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ABSTRACT. In the paper [3], a new notion of hypercovering was introduced to compute

the higher cohomology groups of hypercoverings. This hypercovering has no degeneracy

maps, and hence it is not a simplicial scheme.

In this paper, we study the basic properties of these hypercoverings. It has the

notion of cosquelton like usual hypercoverings, and one can construct the hypercovering

inductively using cosqueltons.

We construct intermediate objects corresponding to each simplicial ordered set.

For example, the n-th cosquelton corresponds to n — 1 sphere, and the n-th hyper-

covering corresponds to w-simplex. To each simplicial map corresponds a morphism

contravariantly. Our main theorem says that this morphism is always a covering map.

1. Ordered system

DEFINITION 1.1. Let Jί be the category of finite strictly ordered sets.

Namely, its objects are finite sets {φ, {1}, {1,2}, {1,2,3},...}, and morphisms

are strictly increasing, say /(/) < f(j) when i < j (hence always injective). We

denote the finite ordered set {1,2,...,«} simply by n when confusion is

unlikely. With this notation, the objects of Jί are {0,1,2,3,...}.

Define the morphism dx• \ n —> n -h 1 for i = 1 ,2, . . . ,«+ 1 by

+ 1 (I' < Jϊ

The truncated ordered set Jί\n\ is the full subcategory of Jί with objects

{0,1,2,3,...,n}.

REMARK 1.1.1. It is easy to check the following identity.

, +i o di (ί < j)

Any moφhism / : n —> m can be written as a composition of δ/'s. In fact,

when the set {z'i,..., im-n} is the complement of the set {/(l),/(2),...,/(«)}
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in {1,2,... ,ra} with i\ > i2 > > im-n, then we have

In particular, the representation of/ in this form is unique. On the other

hand, for any composition of <9z 's, by using relation (1), one can reduce the

composition into the form as (2) with i\> ii> •-> im-n- Therefore, the

morphisms in Jί are generated by d/'s, subject to the relation (1).

DEFINITION 1.2. A (Scheme valued) ordered system is a contravariant

functor F from Jί to the category of schemes.

A partial orderd system (of level n) is a contravariant functor from Jί\^.

REMARK 1.2.1. By Remark 1.1.1, to determine a (partial) ordered system

F, it is enough to determine schemes F(n) and morphisms F(di) : F(ή) —>

F(n - 1) such that

DEFINITION 1.3. Let 4̂ <= {1,2,3,...} be a finite subset of natural

numbers with number of elements d. When F is a (partial) ordered system,

then we define F(A) to be F(d) = F($A). When F is a partial ordered set of

level n, then we assume that d <n.

REMARK 1.3.1. When i4c/?cz{ l ,2 ,3 , . . . } are finite subsets of natural

numbers, then there is a canonical morphism from F(B) —> F(A). For example,

when A = {2,4,6} and B = {2,4,5,6}, then the natural map is F(d3) : F(B) -+

F(A), because A skips the third element in B.

DEFINITION 1.4. Let A and B be finite subsets of natural numbers. By

Remark 1.3.1, there are canonical morphisms F(A) -+ F(AΠB) and F(B) —>

F(AΠB). Define the incidental subscheme Z of F(A) x F(B) by the following

fibre diagram:

:F(B)

I
-?-> F(A ΠB)x

In other words, the incidental subscheme Z is the fibre product of F(A)

and F(B) over

DEFINITION 1.5. Let F be a (partially) ordered system, and ^ i , . . . ,

z {1,2,3,...} be finite subsets of natural numbers. We define the marked
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product F[A\,A2,... ,Ar] be the closed subscheme of F(A\) x x F(Ar),

defined in the following fiber diagram:

F[Au...,Ar] > F(Ax)χ. .χF(Ar)

D

Here Zy is the incidental subscheme of F(Ai) x F(Aj).

REMARK 1.5.1. Set theoretically, a geometric point of F[A\,... ,Ar] is a

point (xi, . . . ,xr) e F(A\) x x F(Ar) such that any two components Xj and

Xj are compatible in F(AjΓ\Aj), the largest possible common image from F(Ai)

and F(Aj).

REMARK 1.5.2. There is a natural projection m a p F[A\, ...,Ar] —> F(Ai),

which is the composition of F[A\, ...,Ar] —> F(A\) x x F{Ar) and the pro-

jection F(Aγ) x x F(Ar) -> F(Ai).

LEMMA 1.5.3. Let B and A\,... ,Ar be finite subsets of natural numbers.

Assume that A[^> B for some I Then one can compose the projection

F[AU... ,Ar] -• F{Ai) defined in Remark 1.5.2 and the morphism F{At) -> F(B)

defined in Remark 1.3.1. Then the composition F[A\,...,Ar] —> F(B) is inde-

pendent of the choice of At which contains B.

PROOF: Assume that Aj is another set which contains B. Consider the

composition of canonical morphisms F[A\, ...,Ar] —> F{At) x F(Aj) —> F(B) x

F(B). It is enough to show that this morphism factors through F(B) —>

F(B) x F(B). Noticing that F(Ai) x F(Aj) -> F(5) x F(5) factors through

x F(AiΠAj), we consider the diagram below:

F[Au...,Ar] > F{Ai(λAj)xF(Air\Aj) > F(B) x F(B)

It is enough to show that there exists a morphism along the dotted arrow

which makes the diagram commtative. It is obvious from the definition of the

marked product. •

PROPOSITION 1.6. Let F be an ordered system, and A\,... ,Ar and B\,...,

Bs be finite subsets of natural numbers. Assume that for each Bj, there exists

some At such that At =3 Bj. Then there is a natural morphism F[A\, ...,Ar] —>

F[B\, ...,BS] such that the composition with the projections F[B\, ...,BS] —»

F(Bj) are the morphisms defined in Lemma 1.5.3.
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PROOF: By Lemma 1.5.3, there is a natural morphism F[A\,...,Ar] —>
F(B\) x ••• x F(BS). We need to show that this morphism factors through
the marked product F[B\,... ,BS]. We need only to show that the composi-
tion F[AU..., A] -> H ^ i ) x x F(BS) -> F ^ , ) x ^(£/ 2) factors through the
incidental subscheme Z 7 l j 2 <^ F(BJ ι) x F(BJ2) for all pair 2?7l and i?72, by con-
struction of the marked product F[B\,... ,BS}. Assume that Aiχ => Bjx and
Ai2 => Bj2- Consider the diagram below, where Ziuil and Z 7 l j 2 are suitable
incidental schemes:

F[Au...,Ar] F{Aλ) x x F{Ar) F{Bι) x x F(BS)

F(Ah)xF(Ah) F{Bh)xF{Bh

Γ\

Z7l J 2 as dotted arrowIt is enough to show that there is a mophism Z;M 2

in the diagram, which makes the square commute.
Now denote Ziui2 as ZA, and Z7 , J 2 as ZB. Also we rename A\ and A2 for
and ^4ί2, and B\ and .62 for Bjλ and

->F[AιΠA2]

Let us consider the diagram:

F(Al)xF(A2)

F(Bx)xF(B2) F(BιΠB2) xF(BιΠB2)

We need to fill in the dotted arrow. The top and the bottom squares are
fiber diagrams, and the front and the right behined vertical squares are
commutative. Hence an easy diagram chasing shows that the composition

ZA -> F(Aλ) x F(A2) -> F(Bχ) x F{B2) -> F(Bxΐ\B2) x F(B{ ΠB2)

is same as the composition

ZA -+ F(AιΠA2) -+ F(Bι ΠB2) -> F(BX) x F(B2) -> F(^i Π5 2)

which implies that there is a unique morphism ZA

squares commute.
' ZB which makes all the

D
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COROLLARY 1.6.1. Let F be an ordered system and A\,...,Ar be finite

subsets of natural numbers. When A[ cz Aj for some i φ j , then omitting Ai does

not change the marked product, namely F[A\,..., Ar] ~ F[A\,..., A\,..., Ar).

PROOF: By Proposition 1.6, there are natural morphisms

f:F[Au...,Ar]->F[Au...Jh...,Ar]

and

g:F[Au...Jh...,Ar]^F[Au...,Ar].

Then fog and g of are again natural morphisms, hence the identity mor-

phisms. Therefore/ and g are inverse to each other, and F[A\,...,Ar] and

F[A\,..., Aj,..., Ar] are isomorphic to each other. •

DEFINITION 1.7. When Aj <£ Aj for all / φj\ we call the marked product

F\A\,... ,Ar] to have the reduced representation.

PROPOSITION 1.8. Let F be a (partial) ordered system, and A\,...,Ar

and B\,..., Bs finte subsets of natural numbers. Then the marked product

F[Au...,AnBu...,Bs] is the fibre product of F[AU , Ar] and F[BU...,BS]

over F[Aχ Π Bx, A\ Π B2,..., At Π Bh ...,ArΠBs].

PROOF: By Proposition 1.6, there are canonical morphisms

and

whose compositions to F[A\ C\B\,...,ArΓ\Bs\ agree. Therefore there is a

canonical morphism from F[A\,..., Ar, B\,..., Bs] to the fiber product of

F[Au...,Ar] a n d F [ ^ i , . . . , ^ ] over F[A{ ΠBuAι Π 5 2 , . . . ,Λ Π5 7 , . . . ,ArΠBs].

These two schemes are closed subschemes of F(A\) x x F(Ar) x F(B\) x •

xF(Bs). Therefore, it is enough to show that the morphism from the fibre

product of F[Aχ,..., Ar] andF[^ ! ,...,BS] over F[A{ (λBuAx(λB2,... ,AiΠBj,...,

ArΓϊBs] to F(Ai) x F(Aj), F{Ai) x F(Bj) and F(Bi) x F(Bj) factor through the

incidental subchemes. We need only to check that the morphism to F(Ai) x

F(Bj) factors through the incidental subscheme, but that is exatly the condition

enforced by taking the fiber product over F[A\ ΠB\,... ,Ar Γ\BS], Π

2. Hypercovering

DEFINITION 2.1. A collection of morphisms # = {/ : X -+ Y} determines

a Grothendieck topology when it satisfies the following axioms.
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1. For each f eΉ, f is epi.

2. ^ is stable under base extensions, namely for any morphism Ϋ —* Y, the

base extension / : X x γ Ϋ —• Ϋ of / is in c€.
3. ^ is stable under compositions, namely when / : X —> F and g : F —> Z are

in #, then g of is also contained in #.
When / e #, we call / as a covering map.

EXAMPLE 2.2. The collection of surjective etale morphisms determines a
Grothendieck topology. Also the collection of proper surjective morphisms
determines a Grothendieck topology.

In this section, we fix a Grothendieck topology Ή, and discuss covering

maps in terms of (€.

DEFINITION 2.3. Let F be a (partial) ordered system. For each / = 1,
2 , . . . , « , let 4̂/ = { 1,2, . . . , / , . . . , w} be the subset of {1 ,2 , . . . ,«} with rc — 1-
elements. We call F[A\,... ,An] as the cosquelton of F, and denote it as
coskM(F).

REMARK 2.3.1. By Proposition 1.6, there is a canonical morphism F(ή) —•

F[^4i,..., An] = coskn(F). This morphism plays an important role in the theory

of hypercovering.

REMARK 2.3.2. One can construct ordered system inductively using

cosqueltons. Let F be a partial ordered system of level n — 1, and let coskrt(i7)

the cosquelton. Choose any scheme, name it ^(n), and take any morphism

F(n) —> coskn(F), then defining F(dj) to be the compositon F(ή) —> coskπ(i7) —>

F(^4/) = ^(n - 1), the condition of Remark 1.2.1 is automatically satisfied,

hence F is extended to partial ordered system of level n.

DEFINITION 2.4. Let F be an ordered system. We call F to be a hyper-

covering if for any n, the canonial morphism .F(n) —> cosk«(F) is a covering

map.

LEMMA 2.4.1. Let F be a (partial) ordered system, and A\,...,Ar be

finite subsets of natural numbers. Let n:=$A\, and define B\,...,Bn be the

subsets of A\ with exactly n — 1 elements. Consider the morphism φ(A\) :

F[A\, A2, . , Ar] —+ F[B\,..., Bn, A21..., Ar] as in Proposition 1.6. When A\ is

contained in some other Aj, then φ{A\) is an isomorphism, and otherwise, it is a

base extension of F(ή) —» coskn(F).

PROOF: The case A\ a At is obvious from Corollary 1.6.1. Assume that

A\ is not contained in any other At. By Proposition 1.8, the marked product

F[AU ...,Ar] is the fiber produt of F[Bλ,..., Bn, A2,..., Ar] and F[A\] over

F[A\ Γ\B\,... ,A\ ΠBn,A\ ΠA2,... ,A\ ΠAr]. Because A\ is not contained in
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any Ai with iφ 1, A\ΠAi is contained in some Bj. Also we have A\ΠBj =

Bj. S o b y C o r o l l a r y 1.6.1, F[A\ C\B\,...,A\ ΠBn,A{ Γ\A2,...,A\ ΠAr] is iso-

morphic to F[B\ , . . . , 2?w], and hence the morphism F[A\,..., An] —> F[B\,...,

Bn,A2,...,Ar] is the base extension of F[A\] —> F[B\,... ,2?w], which can be

identified with F[n] -> coskw(F). •

DEFINITION 2.5. Let ^ be a finite subset of natural numbers with n

elemetns. Define d{A) := {B\,..., Bn] be the subsets of A with exactly n— \

elements. When B\,...,Bn are elements of d(A) and A\,...,Ar any finite

subsets of natural numbers, we will denote the marked product F[B\,,... ,Bn,

Au...,Ar] simply by F[d(A),Au...,Ar].

THEOREM 2.6. Let F be a hyper covering, A\,..., Ar, B\,..., Bs finite

subsets of natural numbers such that any Bj is contained in some Aj. Then the

canonical morphism F[A\,..., Ar] —> F[B\,..., Bs] is a coverint map.

PROOF: Consider the factorization of the morphism F[A\,... ,Ar] —>

F[BU...,BS] into

F[AuA2,...,Ar]=F[Au...,Ar,Bu...,Bs]

->F[d(Aι),...,d(Ar)JBu...,Bs]

Then by Lemma 2.4.1, each step is either isomorphism or a base extension of

the morphism F(ή) —> coskrt(F) for some n, hence a covering map. Therefore,

the composition

F[Aχ,..., Ar] -+ F[d(Aγ),..., d(Ar), BU...,BS]

is also a covering map. Now using the induction on Max()J^4/ — $Bj), where

the maximum is taken over all Ai =5 Bj, we have

F[d(Ax),... ,d(Ar),Bu . ..,BS}^ F[BU... , f t ]

is a covering map. So the composition F[A\,..., Ar] -^ F[B\,..., Bs] is also a

covering map. •

3. Conjectures

This research is conducted in the hope that it might be of help to prove

Conjecture 3.1. In this section, we explain what is needed for that goal.
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CONJECTURE 3.1. Let F be a hypercover with all F(n) Alexander (e.g.,

smooth). Then for any bivariant sheaf 3F on F(0), the Cech cohomology

H\&,F) = 0 for all i > 0.

REMARK 3.1.1. The cohomology group of a bivariant sheaf 3F on X

coincides with the inductive limit l i m / / ( J ^ F ) , where F runs over the

hypercover with F{0) = X. Conjecture 3.1 implies that once we construct a

hypercover F with F(0) = X and F(n) Alexander for n > 0, then H\X,&) ^

H\&,F).

CONJECTURE 3.2. Let F be a hypercover such that F{ή) is Alexander for all

n. Then there exist cycles cn e A*F(n) for all n which satisfy the following

conditions (1) and (2).

(1) do*cn = cn-\

(2) Consider the diagram below:

D

Then the cycle cn+\ e A*F(n + 1 ) is pushed-forward to d^cn e ^l*/Γ({0,1,...,

/ , . - • , « - 1 } , { 1 , 2 , . . . , Λ - 1 } ) f o r i = 1 , 2 , . . . , « - 1 .

PROPOSITION 3.3. Conjecture 3.2 implies Conjecture 3.1.

PROOF: Consider crt e A*F(n) ^ A(F(n) —• F(w — 1)) as a bivariant inter-

section class, where the morphism i^w) -^ F(« — 1) is do. Then c« induces a

correspondence hn : F(n — \) \- F(n), and the conditions imply that {hn} de-

termine a homotopy for the identity map F( ) —> F( ), therefore, for any

bivariant sheaf J^ on F(0), the complex J Γ (F( )) is exact. Π
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