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ABSTRACT. In this paper, we investigate a two-point boundary value problem for first

order implicit differential equations. By using the monotone iterative technique, we

obtain the extremal solutions for this problem, from the lower and upper solutions.

1. Introduction and main results

Initial and periodic boundary value problems for the following first order

differential equation

where f e C[J x R, R], have long been studied by means of the monotone

iterative technique, see [1, 2]. Recently, they have been investigated again

by employing the method of generalized quasilinearization, a monotone iter-

ative technique, see [3-5]. However, more general two-point boundary value
problems for a first order differential equation have not been examined yet.

In this paper, we use the monotone iterative technique to investigate a
general two-point boundary value problem of the form

(V(0=/(*,«(0,«'(0), teJ:=[0,T],
\u(0)=λu(T)+μ (IΛ)

where the equation is implicit, λ > 0, μ are given real numbers, and the
nonlinear function f(t, u, v) is assumed to be a Caratheodory function.

We say that / : / x R2 — > R is a Caratheodory function, if it possesses the
following three properties:

(i) For given (u,v)eR2, the function f — » /(f, w, v) is measurable on /.

(ii) For almost all t e J, the function (u, v) — » f(t, u, v) is continuous on
R2.
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(iii) For given N > 0, there exists a gN e LP(J, R], 1 < p < +00, such that

\ f ( t , u , υ ) \ < g N ( t ) . for a.e. teJ and \u\,\v<N. (1.2)

Clearly, the two-point boundary value problem (1.1) becomes an initial

value problem if λ = 0 and a periodic boundary value problem if λ = l,μ = 0.

To develop a monotone method, we need the conception of upper and

lower solutions.
We say that u e W l ^ p [ J , R], 1 < p < + 00, is an upper solution of the

problem (1.1) if

( u'(t] > f(t, u ( t ) , u ' ( t } } for a.e. t e /

\u(U)>λu(T)+μ,

and a lower solution of (1.1) if the reserved inequalities hold. Here

Wl'p[J,R] := {ue C[J,R] : u(t) absolutely continuous on /

and u'(t)eLp[J,R]}.

A function u e Wl'p[J,R] is called a solution of the two-point boundary value
problem (1.1) if it is an upper and lower solution of (1.1).

Concerning the function f(t,u,v), we make the following hypotheses:

(HI) For given α,/? e C[J, R], α(f) < β(t) on /, there exists a K e (0, 1) such
that

\f(t, u, v) - f(t, u, ϋ)\<K\v- v\ for a.e. t e /,

whenever α(ί) < u < β(i),v, ϋ e R.

(H2) for given α,/? e C[/,Λ],α(ί) < β(t) on /, there exists an M e
LP[J,R+], 1 < p < +00, #+ := (0. + oo), such that

/(ί, w, t;) - /(ί, w, υ) > -M(ή(u - u) for a.e. t e /,

whenever α(ί) <u <u < β(i], υ e R.

The main result of this paper is as follows.

THEOREM 1. Let αo,/?0 fee tower and upper solutions of the problem (1.1),

respectively, and αo(f) < /?0(0 ^w «/• Suppose that f(t,u,v) is a Caratheodory
function satisfying (HI) αwd (H2). 7Άe« ί/zere exwί ίwo monotone sequences
{αrt},{^M}, nondecreasing and nonincr easing, respectively, which converge uni-

formly to the extremal solutions of the two-point boundary value problem (1.1) in
the segment

] : α0(0 < u(t) < β0(t) on J}.

The above theorem extends and improves some results in [1, 2].
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2. Proof of Theorem 1

In the present section, we shall describe a monotone method which yields
two monotone sequences that converge uniformly to extremal solutions of the
problem (1.1).

To prove the validity of the monotone method, we need the following
statement.

LEMMA 2. Let y ε W l > p [ J , R ] , l < p < + 00 and satisfy

ί y ' ( t ) + K\y'(ή\ + M(t}y(t) > 0 for a.e. t ε /,

> 0

where K ε [0, 1) and M e LP[J,R+}. Then y(t) > 0 on J.

PROOF. If the lemma is not true, then there exists a point b ε (0, T] such
that y(b) < 0, and hence, a point aε [0,6) such that y(t) < 0 in (a,b] and
y(a) = 0, since j(0) > 0. As a result, we have

y'(ή+K\y'(t)\ > -M(t)y(t)>0 for a.e. t ε (a,b\.

This implies that y ' ( t ) > 0 for a.e. t ε (a,b] and then leads to a contradiction
0 > y(b) > y(a) = 0. The lemma is thus proved. Π

We now assume that αo,/?0 are lower and upper solutions of problem
(1.1), respectively, oo(f) < βo(t) on / and f(t,u,v) is a Caratheodory function
satisfying (HI) and (H2) and consider the following initial value problem

u'(ή + M(ήu(t) = JF(ί, ,(ί), ιι'(O), / 6 /,
l }

where JF(/, w, t;) := f(t, u, v) + M(t)u and ?/ e [OQ, j80]
Concerning the initial value problem (2.1), the following statement holds.

LEMMA 3. For each fixed η ε [αo,/?0]> the initial value problem (2.1) has a
unique solution uε Wl>p[J,R].

PROOF. We define a mapping A : LP[J,R] -> LP[J,R] by

+ μ J + F(ί, ,(/), w(ί)),

where L^t/jjR] denotes particular the Banach space endowed with norm

/
exp -

Γ Γ
:-

Uo

σ >
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From the definition of A, it follows that for any w\,w2 e LP[J,R]

\\Awi -Aw2\\ < M(t) f
Jo

-w2(s)\ds (2.2)

Here we have used the hypothesis (HI). Note that

M(ή f
Jo

-w2(s)\ds

= [ exp(-σp \* Mp(r)dr}Mp(t}(\t\wl(s)-w2(s)\ds} dt
Jo V Jo / VJo /

< f Qxp(-σp f Mp(r)dr\Mp(t)tp-l(f m(s)-w2(s)\pds}dt
Jo V Jo / VJo /

<Tp~l\ \wι(s)-w2(s)\pf[ Mp(t)exp(-σp [ Mp(r)dr}dt\ds
Jo U* V Jo / J

\
Jo

exp -σp Γ Mp(r)d
Jo

rds

-W2\\ (2.3)

Here we have used the Holder inequality. The inequality (2.2) together with

(2.3) yields for any wi , w2 e LP[J,R]

\\Awi - Aw2\\ < (T(p-lVpσ-l+K)\\wι - w2 | |,

which shows that A is a contraction mapping. The Banach contraction

principle tells us that A has a unique fixed point in LP[J,R].
Let w be the unique fixed point of A. Then

- λη(T) +μ}+ F(t, η(i), w(t)) for a.e. t e J.

(2.4)

Put

:= w(s)ds + λη(T) + μ, teJ.
Jo

(2.5)

It is easy to see that the function u(t), defined by (2.4) and (2.5), is a
unique solution of (2.1). This proves Lemma 3. Π

Now let us define a mapping Z : [αo,/?0] —> C[J,R] by setting (Zή)(t) :=
u(t), where u(t) is the unique solution of (2.1) with η e [α0,y50]. It follows by
Lemma 3 that the mapping Z is well defined.
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Concerning the mapping Z, we can prove the following statement.

LEMMA 4. The mapping Z possesses the following two properties:

(i) i7 1 ? 1/2 e [αo,A)] 0«d *7ι ( O ^ t o W /^ β// i e

(Zi72)(f) on /.

(ii) αo(0 < (Zαo)(0 αro/ (ZβQ)(t) < βQ(t) on J.

PROOF. We now prove the property (i). Let

«/(0 := (Zi7/)(0» ί = l , 2 , and XO = u2(t] - u λ ( t ) .

Then we have

y'(t) + M(t)y(t)=f(t,η2(t),u'2(t))-F(t,ηι(t),u((t))

> -K\y'(t)\ for a.e. teJ

y(0) > 0

Here we have used hypotheses (HI) and (H2). From Lemma 2, we conclude

that y(t) = ι/2(0 ~ Mι(0 > 0 on /. This shows that property (i) is true.
In very much the same way, we can prove property (ii). The proof is thus

complete. Π

We can now define the sequences αn+ι := Zαrt,^w+1 := Zβn,n = 0, 1,2, . . . ,
and conclude from Lemma 4 that

α0 < αi < - - - < αw < - - < βn < - - < βλ < βQ on J.

From (2.4) and (2.5), we know that

αw(0 for a.e. t e /,

(2.6)
απ+ι(0 = ot'n+l(s)ds+λan(T)+μ.

Jo

Whence it follows that for all n > 0

I + MOD

< 2NM(ή + gN(t) + K a'n+l (ή\ for a.e. t e J,

i.e.

K+iWI < γ^{2NM(t)+gN(t)} =: G(t) for a.e. teJ,

where TV := max{|αo(OI + IA)(OI : ί e /} and gf^(0 ^s determined by (1.2).
This shows that the sequence {a'n} is a bounded set of LP[J,R].
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As a result, we have for any n > 1, t, s e /, t > s,

< fκwι*<
Js

<\t-s(p-l)/p([ GP(r)dr] ,
VJo /

which implies that {αw(ί)| is equicontinuous on /. It follows by Arzela-Ascoli
theorem that there is a subsequence of {<*„(/)} which is uniformly convergent
and hence so is the sequence (αΛ(f)} itself.

To prove the convergence of {u.'n(t)}, we need the following well-known
facts, (see, e.g., [6] and [7, P 31].)

(i) LP[J, R], 1 < p < + 00 is a uniformly convex, reflexive Banach space.
(ii) A reflexive Banach space is sequentially weakly complete.
(iii) A bounded set in a reflexive Banach space is weakly sequentially

complete.

(iv) In a uniformly convex Banach space, xn —* x weakly and \\xn\\ —* \\x\\
imply that xn —» x strongly.

From the facts above-mentioned, we can select a subsequence of {α^(ί)}>
which strongly converges to some w* e LP[J,R]. Let α* be the uniform limit

of (αn(ί)}. Inserting the (strongly) convergent subsequence of {&'n(t)} and the
corresponding subsequence of {αn(f)} into (2.6) and then taking the limit, we
obtain

w* + M(ί)α*(ί) - f ( t , α*(ί), w*(ί)) + M(t}κ*(t] for a.e. t e /,

α*(ί)= \ w*(
Jo

This shows that α*(ί) is a solution of the problem (1.1)
It must be point out that because all (strongly) convergent subsequences

of {a'n(t)} have the same limit w*(t) =—-p-^ for a.e. teJ, the selection is

unnecessary and w*(t) is certainly the (strong) limit of {α^(ί)}.
In very much the same way, we can prove that {βn(ή} is uniformly

convergent, {β'n(i)} (strongly) convergent, and β*(t), the uniform limit of
{/?„(/)}, is a solution of the problem (1.1) as well.

Finally, it follows, employing standard argument (see [1]), that α* and β*
are respectively minimal and maximal solutions of the problem (1.1) in the
segment [αo,/?0]. This completes the proof of Theorem 1.
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