The power of the normal bundle associated to an immersion of RP^n , its complexification and extendibility

Dedicated to Professor Takao Matumoto on his 60th birthday

Yutaka HEMMI, Teiichi KOBAYASHI and Min LWIN OO (Received April 5, 2006) (Revised June 30, 2006)

ABSTRACT. The purpose of this paper is to establish the formulas on the power of the normal bundle associated to an immersion of the real projective space RP^n in the Euclidean space R^{n+k} , and apply them to the problem of extendibility and stable extendibility. Furthermore, we give an example of a 2-dimensional *R*-vector bundle over RP^2 that is stably extendible to RP^3 but is not extendible to RP^3 .

1. Introduction

Let *F* stand for either the real number field *R* or the complex number field *C*, and let *X* be a space and *A* its subspace. A *t*-dimensional *F*-vector bundle ζ over *A* is said to be extendible (respectively stably extendible) to *X*, if and only if there is a *t*-dimensional *F*-vector bundle over *X* whose restriction to *A* is equivalent (respectively stably equivalent) to ζ , that is, if and only if ζ is equivalent (respectively stably equivalent) to the induced bundle $i^*\alpha$ of a *t*-dimensional *F*-vector bundle α over *X* under the inclusion map $i: A \to X$ (cf. [11, p. 20], [12, p. 191 and p. 209] and [3, p. 273–p. 274]). For simplicity, we use the same letter for a vector bundle and its equivalence class.

We study the question:

Determine the dimension *n* for which an *F*-vector bundle over RP^n is extendible (or stably extendible) to RP^m for every $m \ge n$.

The answers are obtained for the tangent bundle $\tau = \tau(RP^n)$ of the real projective *n*-space RP^n in [8, Theorem 4.2], its complexification $c\tau$ in [7, Theorem 1], the square $\tau^2 = \tau(RP^n) \otimes \tau(RP^n)$ and its complexification $c\tau^2$ in [5, Theorems 4 and 5], and the power $\tau^r = \tau(RP^n) \otimes \cdots \otimes \tau(RP^n)$ (*r*-fold) and its complexification $c\tau^r$ in [10, Theorems A and B], where \otimes denotes the tensor product and r > 0.

²⁰⁰⁰ Mathematics Subject Classification. Primary 57R42, secondary 55R50.

Key words and phrases. Vector bundle, extendible, stably extendible, real projective space, power of normal bundle, tensor product, KO-theory, K-theory.

The purpose of this paper is to study the question for the power $v^r = v \otimes \cdots \otimes v$ (*r*-fold) of the normal bundle *v* of an immersion of RP^n in R^{n+k} and its complexification cv^r , where r > 0 and k > 0. The partial answer to the question above are obtained in [9, Theorems B and D] and [6, Theorems 2 and 4].

The following results on v and v^2 were obtained.

THEOREM 1.1 (cf. [9, Theorem B]). Let v be the normal bundle associated to an immersion of RP^n in R^{n+k} , and let $n+1 \le k \le n+12$. Then the following three conditions are equivalent:

- (i) v is extendible to RP^m for every $m \ge n$.
- (ii) v is stably extendible to RP^m for every $m \ge n$.

(iii) $1 \le n \le 8$.

THEOREM 1.2 (cf. [6, Theorem 2]). Let v^2 be the square of the normal bundle v associated to an immersion of RP^n in R^{2n+1} . Then the following three conditions are equivalent:

- (i) v^2 is extendible to RP^m for every $m \ge n$.
- (ii) v^2 is stably extendible to RP^m for every $m \ge n$.

(iii) $1 \le n \le 17$ or n = 20, 21.

The first purpose of this paper is to obtain the answer for the *r*-fold power v^r . Denote by $\phi(n)$ the number of integers *s* such that $0 < s \le n$ and $s \equiv 0, 1, 2$ or 4 mod 8. Then we have

THEOREM A. Let k, n and r be positive integers with $n < k^r$, and let $v^r = v \otimes \cdots \otimes v$ be the r-fold power of the normal bundle v associated to an immersion of \mathbb{RP}^n in \mathbb{R}^{n+k} . Then the following three conditions are equivalent: (i) v^r is extendible to \mathbb{RP}^m for every $m \ge n$.

(ii) v^r is stably extendible to RP^m for every $m \ge n$.

(iii) There is an integer a satisfying

$$(2n+k+2)^r - k^r \le a2^{\phi(n)+1} \le (2n+k+2)^r + k^r.$$

If r = 1 and $n + 1 \le k \le n + 12$, condition (iii) is equivalent to the condition: $1 \le n \le 8$, and if r = 2 and k = n + 1, it is equivalent to the condition: $1 \le n \le 17$ or n = 20, 21. (Note that $2^{\phi(n)} > 2n + 13$ for $n \ge 9$ and that there does not exist any integer *a* such that $4(n + 1)^2 \le a2^{\phi(n)} \le 5(n + 1)^2$ for n = 18, 19 and $n \ge 22$.) Hence Theorem A is a generalization of Theorems 1.1 and 1.2.

The following results on cv and cv^2 were obtained.

THEOREM 1.3 (cf. [9, Theorem D]). Let cv be the complexification of the normal bundle v associated to an immersion of RP^n in R^{n+k} , and let $n+1 \le k \le n+8$. Then the following three conditions are equivalent:

- (i) cv is extendible to RP^m for every $m \ge n$.
- (ii) cv is stably extendible to RP^m for every $m \ge n$.
- (iii) $1 \le n \le 9$.

THEOREM 1.4 (cf. [6, Theorem 4]). Let cv^2 be the complexification of the square v^2 of the normal bundle v associated to an immersion of RP^n in R^{2n+1} . Then the following three conditions are equivalent:

- (i) cv^2 is extendible to RP^m for every $m \ge n$.
- (ii) cv^2 is stably extendible to RP^m for every $m \ge n$.
- (iii) $1 \le n \le 18$ or n = 20, 21.

The second purpose of this paper is to obtain the answer for the complexification cv^r of the *r*-fold power v^r . For a real number *x*, let [x] denote the largest integer *n* with $n \le x$ and let $\langle x \rangle$ denote the smallest integer *n* with $x \le n$. Then we have

THEOREM B. Let k, n and r be positive integers with $\langle n/2 \rangle \leq k^r$. Then, for the complexification $cv^r = c(v \otimes \cdots \otimes v)$ of the r-fold power v^r of the normal bundle v associated to an immersion of RP^n in R^{n+k} , the following three conditions are equivalent:

- (i) cv^r is extendible to RP^m for every $m \ge n$.
- (ii) cv^r is stably extendible to RP^m for every $m \ge n$.
- (iii) There is an integer b satisfying

$$(2n+k+2)^r - k^r \le b2^{\lfloor n/2 \rfloor + 1} \le (2n+k+2)^r + k^r.$$

If r = 1 and $n + 1 \le k \le n + 8$, condition (iii) is equivalent to the condition: $1 \le n \le 9$, and if r = 2 and k = n + 1, it is equivalent to the condition: $1 \le n \le 18$ or n = 20, 21. (Note that $2^{[n/2]} > 2n + 9$ for $n \ge 10$ and that there does not exist any integer b such that $4(n + 1)^2 \le b2^{[n/2]} \le 5(n + 1)^2$ for n = 19 and $n \ge 22$.) Hence Theorem B is a generalization of Theorems 1.3 and 1.4.

In the proof of Theorem 2.2 of [9], it is shown that the tangent bundle $\tau(S^n)$ of the standard *n*-sphere S^n is stably extendible to S^{n+1} but is not extendible to S^{n+1} if $n \neq 1, 3, 7$. In this paper we have

THEOREM C. There is a 2-dimensional R-vector bundle over RP^2 that is stably extendible to RP^3 but is not extendible to RP^3 .

This paper is arranged as follows. In Section 2 we establish the formulas on the *r*-fold power $v^r = v \otimes \cdots \otimes v$ of the normal bundle *v* associated to an immersion of the real projective *n*-space RP^n in the Euclidean (n + k)-space R^{n+k} . In Section 3 we apply the results in Section 2 to the problem of extendibility and stable extendibility of the *r*-fold power v^r and give a proof of Theorem A. In Section 4 we establish the formulas on the complexification $cv^r = c(v \otimes \cdots \otimes v)$ of v^r . In Section 5 we study the problem of extendibility and stable extendibility of cv^r and prove Theorem B. In Section 6 we recall some known results and prove Theorem C by using them.

The authors wish to express sincere thanks to the referee for valuable suggestions.

2. The *r*-fold power of the normal bundle associated to an immersion of RP^n in R^{n+k}

Let ξ_n denote the canonical line bundle over RP^n . Then we have

THEOREM 2.1. Let $v^r = v \otimes \cdots \otimes v$ be the r-fold power of the normal bundle v associated to an immersion of RP^n in R^{n+k} , where k > 0. Then the following holds in the Grothendieck group $KO(RP^n)$.

$$v^{r} = -2^{-1} \{ (2n+k+2)^{r} - k^{r} \} \xi_{n} + 2^{-1} \{ (2n+k+2)^{r} + k^{r} \}.$$

PROOF. Let $\tau = \tau(RP^n)$ be the tangent bundle of RP^n . Then $\tau \oplus 1 = (n+1)\xi_n$ and $\tau \oplus \nu = n+k$, where \oplus denotes the Whitney sum. Hence $\nu = n+k+1-(n+1)\xi_n$ in $KO(RP^n)$. So the equality holds for r = 1.

Assume that the formula holds for $r \ge 1$. Then

$$\begin{aligned} v^{r+1} &= v \otimes v^r \\ &= \{ -(n+1)\xi_n + (n+k+1) \} \\ &\times [-2^{-1}\{(2n+k+2)^r - k^r\}\xi_n + 2^{-1}\{(2n+k+2)^r + k^r\}] \\ &= -2^{-1}\{(2n+k+2)^{r+1} - k^{r+1}\}\xi_n + 2^{-1}\{(2n+k+2)^{r+1} + k^{r+1}\} \end{aligned}$$

since $\xi_n \otimes \xi_n = 1$. Hence the equality holds for any positive integer *r* by induction on *r*.

Using Theorem 2.1, we obtain

THEOREM 2.2. For any positive integer r and any integer a, the following holds in $KO(RP^n)$.

$$v^{r} = 2^{-1} \{ a 2^{\phi(n)+1} - (2n+k+2)^{r} + k^{r} \} \xi_{n} + 2^{-1} \{ (2n+k+2)^{r} + k^{r} - a 2^{\phi(n)+1} \}.$$

PROOF. Adding $a2^{\phi(n)}(\xi_n - 1) = 0$ (cf. [1, Theorem 7.4]) to the equality in Theorem 2.1, we have the desired equality.

THEOREM 2.3. Assume that there is an integer a satisfying

$$(2n+k+2)^r - k^r \le a2^{\phi(n)+1} \le (2n+k+2)^r + k^r$$

Then

104

$$v^{r} = 2^{-1} \{ a 2^{\phi(n)+1} - (2n+k+2)^{r} + k^{r} \} \xi_{n} \oplus 2^{-1} \{ (2n+k+2)^{r} + k^{r} - a 2^{\phi(n)+1} \}$$

holds as R-vector bundles if $n < k^r$.

PROOF. Set $X = 2^{-1} \{ a 2^{\phi(n)+1} - (2n+k+2)^r + k^r \}$ and $Y = 2^{-1} \{ (2n+k+2)^r + k^r - a 2^{\phi(n)+1} \}$. Then, by the assumption, $X \ge 0$ and $Y \ge 0$, and, by Theorem 2.2, $v^r = X\xi_n + Y$ in $KO(RP^n)$. If $n(=\dim RP^n) < k^r(=\dim v^r = \dim(X\xi_n \oplus Y))$, we have $v^r = X\xi_n \oplus Y$ as *R*-vector bundles (cf. [2, Theorem 1.5, p. 100]).

3. Stable extendibility of the *r*-fold power of the normal bundle associated to an immersion of RP^n in R^{n+k}

We recall the following result.

THEOREM 3.1 (cf. [8, Theorem 4.1]). Let ζ be a t-dimensional R-vector bundle over \mathbb{RP}^n . Assume that there is a positive integer l such that ζ is stably equivalent to $(t+l)\xi_n$ and $t+l < 2^{\phi(n)}$. Then n < t+l and ζ is not stably extendible to \mathbb{RP}^{t+l} .

We prove

THEOREM 3.2. Let v^r be the r-fold power of the normal bundle v associated to an immersion of \mathbb{RP}^n in \mathbb{R}^{n+k} , where r > 0 and k > 0. Then v^r is stably extendible to \mathbb{RP}^m for every $m \ge n$ if and only if there is an integer a satisfying

$$(2n+k+2)^r - k^r \le a2^{\phi(n)+1} \le (2n+k+2)^r + k^r.$$

PROOF. First, we prove the "if" part. Let X and Y be defined as in the proof of Theorem 2.3. Then $X \ge 0$ and $Y \ge 0$ by the assumption, and $v^r = X\xi_n + Y$ by Theorem 2.2. Since $X\xi_n \oplus Y$ is extendible to RP^m for every $m \ge n$ and since dim $v^r = k^r = \dim(X\xi_n \oplus Y)$, v^r is stably extendible to RP^m for every $m \ge n$ (cf. [7, Lemma 2.1]).

To prove the "only if" part, we prove the contraposition. Assume that every integer a satisfies

$$a2^{\phi(n)+1} < (2n+k+2)^r - k^r$$
 or $(2n+k+2)^r + k^r < a2^{\phi(n)+1}$.

Clearly there is an integer *a* with $a2^{\phi(n)+1} < (2n+k+2)^r - k^r$. Define *A* as the maximum integer such that $A2^{\phi(n)+1} < (2n+k+2)^r - k^r$. If *A* satisfies $A2^{\phi(n)+1} \le (2n+k+2)^r + k^r - 2^{\phi(n)+1}$, we have $(2n+k+2)^r - k^r \le (A+1)2^{\phi(n)+1} \le (2n+k+2)^r + k^r$ and these are inconsistent with our assumption. Hence *A* satisfies

$$A2^{\phi(n)+1} > (2n+k+2)^r + k^r - 2^{\phi(n)+1}.$$

Putting $\zeta = v^r$, $t = k^r$ and $l = 2^{-1} \{A2^{\phi(n)+1} - (2n+k+2)^r - k^r + 2^{\phi(n)+1}\}$ in Theorem 3.1, we see that v^r is not stably extendible to RP^{t+l} , since $t + l < 2^{\phi(n)}$ and l > 0.

Clearly there is an integer *a* with $(2n + k + 2)^r + k^r < a2^{\phi(n)+1}$. Define *B* as the minimum integer such that $(2n + k + 2)^r + k^r < B2^{\phi(n)+1}$. If *B* satisfies $B2^{\phi(n)+1} \ge (2n + k + 2)^r - k^r + 2^{\phi(n)+1}$, we have $(2n + k + 2)^r - k^r \le (B-1)2^{\phi(n)+1} \le (2n + k + 2)^r + k^r$ and these are inconsistent with our assumption. Hence *B* satisfies

$$B2^{\phi(n)+1} < (2n+k+2)^r - k^r + 2^{\phi(n)+1}$$

Putting $\zeta = v^r$, $t = k^r$ and $l = 2^{-1} \{B2^{\phi(n)+1} - (2n+k+2)^r - k^r\}$ in Theorem 3.1, we see that v^r is not stably extendible to RP^{t+l} , since $t+l < 2^{\phi(n)}$ and l > 0.

PROOF OF THEOREM A. According to Theorem 2.2 in [9], for $m \ge n$, v^r is extendible to RP^m if and only if v^r is stably extendible to RP^m , provided $n < k^r$. Hence the result follows from Theorem 3.2.

4. The complexification of the *r*-fold power of the normal bundle associated to an immersion of RP^n in R^{n+k}

Complexifying the equality in Theorem 2.1, we have

THEOREM 4.1. Let $cv^r = c(v \otimes \cdots \otimes v)$ be the complexification of the r-fold power v^r of the normal bundle v associated to an immersion of RP^n in R^{n+k} , where r > 0 and k > 0. Then the following holds in the Grothendieck group $K(RP^n)$.

$$cv^{r} = -2^{-1}\{(2n+k+2)^{r} - k^{r}\}c\xi_{n} + 2^{-1}\{(2n+k+2)^{r} + k^{r}\},\$$

where $c\xi_n$ denotes the complexification of ξ_n .

Using Theorem 4.1, we obtain

THEOREM 4.2. In $K(RP^n)$

 $cv^{r} = 2^{-1} \{ b2^{[n/2]+1} - (2n+k+2)^{r} + k^{r} \} c\xi_{n} + 2^{-1} \{ (2n+k+2)^{r} + k^{r} - b2^{[n/2]+1} \}$ holds for any integer b.

PROOF. Adding $b2^{[n/2]}(c\xi_n - 1) = 0$ (cf. [1, Theorem 7.3]) to the equality in Theorem 4.1, we have the desired equality.

Using Theorem 4.2, we obtain

THEOREM 4.3. Assume that there is an integer b satisfying

106

$$(2n+k+2)^r - k^r \le b2^{[n/2]+1} \le (2n+k+2)^r + k^r.$$

Then

$$cv^{r} = 2^{-1} \{ b2^{[n/2]+1} - (2n+k+2)^{r} + k^{r} \} c\xi_{n} \oplus 2^{-1} \{ (2n+k+2)^{r} + k^{r} - b2^{[n/2]+1} \}$$

holds as C-vector bundles, if $\langle n/2 \rangle \leq k^r$.

PROOF. Set $V = 2^{-1} \{ b2^{[n/2]+1} - (2n+k+2)^r + k^r \}$ and $W = 2^{-1} \{ (2n+k+2)^r + k^r - b2^{[n/2]+1} \}$. Then, by the assumption, $V \ge 0$ and $W \ge 0$, and by Theorem 4.2, $cv^r = Vc\xi_n + W$ in $K(RP^n)$. If $\langle n/2 \rangle (= \langle (\dim RP^n)/2 \rangle) \le k^r (=\dim cv^r = \dim(Vc\xi_n \oplus W))$, we have $cv^r = Vc\xi_n \oplus W$ as *C*-vector bundles (cf. [2, Theorem 1.5, p. 100]).

5. Stable extendibility of the complexification cv^r

We recall the following result.

THEOREM 5.1 (cf. [8, Theorem 2.1]). Let ζ be a t-dimensional C-vector bundle over $\mathbb{R}P^n$. Assume that there is a positive integer l such that ζ is stably equivalent to $(t+l)c\zeta_n$ and $t+l < 2^{[n/2]}$. Then [n/2] < t+l and ζ is not stably extendible to $\mathbb{R}P^{2t+2l}$.

THEOREM 5.2. Let v^r be the r-fold power of the normal bundle v associated to an immersion of \mathbb{RP}^n in \mathbb{R}^{n+k} , where r > 0 and k > 0, and let cv^r be its complexification. Then cv^r is stably extendible to \mathbb{RP}^m for every $m \ge n$ if and only if there is an integer b satisfying

$$(2n+k+2)^r - k^r \le b2^{[n/2]+1} \le (2n+k+2)^r + k^r.$$

PROOF. First, we prove the "if" part. Let V and W be defined as in the proof of Theorem 4.3. Then $V \ge 0$ and $W \ge 0$ by the assumption, and $cv^r = Vc\zeta_n + W$ by Theorem 4.2. Since $Vc\zeta_n \oplus W$ is extendible to RP^m for every $m \ge n$ and since dim $cv^r = k^r = \dim(Vc\zeta_n \oplus W)$, cv^r is stably extendible to RP^m for every $m \ge n$ (cf. [7, Lemma 2.1]).

To prove the "only if" part, we prove the contraposition. Assume that every integer b satisfies

$$b2^{[n/2]+1} < (2n+k+2)^r - k^r$$
 or $(2n+k+2)^r + k^r < b2^{[n/2]+1}$

Clearly there is an integer b with $b2^{[n/2]+1} < (2n+k+2)^r - k^r$. Define C as the maximum integer such that $C2^{[n/2]+1} < (2n+k+2)^r - k^r$. If C satisfies $C2^{[n/2]+1} \le (2n+k+2)^r + k^r - 2^{[n/2]+1}$, we have $(2n+k+2)^r - k^r \le (C+1)2^{[n/2]+1} \le (2n+k+2)^r + k^r$ and these are inconsistent with our assumption. Hence C satisfies

Yutaka HEMMI, Teiichi KOBAYASHI and Min LWIN OO

$$C2^{[n/2]+1} > (2n+k+2)^r + k^r - 2^{[n/2]+1}$$

Putting $\zeta = cv^r$, $t = k^r$ and $l = 2^{-1} \{ C2^{[n/2]+1} - (2n+k+2)^r - k^r + 2^{[n/2]+1} \}$ in Theorem 5.1, we see that cv^r is not stably extendible to RP^{2t+2l} , since $t + l < 2^{[n/2]}$ and l > 0.

Clearly there is an integer b with $(2n + k + 2)^r + k^r < b2^{[n/2]+1}$. Define D as the minimum integer such that $(2n + k + 2)^r + k^r < D2^{[n/2]+1}$. If D satisfies $D2^{[n/2]+1} \ge (2n + k + 2)^r - k^r + 2^{[n/2]+1}$, we have $(2n + k + 2)^r - k^r \le (D-1)2^{[n/2]+1} \le (2n + k + 2)^r + k^r$ and these are inconsistent with our assumption. Hence D satisfies

$$D2^{[n/2]+1} < (2n+k+2)^r - k^r + 2^{[n/2]+1}.$$

Putting $\zeta = cv^r$, $t = k^r$ and $l = 2^{-1} \{D2^{[n/2]+1} - (2n+k+2)^r - k^r\}$ in Theorem 5.1, we see that cv^r is not stably extendible to RP^{2t+2l} , since $t+l < 2^{[n/2]}$ and l > 0.

PROOF OF THEOREM B. According to Theorem 2.3 in [9], for $m \ge n$, cv^r is extendible to RP^m if and only if cv^r is stably extendible to RP^m , provided $\langle n/2 \rangle \le k^r$. Hence the result follows from Theorem 5.2.

6. Proof of Theorem C

We recall some known results.

THEOREM 6.1 (cf. [11, Theorem 1]). Let ζ be a 2-dimensional R-vector bundle over $\mathbb{R}P^n$, where $n \geq 3$. Then ζ is equivalent to a sum of two line bundles, that is, ζ is equivalent to one of the bundles: 2, $2\xi_n$ or $\xi_n \oplus 1$.

THEOREM 6.2 (cf. [4, p. 490 and p. 501]). Let ζ be a non-orientable ndimensional R-vector bundle over \mathbb{RP}^n , where n is even. Then there is an infinite number of equivalent classes of n-dimensional R-vector bundles over \mathbb{RP}^n which are stably equivalent to ζ .

PROOF OF THEOREM C. Consider the bundle $\xi_2 \oplus 1$ over RP^2 . By Theorem 6.2, there are infinitely many 2-dimensional *R*-vector bundles over RP^2 which are not equivalent to each other but are stably equivalent to $\xi_2 \oplus 1$, since $\xi_2 \oplus 1$ is non-orientable. Let α be a 2-dimensional *R*-vector bundle over RP^2 which is stably equivalent to $\xi_2 \oplus 1$ but is not equivalent to $\xi_2 \oplus 1$. Then α is stably extendible to RP^3 , since $\xi_2 \oplus 1$ is extendible to RP^3 . But α is not extendible to RP^3 . In fact, if there is a 2-dimensional *R*-vector bundle β over RP^3 such that the restriction of β to RP^2 is equivalent to α , then β is equivalent to one of the bundles: 2, $2\xi_3$ or $\xi_3 \oplus 1$, by Theorem 6.1. So α is equivalent to one of the bundles: 2, $2\xi_2$ or $\xi_2 \oplus 1$. This is impossible. \Box

108

References

- [1] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
- [2] D. Husemoller, Fibre bundles, second ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York-Heidelberg-Berlin, 1994.
- [3] M. Imaoka and K. Kuwana, Stably extendible vector bundles over the quaternionic projective spaces, Hiroshima Math. J. 29 (1999), 273–279.
- I. James and E. Thomas, An approach to the enumeration problem for non-stable vector bundles, J. Math. Mech. 14 (1965), 485–506.
- [5] T. Kobayashi and K. Komatsu, Extendibility and stable extendibility of vector bundles over real projective spaces, Hiroshima Math. J. 31 (2001), 99–106.
- [6] —, Extendibility and stable extendibility of the square of the normal bundle associated to an immersion of the real projective space, Hiroshima Math. J. 32 (2002), 371–378.
- [7] T. Kobayashi and T. Yoshida, Extendible and stably extendible vector bundles over real projective spaces, J. Math. Soc. Japan 55 (2003), 1053–1059.
- [8] T. Kobayashi, H. Maki, and T. Yoshida, Stably extendible vector bundles over the real projective spaces and the lens spaces, Hiroshima Math. J. 29 (1999), 631–638.
- [9] —, Extendibility and stable extendibility of normal bundles associated to immersions of real projective spaces, Osaka J. Math. **39** (2002), 315–324.
- [10] T. Kobayashi, H. Yamasaki, and T. Yoshida, The power of the tangent bundle of the real projective space, its complexification and extendibility, Proc. Amer. Math. Soc. 134 (2006), 303–310.
- [11] R. L. E. Schwarzenberger, Extendible vector bundles over real projective space, Quart. J. Math. Oxford (2) 17 (1966), 19–21.
- [12] R. M. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg-Berlin, 1975.

Yutaka Hemmi Department of Mathematics Faculty of Science Kochi University Kochi 780-8520, Japan E-mail: hemmi@math.kochi-u.ac.jp

Teiichi Kobayashi Asakura-ki 292-21 Kochi 780-8066, Japan E-mail: kteiichi@lime.ocn.ne.jp

Min Lwin Oo Department of Mathematics Graduate School of Science Kochi University Kochi 780-8520, Japan E-mail: minl@cc.kochi-u.ac.jp