r r} K_{r}^{-1}$ if $\sigma(r) \geq r+2$. Therefore we obtain

$$
\begin{aligned}
q^{-2} g\left(A_{2}, r, Y_{r r}, r+2\right)= & -q g\left(A_{1}^{\prime}, r, Y_{r, r+1}, r+2\right) \\
& +q^{-2} g\left(A_{2}^{\prime}, r-1, K_{r} Y_{\sigma(r), \sigma(r+1)} Y_{r r} K_{r}^{-1}, r+2\right) \\
& +q^{2} g\left(A_{3}^{\prime}, r-1, K_{r} Y_{\sigma(r), \sigma(r+1)} Y_{r r} K_{r}^{-1}, r+2\right)
\end{aligned}
$$

where $A_{1}^{\prime}=\{\sigma \mid \sigma(r+1)=r+1, \sigma(r)=r\}, \quad A_{2}^{\prime}=\{\sigma \mid \sigma(r+1)=r, \sigma(r) \leq r-1\}$ and $A_{3}^{\prime}=\{\sigma \mid \sigma(r+1)=r, \sigma(r) \geq r+2\}$.

For $\sigma \in B$ set $\tau=\sigma(r, r+1)$. We define subsets $B_{j}(1 \leq j \leq 10)$ of B as follows:

$$
\begin{array}{ll}
B_{1}=\{\sigma(r)<\sigma(r+1)<r\}, & B_{2}=\{\sigma(r+1)<\sigma(r)<r\}, \\
B_{3}=\{\sigma(r)<r<r+1<\sigma(r+1)\}, & B_{4}=\{\sigma(r+1)<r<r+1<\sigma(r)\}, \\
B_{5}=\{r+1<\sigma(r)<\sigma(r+1)\}, & B_{6}=\{r+1<\sigma(r+1)<\sigma(r)\}, \\
B_{7}=\{\sigma(r+1)<\sigma(r)=r\}, & B_{8}=\{\sigma(r)=r<r+1<\sigma(r+1)\}, \\
B_{9}=\{\sigma(r+1)<r<r+1=\sigma(r)\}, & B_{10}=\{r+1=\sigma(r)<\sigma(r+1)\} .
\end{array}
$$

If $\sigma \in B_{1}$, we have $\tau \in B_{2}, l(\tau)=l(\sigma)+1$, and

$$
Y_{r, \sigma(r)} K_{r}^{-1} Y_{r, \sigma(r+1)}=q^{-1} Y_{r, \tau(r)} K_{r}^{-1} Y_{r, \tau(r+1)} .
$$

Therefore we obtain

$$
g\left(B_{1}, r, Y_{r, \sigma(r+1)}, r+2\right)=-g\left(B_{2}, r, Y_{r, \tau(r+1)}, r+2\right) .
$$

Similarly, we have

$$
\begin{aligned}
g\left(B_{5}, r, Y_{r, \sigma(r+1)}, r+2\right)= & -g\left(B_{6}, r, Y_{r, \tau(r+1)}, r+2\right), \\
g\left(B_{4}, r, Y_{r, \sigma(r+1)}, r+2\right)= & -g\left(B_{3}, r, Y_{r, \tau(r+1)}, r+2\right) \\
& +\left(q^{-2}-1\right) g\left(B_{3}, r-1, K_{r} Y_{\tau(r), \tau(r+1)} Y_{r r} K_{r}^{-1}, r+2\right), \\
g\left(B_{7}, r, Y_{r, \sigma(r+1)}, r+2\right)= & -g\left(A_{2}^{\prime}, r-1, K_{r} Y_{\tau(r), \tau(r+1)} Y_{r r} K_{r}^{-1}, r+2\right), \\
g\left(B_{8}, r, Y_{r, \sigma(r+1)}, r+2\right)= & -q^{2} g\left(A_{3}^{\prime}, r-1, K_{r} Y_{\tau(r), \tau(r+1)} Y_{r r} K_{r}^{-1}, r+2\right), \\
g\left(B_{9}, r, Y_{r, \sigma(r+1)}, r+2\right)= & -q g\left(A_{4}^{\prime}, r, Y_{r, r+1}, r+2\right) \\
& +\left(q^{-2}-1\right) g\left(A_{4}^{\prime}, r-1, K_{r} Y_{\tau(r), \tau(r+1)} Y_{r r} K_{r}^{-1}, r+2\right), \\
g\left(B_{10}, r, Y_{r, \sigma(r+1)}, r+2\right)= & -q g\left(A_{5}^{\prime}, r, Y_{r, r+1}, r+2\right),
\end{aligned}
$$

where $A_{4}^{\prime}=\{\tau \mid \tau(r)<r<r+1=\tau(r+1)\} \quad$ and $\quad A_{5}^{\prime}=\{\tau \mid \tau(r+1)=r+1<$ $\tau(r)\}$.

Here, we set $A(r)=\{\sigma \mid \sigma(r)<r \leq \sigma(r+1)\}$. Since $A_{1}=A_{1}^{\prime} \cup A_{4}^{\prime} \cup A_{5}^{\prime}$ (disjoint) and $A(r)=A_{2}^{\prime} \cup B_{3} \cup A_{4}^{\prime}$ (disjoint), we obtain

$$
\begin{aligned}
& q^{-2} g\left(A_{2}, r, Y_{r, r}, r+2\right)+g\left(B, r, Y_{r, \sigma(r+1)}, r+2\right) \\
& = \\
& \quad-q g\left(A_{1}, r, Y_{r, r+1}, r+2\right) \\
& \quad+\left(q^{-2}-1\right) g\left(A(r), r-1, K_{r} Y_{\sigma(r), \sigma(r+1)} Y_{r r} K_{r}^{-1}, r+2\right)
\end{aligned}
$$

For $j \neq k$ we set $C(j, k)=\{\sigma \mid \sigma(j)=r+1, \sigma(k)=r\}$. Let $\sigma \in C(j, k)$, and set $\tau=\sigma(j, k) \in C(k, j)$. If $k=r+1$ and $j \leq r$, we have $l(\tau)=l(\sigma)-1$ and $K_{r}^{-1} Y_{j, r} Y_{j+1, \sigma(j+1)} \cdots Y_{r, \sigma(r)} Y_{r+1, \sigma(r+1)}=Y_{j, \tau(j)} Y_{j+1, \tau(j+1)} \cdots Y_{r, \tau(r)} K_{r}^{-1} Y_{r, r+1}$. Hence we obtain

$$
g\left(C(j, r+1), j-1, Y_{j, r}, j+1\right)=-q^{-1} g\left(C(r+1, j), r, Y_{r, r+1}, r+2\right) .
$$

Similarly, we obtain for $j \geq r+2$

$$
g\left(C(j, r+1), j-1, Y_{j, r}, j+1\right)=-q^{-1} g\left(C(r+1, j), r, Y_{r, r+1}, r+2\right)
$$

If $1 \leq j<k \leq r$, we have $l(\tau)=l(\sigma)-1$ and $K_{r}^{-1} Y_{j, r} Y_{j+1, \sigma(j+1)} \cdots Y_{k-1, \sigma(k-1)}$. $Y_{k, \sigma(k)}=q Y_{j, \tau(j)} Y_{j+1, \tau(j+1)} \cdots Y_{k-1, \tau(k-1)} K_{r}^{-1} Y_{k, r}$. Therefore we obtain

$$
\sum_{1 \leq j<k \leq r} g\left(C(j, k), j-1, Y_{j, r}, j+1\right)=-\sum_{1 \leq j<k \leq r} g\left(C(k, j), k-1, Y_{k, r}, k+1\right) .
$$

Similarly, we have

$$
\sum_{\substack{1 \leq j \leq r \\ r+2 \leq k \leq p+1}} g\left(C(j, k), j-1, Y_{j, r}, j+1\right)=-\sum_{\substack{1 \leq \leq \leq r \\ r+2 \leq k \leq p+1}} g\left(C(k, j), k-1, Y_{k, r}, k+1\right)
$$

$$
\sum_{r+2 \leq j<k \leq p+1} g\left(C(j, k), j-1, Y_{j, r}, j+1\right)=-\sum_{r+2 \leq j<k \leq p+1} g\left(C(k, j), k-1, Y_{k, r}, k+1\right) .
$$

Therefore we obtain

$$
\begin{aligned}
\sum_{j \neq r+1} g\left(C(j), j-1, Y_{j, r}, j+1\right) & =\sum_{\substack{j \neq r+1 \\
k \neq j}} g\left(C(j, k), j-1, Y_{j, r}, j+1\right) \\
& =-q^{-1} \sum_{j \neq r+1} g\left(C(r+1, j), r, Y_{r, r+1}, r+2\right) \\
& =-q^{-1} g\left(A_{1}, r, Y_{r, r+1}, r+2\right)
\end{aligned}
$$

Here we have used for the last step that $A_{1}=\bigcup_{j \neq r+1} C(r+1, j)$ (disjoint).
Hence we have

$$
\operatorname{ad}\left(F_{r}\right) \psi_{p}^{-}=\left(q^{-2}-1\right) g\left(A(r), r-1, K_{r} Y_{\sigma(r), \sigma(r+1)} Y_{r, r} K_{r}^{-1}, r+2\right)
$$

We can write

$$
g\left(A(r), r-1, K_{r} Y_{\sigma(r), \sigma(r+1)}\right)=\sum_{a_{r+2}, \ldots, a_{p+1}} K_{r} f\left(r, A^{\prime}(r)\right) Y_{r, r} K_{r}^{-1} Y_{r+2, a_{r+2}} \cdots Y_{p+1, a_{p+1}}
$$

where $A^{\prime}(r)=\left\{\sigma \in S_{p+1} \mid \sigma(r) \leq r-1, \quad \sigma(r+1) \geq r, \sigma(s)=a_{s}(s>r+1)\right\}$. Hence, by Lemma 5.4 we obtain $\operatorname{ad}\left(F_{r}\right) \psi_{p}^{-}=0$ for $r \leq p$.

Let $r \geq n-p$ and $i_{s}=n-p-1+s$. Then there exists t such that $r=i_{t}$. Similarly to the case $r \leq p$ for F_{r} we have

$$
\operatorname{ad}\left(E_{i_{t}}\right) \psi_{p}^{+}=-q^{-3}\left(q-q^{-1}\right) \sum_{a_{t+2}, \ldots, a_{p+1}} f\left(t, A^{\prime}(t)\right) Y_{i_{t+1}, i_{t+i}} K_{i_{t}}^{-1} Y_{i_{t+2}, i_{a_{t+2}}} \cdots Y_{i_{p+1}, i_{a_{p+1}}} K_{i_{t}} .
$$

By Lemma 5.4 we obtain $\operatorname{ad}\left(E_{i_{t}}\right) \psi_{p}^{+}=0$.
We denote $\psi_{n-1}^{-}=\psi_{n-1}^{+}$by ψ_{n-1}. By Lemma 5.1 and Proposition 5.3 we have the following:

Proposition 5.5. $\mathbf{C}(q) \psi_{n-1}$ and $\sum_{1 \leq i \leq i \leq n} \mathbf{C}(q) Y_{i j}$ are irreducible highest weight $U_{q}\left(\mathrm{I}_{I}\right)$-modules.

The highest weight of $\mathbf{C}(q) \psi_{n-1}$ coincides with that of $\mathscr{I}^{n}\left(\overline{C_{n-1}}\right)$. Hence, $\mathbf{C}(q) \psi_{n-1}$ is a quantum deformation of $\mathscr{I}^{n}\left(\overline{C_{n-1}}\right)$. By Theorem 1.2 we have $U_{q}\left(\mathfrak{n}_{I}^{-}\right) \psi_{n-1}=\psi_{n-1} U_{q}\left(\mathfrak{n}_{I}^{-}\right)$, and this two sided ideal is a quantum deformation of the defining ideal $\mathscr{I}\left(\overline{C_{n-1}}\right)$ of the closure of C_{n-1}. Similarly, $\sum \mathbf{C}(q) Y_{i j}$ is the quantum deformation of $\mathscr{I}^{1}\left(\overline{C_{0}}\right)$. Moreover, the generator ψ_{n-1} of the quantum deformation of $\mathscr{I}\left(\overline{C_{n-1}}\right)$ is the quantum deformation of the basic relative invariant.

Therefore we have the following.
Theorem 5.6. (i) A quantum deformation $A_{q}\left(\mathfrak{n}_{I}^{+}\right)$of the coordinate algebra $A\left(\mathfrak{n}_{I}^{+}\right)$of \mathfrak{n}_{I}^{+}is generated by $Y_{i j}(1 \leq i \leq j \leq n)$ satisfying the fundamental relations (5.1).
(ii) The action of $U_{q}\left(\mathrm{I}_{I}\right)$ on $A_{q}\left(\mathfrak{n}_{I}^{+}\right)$is given as follows. For $r \in I_{0}$ and $s \in I$,

$$
\begin{aligned}
& K_{r} \cdot Y_{i j}=q^{-\left(\alpha_{r}, \beta_{i j}\right)} Y_{i j}, \\
& E_{s} \cdot Y_{i j}= \begin{cases}Y_{i+1, j} & (s=i<j) \\
Y_{i, j+1} & (i<j=s) \\
\left(q+q^{-1}\right) Y_{i, j+1} & (i=j=s) \\
0 & (\text { otherwise }),\end{cases} \\
& F_{s} \cdot Y_{i j}= \begin{cases}Y_{i-1, j} & (s+1=i<j) \\
\left(q+q^{-1}\right) Y_{i-1, j} & (s+1=i=j) \\
Y_{i, j-1} & (i<j=s+1) \\
0 & (\text { otherwise })\end{cases}
\end{aligned}
$$

(iii) ψ_{n-1} is the quantum deformation of the basic relative invariant.

We also obtain the explicit description of quantum deformation of $\mathscr{I}^{2}\left(\overline{C_{1}}\right)$ as follows. Let $1 \leq i_{1}<i_{2} \leq n, 1 \leq j_{1}<j_{2} \leq n$ satisfying $i_{1} \leq j_{1}, i_{2} \leq j_{2}$. Set

$$
\left|\begin{array}{ll}
i_{1} & i_{2} \\
j_{1} & j_{2}
\end{array}\right|= \begin{cases}Y_{i_{1}, j_{1}} Y_{i_{2}, j_{2}}-Y_{i_{1}, j_{2}} Y_{i_{2}, j_{1}} & \left(i_{1}<j_{1}<i_{2} \leq j_{2}\right) \\
Y_{i_{1}, j_{1}} Y_{i_{2}, j_{2}}-q^{-1} Y_{i_{1}, j_{2}} Y_{i_{2}, j_{1}} & \text { (otherwise). }\end{cases}
$$

Then we can show that $\sum \mathbf{C}(q)\left|\begin{array}{ll}i_{1} & i_{2} \\ j_{1} & j_{2}\end{array}\right|$ is an irreducible highest weight $U_{q}\left(I_{I}\right)-$ module with highest weight vector $\left|\begin{array}{ll}n-1 & n \\ n-1 & n\end{array}\right|$ (we omit the proof). This module is a quantum deformation of $\mathscr{I}^{2}\left(\overline{C_{1}}\right)$.

For $2 \leq p \leq n-2$, we have not yet obtained the explicit description of the quantum deformation of $\mathscr{I}^{p+1}\left(\overline{C_{p}}\right)$ as in the case $p=0,1, n-1$. The difficulty mainly comes from the fact that the \mathfrak{I}_{I}-module $\mathscr{I}^{p+1}\left(\overline{C_{p}}\right)$ is not a multiplicity free \mathfrak{h}-module. It would be an interesting problem to define a quantum deformation of the non-principal minors of a symmetric matrix, and to develop an analogue of the classical invariant theory for symmetric matrices.

References

[1] V. G. Drinfel'd, Hopf algebra and the Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
[2] M. Hashimoto and T. Hayashi, Quantum multilinear algebra, Tohoku Math. J., 44 (1992), 471-521.
[3] J. C. Jantzen, Kontravariante Formen auf indzierten Darstellungen halbeinfacher Liealgebren, Math. Ann., 226 (1997), 53-65.
[4] J. C. Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics, 6, American Mathematical Society, 1995.
[5] M. Jimbo, A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
[6] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), 237-249.
[7] G. Lusztig, Quantum groups at roots of 1, Geometriae Dedicata 35 (1990), 89-114.
[8] M. Noumi, H. Yamada and K. Mimachi, Finite dimensional representations of the quantum group $G L_{q}(n ; \mathbf{C})$ and the zonal spherical functions, Japan. J. Math., 19 (1993), 31-80.
[9] T. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155.
[10] E. Strickland, Classical invariant theory for the quantum symplectic group, Adv. Math. 123 (1996), 78-90.
[11] E. Taft and J. Towber, Quantum deformation of flag schemes and Grassmann schemes I, A q-deformation of the shape algebra for $G L(n)$, J. Alg. 142 (1991), 1-36.
[12] T. Tanisaki, Highest weight modules associated to parabolic subgroups with commutative unipotent radicals, in: Algebraic Groups and their Representations, 73-90 (eds. R. W. Carter and J. Saxl) 1998 Kluwer Academic Publishers.
[13] H. Yamane, A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type A_{n}, Publ. RIMS. Kyoto Univ. 25 (1989), 503-520.
[14] A. Kamita, Y. Morita and T. Tanisaki, Quantum deformations of certain prehomogeneous vector spaces. I, Hiroshima Math. J. 28 (1998), 527-540.
[15] Y. Morita, Quantum deformations of certain prehomogeneous vector spaces. II, to appear in Osaka J. Math.

Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima, 739-8526 Japan

[^0]: 2000 Mathematics Subject Classification: Primary 17B37; Secondary 17B10, 20G05

