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ABSTRACT. The cut-off phenomenon is a sort of critical phenomenon which one often

observes in the process of convergence to equilibrium for various Markov chains

including card shuffling and diffusion of sparse gases. This article aims at developing

an axiomatic approach to this phenomenon on a nice class of distance-regular graphs.

Following the formulation through large volume limits, we present a rigorous criterion

for the cut-off phenomenon in terms of spectral data of the adjacency matrix of the

graph.

1. Introduction

The cut-off phenomenon (abbreviated to COP) is widely observed in the
process of convergence to equilibrium for Markov chains. It is a critical
phenomenon owing to the huge cardinality of the state space of the chain and
is well understood through a large volume limit of the system. Initiated by
P. Diaconis, the study of this phenomenon has now grown to enjoy consid-
erable literature. Let us consider a Markov chain on finite state space X with
transition probability matrix P and invariant probability π. We assume the
convergence to equilibrium of the chain:

(pk)χ,y -> π(y) a s k -> °° f o r v*> y E χi

which is in fact assured under mild conditions. The total variation distance

l 0)

will describe the convergence more quantitatively. In this article, we treat
Markov chains enjoying some spatial symmetry, which then implies that the
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invariant probability is uniform and (1) is independent of the choice of x.

Hence we set

<'*>,,-m (= (1)) (2)

Roughly speaking, D{k) often takes a sudden transition from 1 to 0 at specific

critical time kc. A naive description of the COP is as follows.

DEFINITION 1. Consider a directed family of Markov chains parametrized

by λ e A (directed set) and set D^ (k) as (2) for each chain. If one can take

0 <κy —• °o (as λ —• oo) such that the scaled graph of function D^λ\k),

{(k/k{

c

λ\D^(k))\keN}, converges to the graph of step function

for 0 < x < 1

f o r l < * '

namely to (0,1] x {1} U {1} x [0,1] U [1, oo) x {0} as subsets of R2 as λ -> oo,

one says that the COP occurs for this family of chains and call kc (determined

up to (1+0(1)) multiple) the critical time to reach equilibrium.

A more detailed formulation of the COP is presented in §3.

Comprehensive expositions of the COP are due to Diaconis ([7], [8]). The

best studied models in which the COP occurs are random walks on some finite

groups and their homogeneous spaces. They include, for example, shuffling

cards ([13], [1]), the Ehrenfests urn model and related ones ([9], [27], [20]),

the Bernoulli-Laplace diffusion model ([14], [15]) and its ^-analogue ([6]), and

some matrix groups over a finite field ([16]). Furthermore, several models on

compact groups (like classical groups) and compact homogeneous spaces were

treated in [23], [24], [21], [22], [26] and [28]. See the bibliographies in [7], [8]

and [25] for other works not cited here. In [8] Diaconis proposed an essential

understanding of what causes the COP. He pointed out the decisive role of

high multiplicity of the second largest eigenvalue of a transition matrix, which

results from high symmetry of the system, and presented an intuitive expla-

nation based on the upper bound lemma. On the other hand, in order to

prove the COP precisely in an actual model, however, one needs still additional

information on the model discussed.

The results for random walks with high symmetry on finite homo-

geneous spaces would have extension in several directions. One is to weaken

(or to break) the symmetry of a transition matrix. In particular, the invariant

probability may be no more uniform. This extension is quite important from

the viewpoint of applications, especially to statistical mechanics. Interesting

results in such a direction are presented in [10], [11], [12], [8] and [25].

Another is a generalization of the algebraic structure which describes symmetry
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of the system. In [7] Diaconis already mentioned two candidates beyond
groups: hypergroups and association schemes. For example, if X = G/K is a
homogeneous space of finite group G, G\X x X and K\G/K have canonically
the structure of an association scheme and a hypergroup respectively. These
structures naturally come into the present context if one recalls that, in the case
of a homogeneous space, an essential role is played not by the group itself
but by the Hecke algebra associated with it at least from a methodological
viewpoint. In [26], [27] and [28], Voit dealt with the COP for some models
related to hypergroups (in particular, polynomial hypergroups). As for the
COP on association schemes, we mention [4] discussed below (and the present
article also).

The purpose of this article is to propose rigorous and practical criteria for
the COP which say more beyond verification in individual models or intuitive
understanding based on degeneration of the second eigenvalue and at the same
time are applicable to the models associated with a nice class of distance-
regular graphs. The distance-regular graphs (abbreviated to DRG) are an
important subclass of the association schemes. We include a concise review
on DRGs in §2. This article contains the full proofs of our results announced
in [18] and [19] as well as several refinements. A significant change of the
situation during preparation of this article was appearance of [4]. Belsley
investigated there the COP for all the known families of #-DRGs and showed
that the critical time coincides with the diameter of the graph. (Here "q-"
suggests symbolically the objects concerning e.g. matrices or vector spaces over
a finite field.) Although our new concrete examples in [18] and [19] are now
included in [4], we think that developing an axiomatic approach to the COP
enjoys meanings because the classification of the DRGs is still far beyond the
scope. We will present the criteria for the COP which are expressed fully in
terms of the spectral data of the DRGs. Our method is a prolongation of the
harmonic-analytic one developed first by Diaconis and Shahshahani in [13] and
[14]. We also note that the method works on general commutative association
schemes under minor trivial modifications. (See also [20].)

We organize the subsequent sections as follows.

§2 Random Walk on Distance-Regular Graph
2.1 DRG
2.2 Random walk

§3 The Cut-Off Phenomenon
3.1 Formulation of the COP
3.2 Upper estimate
3.3 Lower estimate
3.4 Criterion for the COP
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§4 Application to Concrete Models
4.1 Quadratic forms
4.2 Bipartite half of H(r, 2)

Appendix 1 Related Well-Known Models
A 1.1 The Ehrenfests urn model
A 1.2 The Bernoulli-Laplace diffusion model
A 1.3 g-analogue of the Bernoulli-Laplace diffusion model

Appendix 2 Technicalities on DRG and Adjacency Algebra
A2.1 Elementary spherical function
A2.2 Some formulas needed

§2 begins with a brief review on DRGs. Then we introduce random walks on
them and state some basic properties such as the upper bound lemma. §3 is
the core of the article. We present a precise formulation of the COP, making
much of its statistical-mechanical aspect. Comparison of the scales between
the critical time and small deviation around it is important. Estimating the
distance D(k) in (2) through harmonic-analytic tools, we reach the main results
on criteria for the COP. Until §3, we keep the article self-contained. §4 is
devoted to illustration in concrete models. We refer to [2] for explicit spectral
data of concrete DRGs.

I would like to dedicate this article to Dr. Hitoshi Mizumachi who shared
a great interest in algebraic probability with us.

2. Random walk on distance-regular graph

2.1 Distance-regular graph (DRG)

Let Γ = (X, E) be a finite connected graph where X is a vertex set and E
is an edge set. Two vertices x, y are said to be adjacent (denoted by x ~ y) if
they are joined by an edge in E. The canonical distance between x, y e X is
denoted by d(x,y). d = m3.xxyEχ d(x, y) is called the diameter of Γ. Then
d(x,y)e{0,l,...,d}. Γ is called a DRG if for VA,/,y e {0,1,..., d} the
following quantity does not depend on the choice of x, y whenever d(x, y) = h:

\{zeX\d(x,z) = i,δ(z,y)=j}\=pH

r (3)

In particular, the degree of Γ is K = p\λ. The /th adjacency matrix Aj of Γ is
the \X\ x \X\ matrix whose (x, y)-entry is

In particular, AQ = I (identity). A\ is simply denoted by A and called the
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adjacency matrix of Γ. Condition (3) of distance-regularity is translated to the

linearizing formula for adjacency matrices:

A=0

which one checks immediately by comparing the entries of both sides. The

following two are the best known DRGs.

Hamming graph For d,neN, let F be an «-set (i.e. \F\ = ή) and X — Fd

(d direct product). Joining two vertices x = (xj)f=γ, y — (jy)yLi e X by an

edge if \{j\xj Φ yj}\ = 1, one gets Hamming graph H(d,n). The distance is

given by d(x, y) = \{j\xj Φ yj}\. The diameter is d.

Johnson graph For v, d e N, let S be a v-set and X = {x a S\ \x\ = d}.

One can assume Id < v without loss of generality. Joining x, y e X by an edge

if \xΓ\y\= d — I, one gets Johnson graph J(v,d). The distance is given by

d(x, y) — d — \xΠ y\. The diameter is d.

It is easy to check that H(d,n) and J(v,d) are DRGs from the definitions.

In the rest of this subsection, let Γ = (X, E) be a DRG with diameter d.

L E M M A 1. B — [Py]j h is a ( d + 1 ) x ( d + 1 ) tridiagonal matrix,

which immediately follows from (3).

LEMMA 2. For V/ = 0 , 1 , . . . ,d, there exists polynomial Vi(x) of degree i

such that Aj — Vi(A). Here vo(x) = 1 and v$(A) = /.

PROOF. It suffices to show that, for / — 0 , 1 , . . . ,d, A1 is expressed as a

linear combination of Ao,A\,... ,At with a positive coefficient of Ai. Assume

that Ai = ΣJ[ = 0 chAh holds with a > 0 (/ = 0 , 1 , . . . , d - 1). Using (4) and

Lemma 1, we have

h=0 h=0 y=0

p\hAh

A=l

where the coefficient of Ai+\ is c/^jt1 > 0. The proof is completed by in-

duction on /. Π

The C-algebra generated by A and / is denoted by <stf(Γ) and called the

adjacency algebra of Γ. Since Ao,A\,... ,Ad are obviously linearly inde-

pendent, (4) and Lemma 2 imply that {AQ,A\, ... ,Ad} is a basis of
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(=d+\) is equal to the degree of the minimal polynomial of A.

Hence symmetric matrix A has d + 1 distinct eigenvalues and enjoys spectral

decomposition

d

A = γ^θjEj, θo>θ{> '.>θd. (5)
j=o

Here E/s satisfy Ej = Ej = E*, EtEj = δyEi and E$-\ \- Ed = I In view of

Lemma 2 and (5), {JEΌ,2?I,. .. ,2^} is also a basis of

LEMMA 3. In (5), θo = K and \θj\ < K. ΘO is a simple eigenvalue.

PROOF. Let Au = au, α e R , weR' 1 ' , U Φ 0. Take an entry of w, say

ua (a e X), which has maximal absolute value. Since there exist K vertices

b adjacent to a in Σb~aub = αwα> w e have |α| < K. Applying the argument

again to α = K, we have ut, = ua for b ~ a. Since Γ is connected, the

eigenvector belonging to K must have identical entries. •

Throughout this article, / denotes the \X\ x \X\ matrix having identical

entries 1. Lemma 3 shows Eo — l ^ p 1 / in (5). Each Aj has spectral

decomposition

d

(ι = 0,l,...,rf) (6)

where P\(j) = θj and pt(j) = Vi(θj). It is obvious from the definition that Afs

are closed under the Hadamard product o (i.e. entry-wise product) of matrices

and hence so is stf(Γ). Then projectors E/s are linearized with respect to the

Hadamard product as

ϋ (7)

q^j is called a Krein parameter. A dual property of Lemma 1 is that B\ =

[qy]j A is a tridiagonal matrix. A DRG satisfying this property is said to be

g-polynomial. We summarize a few remarks which are important in general

but will not be used later. See [2].

REMARK 1. All the Krein parameters are nonnegative.

REMARK 2. The β-polynomial property of a DRG holds if and only if,

for W = 0,1, . . . , d, there exists polynomial v*(x) of degree / such that

Ej = υ*(E\). Here the multiplication of matrices in the expression v*(E\) is

taken under the Hadamard product. (Compare this with Lemma 2.)
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REMARK 3. The notions and properties above of DRGs are extended

to commutative association schemes with minor modifications, including in

particular the linearizing formula and the spectral decompositions for adjacency

matrices. The DRGs are characterized by the property of Lemma 1, said to

be P-polynomial, in the commutative association schemes.

2.2 Random walk

Random walks are distinguished from other Markov chains by spatial

homogeneity. Let P be the transition matrix of a Markov chain on homo-

geneous space X of finite group G. The action of G induces the orbital

decomposition X x X = Λo\JA\\J ••• UΛ^. One sees

spatial homogeneity <^ Pgx,gy = Px,y for Vx, y e X, Vg e G

Φ> Pxy is constant on each A[

as a fucntion on X x X. (8)

Let us now consider DRG Γ with vertex set X and a Markov chain on X.

Setting Ri = {(x, y) e X x X \ d(x, y) = /} (i = 0 , 1 , . . . , d) where d is the dis-

tance and d is the diameter, one has the decomposition X x X =

Ro U R\ U U Rj. Transition matrix P of this chain satisfies (8) if and only

if P is a linear combination of Afs, namely P belongs to the adjacency

algebra <stf(Γ). Keeping this discussion in mind, we introduce a random walk

on a DRG as follows.

DEFINITION 2. A Markov chain on DRG Γ with transition matrix P

[resp. transition semigroup e^p~^] is called a discrete [resp. continuous] time

random walk if P

Since \\HXr\\ =\ΣyEχ \Hx,y\ does not depend o n x e l f o r i / e ^ C O , (1)

with uniform π is independent of the choice of x if P e stf(Γ). Hence, as in

(2), we consider

^ Έ KP" - E<y\ (k e N ) i n d i s c r e t e t i m e (9)

? ( P" 7 ) ~ E^*J (' ^ °) i n c o n t i n u ° u s time (10)

for a random walk on Γ (where E$ = \X\~ιJ). Set κt = /?» = the number of

/-neighbors of each vertex. In particular, KQ = 1 and κ\ =κ (degree). We

note

Ki = Pi(0) (i = 0, !, . . .,</) (11)
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in (6). In fact, multiplying EQ in (6), we have

d

7=0

since any entry of AjJ is /cz . Transition matrix P e s/(Γ) is expressed as a

convex combination of stochastic matrices Ai/κi9s:

(12)
i=0 i=0

What was called the upper bound lemma due to Diaconis and Shahshahani [13]

now takes the following form. Set rrij = rank£) (j = 0 , 1 , . . . , d).

PROPOSITION 1. A random walk having transition matrix P as in (12) yields

7=1
Σ<
ι=0

PiU)
2k

(13)

(14)

7=1 I i=O

PROOF. Using the spectral decomposition (6) of Afs, we have

d W d i d / .A

, =0 Ki 7=0 \ i=0 Ki )

d i d ( \\k

7=0 \i=0

and by noting (11)

Since {£/}yi0 ^s a complete orthogonal system of projectors, we get

7=1
5
1=0

where || H^^ denotes the Hilbert-Schmidt norm. Now that the Schwarz

inequality yields
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D(k)

(13) holds. Similarly, using

j=\ { i=0 ^

we get (14). Π

If D(k) or C(ί) -^ 0 as k or ί —• oo, the random walk is often said to be
asymptotically equidistributed. In [17] we characterized asymptotic equidis-
tribution of a random walk on a finite group in terms of the support of the
one-step transition of the walk and 1-dimensional characters of the group. It
is possible to write a similar characterization for a random walk on a DRG by
taking up the relation between the support of w 's and Pi(j)9s.

(14) immediately gives the following rough estimate in terms of the
"spectral gap". Setting

γ = mm

we have

C(ή2 < jΣmJe~2γt = ^ - i e - - 2 7 ' = -L exp{log(|X| - 1) - 2γt}. (15)
2 <

Assume γ > 0 (which corresponds to irreducibility of the random walk). One
should not deduce from (15) that the time to reach equilibrium is t = {2γ)~ι or
t=(2γ)~ιlog(\X\-l). We will illustrate that the correct critical time is
actually of an intermediate order of the two (as the size of the system grows).

A random walk on a DRG is said to be simple if P = A/κ. For a simple
random walk, the upper bound lemma (Proposition 1) takes the form of

(16)
7=1

• κ

 ( Π )
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PROPOSITION 2. A simple random walk on a DRG satisfies that

(i) if it is of continuous time, the distribution tends to the uniform probability as

*-> oo,

(ii) if it is of discrete time and the DRG is not bipartite, so does the distribution

as k —• oo.

PROOF is immediate from (16) and (17) if one notes Lemma 3 and

Lemma 4 below.

LEMMA 4. A DRG is bipartite if θd = —K.

PROOF. Let u e R' z ' be an eigenvector of the adjacency matrix belonging

to —K and ua {a e X) an entry of u having maximal absolute value. We can

assume ua = 1. Since Σb^,a ub = — κua holds, we see ub — — 1 for b ~ a. Thus

the vertices x are divided into two classes according as ux = ±1 so that adjacent

vertices are in different classes. •

3. The cut-off phenomenon

3.1 Formulation of the cut-off phenomenon (COP)

In this subsection, we present a more quantitaitve description of the COP

than Definition 1 in Introduction.

Let us consider a family of random walks on DRGs parametrized by

λ e A, A being a directed set. λ is usually a (multi-)parameter concerning the

size of the system. Let each walk on DRG Γw = (X^λ\E^λ)) have transition

matrix P^ and start at an initial vertex. D^λ\k) [resp. C^λ\t)} denotes the

total variation distance between the distribution at time t e N [resp. t > 0] of

the discrete [resp. continuous] time random walk and the uniform probability

on XW which is defined as in (9) [resp. (10)].

DEFINITION 3. Assume that one can take kc > 0 for each λ e A satisfying

the following conditions:

(i) k{

c

λ) -> oo and k{

c

λ)/\X^\ - . O a s ^ o o

(ii) Vε > 0, 3λε e A and 3h{

ε

λ) > 0 such that h{

ε

λ)/k{

c

λ) -> 0 holds as λ -> oo and,

if λ > λe,

0<k< k[λ) - h[λ) => D^λ\k) > 1 - ε

k>k{

c

λ)+h[λ) =*

Then we say that the COP occurs for this family of discrete time random walks

and call kc the critical time to reach equilibrium. We give the same defi-
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nition to continuous time random walks, replacing D^λ\k) and k^ by C^λ\i)

and tc respectively.

REMARK 1. Clearly Definition 3 is a refinement of Definition 1. Since we

treat an aperiodic Markov chain with the uniform invariant probability, the

mean recurrence time of the chain is \X^\. We thus see three different scales

of time

«\χM\ as λ

[It is appropriate that k[

c ' is regarded as a macroscopic time. Then the system

discussed is far before it returns to the initial situation.

REMARK 2. Saloff-Coste proposed in [25] a weaker version of the COP

("weak ^-cutoff").

REMARK 3. Diaconis raised in [8] the definition of the COP as follows.

Here we use some different notations from the original ones. Under condition

(i) of Definition 3, let us assume that one finds h^ > 0 satisfying h^/k^ —> 0

and

D^\k{

c

λ) + θh{λ)) -> c{θ) compact-uniformly in θ e R (18)

as λ —> oo where c(θ) : R —> [0,1] is a function such that c{—oo) = 1 and

c ( o o ) = 0 . While Definition 3 provides a macrosopic understanding of the

COP, (18) describes in more detail the deviation from the equilibrium around

critical time kc with respect to a smaller scale (may be microscopic) of time

(x P ) . Concrete models in which the COP is verified to the extent of (18)

are given in [9], [3], [27], [28] and [20].

3.2 Upper estimate

In the present and the next sections, we discuss the upper and the lower

estimates respectively of total variation distance (9) and (10) for simple random

walks on DRGs. Our aim is to establish those estimates done by the spectral

datum of the adjacency matrix of a DRG. We consider a directed family

{Γ^}λeΛ of DRGs (each DRG having diameter d^) and a simple random

walk on Γ^ starting at some vertex. As a notational remark, let superscript

W denote quantities on Γ^ such as K^ (degree), θj (eigenvalue of adjacency

matrix A^), mf] (its multiplicity), C(A)(0> £>{λ){k) etc. In particular, m[λ) —

the multiplicity of the second eigenvalue—is simply denoted by m^ because it

frequently appears and plays an essential role in the sequel.

THEOREM 1. Assume 3Ao e A such that
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M=sup V
λ>λ° θ<θ[λ)

θ: eigenvalue of A^

Here the sum over θ's is taken multiply according to the multiplicity of θ. Then,

at time

(λ) ( 2 0 )

we have

(21)

PROOF. We omit superscript ^ for simplicity of notations. Putting t of
(20) into (17), we have

^ - ^ ( K — θj

7=1 ^ K l

— e M
4

namely (21). •

REMARK. Let us refer to the first nontrivial eigenvalue 1 — {θ\/κ) of
/ — A/κ as the spectral gap of DRG Γ. Theorem 1 cannot be applied if the
following two conditions hold:
(i) the spectral gap does not vanish for {Γ^}λeA i.e.

(1 - (θ[λ)/κW)) > 0
(ii) \X^\ is of larger order than any polynomial in mίλ\

[λ)p
In fact, taking 0 < δ < liminf/l^00(l - (θ[λ)/κ^)), we have

K - θj•> 2κ 2

κ — θ\ K — θ\ l — (θ\/κ) δ

and hence

f o r

^ m j y i ) m2/δ m2/s
| Z | - 1

• oo

as λ —• oo. We will recall this fact when we discuss the COP on DRGs of
^-analogue type in §4.
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THEOREM 2. Assume 3λo e A such that

θ: eigenvalue of A^

and

\^\<θ[λ) (λ>λo) (23)

(24)

PROOF. The proof goes ahead in parallel with that of Theorem 1. Note

that (23) implies \θj\ < θ\ for j = 1,... ,d. If a θj is equal to 0, we have only

to adopt logO = —oo. •

REMARK 1. Theorem 1 and Theorem 2 show the importance of the

degeneration of the second eigenvalue θ\ in the upper estimate. However, the

assumptions (19) and (22) are not stated in the way of having structural

stability. This will be overcome if we replace multiplicity m of θ\ by the

cardinality of the (appropriately formulated) "second cluster of eigenvalues".

REMARK 2. In [18] and [19] we presented further statements by

decomposing the assumptions (19) and (22) into smaller pieces of conditions.

We omit them here because the decomposition might be a bit artificial.

3.3 Lower estimate

We begin with rewriting D{k) and C(ή given by (9) and (10) respecti-

vely. Let o denote the Hadamard product of matrices and τ the summation of

all the entries of a matrix. If S is an \X\ x \X\ stochastic matrix, \X\~ιτ(So •)

defines the probability measure on X x X which assigns \X\~ιτ(S o A) to

matrix A regarded as a function on X x X. Then (9) and (10) yield

D(k) = \\\X\~λτ{Pk o •) - \X\-ιτ(E0 o )|| (25)

C(t) = | | |AT V ( P ~ 7 ) o •) - \X\-lτ(E0 o )||. (26)

The following inequality plays a basic role in our lower estimate.
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PROPOSITION 3. Let Q\ and Q2 be probabilities on a measurable space

(Ω,0S). Assume that we find an R-valued measurable function f on Ω which

has mean μ > 0 [resp. 0] and variance σ2 > 0 [resp. 1] with respect to Q\ [resp.

Q2]. Then, for any r such that 0 < r < μ, we have

||βi - Q2\\ = max|g!(*) - Q2(B)\ > 1 - I - — ^ — I . (27)
5 e J r (μ — r)

PROOF. Using the Chebychev inequality, we have

Q2(\f\ <ή>l- r~\

Qx (I/I <r)<Qx{\f-μ\>μ-r)< σ2/(μ - r)2

and hence the desired inequality. •

In [14], Diaconis and Shahshahani developed a method to obtain good

lower bounds by combining the above inequality with elementary (or zonal)

spherical functions in the case of a GeΓfand pair of a symmetric group and its

subgroup. See also [7] Chapter 3, [23] §5, and [24] §2. In this subsection we

modify their method to be adapted to our aim.

Let us consider a directed family {Γ^}λeΛ of Q-polynomial DRGs (each

DRG having diameter d^) and a simple random walk on Γ^ starting at some

vertex. See §§2.1 for the definition of a Q-polynomial DRG.

THEOREM 3. Assume that

2

2(κW-θ[λ))

id 3λ\ e A such

00

that

as

o(l)

ig/fiW

V2>

)

00

as λ —> 00

(28)

(29)

(30)

(q\x is a Krein parameter which appeared in {!).) Then, at time

κ{λ)
_ ^ μ ) ( g W -c) (0<c< l o g i i i W ) , (31)

we have Vε > 0, 3cε > 0 and λε e A such that

λ > λε and \ogm{λ) > c> cε => C{λ\t) > 1 - ε. (32)

PROOF. For simplicity of notations, we omit superscript W. The ter-

minology (including the spherical functions) and some technicalities used here

are summarized in Appendix 2.
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(Step 1) We apply Proposition 3 to (26), putting Ω = X x X, Q\ =

\X\~ιτ(e^p-^θ'), Q2 = \X\~lτ(E0o ) and taking as / the 1st elementary

spherical function on a DRG (see §§A2.1) under necessary normalization. The

point-wise product of functions on Ω agrees with the Hadamard product of

matrices. From (62) and (63) we see

-Ki = — ,

and hence that / = \ftnΣf=o(PiW/κi)Λi has mean 0 and variance 1 with

respect to Q2. Let μ and σ2 denote the mean and the variance of / with

respect to Q\ respectively. (62)-(65) yield

and

\pS

where tridiagonality of [qQij and ^Jo = 1 (directly seen from (7)) are used in

the last equality. Combining these with (31), we have
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μ = ec>2 (33)

σ2 = l+φ=e^2 + (m- 1 - ^ e x p j - ^ " ^ (logm - c)} -e'. (34)

(Step 2) Proposition 3 and (26) yield, for 0 < 2r < μ,

2^V^--2-
44- (35)

r2 μ2 V μj r2 μ2

Note that μ and σ2 depend on both λ and c. Applying (29) and (30) to (33)

and (34), we have

0 < -2 < e~c + 4 ^ ~ c / 2 + "*exp( (1 + P
μ2 φh v\\ \o%m

logm
(if

(28) enables us to take c(< \ogrn) —> oo under λ —» oo. Hence we get σ2/μ2 —>

0 as λ —> oo and c —• oo in (35). Moreover, r(< μ/2 = ec/2/2) can be arbi-

trarily large whenever c —• oo in (35). This completes the proof of (32). •

THEOREM 4. Assume that

A e y< ^ w bounded above and θψ > 0 (Vλ e yl) (36)

as λ —• oo (37)

log w'1)

as well as (28) am/ (30). Then, at time

= 1 1O8II.W - c I ( i )

L 2 1 ( W / < ) J

Vε > 0, 3cε > 0 a«ί/ 3λε e A such that

λ>λε and \ogm{λ) > c> cε => D{λ\k) > 1 - ε.

PROOF. The proof of Theorem 3 almost works well under the replacement

of e^p~^ by Pk. Instead of (33) and (34) we now see
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^λ\ > e '/2 (39)

(^) (£) (40)

Applying (30) to (39) and (40), we have

0<

σl<e-c+βe-c,2+WκΪL X_ (41)

Here (37) and (38) yield

(θx/κ)2

ί^k2log(θι/κ) ^ . ^

logm logm logm logm

Putting these into (41) and combining (36) with it, we get

2

μ2 ~~

This inequality completes the proof under (28) exactly in the same way as

Step 2 in the proof of Theorem 3. •

3.4 Criterion for the COP

Combining Theorems 1-4 with Definition 3, we are led to the conditions

under which the COP occurs for simple random walks on Q-polynomial DRGs.

In Definition 3, we required that the critical time should be of smaller order

than the cardinality of the state space. This is motivated by a physical point

of view (Remark 1 after Definition 3) and, however, is not logically indis-

pensable for deducing the COP. Hence we will not include here "k{

c

λ)/\χW\ ->

0 as λ —• oo" in the criterion. It is directly verified in concrete models.

• The case of continuous time

Under (19), (28), (29) and (30), one observes the COP. Seen from (20) and (31),

the critical time to reach equilibrium is given by

logiwW, (42)

and furthermore the fluctuation around the critical time by
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• The case of discrete time

Under (22), (23), (28), (30), (36) and (37), one observes the COP. The critical

time to reach equilibrium is given by

lOgmW (43)Φ= a),
and the fluctuation around the critical time by

(44)
ε ~ 2\og(κW/θf])'

REMARK 1. If the spectral gap 1 - (θ[λ)/κw) -» 0 as λ -> oo, critical

times (42) and (43) asymptotically coincide. If the spectral gap does not

vanish, some difference can occur between the continuous and the discrete

time cases. See Remark after Theorem 1.

REMARK 2. The conditions summarized above are written in terms of the

spectrum of adjacency matrix A

ΘQ θ\ ... θd\ , θo = K
where

mo m\ ... md J mo = \, m\ = m

and Krein parameter q\x of the DRG considered. Here we note that q\x can

be computed from projector E\ in the spectral decomposition (5) of A.

Indeed, multiplying E\ in (7) for i = j = 1, we have

{\X\E\T2EX =

Then taking the trace yields

tfii = — - t r i ^ 2 ^ ) . (45)

Consequently, it suffices to observe the spectral data of the adjacency

matrix in order to apply our criterion for the COP.

4. Application to concrete models

The simple random walks on Hamming graph H(d, n) and Johnson graph

J(v, d) are classical models imitating diffusion of sparse gases, which are called

the Ehrenfests urn model and the Bernoulli-Laplace diffusion model respec-

tively. As is cited in Introduction, the COP for them has been well studied.

Hence we do not present the details of our criteria applied to H(d,n) and

J(v,d) but summarize the results in Appendix 1 for convenience.
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In this section, we illustrate the effect of our criteria for the COP with

• DRG associated with quadratic forms over a finite field

• bipartite half of Hamming graph H(r,2).

We refer to [2] Chapter III for Q-polynomiality and spectral data of these

DRGs.

4.1 Quadratic forms over a finite field

Fix a finite field GF(pf) where p φ 2 is a prime number. Let X be the

set of the (n-l)x(n-l) symmetric matrices over GF(pf). Joining two

vertices x, y e X by an edge if rank(x - y) = 1 or 2, one gets a g-polynomial

D R G ΓW. The diameter of Γ<Λ> is d = [n/2\. Set Rt: = {(*, y) e X x X \

d(χ,y) = i] (/ = 0, l,...,rf) where d denotes the canonical distance on X.

One sees (x, y) e Rt <=> rank(x — y) = 2/ — 1 or 2/. It is known that Γ^ is not

a distance-transitive graph. (A finite connected graph is said to be distance-

transitive if the automorphism group of the graph acts transitively on each

Ri.) See [2] and [5]. Hence the present model really goes beyond the frame-

work of homogeneous spaces of groups. We have the spectral data of Γ^:

θj = (q- iy\l + qn-^2 - qW2 - qn'2) (j = 0, 1, .. .,</) (46)

ϋ = 1 „ (47)
\ = q"l\q \)~q\λ = q"l\q - \)~\q + qW - q-W - \ + q~Φ - q-(»-W) _ l (48)

where we set q = p2f. Note that the conditions in Remark after Theorem 1

hold, namely (i) the spectral gap does not vanish:

01 qn~ι/2 - qn~3/2 1
1 = 7-fZ : ΓΓJZ -pς —> 1 >0 2iS Π —> 00

κ I _μ qn-l/2 _ q{n-\)/2 _ gn/2 g

and (ii) \X\ x ^"2χconstant » a n y polynomial o f m x «̂χconstant a s n _^ O O i s i n c e

Theorem 1 cannot be applied in this situation, we consider only the discrete

time simple random walk on 7"^.

Let us check the conditions summarized in §§3.4 under the assumption that

n is sufficiently large. In the following, the terms indicated by the Landau

notation O( ) depend only on n and are independent of j . Note θd < 0 and

θd-\ > 0. (23) follows from

θι - \θd\ = θx+θd>(q- \y\qn-"2 - 4qn'2) > 0.

(46) yields
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log(θj/κ) = -jlogq + log(l + qJ-"+ q g ) ( q )
(49)

U=l,...,d-l)

log\θd/κ\ — —d\ogq + (logq)/2 + O(q~n^2) when n is even/odd respectively

and hence, for j = 1 , . . . , d — 1,

' K }/2)' log(θχ/κ) - \

On the other hand, (47) yields

ij < γqΛ»-J-W) where 1 < γ = l / Π ( l - ?"'") < oo. (51)rri

Combining (50) and (51) with \ogm = nlogq + 0(1), we see

1 mJ
m g | ^ | / g ( , / )

θ<θ\ j= 1

yqAn-j-M2)

yqd{n-d-\/2)

and hence (22). (28) and (36) are obvious from (46) and (47). (49) yields

log(02/jc) _ O(q-nl2)
2\og(θx/κ) ~ ~ -2\ogq+O(q-"/2)'

which implies (37) holds. Lastly, (30) immediately follows from (48).
We thus observe the COP for the discrete time simple random walks. The

critical time (43) is expressed as

kc is of far smaller order than \X^\. he in (44) remains finite as n —> oo.
Hence one finds the COP quite sharp.

REMARK 1. Similar analysis proceeds on other DRGs of ^-analogue type
including a DRG associated with bilinear forms over a finite field (^-Hamming
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graph) and ^-analogue of the Johnson graph (§§A1.3). The discrete time

simple random walks on them admit the critical time asymptotically equal to

diameter d. See [4] for more detailed information.

REMARK 2. It is obvious that the critical time to reach equilibrium for the

discrete time simple random walk must be, if it exists, at least diameter d of the

graph. Hence the lower estimate is conceptually easy in the case of ^-analogue

type DRGs. It may be surprising that time d is also sufficient as is shown in

(52). To find the reason, one can check so rapid growth of Ki = \Rj\ that Rd

occupies a dominantly large part in the decomposition X x X = ( J / = o Rj. This

is also the case for other ^-analogue type DRGs.

4.2 Bipartite half of H(r,2)

Since Hamming graph H(r,2) is bipartite, the (discrete time) simple

random walk on it is periodic. Defining anew two vertices x, y e {0, l } r to be

adjacent if they are at distance 2 in H(r,2), one gets a bipartite half Γ^ of

H(r,2). Γ ( r ) is a β-polynomial DRG with 2r~ι vertices and diameter d =

I//2J. The simple random walk on Γ^ is slightly different from the restriction

of that on H(r, 2) in even steps in that the latter walk can come back to the

initial vertex after 2 steps. We have the spectral data of Γ^:

θj = r{r - l)/2 - 2j{r - j) (j = 0,1,.. ., d) (53)

r, , , * x - I 1 . „ - . - - O d d f χ

(j = 0,l,...,d-l) mj = -[ ) ε = \ . . (54)
^ \ d I 11 if K is even

JO if r is

I 1 if r is

(55)

We consider the simple random walk on Γ^ in continuous and discrete time.

The spectral gap vanishes:

1 - (θ\/κ) = 4/r ^ 0 as r —> oo.

Let us check the conditions in §§3.4 under the assumption that r is sufficiently

large. We begin with the upper estimate for the continuous time case. (53)

and (54) yield

K- θ\ \ r)' J ~

Hence we have

m{κ-mκ-θι) ~ e x P θ " l o 8 Γ " Xo%J ~ J(l ~ UM) logr}

< exp{ -j(log j - 1 - (j/r) log r)},
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where we used logy! > 7log7 - 7. Taking δ such that

lim min (log 7 - 1 - (j/r) logr) > δ > 0,
r-+oo 3</<r/2

we have, if r is sufficiently large,

Y , ™j

l( ftλ < 1 +I*(Wiogr + y v ^ (56)
Δ^m{κ-θj)/{κ-θx) - 2 4 ^
y=i 7=3

This implies (19).

In the case of the discrete time random walk, we first note that

θj>0 & j<{r-yΓr)l2

holds from (53). (23) is immediately verified. For j <(r — y/r)/2, the con-

cavity of log* yields

log(θj/κ) = log(l - (K - θj)/κ) >K-θj
log(θι/κ) log(l - (K - θx)/κ) ~ K - θx '

Hence we have

Σ mw,%n«*M * Σ m(K-Z«-e>) *RHS of (56)

For j > (r — y/r)/2, we see from 0 < \θ]\ < \θd\ and the concavity of logx that

κ-\θd\ r d{r-d)
>\og{θι/κ)-\o%{θι/κ)> κ-θx 2 r - 1 "

Combining this with

rπj < exp(yiogr - j log j + 7) < exp{r(l + log2)/2} for j < r/2,

we have

|//2J

1 fr 1 /r r1 \ Ί ιr
- 2 e X P { 2 ( 1 + 1 ° g 2 ) + 2 l o g r ~ ί 2 ~ 4 ( l ) J ' ° g J S i n ° e d = ί

2

(57) and (58) imply (22).

-U-4(^i)j I θ g Γ}

) as r-> oo. (58)
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It is easy to verify the conditions for the lower estimate. (28), (30) and
(36) are obvious from (53)-(55). Finally, (29) and (37) follow from

* - ^ Λ and
2{κ-θx) r-\

respectively.
We thus observe the COP for the simple random walks in either con-

tinuous or discrete time. The critical time (43) is given asymptotically by

φ ~ jfcW ~ r- logr as r -f oo. (59)
8

Needless to say, (59) is of smaller order than \χW\ = 2 r " 1 .

Appendix 1. Related well-known models

We summarize the results on the COP for some well-known models. All
the spectral data needed here are found in [2] Chapter III.

Al.l The Ehrenfests urn model

This is the simple random walk on Hamming graph H(d1n), though the
original model is the case of n = 2. To avoid periodicity for n = 2, however,
one usually takes P = (I + A)/(κ+l) as the transition matrix instead of P —
AJK (in other words, allows the walker to pause at each step). As spectral
data of H(d,n), one has

θj = (n-l)d-nj\ mj = (n-l)J(dλ (j = 0,1,...,d), qι

n = n-2.

In particular, (30) holds if n/d is bounded. Under this assumption, one
observes the COP for the simple random walk on H(d, n) (n > 3) in either
continuous or discrete time. The critical time is given by

Furthermore, c(θ) in (18), which describes the small fluctuation around the
critical time, is explicitly computed. It takes different expressions according
to the way of large volume limit (d,ή) —> oo as was shown in [20].

A 1.2 The Bernoulli-Laplace diffusion model

This is the simple random walk on Johnson graph J(v,d), where one
assumes Id < v without loss of generality. As spectral data of J(υ,d), one has
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ΘJ = d(v -d)- j(υ -j+l) (j = 0,1, ...,</),

v\ ( v \ c i A\ i /i v(v-d-l)(d-l)\ .

In particular, (30) holds if v/d2 is bounded. Then, one observes the COP in
either continuous or discrete time with the critical time

A 1.3 ^-analogue of the Bernoulli-Laplace diffusion model

Replacing the symmetric group by the general linear group over a finite
field, one has ^-analogue of the Johnson graph. More precisely, let V be a
y-dimensional vector space over GF(q) and X the set of the ^/-dimensional
subspaces of V where Id < v. Joining two vertices x, y e X if dim(x Πy) =
d — 1, one gets β-polynomial DRG Jq{υ,d) with diameter d. Its spectral data
are given by

θj = q[d}[v -d]- [j}[υ -j+l} (j = 0,1,. . . , d),

A L/-1

where [•] = [ ]q denotes the Gauss ^-integer and the ^-binomial coefficient.

Let q be fixed. The spectral gap does not vanish as d —> oo. (30) holds if
v — 2d is bounded. Then, one observes the COP for the discrete time simple
random walk on Jq(v,d) with the critical time

£(M) ^ vj2 a s d _> oo.

Appendix 2. Technicalities on DRG and adjacency algebra

A2.1 Elementary spherical function

We give a brief explanation of elementary spherical functions on a DRG
which were used in the proof of Theorem 3 and Theorem 4 in §§3.3. To make
a comparison, let G be a locally compact separable unimodular topological
group and K a compact subgroup of G. Assume that (G,K) is a GeΓfand
pair, namely L\(K\G/K) is a commutative algebra with respect to the con-
volution product. An elementary spherical function φ on (G,K) is charac-
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terized as a normalized (i.e. φ{e) = 1) isΓ-bi-invariant simultaneous eigenfunction

on G of the convolution operators / * with / running over the elements in the

Hecke algebra. In the present context of a DRG, the Hecke algebra should

be replaced by the adjacency algebra while the convolution corresponds to the

usual multiplication of matrices.

LEMMA Al. Let si be the adjacency algebra of DRG Γ with vertex set X

and diameter d. For each 7 = 0,1,...,*/, Σf=o(Pi(j)/κi)Ai is a normalized

simultaneous eigenfunction of si with respect to the multiplication in si.

PROOF. Normalization means that the diagonal entries are all 1. First

we note that pι

hiκι = pι

hlκι holds. (Recall (3) and K[ = /??.) Indeed, count up

the triangles xyz such that d(x, y) — /, d(x, z) = h and 3(z, y) = / in two ways.

For each fixed j = 0 , 1 , . . . , d, we have

Set Bn = [phjih and Θ = [pk{l\k. Then we have

Θ% = dmg(pn(0),Pn(i),---,Pn(d))Θ. (61)

In fact, expressing a tensor product of matrices with respect to the basis of

lexicographical order and denoting by / the identity matrix of degree \X\, we

see from (6)

[E0Eι...Ed](θ®I)(tBn®I)

= [A0Aι...Ad](tBn®I)

= [ Σ PniΛh ...] = [... AnAi...] (the /th component)
h

...Ad}= An[EoE{ . ..

h

(the /th component)

. . . Ed](dmg(pn(0), pn{\),.. .,pn(d)) ® I){θ ® I).

(61) yields

d

ΣPiU)PM = U,I) entry of θ'Bh= ph(j)PiU)-
i=0
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Putting this into (60), we see that Σ?=o(PiU)/κi)Ai is an eigenfunction of Ah

belonging to eigenvalue ph{j). D

Lemma Al enables us to call Σ?=o(PiU)/κi)Λ-i the y'th elementary

spherical function on Γ.

A2.2 Some formulas needed

For the sake of convenience, we prove the formulas used in the proof of

Theorem 3. Recall that τ denotes summation of all the entries of a matrix.

LEMMA A2. The following hold on a DRG with vertex set X and

diameter d:

τ(EjoAi) =mjpi(j) (62)

d i lyi

v=0 Kv m i

(64)
v=0Kv

7=0

PROOF. AS coefficients of the base change in the adjacency algebra,

are determined by

\X\Ej = Y^qj{h)Ah t/ = 0,l,. . .,rf).

h=0

First we note

i d Λ d d

h=o \Λ I /=o h=o

d

Pi(h)EhEj = KPi(j)Ej = mjPiU),

and hence get

) = ?/('>/• (67)
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(67) yields (62) since

1 d

ί T> A \ \. ^ ί 1 \ / A A \ ί \
τ i H . r\ Δ . I — X fί \ rί\Ύ\ Λ l O Λ I — Γί I 7 IW

\ J i) — i X/Ί 7 ty \ ) \ h i) — H.J \i)^Ί'

\χ\ h=o

Taking the trace of
d

{v)AvEj, (68)

we have (63). In

tr(LHS

tr(RHS

fact, (66)

of

of

Taking the trace

(68)) =

(68))

of

\X\{Etc

and (67)

= \X\5ymj

d

v=0

Έj)Eh =

v=0

yield

d

1=0

"miPv(ή

v=0 K v

Eh = qtjEh,
7=0

and using (66) and (67), we have

v=0 μ=0

namely (64). Lastly, (65) follows from (69) since

d d

ΣqϊjEπ = ^2\X\(EiθEj)Eh = \X\{Et o I)Eh = m^. D
j=0 y=0
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