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Normal Gorenstein del Pezzo surfaces with quasi-lines

Mitsuhiro YAMASAKI

ABSTRACT. In this paper, we give a classification of normal del Pezzo surfaces X with
at most three quasi-lines and determine the geometric structure of the complement of
quasi-lines on X. Moreover, we give the complete list of compactifications X of C2
with quasi-lines as boundaries.

1. Introduction

A normal projective Gorenstein surface X over C is called a normal del
Pezzo surface if the anti-canonical divisor —Ky is ample. We assume that
Sing(X) # .

Let ¢: M — X be the minimal resolution of X with the exceptional set
A=\, 4; = ¢ '(Sing(X)), where each 4; is an irreducible component of 4.

Then Brenton [2] and Hidaka-Watanabe [4] proved the following:

ProposITION 1.1.  Let X and M be as above. Then one of the following
two cases occurs.
(1) M is a rational surface and Sing(X) consists of rational double points
and each A; is a (=2)-curve. In particular, Ky; ~ ¢*Ky.
({i) M is a P'-bundle over an elliptic curve T with the negative section
A= ¢ '(Sing(X)) ~T. In particular, Sing(X) = {x;} (one point) and
KM ~ (ﬂ*KX —A.

By using the above proposition, we can obtain the following:

LemMmA 1.2, Assume that M is a rational surface. Then an irreducible
curve C on M with (C?) < 0 is either a (—1)-curve or a (—2)-curve. Moreover,
each (=2)-curve on M is an irreducible component of A.

An irreducible curve 7 on X is called a quasi-line if its proper transform
on M is a (—1)-curve. From Proposition 1.1, we can easily see that M is a
rational surface if X contains quasi-lines. We remark that (Ky -/) = —1 for
any quasi-line / on X. Let Ny be the number of quasi-lines on X. Our aim
is to give a complete classification of normal del Pezzo surface X with quasi-
lines and determine the geometric structure of the complement of N(<Ny)-
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quasi-lines on X for the case of 1 < Ny <3. Our main results are on as
follows:

THEOREM 1.3. Let X be a normal del Pezzo surface over C of degree d.

We assume that Sing(X) # & and 1 < Ny <3. Let 9 : M — X be the minimal
resolution of X with the exceptional set A = UiAi’ where each A; is an irre-
ducible component. Then Sing(X) consists of rational double points and we
have the following: Here we denote the singularities of X by the types of the
corresponding Dynkin diagrams.
(1) If X has only one quasi-line ¢, then we have 1 <d < 6, and the types of

singularities are uniquely determined up to deformation as follows:

1) d=1= Sing(X) = Eg,

(

(2) d=2=Sing(X) = Ey,

(3) d=3= Sing(X) = Eg,

(4) d=4= Sing(X) = Ds,

(5) d=5= Sing(X) = Aa,

(6) d:6:>Sing(X):A1 + A».

The configurations of curves £ \UA on M are as in Table 1, where ¢ is the
proper transform of /. In particular, we obtain that X —/ ~ C>,

(II) If X has exactly two distinct quasi-lines £\, {5, then we have 1 <d <7,
and the types of singularities are uniquely determined up to deformation as

follows:

(1) d=1= Sing(X) = Ds,

(2) d=2= Slng(X) = A7 or A + Dg,
(3) d=3=Sing(X)=A4; + 45,

(4) d=4= Slng(X) =Dy or 24, +A3,
(5) d=5=Sing(X) = 43,

(6) d=6= Sing(X) = A, or 2A1,

(

7) d=7=Sing(X) = 4.

The configurations of curves H UL UA on M are as in Table I, where 4
and 5 are the proper transforms of {1 and (5, respectively. In particular,
X — (41Uty) ~C? or Cx C*. In Table 1, the first and second columns
are the lists of X such that (X,/1U/¢,) is the compactification of C? and
C x C*, respectively.

Table I (Compactification of C?)

B o—o—i—o—o—o—o—c B o—o—i—o—o—o—c Es o—o—i—o—o—-
Ds Ay A1 +A4;, o—o0—e—0
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Table II (The type of singularities on X and the corresponding dual graph)

d Compactification of C2 Compactification of C x C*
1 Dy
2 A7
A1 + Ds
3 Ay + As
4 241 +A; o0—e—0—0—0O——0O
5 As
of e,
24, e—0—e——o0
7 A o—e—e

If X has exactly three distinct quasi-lines [\, (>, (3, then we have
1 <d <6, and the types of singularities are uniquely determined up to

deformation as follows:

) =Dgs or Ay + As,

X) A D5 or 3A2,
) = A4 or Ay + As,
) = Al + A,

(1) d=1=Sing(X)=A4s or 4|+ E7,
(2) d=2= Sing(X

(3) d =3 = Sing(

(4) d=4=Sing(X

(5) d=15= Sing(X

(6) d=06= Sing(X) =

The configurations of curves {?1 UhLULUAL on M except of the type
Ay + E7 are as in Table 111, where /Al, {g and /A3 are the proper transforms
of (1, (> and (3, respectively. In particular, X — Ule li~C% CxC*or
(C"2%  In Table 111, the first, second and third columns are the lists of
X such that (X U{l 4;) is the compactification ofC C x C* and (C*)?,

respectively.  The configuration of curves HULULUA on M of the type

Ay + E7 is as in Table 1V.



256 Mitsuhiro YAMASAKI

Table III (The type of singularities on X and the corresponding dual graph)

Compactification
d of C? Compactification of C x C* Compactification of (C*)?

Ds

Ay + 43

5 Ai+4, e—e—0—0—e0

6 Ay

Table IV

t

In this paper, the circle e (resp. o) denotes a (—1)-curve (resp. a (—2)-
curve). Two components are joined by a straight line, double lines and double
lines with a symbol t if the corresponding two curves meet at a point, at two
distinct points and tangentially at a point, respectively.

THEOREM 1.4. Let X be a normal del Pezzo surface with Sing(X) # .
Let (1,...,{n be quasi-lines on X such that X — Ui]ilf,- is biholomorphic to
C>. Then by(X) =N and N < 3.

This paper is organized as follows. In Section 2, we give several pre-
liminaries which will be used in Sections 3 and 4. In Section 3, we study a
normal del Pezzo surface X with at most three quasi-lines. In Section 4, we
determine the geometric structure of the complement of quasi-lines on X.
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Notation

Throughtout this paper, we use the following symbols.
Sing(X): the singular locus of X

Ky := Kx_sing(x): the canonical divisor on X

K);: the canonical divisor on M

d = (Kx)*: the degree of X

Ny: the number of quasi-lines on X

~: the linear equivalence of divisors

by(x): the second Betti number of

(zo : z1 : z2): the homogeneous coordinate system of P2
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2. Preliminaries

In this section, we use the notations as in Section 1. We assume that
Sing(X) # & and 1 < Ny <3. Then M is a rational surface. We remark
that M # P>, P! x P!, F, or F,. By Demazure [3] and Hidaka-Watanabe [4],
we get the following:

PROPOSITION 2.1.  There exists a set X, = {P1,..., P} of r(<8)-points on
P2 which are in almost general position (See Definition 3.2 of Hidaka-Watanabe
[4]) such that M is isomorphic to V(X,), where V(X)) is the rational surface ob-
tained by the blowing-up of P* with center X,.

PROPOSITION 2.2.  There exists a smooth cubic curve I' on P* which passes
through all points of X,.

Now, we put X := {Py,..., P} =X, (j<r). Lety: V() — P? be the
blowing-up of P? with center X;. Then we have a map 7; : V(X)) — V(Z;_1)
such that y; =y, jom (2<j<r). Thus we obtain the sequence of blowing-
ups

M =V(Z) =5 V(Em) ™ = V(5) = PP
where 7; =7,. We put z:=nmj0---on,. The map n: M — P? is called the
blowing-up of P? with center X,.
Then we can show the following:

COROLLARY 2.3. Ky ~ —I, where I is the proper transform of I' on M.
In particular, I' is an elliptic curve on M.



258 Mitsuhiro YAMASAKI

COROLLARY 2.4. I>=9—r>0. In particular, we have 1 <r < 8.
The following is due to Brenton [1].

PROPOSITION 2.5. by(M) = by(X) + ba(4), where by(A4) is equal to the
number of irreducible components of A, that is, the number of (—2)-curves on M.

Then we have the following:
LEMMA 2.6. by(4) <r.

PROOF. By using by(M) = by(V(2,)) = by(P?) +r =1 + r, we have by(X)
=1+r—>by(4). Since b(X) = 1, we have the assertion. O

LemmA 2.7. Let X, be a set of r(< 8)-points on P* which is allowed to
contain infinitely near points and n:V(X,) — P? the blowing-up of P* with
center 2.

(1) If Cisa (—1)-curve on V(X,) and the image n(C) =: Cy is a curve on
P2, then Cy is one of the following:

(1) a line passing through two points of X., where r > 2,

(ii) a conic passing through five points of X., where r > 5,

(i) a cubic passing through seven points of X, such that one of them is a

double point, where r >,

(iv) a quartic passing through all points of Xy such that three of them are

double points,

(v) a quintic passing through all points of Xs such that six of them are

double points,

(Vi) a sextic passing through all points of X such that seven of them are

double points and one is a triple point.

(2) If Cis a (=2)-curve on V(X,) and the image n(C) =: Cy is a curve on
P2, then Cy is one of the following:

(1) a line passing through three points of X,, where r >3,

(ii) a conic passing through six points of X,, where r > 6,

(i) a cubic passing through all points of Xg such that one of them is a

double point.

ProoF. We denote the degree of Cy by d(=1). Let m; = multp, Cp >0
be the multiplicity of Cy at P;, where m; = 0 means that P; ¢ Cyp. We remark
that m; > m; if P; is an infinitely near point of P;. By the genus formula on
the rational plane curve, we have

0 —30+2 Emi(mi—1)
2 _; 2
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that is, 0> =30 +2 =30, m?> =S/ m;. If C is a (—1)-curve, then

G BT I L )
i=1 i=1

Thus we have the system of equations

(1) >omi=6"+1 and > mi=35-1
i=1 i=1

On the other hand, if C is a (—2)-curve, then

r r
2=C'=Ci-> m =6 =Y m.
i=1 i=1

Thus we also have the system of equations

(2) im3:52+2 and im,:sa‘.
i=1 i=1

Hence it comes down to a question of the solutions for the systems of
equations (1) and (2).

Now, we may assume that my >my>--->m;>1 and nmy, =--- =
m, = 0 without loss of generality, where k < r.

First, we shall solve the system of equations (1). Ifd =1, then Zl]‘: ym? =

1

2and YK \m;=2. Hence k=2and m; =my =1. 1f6=2, then Y& m? =

5 and Zlem[:S. Hence k=5 and my =---=ms=1. If 6 >3, we have
k k 2

8 (3] - (Xm) = X memr
i=1 i=1 I1<i<j<k

we have

k@ +1) = (30 -1) = (k=90 + 65+ (k—1)= > (mi—m;)* =0,

that is,
3+ k(10— k)

<0<
3=o< 9—k

From this inequality, we see k =7 or 8.
If k=7, then 6 =3. Since Y./, m?=10 and Y] ,m; =8, we have
nmy 22, my; =---=mj; = 1.
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In the case k =8, then 3 <d<7. (i) If 6 =7, since Zle m? =50 and
Sy mi =20, we have 37, _;_; _g(m; — m;)® =850 — 20 = 0, that is, m; = -
=mg =5/2. This leads to a contradiction. (ii) If 6 = 6, then le:l m? =37
and Y% m; =17. Moreover, Di<icj<g(mi— m;)* =8-37—172=7. Since
S8 mp=8mg, mg=1 or 2. If mg=1, .| m>=36 and 3./ m; = 16.
Then ;. ;o7(mi — m;)* =7-36 — 162 = —4, which leads to a contradiction.
If mg=2, >/ ;m?=33 and Y] m;=15 Then ¥ ,_._;_s(mi—m)’ =
7-33 152 =6. Hence we have >, _,_,(m;—1)>= S cicis(mi— m;)* —
Sicicjer(mi—mp)? =1, that is, my =3, my=---=m;=2. (iii) If 6 =35,
then S8 m? =26 and % m; = 14. From 3% m; > 8mg, we have mg = 1.
Then ZLI m? =25 and 21.7:1 m; = 13. Moreover, from 2[711 m; > Tm;, we
have m; = 1, which implies ¢, m? = 24 and Y% | m; = 12. Hence we have

Sicicjeemi—m)? =624 —122=0, that is, mj=---=ms=2. (iv) If
0=4, then 3% m2=17 and 3% m;=11. If my>2, then % m; >
4.24+4=12. This leads to a contradiction. Thus we have my = --- = mg

=1. Then 23:1 m? =12 and Z,.S:I m; = 6. Hence we have m; = my = m;
=2, (v) If 6 =3, then 3.} ,m? =10 and 3%  m; =8. There are no solu-
tions for this system of equations.

Therefore all solutions of the system of equations (1) are obtained as
follows up to all possible permutations of the m;’s:

o=1land m=m=1m3=---=m, =0 for r > 2,
o=2and my=---=ms=1,mg=---=m, =0 for r > 5,
o=3and m =2, my=---=m;=1,mg =0 for r > 7,
o=4and m=m=m3=2, my=---=mg =1 for r=238,
o=5and m=---=mg=2,my=mg =1 for r =38,
o=6and m =3, m=---=mg =2 for r=_8.

By the argument similar to the above, all solutions for the system of
equations (2) are obtained as follows up to all possible permutations of the
m;’s:

o=land m=m=ms=1,my=---=m, =0, for r >3,
o0=2and m =---=mg=1,m; =mg =0 for r> 6,
o0=3and m =2, m=---=m;=mg =1 for r=28.

Thus the lemma holds. O]

By an elementary calculation, we can obtain the following:
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LEMMA 2.8. Let X, be a set of r-points on P* which is allowed to contain
infinitely near points. Then we have the following:
Let {Py, Py, P3} be a set of three points of X, for r > 3. If all points
of them are on a line L, then

(1)

(1)

(vi)

no line except L passes through two of the points P;,

no conic passes through all of the points P;,

no cubic passes through all of the points P; such that one of them
is a double point,

no quartic passes through all of the points P; such that two of
them are double points,

no quintic passes through all of the points P; such that all of them
are double points,

no sextic passes through all of the points P; such that two of them
are double points and one is a triple point.

Let {Py,...,Ps} be a set of six points of X, for r > 6. If all points of
them are on a smooth conic C, then

(1)
(i)
(iii)
(iv)
(v)

(vi)

no line passes through three of the points P;,

no conic other than C passes through five of the points P,

no cubic passes through all of the points P; such that one of them
is a double point,

no quartic passes through all of the points P; such that three of
them are double points,

no quintic passes through all of the points P; such that five of
them are double points,

no sextic passes through all of the points P; such that five of the
points P; are double points and one is a triple point.

If all points of X3 = {Py,...,Ps} are on an irreducible cubic C with P,
as a double point, then

no line passes through P, and other two of the points P;,

no conic passes through Py and other five of the points P;,
no cubic other than C passes through P\ and other six of the
points P; such that Py is a double point,

no cubic other than C passes through all of the points P; such
that one of them is a double point,

no quartic passes through all of the points P; such that P, and
other two of them are double points,

no quintic passes through all of the points P; such that P\ and
other five of them are double points,

no sextic passes through all of the points P; such that
seven of them are double points and one is a triple
point.



262 Mitsuhiro YAMASAKI

Proor. (1) (iii) Let {Py, P2, P3} be a set of three points of X, and L be a
line which passes through all of points of them. Then we have the sequence of
blowings-up

V(Z5) 5 V(Z2) 5 V(E) = P
where V(Z) is the blowing up of P? with center P; in P? and V(X},) is
the blowing up of V(X)) with center P,y in V(2;). We set Ej := nj“(Pj) in
V(2;). Assume that there exists a cubic D which passes through all of the

points P; such that P; is a double point. We denote the proper transform of L
and D on V(X;) by LY and DV, respectively. Then

(LY, DV = (n{L,n;D) + 2E} = (L,D) +2E} =3 -2=1
on V(X) since LY ~ 7L — E; and DV ~ 7y D — 2E,
(L?, D) = (m; LY ;D) + EF = (LY, DW) + E3 =1-1=0

on V(X,) since L@ ~ ;L") — E; and D® ~ z3DY) — E,. This implies that
L? N DR = ¢, that is, P3 ¢ D® on V(X,), which is a contradiction. Similar
arguments show the assertions (2), (3). O

3. Classification of normal del Pezzo surfaces with at most three quasi-lines

Let us retain the above notations. Now, we fix the set 2, of r-points
(1 <r<8) on P? which are in almost general position. Let I" be an elliptic
curve passing through all points of .. We put X, = P? the set of points of X,
which are not infinitely near points, that is, Xy = X, — {infinitely near points}.
From the relation

Ny := the number of quasi-lines on X
= the number of (—1)-curves on M
> the number of points of X
=: 120,

we have the following:
(1) NX:1:>|E()|:1
(2) Ny=2= |2 <2
(3) Ny=3=1|2y <3.

Case 1. The case || =1

In this case, X, consists of a point P; on P? and its infinitely near points
Py,...,P.. Let E; be the exceptional curve of the first kind associated with
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the blowing-up with center P;, where Py € E; (1 <i<r—1). We denote
the proper transform of E; on M by the same notation E;. Then E;’s
(l<i<r—1) and E, are (—2)-curves and a (—1)-curve on M, respectively.
Let L be the tangent line to I" at P; and put L the proper transform of L
on M.

Case 1.1. The case of Ny =1

In this case, there exists only one (—1)-curve on M. If r=2, then
Ny # 1 since L is a (—1)-curve on M. In case of r >3, P; is a flex point of
I'. If it is not so, then L is a (—1)-curve on M, that is, Ny # 1. From
Lemma 2.6, we obtain that E|,...,E,_;, L are all of (—2)-curves on M.
Moreover, by Lemma 2.7, we observe that there exist no (—1)-curves on M
except for E,. Hence, the types of singularities of X with Ny =1 are de-
termined as follows:

r= 3= Sing(X
r=4 = Sing(X
r=>5= Sing(X

r=7= Sing(X

(X) =
(X) =
(X) =

r =6 = Sing(X) = Eg,
(X) =
(X) = Es.

r=38 = Sing(X

REMARK 3.1. Al normal del Pezzo surfaces with Sing(X) # & and Ny = 1
are the six listed in Table 1.

Case 1.2. The case of Ny =2

In this case, there exist exactly two (—1)-curves on M. If r=2, then
Ny =2 since L is a (—1)-curve on M. In case of r > 3, by the result in Case
1.1, P, is not a flex point of I" and hence L is a (=1)-curve on M. Ifr=3,4,
from Lemma 2.7 and Lemma 2.8, it follows that E),..., E,_; (resp. E,, i) are
all of (—2)-curves (resp. (—1)-curves) on M. In case of r > 5, there exists a
unique smooth conic C passing through five points Pj,..., Ps. We denote by
C the proper transform of C on M. If r=35, then Ny # 2 since C is a (—=1)-
curve on M. In case of r > 6, C must pass through the point P¢ and then C
is a (—2)-curve on M. From Lemma 2.6, we obtain that E|,...,E,_;, C are
all of (—2)-curves on M. Moreover, by Lemma 2.7 and Lemma 2.8, we have
that there exist no (—1)-curves on M except for E, L. Hence, the types of
singularities of X are determined as follows:
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r=2 = Sing(X

r=3= Sing(X

r=6= Sing(X) = 4; + A4s,

r=17= Sing(X

(X)

(X)
r=4= Sing(X) = 43,

(X) =

(X) = 4,

(

r=28= Sing(X) =
For example, the configurations of {P;,L,C} on P? are given by

Pi=(0:0:1),
L:{ZIZO},
C={z2—z120=0}.

Case 1.3. The case of Ny =3

In this case, there exist exactly three (—1)-curves on M. By the results in
Case 1.1 and Case 1.2, we may consider the case where P; is not a flex point of
I'and r>5. Then L is a (—1)-curve on M. There exists a unique smooth
conic C passing through five points Py,..., Ps. We put C the proper transform
of Con M. Ifr=35, then Cisa (—1)-curve on M. Therefore, from Lemma
2.7, we obtain that there exist no (—2) curves on M except for E,..., Eq and
no (—1)-curves on M except for Es, L, C. Hence, Ny = 3. In case of r > 6,
C does not pass through the point Ps and then C is a (=1)-curve on M. If
r=6, from Lemma 2.7, it follows that Ej, ..., Es (resp. Eg, L, and 6‘) exhaust
all of (—2)-curves (resp. (—1)-curves) on M. Hence, Ny =3. In case of
r > 17, there exists uniquely an irreducible cubic D passing through seven points
Pi,...,P; such that P; is a double point. We denote by D the proper
transform of D on M. We remark that the irreducible cubic D has P; as a
node since X, is in almost general position on P?. If r =7, then Ny # 3 since
Disa (=1)-curve on M. If r =38, then D passes through the point Pg, so Dis
a (—2)-curve on M. From Lemma 2.6, we obtain that there exist no (—2)-
curves on M except for E,...,E;, D. Furthermore, by Lemma 2.7 and
Lemma 2.8, we have that there exist no (—1)-curves on M except for Eg, L,
C, that is, Ny = 3. Hence, the types of singularities of X are determined as
follows:

r=>5= Sing(X) = Aa,
r=6= Sing(X) = 45,
r =8 = Sing(X) = 4s.
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For example, the configurations of {P;,L,C,D} on P? are given by
=(0:0:1),
L= {Zl = 0},

1 1
C= {zg +§le +ﬁzozl +V2z12 = 0}»

D= {ZO +V2z0z12) — 23z, = 0}.

Case 2. The case of || =2

Now, we assume that X, consists of (distinct) two points P;(= P}) and
Py(=P}) on P? and their infinitely near points P}...,P!" and P3,...,P},
respectively, where r=r; +r;. Let E] be the exceptional curve of the
first kind associated with the blowing-up with center P’ where Pijl eE’
(I<i<2,1<j<r—1). We denote the proper transform of El’ on M by
the same notation E/. Then E/’s (1 <i<2,1<j<r;—1) and EJ', E} are
respectively (—2)-curves and (—1)-curves on M. Let Ly be the line passing
through two points P; and P,. We put ivo the proper transform of L, on
M. 1If r =2, namely, (r,r2) = (1,1), there exist no (—2)-curves on M. This
implies that X is smooth. Thus we may consider the case of r > 3.

Case 2.1. The case of Ny =2

In this case, there exist exactly two (—1)-curves on M. Hence Ly must be
a tangent line to I, that is, Pl2 €Ly or P% € Ly. Then ZVO is a (—2)-curve on
M. Now, we may assume that P% € Lp. Let L; be a tangent line to I" at P
and put L, the proper transform of L; on M.

(1) The case of r; =1. In case of 2 <r, <4, from Lemma 2.7 and Lemma
2.8, we obtain that Eji,...,Ey"!, and Lo (resp. E! and E}*) exhaust all of
(—2)-curves (resp. (—1)-curves) on M. In case of r, > 5, there exists uniquely
a smooth conic C passing through five points Pi,...,P;. We denote by C the
proper transform of C on M. If r, =5, then C is a (—1)-curve on M, that is,
Ny #2. In case of r, > 6, C must pass through the point PS. Then Cisa
(=2)-curve on M. By Lemma 2.6, one sees that there exist no (—2)-curves on
M except for Ezl, e ,Ez"rl, 170, C. Furthermore, from Lemma 2.7 and Lemma
2.8, we obtain that there exist no (—1)-curves on M except for Ell, EZ?, that is,
Ny = 2. Hence, the types of singularities of X are determined as follows:

(V],l"z) = (1,2) = Slng(X) = 2A1,
(}"1,}"2) = (1,3) = Smg(X) =A3,
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(ri,r2) = (1,4) = Sing(X) = D,
(r1,72) = (1,6) = Sing(X) = 4, + Ds,
(71,72) = (177) = Sll’lg(X) = Dg.

For example, the configurations of {P;, P», Lo, C} on P? are given by

Pi=(0:0:1),
PzZ(IIOZO),
Ly = {z; =0},

C= {zé —z1zp = 0}.

(2) The case of r; =2. In this case, Ny # 2 since E is a (—1)-curve on
M.

In case of r; > 3, P; must be a flex point of 7" and then Liisa (—2)-curve
on M. From Lemma 2.6, we have that E},...,E['""' EJ,... Ey"', Lo, and
L; exhaust all of (—2)-curves on M.

(3) The case of r; =3. Incase of 2 <r, <4, by Lemma 2.7 and Lemma 2.8,
it follows that there exist no (—1)-curves on M except for E?, E}, that is,
Ny =2. If ry =5, then there exists uniquely a smooth conic C passing through
five points P;,...,P;. We denote by C the proper transform of C on M.
Then we have Ny # 2 since C is a (—=1)-curve on M. Therefore, the types of
singularities of X are determined as follows:

(r1,12) = (3,2) = Sing(X) = 24 + 4,
(r1,r2) = (3,3) = Sing(X) = 4, + 45,
(r1,r2) = (3,4) = Sing(X) = A4, + De.

(4) The case of r; =4. Then since 2 <r, <4, by Lemma 2.7 and Lemma
2.8, we obtain that there exist no (—1)-curves on M except for E}, E;.
Hence, we have Ny =2 and the types of singularities of X are determined as
follows:

(l’l,rg) = (4,2) = Smg(X) = A, + As,
(7'1,7’2) = (4,3) = Slng(X) = A7,
(rl,rg) = (4,4) = Smg(X) = Dg.

(5) The case of r; = 5. Then since 2 < r, < 3, by Lemma 2.7 and Lemma 2.8,
one can show that there exist no (—1)-curves on M except for E7, E;>. Hence,
we have Ny =2 and the types of singularities of X are determined as follows:
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(r1,72) = (5,2) = Sing(X) = A4 + Ds,
(r1,r2) = (5,3) = Sing(X) = Ds.

(6) The case of r = 6. In this case, there exists a unique irreducible cubic
D passing through seven points P},..., P¢, P) such that P, is a double point.
We set D the proper transform of D on M. Then we see Ny # 2 since D is a
(—1)-curve.

Case 2.2. The case of Ny =3

(1) The case where L is a (—2)-curve on M. In this case, since Ly is a
tangent line to /", we may assume that r, >2 and P% € Lyo. Let L; be the
tangent line to I” at P; and put L; the proper transform of L; on M.

(1-1) The case of r; = 1. In case of 2 <r, <4, one has Ny = 2 by the result
in (1) of Case 2.1. In case of r, > 5, there exists uniquely a smooth conic C
passing through five points P}, ..., P3. We denote by C the proper transform
of Con M. If =5, then C is a (—1)-curve on M. By Lemma 2.7 and
Lemma 2.8, it follows that the curves EJ, ..., E$, C (resp. E}, E5, Lo) exhaust
all of (—2)-curves (resp. (—1)-curves) on M. Thus we have Ny =3. In case
of r, > 6, by the result in (1) of Case 2.1, C must not pass through the point
PS. Then Cisa (—1)-curve on M. If r, =6, by Lemma 2.7 and Lemma 2.8,
we obtain that the curves EJ, ..., E3, Lo (resp. E}, ES, C) exhaust all of (—2)-
curves (resp. (—1)-curves) on M. Hence we see Ny = 3. If r, =7, then there
exists a unique irreducible cubic D passing through seven points Pé,...,P;
such that P} is a double point. We set D the proper transform of D on M.
Then we have Ny # 3 since D is a (—1)-curve on M. Therefore the types of
singularities of X are determined as follows:

(rl,}"z) = (1,5) = Slng(X) = D5,
(rl,}’z) = (1,6) = SlIlg(X) = D6.

(1-2) The case of r; =2. In this case, L; is a (—=1)-curve on M. In case of
2 <rp <4, by Lemma 2.7 and Lemma 2.8, we obtain that there exist no (—1)-
curves and no (—2)-curves on M except for E}, E}?, L, and E!, E},... Ep
E), respectively. Then we see Ny = 3. In case of r, > 5, there exists a unique
smooth conic C passing through five points P},..., P;. We put C the proper
transform of C on M. If r, =5, then Ny # 3 since C is a (—=1)-curve on M.
If , =6 and C passes through the point P§, then C is a (—2)-curve on M.
From Lemma 2.6, it follows that E!, E},... EJ, Ly and C exhaust all of (—2)-
curves on M. Moreover, from Lemma 2.7 and Lemma 2.8, we obtain that
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there exist no (—1)-curves on M except for E2, ES, Lj, that is, Ny =3.
Hence, the types of singularities on X are determined as follows:

(ri,r2) = (2,2) = Sing(X) = A4 + 4>,
(r1,r2) = (2,3) = Sing(X) = 44,
(}’1,72) ( s ) = Sll’lg(X) D5,
(r1,r2) = (2,6) = Sing(X) = 4) + E.
For example, the configurations of {Py, P», Lo, L, C} on P? are given by
P=(0:0:1),
P,=(0:1:0),
LO = {Zo = 0},
Ly ={z =0},

C = {Z% +zoz2 —z1z22 = 0} or {Zé —z1z3 = 0}.

(1-3) The case of r; = 3. First, we consider the case where Pl1 is a flex point
of I'. In this case, L; is a (=2)-curve on M. By Lemma 2.6, we obtain that
there exist no (—2)-curves on M except for E!, EZ, E},... . Er~', Lo, L;. In
case of 2 <r <4, Ny =2 by the result in (3) of Case 2.1. If r, =5, then
there exists a unique smooth conic C passing through five points Pi,..., P3.
We denote by C the proper transform of C on M. Then C is a (=1)-curve
on M. From Lemma 2.7 and Lemma 2.8, we obtain that there exist no (—1)-
curves on M except for E23, E25, C, that is, Ny = 3. Hence, the types of
singularities of X are determined as follows:

(r17r2) = (375) :>Smg(X) :A] —|—E7

For example, the configurations of {Py, P», Ly, L, C} on P? are given by

Pi=(0:0:1),
P,=(0:1:0),
L():{Z():O},
L12{21:0},

C= {Zg + 2022 — 212 = 0} or {Zé —z1z; = 0}.

Next, we consider the case where P/ is not a flex point of I". In this case,
Liisa (=1)-curve on M. In case of 2 <r, <4, from Lemma 2.7 and Lemma
2.8, we have that E!, E2, E},... ,Er~" and L (resp. E}, E? and L;) exhaust
all of (—2)-curves (resp. (—1)-curves) on M. Hence, Ny =3. If r, =5, then
there exists a unique smooth conic C passing through five points Pi,..., P5.
We set C the proper transform of C on M. Then Ny # 3 since C is a (—1)-
curve on M. Thus the types of singularities of X are determined as follows:
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(ri,r2) = (3,2) = Sing(X) = 4, + 43,
(r1,r2) = (3,3) = Sing(X) = 4s,
(}’1,72) = (3,4) = Sll’lg(X) = Dg.

(1-4) The case of 1| =4. First, we consider the case where P| is a flex point
of I'. In this case, one has Ny =2 by the result in (4) of Case 2.1. Next,
we consider the case where P] is not a flex point of I. In this case, L isa
(—=1)-curve on M. Moveover, there exists uniquely a smooth conic C passing
through five points P},..., P}, Pl. We put C the proper transform of C on
M. Then we have Ny # 3 since C is a (—1)-curve on M.

(1-5) The case of r; = 5. First, we consider the case where P11 is a flex point
of I'. In this case, one has Ny = 2 by the result in (5) of Case 2.1. Next, we
consider the case where P| is not a flex point of 7. In this case, Liisa (—1)-
curve on M. Furthermore, there exists uniquely a smooth conic C passing
through five points P!,..., P}, P}. We denote by C the proper transform of
C on M. Then C must pass through the point P; and hence Cisa (—2)-
curve on M. From Lemma 2.6, we observe that E},....E}, E},... Er~' L,
and C exhaust all of (—2)-curves on M. Moreover, by Lemma 2.7 and Lemma
2.8, it follows that there exist no (—1)-curves on M except for E7, E?, E, that
is, Ny =3. Hence, the types of singularities of X are determined as follows:

(V],VQ) = (5,2) = Slng(X) = Ay + As.
(7'1,7’2) = (5,3) = Smg(X) = Ag.

For example, the configurations of {Py, P,, Ly, L;,C} on P? are given by

Pi=(0:0:1),
P,=(0:1:0),
L():{Z():O},
L12{21:0},

C= {zg +zoz) — z1z2 = 0}.

(1-6) The case of r; = 6. First, we consider the case where P| is a flex point
of I'. In this case, E is a (—2)-curve on M. Furthermore, there exists a
unique irreducible cubic D passing through seven points P|,..., P$, P} such
that P1 is a double point. We denote by D the proper transform of D on
M. From Lemma 2.6, it follows that E!,... E5, E}, Ly and L, exhaust all
of (—=2)-curves on M. Moreover, by Lemma 2.7 and Lemma 2.8, we observe
that there exist no (—1)-curves on M except for EP, E3, D, that is, Ny = 3.
Hence, the types of singularities of X are determined as follows:
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(r1,m) = (6,2) = Sing(X) = 4, + E.

For example, the configurations of {Py, P», Ly, L, D} on P? are given by

P =(0:0:1),
P,=(0:1:0),
L():{Zo:O},
L12{21=0},

D= {ZS - leg + zoz1z2 = 0}, or {28 — Zgzl — leg + 2z0z1z2 = 0}.

Next, we consider the case where P! is not a flex point of I". In this case,
Liisa (—1)-curve on M. Then there exists uniquely a smooth conic C passing
through five points P},..., P}, Pi. We set C the proper transform of C on
M. Then C must pass through the point P}, and hence C is a (—2)-curve on
M. From Lemma 2.6, it follows that E],..., ES, E}, Ly and C exhaust all of
(=2)-curves on M. Furthermore, by Lemma 2.7 and Lemma 2.8, we see that
there exist no (—1)-curves on M except for ES, EZ, L , that is, Ny = 3.
Hence, the types of singularities of X are determined as follows:

(V],}"z) = (6,2) = SlIlg(X) = As.

For example, the configurations of {Py, P,, Ly, L;,C} on P? are given by

Pi=(0:0:1),

Py=(0:1:0),

L()Z{Z():O},

LIZ{Zl—O},
2

(2) The case where Ly is a (—1)-curve on M. Then it follows that L is not a
tangent line to I" at P!. Let L; be the tangent line to I" at P}.

(2-1) The case of r, = 1. In this case, it follows that r; > 3 and Pl1 is a flex
point of I'. Then L; is a (—2)-curve on M. Incase of 3 <r <5, by Lemma
2.7 and Lemma 2.8, we obtain that E/,..., El"'f1 and L, (resp. E|', E} and ZB)
exhaust all of (—2)-curves (resp. (—1)-curves) on M. Thus we have Ny = 3.
In case of r; > 6, there exists a unique irreducible cubic D passing through
seven points P},...,P{, P} such that P} is a double point. We denote by D
the proper transform of D on M. If r; =6, then we have Ny # 3 since Disa
(—=1)-curve on M. If r; =7, D must pass through the point P and hence Dis
a (—2)-curve on M. From Lemma 2.6, we observe that the (—2)-curves on M
are eight curves Ell7 . ,E]6, E , D. Furthermore, by Lemma 2.7 and Lemma
2.8, it follows that there exist no (—1)-curves on M except for E], E!, Lo, that
is, Ny = 3. Hence, the types of singularities of X are determined as follows:
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(ri,r2) = (3,1) = Sing(X) = 4| + 4>,
(ri,r2) = (4,1) = Sing(X) = Aa,
(r1,r2) = (5,1) = Sing(X) = Ds,
(r1,2) = (7,1) = Sing(X) = 4, + E7.

For example, the configurations of {P;, P, Ly, L;,D} on P? are given
by

P =(1:0:0),
P,=(0:1:0),
L():{ZQZO},
L12{21=0},

D= {zg — 2521 + zoz1zo = 0}, or {zg’ — 2321 — 2123 + 2202123 = 0}.

Next, we assume that r, > 2. Then L, is not the tangent line to I". Let
Ly and L, be the tangent lines to I" at P] and P}, respectively. We put L
and L, the proper transforms on M of L; and L,, respectively. We may
assume that r; > ry.

(2-2) The case of 1, =2. In this case, Ny # 3 since Ly is a (—1)-curve on
M.

In case of r, > 3, it follows that both P] and P} must be flexes on I" and
r1>3. Then L; and L, are (—2)-curves on M. By Lemma 2.6, we obtain
that E},...,E" ' E), ... E}, Ly and L, exhaust all of (—2)-curves on M.

(2-3) The case of r, =3. Incase of 3 <r <4, from Lemma 2.7 and Lemma
2.8, we observe that there exist no (—1)-curves on M except for E|', E3, Lo,
that is, Ny =3. If ry =5, then there exists a unique irreducible cubic D
passing through seven points P},...,P;, Pi, P3 such that P} is a double
point. We put D the proper transform of D on M. Then Ny # 3 since D is
a (—1)-curve on M. Hence, the types of singularities of X are determined as
follows:

(r1,r) = (3,3) = Sing(X) = 345,
(r1,r2) = (4,3) = Sing(X) = 4> + 4s.

(2-4) The case of r, =4. In this case, by Lemma 2.7 and Lemma 2.8, we
have that there exist no (—1)-curves on M except for Ef‘, E;‘, Ly, that is,
Ny =3. Hence, the types of singularities of X are determined as follows:

(V],}’z) = (4,4) = SlIlg(X) = Ag.
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Case 3. The case of |Z)| =3

Now, we may assume that X, consists of (distinct) three points P;(= P}),
Py(= P)) and P;(= Pj}) on P? and their infinitely near points {P7,...,P]'},
{P3,...,Py} and {P3,... , P}, respectively, where r = r| +r, +r3. Let El:/ be
the exceptional curve of the first kind associated with the blowing-up with
center P/, where P/"' e E/ (1<i<3,1<j<r—1). We denote the proper
transform of E/ on M by the same notation E/. Then E/’s (1 <i<3,
1<j<r—1) are (—2)-curves on M and {E|',E}* Ej’} are (—1)-curves on
M.

Case 3.1. The case where there exists a line passing through three points
Py, Py, P

In this case, let L be the line passing through three pomts Py, P, P; and
put Lo the proper transform of Ly on M, which implies that Lo is a (—2)-curve
on M. We may assume that | >r, >r;. Let L;, L, and L3 be tangent lines
to I' at Py, P, and P, respectively. We denote by I: , sz and 173 the proper
transforms on M of L;, L, and Lj, respectively. Then it turns out r; =1 or
r; = 3 for each i. Moreover, P; is a flex point of I" if r; > 3, which implies
that L; is a (—2)-curve on M.

(1) The case of ry =1. In this case, we have Ny =3 and the types of
singularities of X are determined as follows:

(}’1,}’27}’3) = (1, 1, 1) = Sing(X) = Al.

(2) The case of r; >3, r, =r; =1. In this case, E is a (—2)-curve on M.
In case of 3 <r; <5, by Lemma 2.7 and Lemma 2.8, we observe that all of
(—2)-curves (resp. (—1)-curves) on M are E!,... E'""', Lo, Ly (resp. EI', EJ,
E3) If r; = 6, then there exists a unique irreducible cubic C passing through
seven points P/, ... P16, P} such that P} is a double point. We put C the
proper transform of C on M. Then Ny # 3 since C is a (=1)-curve on M.
Hence the types of singularities of X are determined as follows:

(V17}"2,l’3) = (3, 1, 1) = Slng(X) = A1 +A3,
(rl,}"z,l’3) = (4, 1, 1) = Slng(X) = A5,
(rl,rz,r3) = (5, 1, 1) = Slng(X) = DG.

(3) The case of r; >3, =3, r;=1. In this case, fl and fz are (—2)-
curves on M. From Lemma 2.6, it follows that E|,..., E'""', E}, E3, Lo, Ly
and L, exhaust all of (—2)-curves on M. Moreover, by Lemma 2.7 and
Lemma 2.8, it follows that there exist no (—1)-curves on M except for E|', E3,
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E31, that is, Ny = 3. Hence, the types of singularities on X are determined as
follows:

(7'17}’2,7'3) = (3,3, 1) = Sll’lg(X) = A + As,
(r1,72,73) = (4,3, 1) = Slng(X) = Ag.

Case 3.2. The case where there exist no lines passing through three points
pr 1y pr 29 P 3

Now, let L;, L, and Lj; be lines passing through two points {P;, P,},
{P,, P53} and {P;, P3}, respectively. We put E , Z; and Z; the proper trans-
forms on M of L;, L, and Ls, respectively. Then, for each i, it follows that
r; =2 and L; is the tangent line to /". Thus each l: is a (—2)-curve on M.

We may assume that L;, L, and L3 are tangent to I" at Py, P, and Ps,
respectively. So we consider four cases (ry,r,r3) =(2,2,2),(3,2,2),(3,3,2),
(4,2,2).

In cases of (r,r,r3)=1(2,2,2),(3,2,2),(3,3,2), by Lemma 2.7 and
Lemma 2.8, we observe that there exist no (—1)-curves on M except for E|',
E}, E. In case of (4,2,2), there exists uniquely a smooth conic C passing
through five points P},..., P}, P). We denote by C the proper transform of
Con M. Thus Ny # 3 since C is a (—1)-curve on M. Therefore, the types
of singularities of X are determined as follows:

(r1,72,13) = (2,2,2) = Sing(X) = 345,
(717}’2,}’3) = (3,2,2) = Sll’lg(X) = A2 —"-‘,457
(r1,72,13) = (3,3,2) = Sing(X) = 4s.

Finally, if two normal del Pezzo surfaces X and X’ with at most three
quasi-lines have the same degree and type of singularities, we can see that their
minimal resolutions M and M’ have the same configuration of (—1)-curves and
(—2)-curves.

Thus the assertions concerning the types of singularities on X and the
configurations of #U4 in Theorem 1.3 are proved.

4. The structure of the complement of quasi-lines

Let X be a normal del Pezzo surface with Sing(X) # ¢J and Ny > 1. We
put / := U]/g ¢;, where each /; is a quasi-line on X. We assume that X —/ is
biholomorphic to a two-dimensional affine variety ¥ = C2, C x C* or C* x C”.
Let ¢ : M — X be the minimal resolution of X and 4 = U::1 A=} (Sing(fY))
the exceptional set, where each 4; is an irreducible component. We set £ :=
U/Z’j {}, where each f, is the proper transform of 4. Now, we can see that
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each singular point x; of X lies on /, which implies M — (/U 4) Lx—/t=~
V. Moreover, we observe that the curves on M with negative self-intersection
numbers consist of the components of /UA. In particular, if Ny <3, by
successive applications of birational transformations of M, which are biregular
on M — (/U A4), the pair (M,/UA) except of the type A, + E7 can be trans-
formed into that of one of minimal normal compactifications of V' in Morrow
[5] and Suzuki [6]. This completes the proof of our Theorem 1.3.

Let us consider the case ¥ =C?. We put C:=/U4. Then the pair
(M, C) is a compactification of C2. Then we have the following:

LEMMA 4.1. by (X) = by(£) = Ny.

Proor. First we shall prove that H?>(M;Z) ~ H>(C;Z). Let us consider
the following exact sequence of cohomology groups over Z for pair (M, C)

= H(M,C;Z) - H(M;Z) - H(C;Z) - HT'(M,C;Z) — - - -.
By Poincaré duality,
Z (i=0)
0 (I<i<d4)
Thus we have H*(M;Z) ~ H?>(C;Z). Therefore, we have by(M) = by(C).

Next we shall show that by(C) = by (/U A) = by(£) + by(A). Let us con-
sider the following Mayer-Vietoris exact sequence

— Hi({NA,Z) — Hi({; 1) @ Hi(A;Z) — Hi(/UAZ) — Hi ((ENAZ) — - - -

H(M,C;Z) ~ H(M — C;Z) ~ H(C* Z) ~ {

Since /N 4 consists of a finite set of points, we have H;(/ N 4;Z) = 0 for i > 0.

Thus we observe by(C) = by(£) + b2(4). On the other hand, from Proposition

2.5, by(M) = by(X) + by(4). Hence it follows by(X) = by(/) = Ny. O

Next we prove Ny < 3. For all x; € Sing(X), there exists a quasi-line ¢
on X such that x; €. The negative curves on M, that is, (—1)-curves and
(=2)-curves on M are components of AUZ. Assume that M — (4U/) =
X —/=C> Let n: M — P? be the blowing-down of (—1)-curves. Then
n(4U/) is a line L on P2, Tt follows that 7 : M — P? is a blowing-up with
center at most three points on L. If Ny >4, it implies that there exists a
curve C # L on P? such that its proper transform of M is a component of /,
which is a contradiction. Therefore we have Ny < 3.

This proves our Theorem 1.4. O
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