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ABSTRACT. In this paper, we consider a two-component competition-diffusion system of

Lotka-Volterra type which arises in mathematical ecology. By introducing an ap-

propriate ansatz, we look for exact travelling and standing wave solutions of this system.

1. Introduction

In mathematical ecology, it has been proposed that systems of reaction-

diffusion equations can describe the interaction of biological species which

move by diffusion. A frequently used model is the following Lotka-Volterra

competition-diffusion system [7]:

(1.1)

du J d2u ,
γt=

d-^ϊ^u(au-buu-cuv),

dv J d2v
-z~ = dv^^ + v(av - bvu- cυυ),
dt dxι

where u = u(x, i) and υ = υ(x, t) represent population densities of two com-

peting species which move by diffusion. The constants au and av are the

intrinsic growth rates, bu and cv are the coefficients of intraspecific competition,

bυ and cu are the coefficients of interspecific competition, and du and dv are the

diffusion rates. We assume that all of these quantities are positive.

By a suitable transformation, we can rewrite (1.1) as

du d2u

(1.2, S Γ S X 1 " "
dv d v

~dt~ ~dχϊ^V^a~ u ~ v ) i

where the constants a, b, c, and d are positive. For the initial value problem

of (1.2) with initial data (u,v)(x,0) > 0, the asymptotic behavior of (w,u) can

be classified into the following four cases [2]:
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( I ) If a < min(7>, l/c), then limt^OD(u,v)(x,t) = (1,0);
(II) If b < a < l/c, then

i / \/ x (\ — ac a — b
hm(u,v)(x,ή =

f > o o

(III) If l/c < a < b, then (1,0) and (0,a) are locally stable rest points;
(IV) If a > max(6, l/c), then lim/_00(w, I?)(Λ;, t) = (0,α).

For Cases (I), (II), and (IV), the convergence is compact uniformly in R.
From an ecological viewpoint, Case (III) is the most interesting one since it
implies that, depending on the initial data, only one species survives while the
other becomes extinct.

Travelling wave solutions of (1.2) play an important role in determining
which species can survive in competition when diffusion is taken into con-
sideration. These solutions are of the form (u,v)(x,t) = (£/, V)(z), where z =
x — θt and θ is the propagation speed. Rewriting (1.2) in terms of z, we obtain

(1.3)

0 = d ζ + θ^+V(abUV).
azz az

In this paper, we will consider (1.3) with the boundary conditions

(1.4) (£/, K)(-oo) = (0,α), (t/, K)(+oo) = (1,0).

When a, b, and c satisfy the bistability condition

(1.5) -<a<b,
c

Kan-on [4] showed that for a fixed positive d, there exists a unique θ =
θ(a,b,c) such that (1.3), (1.4) has a solution (U,V)(z) satisfying dU/dz>0
and dV/dz < 0 for all z e R. Furthermore, the speed θ = θ(a, b, c) depends
monotonically with respect to its arguments, that is,

8 Θ

 Λ

 d θ
 Λ

 d θ
 Λ

P" > 0, ^ < 0, — > 0.
da ob oc

The sign of the propagation speed determines which species will survive.
If θ > 0 (resp. θ < 0), then the species v (resp. u) becomes dominant and
eventually occupies the whole domain. When θ = 0, the two competing
species coexist due to the balance between diffusion and competitive inter-
action. Thus, one would like to know the sign of θ. We shall give an explicit
representation of θ in this paper.
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The aim of this paper is to show that the above mentioned monotone

solution and propagation speed can be represented explicitly under some

parameter restrictions. We will look for three classes of parameter restrictions

where in each class, the speed θ is determined as a function of the parameters.

Besides travelling wave solutions, we will also look for exact standing

φ = 0) wave solutions of (1.3) which are of two types: periodic-type and pulse-

type. The former are equivalent to solutions of (1.3) defined on a finite

interval with periodic boundary conditions, while the latter are solutions which

approach the limiting value (0,α) as x —> +oo.

The essential idea of the method we use in this paper is to introduce an

ansatz which will reformulate (1.3) to a new system where the independent

variable is U (or V). In the reformulated system, the solutions are just poly-

nomials in U (or V). The solutions to (1.3) are then obtained by integrating

the first-order differential equation arising from the ansatz introduced. The

result of this integration yields a solution with a hyperbolic tangent profile for

the monotone travelling wave case.

Our method can also be used for other reaction-diffusion systems with

polynomial nonlinearities, e.g., the Gray-Scott model for a cubic autocatalytic

reaction and a simplification of the Noyes-Field model for the Belousov-

Zhabotinskii reaction [8]. Using our approach, the resulting calculations are

not as complicated as the one using Painleve analysis, for example [3]. In

addition, an ansatz-based approach allows us to find standing wave solutions of

periodic-type and pulse-type which are not obtained from the usual Painleve

analysis.

This paper is organized as follows: in Section 2, we look for monotone

travelling wave solutions. In Section 3, by modifying the ansatz in the previous

section, we look for standing wave solutions of periodic-type and pulse-type.

Finally, in Section 4, we give a short discussion of our results.

2. Travelling wave solutions

In order to solve (1.3), (1.4), we introduce some ansatz. The idea is to

look for a monotone solution with a hyperbolic tangent profile. Since the

derivative of the hyperbolic tangent function is expressible in terms of itself, we

assume that

(2-1) f

Moreover, we assume that U and V are related by

(2.2) V=G(U).
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Applying this ansatz to (1.3), we obtain

dF
0 = F— + ΘF+U(l-U- cG),

< 2 ' 3 )

We look for F and G in the forms

m

i=0 ι=0

where m,n > 0. The polynomial dependence for G is also suggested by the

profile of the numerical solutions of (1.3) in the (t/, K)-plane.

Substituting these choices of F and G in (2.3) and balancing the highest-

ordered derivative terms and the highest nonlinear terms, we get the relation

(2.4) 2rn = n + 2.

The boundary conditions (1.4) are transformed to F(0) = F ( l ) = 0 , G(0) = a,

and G(l) = 0. Therefore, the constant a§ is necessarily zero.

Here, we shall consider only three cases. For other values of m and n, the

system obtained by substituting F and G in (2.3) yields an overdetermined

system where the number of equations is greater than the total number of

unknown constants and parameters. Thus, only trivial solutions of this system

are obtained.

2.1. m = 2,n = 2

We have F(U) = ax U + a2U
2 and G(U)=bo + bιU + b2U

2. F r o m (1.4),

we must have a2 = —a\, bo = a, and b\ = — a - b2.

Substituting in (2.3) and equating coefficients of powers of U to zero, we

obtain the following system of nonlinear equations:

(2.5) 2a\ - b2c = 0,

(2.6) - 1 - la\ + ac + b2c - axθ = 0,

(2.7) 1 +aΐ-ac + aχθ = 0,

(2.8) b2 - 6a\d = 0,

(2.9) 2ab2 - bb2 + 2b\ - 2aa\d -Ua\b2d - 2axb2θ = 0,

(2.10) -a2 + ab- 3ab2 + bb2 -b\ + T>aa\d + Ίa\b2d + aaxθ + 3axb2θ = 0,

(2.11) a2 -ab + ab2 - aa\d - a\b2d - aaxθ - axb2θ = 0.
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We now solve for the unknown constants a\, b2, and θ. Since the above

system is overdetermined, we have to impose some restrictions on the parameters.

From (2.5), (2.6), and (2.8), we obtain

v ̂ L^ 7 1 _ 2 — 2ac + b2c
« 1 = ~ » d = l~i θ =

2 3c

We note that (2.7) is satisfied trivially. From (2.9) and (2.10), we get

Again, equation (2.11) is satisfied trivially.

Simplifying the obtained expressions for the unknown constants yields the

following:

(2.12) a——, b = 2 + ——ac, u =

,~ ^ x y/2ac b\

(2.13) a\=-a2=—γ-, bo = b2 = -— = a.

Integrating (2.1), which is a Bernoulli's equation, and substituting the

result in (2.2), we obtain an exact monotone travelling wave solution of (1.2):

(2.14)

(2.15) 1 - tanh — - — z

This solution is valid under the parameter restrictions (2.12). To satisfy

the bistability condition (1.5), the parameters a and c have to lie in the

region defined by M\ = {(α, c) \ 6 + 2a - 3ac > 0, — 1 + ac > 0}. Here, and in

the following cases, we of course assume that both a and c are positive.

Profiles of (2.14), (2.15) are shown in Figure 1.

The manner of solving the following cases is similar to the preceding one

so we will just give the final results.

2.2. m = 3/2,n= 1

Here, we have F(U) = ax U + a2U
3/2 and G(U) = b0 + bx U

χl2 + b2U.

Then, for
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II-

u(z)

(2.16)

(2.17)

d =
5 + 6a — ac

l+ac '

Z

Fig. 1.

b = 5 + 5a - ac, θ =

15

-5 + ac

6ac'

a\ =-a2 =
V6 '

we obtain the following travelling wave solution:

(2.18) U(z) =

(2.19) V(z)=-

= b2 = - — = a,

This solution will satisfy (1.5) if a and c lie in the region which is defined

by ®2 = {(a, c) I 5 + 4α - ac> 0, - 1 + ac> 0}. Profiles of (2.18), (2.19) are

similar to those in Figure 1.

2.3. /n = 3/2,7! = 1 / 2

Here, we have F(C/) = aλ U + α 2 ^ 3 / 2 and G(U) =

follows that

ι Uχl2. Then, it

(2.20)

(2.21)

= 5 + 6a-3ac,

=-a2 = --r-, b0 =-b{ = a,
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(Travelling Wave Solution No. 3)

(2.22) (/(,)=

(2.23) ^ ) -

This solution will satisfy (1.5) if a and c lie in the region which is defined

by ^ 3 = {(a, c) I 5 + 3a - 3ac> 0, - 1 + ac> 0}. Profiles of (2.22), (2.23) are

similar to those in Figure 1.

By choosing other values for m and n in (2.4), we may be able to find

other monotone travelling wave solutions of (1.2). In addition, by modifying

(2.1), (2.2) to

U = G(V)

and proceeding as before, further solutions may also be obtained.

3. Standing wave solutions

In this section, we will look for standing wave solutions of (1.3) of periodic-

type and pulse-type, i.e., θ = 0 and z = x. For the periodic solutions, we shall

consider periodic boundary conditions while for the pulse solutions, we shall

consider the boundary conditions (I/, K)(±oo) = (0,α).

We modify (2.1), (2.2) by introducing the ansatz

(3.1) ^— j = H(U), V = G(U)

and substitute in (1.3), giving

(3.2)

We look for H and G in the forms

i=0 i=0

where m,n > 0. Substituting these choices of H and G in (3.2) and balancing

the highest-ordered derivative terms and the highest nonlinear terms, we get the
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relation

(3.3) m = n + 2.

For simplicity, we shall only consider two cases:

3.1. rn = 3,n=\

We have H(U) = a0 + aχU + a2U
2 + a3U

3 and G(U)=bo + bιU. Sub-

stituting in (3.2) and equating coefficients of powers of U to zero, we obtain

the following system of nonlinear equations:

(3.4) -

(3.5)

(3.6) ax = 0,

(3.7) 2b + 2b{ -3a3d = O,

(3.8) -bb0 + abx - 2bφx + a2bχd = 0,

(3.9) 2ah-2bl + aφxd = Q.

Solving the above system is straightforward, giving us

2
(3.10) <zo arbitrary, a\ = 0 , a2 = —1 +ac, a?, = — - ( - 1 +ac),

(3.11) bo = -b1=a, d = - ^ - c .

Integrating the first equation in (3.1) and substituting the result in the

second equation, we get the following periodic standing wave solution of (1.2):

(3.12) t / W = l + _ ^ _ p ( x ; f l f 2 j f l f 3 ) j

(3.13) F W = ^

where p is the Weierstrass elliptic function and g2, g?, are the invariants given

by

(3.14) ff2 = - L ( _ i + a c ) 2 , g3 = -J-(-i+ac)2(-l + 6a0 + ac).
12 216

For real-valued solutions, the constant ao must satisfy
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V(Z)

-7.5 - 2 . 5 2.5 7.5

(3.15) 27gj -oϊ =

Profiles of (3.12), (3.13) are shown in Figure 2.

Setting flo = 0, integrating the first equation in (3.1), and substituting the

result in the second equation, we get the following pulse standing wave solution

of (1.2):

(3.16)

(3.17)

U(x) =

V(x)=a 1 -

where η = — 1 + ac. Profiles of (3.16), (3.17) are shown in Figure 3.

The manner of solving the following case is similar to the preceding one so

we will just give the final results.

3.2. m = 4,n = 2

Here, we have H(U) = a0 + axU + a2U
2 + a3U

3 + a4U
4 and G(U) = bo +

b\U + b2U
2. Then, after some calculations, we obtain the following standing

wave solutions of periodic-type:
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Z

Fig. 3.

a\ = 0, a2 =

(3.18) ao = —

(3.19)

(3.20)

(3.21) d = fc

(3.22) η = -200

2 ς

(3.23) U(x) = —

(3.24) V(x) = -

125(-2500 + 60006c - 157562c2 - 24306V + 72964c4)

10(5-36c) 2 1 0 - 6 6 c
a3 =

cη

5

10 - 9bc

5c '

n

250'

η125c'

3?/

- 9b2c2, ξ =
1 ~r

3(25 - 306c -
sn x, A:

cη

where k is an arbitrary positive constant. Profiles of (3.23), (3.24) are shown

in Figure 4.
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-40 -20 20 40 60

Fig. 4.

Moreover, we obtain the following standing wave solution of pulse type:

2—βac 5ac(—Ί+ac)
(3.25)

(3.26) bo = a,

(3.27)

03 =
3+ac '

b2 =

l_

3c'

10(l+2flc)

(3.28) η = 2 + 5ac + Λ 2 - 2αV, £ = - 3 + lac + α2c2, ω = - 1 + ac,

(3.29) C/(x) =

2(-4
1 1

(3.30) = a -
10a

3 + αc - 1

L 2(-4

\0a(-Ί+ac)

Ί(-4+ac)ζ2 ' ξ

Profiles of (3.29), (3.30) are shown in Figure 5.
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0.51-

v(z)

20 -10 20

Z

Fig. 5.

By choosing other values for m and n in (3.3), we may be able to find
other standing wave solutions of (1.2). In addition, by modifying (3.1) to

= G(V)

and proceeding as before, further solutions may also be obtained.

4. Discussions

The system (1.2) has four parameters a, b, c, and d. As mentioned in the
Introduction, for any fixed positive d and α, b, and c satisfying the bistability
condition (1.5), the speed θ = θ{a,b,c) is uniquely determined. Let 01 be the
set of parameters (a,b,c) satisfying (1.5). Then 0ί describes the region in
parameter space where the existence and uniqueness of a monotone travelling
wave solution is guaranteed.

In Section 2, we found three classes of parameter restrictions where in each
class, the parameters b and d are expressed in terms of a and c. The equation
relating b in terms of a and c can be thought of as some surface £f in (a,b,c)-
space which intersects 0t. The sets 0t[ (i = 1,2,3) are just the projections of
01Π5^ on the {a,c)-plane. If ( α , i , c ) e f n ^ , then it is possible to find an
exact representation of the monotone solution. We have found three surfaces
for which an exact representation can be given. These are certainly not the
only ones for, as mentioned in the last part of Section 2, if we modify the
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ansatz (2.1), (2.2) by expressing (1.3) in terms of V, we may be able to find

other classes. However, the functional forms for U and V are essentially the

same as those found in Section 2. In other words, the possible functional

forms for U and V are either both quadratic in tanh or one linear in tanh and

the other quadratic in tanh.

The solutions found in Section 2 are also valid if a, b, and c satisfy the

monostability assumptions of Cases (I) and (IV), since they were not con-

sidered at all in the calculations. However, it is known that under this

situation, the uniqueness of travelling wave solutions can never hold. This

property is sometimes called the Fisher-type property because in the monostable

Fisher's equation, there is a continuum of wave speeds for which a monotone

travelling wave solution exists. The only difference between the exact solutions

found for the monostable and bistable cases is in the definition of the ^ ' s .

If we set c = 0 in (1.2), then the first equation reduces to Fisher's equation

for u. From (2.18) and (2.22), we get

which is just the solution to Fisher's equation for the special wave speed θ =

—5/Λ/6 obtained by Ablowitz and Zeppetella [1]. The same reduction can be

said of (2.14) if we set d = a — 1 and b = 0.

The existence, uniqueness, and instability of a standing pulse solution of

(1.2) satisfying (1.5) such that (C/, K)(±oo) = (0,α) has been shown in [5],

[6]. We note that this solution plays the role of a separator between the

constant equilibria (1,0) and (0,α). An explicit representation of this solution

is given by (3.29), (3.30).
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