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Abstract. In this paper, we consider various categories of hyperbolic Riemann

surfaces and show, in various cases, that the conformal or quasiconformal structure of

the Riemann surface may be reconstructed, up to possible confusion between holo-

morphic and anti-holomorphic structures, in a natural way from such a category. The

theory exposed in the present paper is motivated partly by a classical result concerning

the categorical representation of sober topological spaces, partly by previous work of the

author concerning the categorical representation of arithmetic log schemes, and partly

by a certain analogy with p-adic anabelian geometry—an analogy which the theory of

the present paper serves to render more explicit.
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1. Introduction

In this paper, we continue our study [cf., [Mzk2], [Mzk10]] of the topic

of representing various objects that appear in conventional arithmetic geometry

by means of categories. As discussed in [Mzk2], [Mzk10], this point of view

is partially motivated by the anabelian philosophy of Grothendieck [cf., e.g.,

[Mzk3], [Mzk4], [Mzk5]], and, in particular, by the more recent work of the

author on absolute anabelian geometry [cf. [Mzk6], [Mzk7], [Mzk8], [Mzk9],

[Mzk11], [Mzk12]].

One way to think about anabelian geometry is that it concerns the issue

of representing schemes by means of categories [i.e., Galois categories] that
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capture certain aspects of the [étale] topology of the scheme [i.e., its funda-

mental group]. From this point of view, another important, albeit elementary,

example of the issue of representing a ‘‘space’’ by means of a ‘‘category of

topological origin’’ is the well-known example of the category of open subsets of

a sober topological space [cf., e.g., [Mzk2], Theorem 1.4; [Mzk10], Proposition

4.1]. In some sense, this example is the example that motivated the con-

struction of the categories appearing in the present paper.

The main results of this paper may be summarized as follows:

(1) The holomorphic structure of a hyperbolic Riemann surface of finite type

may be reconstructed, up to possible confusion with the corresponding

anti-holomorphic structure, from a certain category of localizations of the

Riemann surface that includes the upper half-plane uniformization of the

Riemann surface, together with its natural PSL2ðRÞ-action [cf. Theorem

1.12].

(2) Given a hyperbolic Riemann surface of finite type equipped with a non-

zero logarithmic square di¤erential, one may define certain categories of

parallelograms, rectangles, or squares associated to this data. Then [iso-

morphism classes of ] equivalences between corresponding categories of

parallelograms (respectively, rectangles; squares) are in natural bijective

correspondence with [quasiconformal] Teichmüller mappings (respectively,

conformal mappings) between such Riemann surfaces equipped with dif-

ferentials, again up to possible confusion between holomorphic and anti-

holomorphic structures [cf. Theorem 2.3].

Here, we note that the categories of (2) are especially close to the ‘‘categories

of open subsets of a sober topological space’’ referred to above—i.e., roughly

speaking, instead of considering all the open subsets of the Riemann surface,

one restricts oneself to those which are ‘‘parallelograms’’ (or, alternatively,

‘‘rectangles’’, or ‘‘squares’’), in a sense determined by the natural parameters

[i.e., of Teichmüller theory—cf., e.g., [Lehto], Chapter IV, § 6.1] associated to

the given square di¤erential.

On the other hand, from another point of view, the main motivation for

the results obtained in this paper came from the analogy with p-adic anabelian

geometry. This analogy has been pointed out previously by the author [cf.,

e.g., [Mzk1], Introduction, § 0.10; [Mzk5], § 3]. In some sense, however, the

theory of the present paper allows one to make this analogy more explicit.

Indeed, at the level of ‘‘objects under consideration’’ the theory of the present

paper suggests a certain ‘‘dictionary’’, as summarized in Table 1 below.

The first two non-italicized rows of Table 1 are motivated by the fact that

the datum of a nonzero logarithmic square di¤erential may be thought of, in

the context of Teichmüller theory, as the datum of a geodesic in Teichmüller

space. In particular, if one thinks of oneself as only knowing the di¤erential

406 Shinichi Mochizuki



up to a nonzero complex multiple [cf. Theorem 2.3], then one is, in essence,

working with a ‘‘complex Teichmüller geodesic’’. Moreover, just as such a

‘‘complex geodesic’’ is of ‘‘holomorphic dimension’’ one and ‘‘real/topological

dimension’’ two, the spectrum of the ring of integers of a p-adic local field K

is of algebraic dimension one, while the absolute Galois group GK of the p-

adic local field K is of cohomological dimension two. This observation also

motivates the point of view of the third non-italicized row of Table 1, which is

also discussed in [Mzk1], Introduction, § 0.10. From the point of view of this

third non-italicized row of Table 1, the conformal structure may be thought

of as the metric, or ‘‘angular’’, structure of the S1 acting by rotations locally on

the surface. On the other hand, from the point of view of p-adic anabelian

geometry, one may completely recover the algebraic structure of the p-adic

curve in question [cf. the main result of [Mzk4]], so long as one restricts oneself

to working with geometric isomorphisms [i.e., isomorphisms arising from

isomorphisms of fields] of the absolute Galois groups of the p-adic local fields

in question. Moreover, as one sees from the theory of [Mzk3], this geo-

metricity condition corresponds to the preservation of the metric structure of the

copy of the units O�
K inside the abelianization G ab

K of GK [more precisely, the

preservation of such metric structures for all open subgroups of GK ].

This ‘‘dictionary of objects under consideration’’ then suggests a ‘‘dic-

tionary of results’’, as summarized in Table 2 below. The analogy between

the ‘‘p-adic Teichmüller theory’’ of [Mzk1] [and, in particular, the canonical

representation constructed in this theory] and the upper half-plane uniformiza-

tion of a hyperbolic Riemann surface of finite type is one of the cornerstones of

the theory of [Mzk1]; in particular, a lengthy discussion of this analogy may be

found in the Introduction to [Mzk1]. Also, relative to the issue of ‘‘recon-

structing the original hyperbolic curve or Riemann surface’’, it is interesting to

complex case p-adic case

the given Riemann surface the logarithmic special fiber

a complex Teichmüller geodesic originating

from the given Riemann surface

a lifting of the special fiber to a hyperbolic

curve over a p-adic local field K

action of C� on the surface by rotations

ðS1 JC�Þ and flows ðR� JC�Þ
action of the absolute Galois group GK on

[the Galois category associated to] the

profinite geometric fundamental group

squares, rectangles, as opposed to

parallelograms—i.e., preservation of the

metric structure of S1

preservation of the metric structure of the

copy of O�
K in G ab

K

Table 1. Dictionary of objects under consideration
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note that just as Theorem 1.12 does not require the datum of a logarithmic

square di¤erential, the absoluteness of canonical liftings [cf. [Mzk7], Theorem

3.6] only involves the datum of the logarithmic special fiber—i.e., there is no

‘‘choice’’ of a p-adic lifting involved [ just as there is no ‘‘choice’’ of a complex

Teichmüller geodesic in Theorem 1.12]. By contrast, just as the results on the

left-hand side of the second and third non-italicized rows of Table 2 do involve

the choice of such a complex Teichmüller geodesic, the hyperbolic curves in-

volved on the right-hand side of the second and third non-italicized rows of

Table 2 require the choice of a p-adic lifting of the logarithmic special fiber.

As suggested by the dictionary of Table 1, the ‘‘preservation of the metric

structure of the units’’ [i.e., S1 JC� or O�
K JG ab

K ] corresponds to complete

reconstruction of the conformal structure of the Riemann surface or the al-

gebraic structure of the p-adic curve in the second and third non-italicized rows

of Table 2. On the other hand, reconstruction of the quasiconformal structure

of the Riemann surface [essentially a topological invariant] corresponds, in the

final row of Table 2, to the reconstruction of the dual semi-graph [also es-

sentially a topological invariant] of the logarithmic special fiber, in the absence

of the ‘‘preservation of the metric structure of the units’’. Also, it is in-

teresting to note that the theory of the first non-italicized row of Table 2 is

not functorial with respect to ramified coverings of the Riemann surface/non-

admissible coverings of the p-adic hyperbolic curve, whereas the theory of the

complex case p-adic case

categorical representation via the upper

half-plane uniformization

[cf. Theorem 1.12]

the canonical representation of p-adic

Teichmüller theory, the absoluteness of

canonical liftings [cf. [Mzk1]; [Mzk7],

Theorem 3.6]

conformal structure via categories of

rectangles

[cf. Theorem 2.3, (iii)]

relative p-adic profinite version of the

Grothendieck Conjecture

[cf. [Mzk4], Theorem A]

conformal structure via categories of

squares

[cf. Theorem 2.3, (iii)]

relative p-adic pro-p version of the

Grothendieck Conjecture

[cf. [Mzk4], Theorem A]

quasiconformal structure via categories of

parallelograms

[cf. Theorem 2.3, (ii)]

reconstruction of dual semi-graph of

logarithmic special fiber via absolute p-adic

pro-prime-to-p anabelian geometry or its

tempered analogue

[cf. [Mzk6], Lemma 2.3; [Mzk11],

Corollary 3.11]

Table 2. Dictionary of results

408 Shinichi Mochizuki



latter three non-italicized rows of Table 2 is functorial with respect to such

coverings.

Here, we remark that although it is quite possible that the relative p-adic

profinite [or pro-p] versions of the Grothendieck Conjecture proven in [Mzk4]

admit absolute generalizations [cf., e.g., [Mzk12], Corollary 2.12], if [as on the

right-hand side of the fourth non-italicized row of Table 2] one restricts oneself

to the pro-prime-to-p portion of the geometric fundamental group, then there

is no hope [cf. the unbridgeable gap between conformal and quasiconformal

structures!] of recovering the generic fiber of the original p-adic curve from

the outer Galois action on the pro-prime-to-p geometric fundamental group,

since this outer Galois action is completely determined by the logarithmic special

fiber.
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Section 0. Notations and conventions

Numbers:

The notation Z (respectively, R; C) will be used to denote the set of

rational integers (respectively, real numbers; complex numbers).

Topological Groups:

A homomorphism of topological groups G ! H will be called dense if the

image of G is dense in H.

A topological group G will be called tempered [cf. [Mzk11], Definition 3.1,

(i)] if G is isomorphic, as a topological group, to an inverse limit of an inverse

system of surjections of countable discrete topological groups.

Categories:

Let C be a category. We shall denote by

ObðCÞ

the collection of objects of C. If A A ObðCÞ is an object of C, then we shall

denote by

CA
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the category whose objects are morphisms B ! A of C and whose morphisms

(from an object B1 ! A to an object B2 ! A) are A-morphisms B1 ! B2 in C.

Thus, we have a natural functor

ð jAÞ! : CA ! C

(given by forgetting the structure morphism to A).

We shall call an object A A ObðCÞ terminal if for every object B A ObðCÞ,
there exists a unique arrow B ! A in C.

We shall refer to a natural transformation between functors all of whose

component morphisms are isomorphisms as an isomorphism between the functors

in question. A functor f : C1 ! C2 between categories C1, C2 will be called

rigid if f has no nontrivial automorphisms. A category C will be called slim if

the natural functor CA ! C is rigid, for every A A ObðCÞ.
A diagram of functors between categories will be called 1-commutative

if the various composite functors in question are isomorphic. When such a

diagram ‘‘commutes in the literal sense’’ we shall say that it 0-commutes. Note

that when a diagram in which the various composite functors are all rigid

‘‘1-commutes’’, it follows from the rigidity hypothesis that any isomorphism

between the composite functors in question is necessarily unique. Thus, to state

that such a diagram 1-commutes does not result in any ‘‘loss of information’’

by comparison to the datum of a specific isomorphism between the various

composites in question.

We shall say that a nonempty [i.e., non-initial] object A A ObðCÞ is con-

nected if it is not isomorphic to the coproduct of two nonempty objects of

C. We shall say that an object A A ObðCÞ is mobile (respectively, infinitely

mobile) if there exists an object B A ObðCÞ such that the set HomCðA;BÞ has

cardinalityb 2 [i.e., the diagonal from this set to the product of this set with

itself is not bijective] (respectively, infinite cardinality). We shall say that an

object A A ObðCÞ is quasi-connected if it is either immobile [i.e., not mobile]

or connected. Thus, connected objects are always quasi-connected. If every

object of a category C is quasi-connected, then we shall say that C is a category

of quasi-connected objects. We shall say that a category C is totally (respec-

tively, almost totally) epimorphic if every morphism in C whose domain is

arbitrary (respectively, nonempty) and whose codomain is quasi-connected is an

epimorphism.

We shall say that C is of finitely (respectively, countably) connected type if

it is closed under formation of finite (respectively, countable) coproducts; every

object of C is a coproduct of a finite (respectively, countable) collection of

connected objects; and, moreover, all finite (respectively, countable) coproducts‘
Ai in the category satisfy the condition that the natural map
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a
HomCðB;AiÞ ! HomC B;

a
Ai

� �
is bijective, for all connected B A ObðCÞ. If C is of finitely or countably

connected type, then every nonempty object of C is mobile; in particular, a

nonempty object of C is connected if and only if it is quasi-connected.

If a mobile object A A ObðCÞ satisfies the condition that every morphism in

C whose domain is nonempty and whose codomain is A is an epimorphism,

then A is connected. [Indeed, C1

‘
C2 !

@
A, where C1, C2 are nonempty,

implies that the composite map

HomCðA;BÞ ,! HomCðA;BÞ �HomCðA;BÞ ,! HomCðC1;BÞ �HomCðC2;BÞ

¼ HomC C1

a
C2;B

� �
!@ HomCðA;BÞ

is bijective, for all B A ObðCÞ.]
If C is a category of finitely or countably connected type, then we shall

write

C0 JC

for the full subcategory of connected objects. [Note, however, that in general,

objects of C0 are not necessarily connected—or even quasi-connected—as ob-

jects of C0!] On the other hand, if, in addition, C is almost totally epimorphic,

then C0 is totally epimorphic, and, moreover, an object of C0 is connected [as

an object of C0!] if and only if [cf. the argument of the preceding paragraph!]

it is mobile [as an object of C0]; in particular, [assuming still that C is almost

totally epimorphic!] every object of C0 is quasi-connected [as an object of C0].

If C is a category, then we shall write

C? ðrespectively;C>Þ

for the category formed from C by taking arbitrary ‘‘formal’’ [possibly empty]

finite (respectively, countable) coproducts of objects in C. That is to say, we

define the ‘‘Hom’’ of C? (respectively, C>) by the formula

Hom
a
i

Ai;
a
j

Bj

 !
¼def
Y
i

a
j

HomCðAi;BjÞ

[where the Ai, Bj are objects of C]. Thus, C? (respectively, C>) is a category

of finitely connected type (respectively, category of countably connected type).

Note that objects of C define connected objects of C? or C>. Moreover, there

are natural [up to isomorphism] equivalences of categories

ðC?Þ0 !@ C; ðC>Þ0 !@ C; ðD0Þ? !@ D; ðE0Þ> !@ E
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if D (respectively, E) is a category of finitely connected type (respectively,

category of countably connected type). If C is a totally epimorphic category

of quasi-connected objects, then C? (respectively, C>) is an almost totally

epimorphic category of finitely (respectively, countably) connected type.

In particular, the operations ‘‘0’’, ‘‘?’’ (respectively, ‘‘>’’) define one-to-one

correspondences [up to equivalence] between the totally epimorphic categories of

quasi-connected objects and the almost totally epimorphic categories of finitely

(respectively, countably) connected type.

Section 1. Reconstruction via the upper half-plane uniformization

In this Section, we show that the conformal structure of a hyperbolic

Riemann surface may be functorially reconstructed—by applying the well-

known geometry of the upper half-plane uniformization of the Riemann

surface—from a certain category of localizations naturally associated to the

Riemann surface. These categories of localizations are intended to be rem-

iniscent of—i.e., a sort of archimedean analogue of—the categories of local-

izations of [Mzk11], § 4.

In the following discussion, we shall denote the [Riemann surface con-

stituted by the] upper half-plane by the notation H. Next, we introduce some

terminology:

Definition 1.1.

(i) We shall refer to a smooth Hausdor¤ complex analytic stack which

admits an open dense subset isomorphic to a complex manifold and [for sim-

plicity] whose universal covering is a complex manifold as a complex orbifold.

(ii) We shall refer to a one-dimensional complex orbifold with at most

countably many connected components as a Riemann orbisurface. We shall

refer to a Riemann orbisurface which is a complex manifold [i.e., whose

‘‘orbifold structure’’ is trivial] as a Riemann surface.

(iii) We shall refer to a Riemann orbisurface as being of finite type

(respectively, of almost finite type) if it may be obtained as the complement

of a finite subset (respectively, [possibly infinite] discrete subset) in a compact

Riemann orbisurface (respectively, a Riemann orbisurface of finite type).

(iv) We shall refer to a connected Riemann orbisurface X (respectively,

arbitrary Riemann orbisurface X ) as being an H-domain if there exists a finite

[i.e., proper], surjective étale covering X 0 ! X such that X 0 admits an étale

[i.e., with derivative everywhere nonzero] holomorphic map X 0 ! H (respec-

tively, if every connected component of X is an H-domain).

(v) We shall refer to as an RC-orbifold [i.e., ‘‘real complex orbifold’’] a

pair X � ¼ ðX ; iX Þ, where X is a complex orbifold, and iX is an anti-holomorphic
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involution [i.e., automorphism of order 2]; we shall refer to X as the com-

plexification of the RC-orbifold X � [cf. Remark 1.3.1 below]. Moreover, we

shall append the prefix ‘‘RC-’’ to the beginning of any of the terms introduced

in (i)–(iv) to refer to RC-orbifolds X � ¼ ðX ; iX Þ for which X satisfies the con-

ditions of the term in question.

(vi) An RC-holomorphic map

X ! Y

between complex orbifolds X , Y is a map which is either holomorphic or anti-

holomorphic at each point of X .

(vii) A morphism between RC-orbifolds

X � ¼ ðX ; iX Þ ! Y � ¼ ðY ; iY Þ

—where X � is connected [i.e., iX acts transitively on the set of connected

components of X ]—is an equivalence class of RC-holomorphic maps X ! Y

compatible with iX , iY , where we consider two RC-holomorphic maps

equivalent if they di¤er by composition with iX [or, equivalently, iY ]. A

morphism between RC-orbifolds

X � ¼ ðX ; iX Þ ! Y � ¼ ðY ; iY Þ

—where X � is not necessarily connected—is the datum of a morphism of RC-

orbifolds from each connected component of X � to Y �.

Remark 1.1.1. Note that a Riemann orbisurface of finite type admits a

unique algebraic structure over C. We refer to Lemma 1.3, (iii), for the ‘‘RC’’

analogue of this statement.

Remark 1.1.2. If X is an H-domain, and Y ! X is an étale morphism

of complex orbifolds, then it is immediate from the definitions that Y is also an

H-domain.

Remark 1.1.3. If Y ! X is a finite étale covering of connected Riemann

orbisurfaces, then the ‘‘symmetric functions’’ in the various conjugates [i.e., with

respect to the finite covering Y ! X ] of any bounded holomorphic function

on Y [e.g., a function arising from a morphism Y ! H] give rise to various

bounded holomorphic functions on X which determine, up to a finite inde-

terminacy, the original bounded holomorphic function on Y .

Remark 1.1.4. For any morphism of RC-orbifolds

F : X � ¼ ðX ; iX Þ ! Y � ¼ ðY ; iY Þ

there exists a unique holomorphic map f : X ! Y lying in the equivalence class

that constitutes F. Indeed, we may assume without loss of generality that X �
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is connected. Then if f1 : X ! Y is any RC-holomorphic map lying in F, then

[since X �—but not necessarily X !—is connected ] f1 is either holomorphic or

anti-holomorphic. If f1 is holomorphic (respectively, anti-holomorphic), then

we take f ¼def f1 (respectively, f ¼def iY � f1 ¼ f1 � iX ).

Proposition 1.2 (Complex Orbifolds as RC-Orbifolds).

(i) Let X be a complex orbifold; write X c for its complex conjugate [i.e.,

holomorphic functions on X c are anti-holomorphic functions on X]. Then

R : X 7! ðX UX c; iRðXÞÞ

—where iRðX Þ switches X, X c via the [anti-holomorphic!] identification of their

underlying real analytic stacks—determines a fully faithful functor R from the

category of complex orbifolds and RC-holomorphic maps into the category of

RC-orbifolds [and morphisms of RC-orbifolds].

(ii) Let X � ¼ ðX ; iX Þ be an RC-orbifold. Then there is a natural mor-

phism of RC-orbifolds

RðX Þ ! X �

—which is finite étale of degree 2—given by mapping X JX UX c (respectively,

X c JX UX c) to X via the identity map (respectively, iX).

Proof. Immediate from the definitions. r

Lemma 1.3 (Removable Singularities).

(i) No H-domain is a Riemann orbisurface of almost finite type.

(ii) A connected H-domain is necessarily hyperbolic [i.e., its universal

covering is biholomorphic to H].

(iii) Any finite étale RC-holomorphic map X ! Y between Riemann

orbisurfaces X, Y of finite type [each of which, by Remark 1.1.1, admits a

unique algebraic structure over C] is necessarily algebraic over R. In particular,

every RC-Riemann orbisurface of finite type admits a unique algebraic structure

over R.

Proof. Assertion (i) follows immediately [cf. Remark 1.1.3] from the

observation that every bounded holomorphic function on a Riemann orbi-

surface of almost finite type extends to a bounded holomorphic function on a

Riemann orbisurface of finite type, hence to a bounded holomorphic function

on a compact Riemann orbisurface, which is necessarily constant. Assertion

(ii) follows from the same fact, applied to the case where the Riemann orbi-

surface of finite type in question is the complex plane. Assertion (iii) follows

by observing that the properness [i.e., finiteness] assumption implies that this

map X ! Y extends to the one-point compactifications of X , Y—which possess

a natural structure of [the stack-theoretic version of ] complex analytic space

414 Shinichi Mochizuki



[i.e., the point at infinity may be singular!]—and then applying the well-known

fact that holomorphic [hence also RC-holomorphic] maps between algebrizable

compact complex analytic spaces are necessarily algebrizable. r

Remark 1.3.1. Thus, just as complex manifolds are an ‘‘analytic ana-

logue’’ of smooth schemes over C, RC-manifolds [i.e., ‘‘RC-orbifolds’’ whose

stack structure is trivial] are intended to be an analytic analogue of smooth

schemes over R. Relative to this analogy, the functor R of Proposition 1.2, (i),

is the analogue of the functor

ðXC ! CÞ 7! ðXC ! RÞ

that maps a smooth scheme XC over C to the underlying R-scheme. Similarly,

the first datum ‘‘X ’’ of an RC-complex manifold X � ¼ ðX ; iX Þ, is the analogue,

for a smooth scheme XR over R, of the associated smooth C-scheme XR nR C,

and the étale double cover of Proposition 1.2, (ii), is the analogue of the étale

double cover of smooth R-schemes

XR nR C ! XR

(given by projection to the first factor).

Remark 1.3.2. Note that it follows immediately from Lemma 1.3, (iii),

that every Riemann orbisurface of finite type X admits a canonical compac-

tification by a compact Riemann orbisurface X KX whose ‘‘stack structure’’ is

trivial near XnX . A similar statement holds for RC-Riemann orbisurfaces.

Definition 1.4. Let X � ¼ ðX ; iX Þ be an RC-orbifold. Then:

(i) We shall refer to the set X �ðCÞ of points of X [i.e., points of the

‘‘coarse complex analytic space’’ associated to the stack X ] as the set of

complex points of X �.

(ii) We shall refer to the set X �ðRÞJX �ðCÞ of complex points fixed by

iX as the set of real points of X �.

(iii) We shall refer to the set X �½C� ¼def X �ðCÞ=iX of iX -orbits of complex

points of X � as the set of RC-points of X �.

(iv) We shall refer to H� ¼def RðHÞ as the RC-upper half-plane. We shall

refer to an ‘‘RC-H-domain’’ [i.e., the ‘‘RC’’ version of an H-domain] as an

H�-domain.

Remark 1.4.1. If X � ¼ ðX ; iX Þ is a connected RC-orbifold, then one

verifies easily that X �ðRÞ admits a natural structure of real analytic orbifold

whose real dimension is equal to the complex dimension of X .

Let X � ¼ ðX ; iX Þ be an RC-orbifold. Then note that one may consider

the notion of a covering morphism [of RC-orbifolds] Y � ¼ ðY ; iY Þ ! ðX ; iX Þ
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[i.e., Y ! X is a covering morphism, in the usual sense of algebraic topology].

In particular, if X � is connected, then, by considering universal covering mor-

phisms, we may define the fundamental group

p1ðX �Þ

of the RC-orbifold X �.

Proposition 1.5 (Fundamental Groups of RC-orbifolds). Let X � ¼ ðX ; iX Þ
be a connected RC-orbifold.

(i) If X � arises from a complex orbifold, i.e., X � ¼ RðX0Þ [cf. Proposition

1.2, (i)], then we have a natural isomorphism p1ðX0Þ !
@

p1ðX �Þ. In this case, we

shall say that X � is of complex type.

(ii) If X is connected, then we have a natural exact sequence 1 ! p1ðX Þ !
p1ðX �Þ ! GalðC=RÞ ! 1. Here, the surjection p1ðX �Þ !! GalðC=RÞ corre-

sponds to the double covering of Proposition 1.2, (ii). In this case, we shall say

that X � is of real type.

(iii) Suppose that X is a hyperbolic Riemann orbisurface. Then X � GH�

if and only if p1ðX �Þ ¼ f1g.

Proof. Assertions (i) and (ii), as well as the necessity portion of assertion

(iii), are immediate from the definitions. As for the su‰ciency portion of (iii),

we observe that the condition p1ðX �Þ ¼ f1g implies, by assertion (ii), that X �

arises from a connected Riemann orbisurface X0. Thus, since X ¼ X0 UX c
0 is

hyperbolic, we conclude [from the definition of ‘‘hyperbolic’’!] that X0 GH, so

X � GH�, as desired. r

Next, let us assume that X � is a connected hyperbolic RC-Riemann orbi-

surface of finite type. Write p1ðX �Þ5 for the profinite completion of p1ðX �Þ.
Suppose that we have been given a quotient

p1ðX �Þ5!! P

of profinite groups. Then we may define a category of (P-)localizations of X �

LocPðX �Þ

as follows: If X � ¼ ðX ; iX Þ is of real type (respectively, of complex type, and

X0 JX is a connected component of X ), then the objects

Y � ðrespectively;YÞ

of this category are the RC-Riemann orbisurfaces (respectively, Riemann

orbisurfaces) which are either H�-domains (respectively, H-domains) or RC-

Riemann orbisurfaces (respectively, Riemann orbisurfaces) of finite type that

appear as [not necessarily connected] finite étale coverings of X � (respectively,
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X0) that factor through the quotient P. [Here, we recall that by Lemma 1.3,

(i), this ‘‘either-or’’ is mutually exclusive.] The morphisms

Y �
1 ! Y �

2 ðrespectively;Y1 ! Y2Þ

of this category are arbitrary étale morphisms of RC-orbifolds (respectively,

arbitrary étale holomorphic morphisms) which are, moreover, proper and lie over

X � (respectively, X0) whenever Y �
1 , Y

�
2 (respectively, Y1, Y2) are of finite type.

Thus, by Lemma 1.3, (i), [cf. also Remark 1.1.2] the codomain of any arrow

with domain of finite type is also of finite type.

To keep the notation and language simple, even when X � is of complex

type, we shall regard the objects and morphisms of this category as RC-

orbifolds and morphisms of RC-orbifolds, via the fully faithful functor R of

Proposition 1.2; moreover, thinking about things in this way renders explicit the

independence of LocPðX �Þ of the choice of X0, as the notation suggests.

Lemma 1.6 (Basic Categorical Properties). Let f� : Y �
1 ! Y �

2 be a mor-

phism in LocPðX �Þ. Then:

(i) If c� : Z�
2 ! Y �

2 is a morphism in LocPðX �Þ, then the projection

morphisms

Y �
1 �Y �

2
Z �

2 ! Z �
2 ; Y �

1 �Y �
2
Z �

2 ! Y �
1

obtained by forming the fibered product of Y �
1 , Z

�
2 over Y �

2 in the category of

RC-orbifolds lie in LocPðX �Þ.
(ii) f� is a monomorphism if and only if it factors as the composite of

an isomorphism Y �
1 !@ Y �

3 with an open immersion Y �
3 ,! Y �

2 , where Y �
3 is the

object determined by some open subset of Y �
2 ½C�.

(iii) If Y �
1 0q, and Y �

2 is a connected RC-orbifold, then f� is an epi-

morphism. In particular, the full subcategory of LocPðX �Þ consisting of the

connected objects is a totally epimorphic category of quasi-connected objects

[cf. § 0].

Proof. Assertion (i) is immediate from the definitions if Y �
1 and Z �

2 are

of finite type; if either Y �
1 or Z �

2 is an H�-domain, then assertion (i) follows by

applying the observation of Remark 1.1.2. Assertion (ii) may be reduced to

the case where Y �
2 is of complex type, by base-changing [cf. assertion (i)] via

the double covering of Proposition 1.2, (ii) [applied to Y �
2 ]. When Y �

2 is of

complex type, assertion (ii) follows immediately from the definitions, by con-

sidering various maps H� ! Y �
2 . Finally, assertion (iii) follows from the ele-

mentary complex analysis fact that a holomorphic function on a connected

domain which vanishes on an open subset is necessarily identically zero. r

Lemma 1.7 (Infinitely Mobile Opens). Let Y � A ObðLocPðX �ÞÞ. Write

LocPðX �ÞgY � JLocPðX �ÞY �
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for the full subcategory determined by the objects constituted by arrows Z � ! Y �

which are monomorphisms. Then:

(i) There is a natural fully faithful functor

LocPðX �ÞgY � ,! OpenðY �½C�Þ

[where ‘‘Openð�Þ’’ denotes the category whose objects are open subsets and

whose morphisms are inclusions of the topological space in parentheses—cf.

[Mzk10], § 4] given by assigning to a monomorphism Z � gY � the image of the

induced map Z �½C� ! Y �½C�. This functor is an equivalence if and only if Y � is

an H�-domain.

(ii) If Y � is infinitely mobile [cf. § 0] as an object of LocPðX �Þ, then Y � is

an H�-domain.

Proof. First, let us observe the easily verified—e.g., by cardinality

considerations concerning the set of isomorphism classes of objects of LocPðX �Þ
which are of finite type—fact that, if Y � is of finite type, then there exist open

subsets U JY �½C� of the form Y �½C�nE, where EJY �½C� is a finite set, which

do not lie in the essential image of the functor of assertion (i) [cf. Lemma

1.3, (i)]. In light of this observation, assertion (i) is a formal consequence of

Lemma 1.6, (ii); Remark 1.1.2. Finally, assertion (ii) is an immediate con-

sequence of the definition of the category LocPðX �Þ. r

Lemma 1.8 (Category-Theoreticity of the Topological Space of RC-Points).

For i ¼ 1; 2, let X �
i be a connected hyperbolic RC-Riemann orbisurface of finite

type; p1ðX �
i Þ

5!! P i a quotient. Let

F : LocP1
ðX �

1 Þ !
@

LocP2
ðX �

2 Þ

be an equivalence of categories; Y �
i A ObðLocP i

ðX �
i ÞÞ; assume that Y �

2 ¼ FðY �
1 Þ.

Then F induces a homeomorphism

Y �
1 ½C� !

@
Y �

2 ½C�

on the topological spaces of RC-points which is functorial in both F and the Y �
i .

In particular, Y �
1 is of finite type if and only if Y �

2 ¼ FðY �
1 Þ is of finite type.

Proof. Note that the infinitely mobile objects are manifestly preserved

by F and that H� is infinitely mobile. In particular, every object of LocP i
ðX �

i Þ
is covered by infinitely mobile opens. Thus, by functoriality [and an evident

‘‘gluing argument’’], we may assume, without loss of generality, that the Y �
i

are infinitely mobile. But then, since the topological spaces Y �
i ½C� are clearly

sober, the existence of a functorial homeomorphism as desired [as well as the

fact that F preserves objects of finite type] follows from Lemma 1.7, (i), (ii),

together with a well-known result from ‘‘topos theory’’ [i.e., to the e¤ect that a
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sober topological space may be recovered from the category of sheaves on the

space—cf., e.g., [Mzk2], Theorem 1.4]. r

Lemma 1.9 (Category-Theoreticity of the Fundamental Group). For

i ¼ 1; 2, let X �
i , P i, F, Y �

i be as in Lemma 1.8. Then F preserves the arrows

which are covering morphisms. In particular, F preserves isomorphs of H� and,

if the Y �
i are connected, induces an isomorphism of groups

p1ðY �
1 Þ !

@
p1ðY �

2 Þ

—well-defined up to composition with an inner automorphism—which is func-

torial in both F and the choices of universal covering morphism Z �
i ! Y �

i used to

define the p1’s.

Proof. Indeed, covering morphisms may be characterized by the exis-

tence of local base-changes over which the given morphism splits as a disjoint

union of isomorphs of the base. Thus, the fact that F preserves covering

morphisms follows from Lemmas 1.6, (i); 1.8. The assertion concerning fun-

damental groups then follows formally; the assertion concerning isomorphs of

H� follows from Proposition 1.5, (iii). r

Lemma 1.10 (Category-Theoreticity of the RC-Orbifold Structure). For

i ¼ 1; 2, let X �
i , P i , F, Y �

i be as in Lemma 1.8. Then F induces an iso-

morphism of RC-orbifolds

Y �
1 !@ Y �

2

which is functorial in both F and the Y �
i and compatible with the homeomor-

phisms of Lemma 1.8. In particular, X �
1 (respectively, Y �

1 ) is of real type if and

only if X �
2 (respectively, Y �

2 ) is.

Proof. Indeed, by functoriality, we may assume, without loss of gen-

erality, that the Y �
i are connected. Choose universal coverings Z �

i ! Y �
i [so

Z �
i GH�] which are compatible with F [cf. Lemma 1.9]. Note that we have an

exact sequence of topological groups

1 ! SL2ðRÞ=fG1g ! AutRC-orbifoldsðH�Þ ! GalðC=RÞ ! 1

—where the topology on AutRC-orbifoldsðH�Þ is that induced by the action

of AutRC-orbifoldsðH�Þ on H�½C�. In particular, AutðZ �
i Þ ¼def AutLocPi

ðX �
i
ÞðZ �

i Þ is

connected if and only if X �
i is of complex type. Moreover, by Lemmas 1.8,

1.9, F induces a commutative diagram

p1ðY �
1 Þ H��! AutðZ�

1 Þ???y
???y

p1ðY �
2 Þ H��! AutðZ�

2 Þ
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in which the vertical arrows are isomorphisms of topological groups. Note that

since AutðZ �
i Þ is a real analytic Lie group, we thus conclude [by Cartan’s

theorem—cf., e.g., [Serre], Chapter V, § 9, Theorem 2] that the isomorphism

AutðZ �
1 Þ !

@
AutðZ �

2 Þ is, in fact, an isomorphism of real analytic Lie groups.

Next, let us choose maximal connected compact subgroups Ki JAutðZ �
i Þ

which are compatible with F. Then if X �
i is of complex type [so AutðZ �

i Þ is

connected ], then let us write AutðZ �
i Þ

0 ¼def AutðZ �
i Þ. On the other hand, if X �

i

is of real type, then we have natural exact sequences

1 ! AutðZ �
i Þ

0 ! AutðZ �
i Þ ! GalðC=RÞ ! 1

[where the superscript 0 denotes the connected component containing the

identity element] which are compatible with F. Whether X �
i is of real or

complex type, let us write K 0
i ¼def Ki VAutðZ �

i Þ
0; Y �

i ¼ ðYi; iYi
Þ. Note that

Y �
i is of real type if and only if p1ðY �

i ÞJAutðZ �
i Þ has image0 f1g in

AutðZ �
i Þ=AutðZ�

i Þ
0. If Y �

i is of real type, then p1ðYiÞJ p1ðY �
i Þ may be

identified with the kernel of this map to AutðZ �
i Þ=AutðZ�

i Þ
0, and Yi equipped

with its iYi
-action is naturally isomorphic to

KinAutðZ �
i Þ=p1ðYiÞ

[where the ‘‘=’’ is in the sense of stacks!] equipped with the natural action by

p1ðY �
i Þ=p1ðYiÞGGalðC=RÞ [from the right ]. If Y �

i is of complex type, then

Y �
i is naturally isomorphic to the result of applying the functor ‘‘R’’ to the

Riemann orbisurface

K 0
i nAutðZ �

i Þ
0=p1ðY �

i Þ

[where the ‘‘=’’ is in the sense of stacks!]. Thus, we conclude that [for X �
i of

real or complex type] F induces an isomorphism of RC-orbifolds Y �
1 !@ Y �

2 , as

desired.

That this isomorphism is compatible with the homeomorphisms of Lemma

1.8 follows by comparing the respective induced maps on ‘‘points’’—where we

note that in the context of Lemma 1.8 (respectively, the present proof ), ‘‘points’’

of, say, Z �
i , amount to systems of neighborhoods of an element of Z �

i ½C�
(respectively, left cosets of Ki in AutðZ �

i Þ or of K 0
i in AutðZ �

i Þ
0)—by con-

sidering the action of AutðZ �
i Þ, Ki on such systems of neighborhoods. Finally,

the functoriality of the isomorphism Y �
1 !@ Y �

2 with respect to F (respectively,

the Y �
i ) is clear (respectively, a consequence of the compatibility with the

homeomorphisms of Lemma 1.8). r

Corollary 1.11 (Preservation of Like Parity). For i ¼ 1; 2, let X �
i , P i,

F, Y �
i be as in Lemma 1.8; suppose further that the X �

i are of real type. Let

Z �
i A ObðLocP i

ðX �
i ÞÞ; assume that Z �

2 ¼ FðZ �
1 Þ, and that the Y �

i and Z �
i are all

connected. Suppose that we are given two morphisms
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fi;ci : Z
�
i ! Y �

i

in LocP i
ðX �

i Þ such that f2 ¼ Fðf1Þ; c2 ¼ Fðc1Þ. Then f1, c1 have the same

‘‘parity’’—i.e., their unique holomorphic representatives [cf. Remark 1.1.4] induce

the same maps on sets of connected components—if and only if f2, c2 do.

Proof. Immediate from the functorial isomorphisms of RC-orbifolds of

Lemma 1.10. r

Theorem 1.12 (Categorical Reconstruction of Hyperbolic RC-Riemann

Orbisurfaces). For i ¼ 1; 2, let X �
i be a connected hyperbolic RC-Riemann

orbisurface of finite type; p1ðX �
i Þ

5!! P i a quotient. Then the categories

LocP i
ðX �

i Þ are slim [cf. § 0], and, moreover, any equivalence of categories

F : LocP1
ðX �

1 Þ !
@

LocP2
ðX �

2 Þ

is [uniquely] isomorphic [as a functor] to the equivalence induced by a unique

isomorphism of RC-orbifolds X �
1 !@ X �

2 . That is to say, the natural map

IsomRððX �
1 ;P1Þ; ðX �

2 ;P2ÞÞ ! IsomðLocP1
ðX �

1 Þ;LocP2
ðX �

2 ÞÞ

from isomorphisms of RC-orbifolds X �
1 !@ X �

2 which admit [uniquely determined,

up to inner automorphisms arising from p1ðX �
i Þ—cf. Lemma 1.9] compatible

isomorphisms P1 !
@

P2 to isomorphism classes of equivalences between the

categories LocP i
ðX �

i Þ is bijective.

Proof. Indeed, slimness follows, for instance, by considering the func-

torial homeomorphisms of Lemma 1.8, while the asserted bijectivity follows

formally from the functorial isomorphisms of RC-orbifolds of Lemma 1.10.

Here, we note that the object X �
i of LocP i

ðX �
i Þ may be characterized, up to

isomorphism, as the object of finite type [cf. Lemma 1.8] which forms a terminal

object in the full subcategory of LocP i
ðX �

i Þ determined by the objects of finite

type. r

Corollary 1.13 (Induced Isomorphisms of Quotients of Profinite Funda-

mental Groups). In the notation of Theorem 1.12, the isomorphism

P1 !
@

P2

induced by F [well-defined up to composition with an inner automorphism of P i]

is independent of the choice of F, up to the geometrically-induced automorphisms

of P i—i.e., the automorphisms arising from the automorphisms of the RC-

orbifold X �
i that preserve the quotient p1ðX �

i Þ
5!! P i.

Proof. A formal consequence of Theorem 1.12. r
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Section 2. Categories of parallelograms, rectangles, and squares

In this Section, we show that the quasiconformal (respectively, conformal;

conformal ) structure of a connected hyperbolic RC-Riemann orbisurface of

finite type may be functorially reconstructed from a certain category of par-

allelogram (respectively, rectangle; square) localizations. Although, just as was

the case with the categories of § 1, these categories of localizations are intended

to be reminiscent of the categories of localizations of [Mzk11], § 4, they di¤er

from the categories of § 1 in the following crucial way: They admit terminal

objects [cf. the categories of [Mzk11], § 4, which also, essentially, admit terminal

objects, up to finitely many automorphisms, or, alternatively, the categories

called temperoids of [Mzk11], § 3].

Definition 2.1.

(i) We shall refer to a connected hyperbolic Riemann (respectively, RC-

Riemann) orbisurface as a punctured torus (respectively, punctured RC-torus) if

it (respectively, each connected component of its complexification) arises as the

complement of a finite, nonempty subset of a one-dimensional complex torus

[i.e., the Riemann surface associated to an elliptic curve over C]. If this finite

subset is a translate of a subgroup of the complex torus (respectively, is of

cardinality one), then we shall refer to the punctured torus (respectively,

punctured RC-torus) as being of torsion type (respectively, once-punctured ).

(ii) Let Y be a compact connected Riemann orbisurface; Y JY the

Riemann orbisurface of finite type obtained by removing some finite set S of

points from Y . [Thus, by Lemma 1.3, (iii), Y is completely determined by

Y .] Then we shall refer to as a logarithmic square di¤erential on Y a section f

over Y of the line bundle on2
Y [where oY is the holomorphic line bundle of

di¤erentials on Y ] which extends to a section over Y of the line bundle on2

Y
ðSÞ

[where oY is the holomorphic line bundle of di¤erentials on Y ; we use the

notation S to denote the reduced e¤ective divisor on Y determined by the set

S]. The noncritical locus

Ynon JY

of a logarithmic square di¤erential f on Y is defined to be the Riemann

orbisurface of points at which f0 0; the universalization of a logarithmic square

di¤erential f on Y is defined to be the universal covering Ynon ! Ynon of the

noncritical locus Ynon of f. As is well-known [cf., e.g., [Lehto], Chapter IV,

§ 6.1], if fD 0 [i.e., f is not identically zero], then the path integral of the square

root of f over Ynon ð ffiffiffi
f

p
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determines a ‘‘natural parameter’’

zf : Ynon ! C

on Ynon, which is independent of the choice of square root and the choice of

a basepoint for the integral, up to multiplication by G1 and addition of a

constant. In particular, it makes sense to define a f-parallelogram (respec-

tively, f-rectangle; f-square) of Ynon to be an open subset or Ynon [or, by abuse

of terminology, the associated Riemann surface] that maps bijectively via zf
onto a parallelogram (respectively, rectangle; square) of C, in the sense of

Definition A.3, (i), (ii), of the Appendix. We shall refer to a f-parallelogram

as pre-compact if it is contained in a compact subset of Ynon.

(iii) A logarithmic square di¤erential f� on a connected RC-Riemann

orbisurface of finite type X � is defined to be a logarithmic square di¤erential f

on [each connected component of ] the complexification of X � which is pre-

served by the anti-holomorphic involution of X �. Given a logarithmic square

di¤erential f� on X �, the noncritical locus (respectively, universalization; natural

parameters [whenever fD 0]) associated to the corresponding logarithmic

square di¤erential on the complexification of X � thus determine a noncritical

locus X �
non JX � (respectively, universalization X �

non ! X �
non; natural parameters

zf � : X �
non½C� ! C) associated to f�. Here, any two natural parameters zf � , z 0f �

are related to one another as follows: z 0f � is equal to eitherGzf � þ l, for some

l A C, or the complex conjugate of this expression. In particular, we obtain a

notion of f�-parallelograms (respectively, f�-rectangles; f�-squares; pre-compact

f�-parallelograms) associated to f� [all of which are to be regarded as RC-

Riemann surfaces over X �
non].

(iv) Let Y , Z be Riemann orbisurfaces of finite type. If Y , Z are

connected, then we shall refer to a map Y ! Z as anti-quasiconformal (re-

spectively, anti-Teichmüller) if it is quasiconformal (respectively, a Teichmüller

mapping—cf. Remark 2.1.1 below) with respect to the holomorphic structure

on Y given by the holomorphic functions and the holomorphic structure on Z

given by the anti-holomorphic functions. If Y , Z are not necessarily con-

nected, then we shall refer to a map Y ! Z as RC-quasiconformal (respectively,

RC-Teichmüller) if its restriction to each connected component of Y determines

a map to some connected component of Z that is either quasiconformal or

anti-quasiconformal (respectively, either a Teichmüller mapping or an anti-

Teichmüller mapping).

(v) Let Y � ¼ ðY ; iY Þ, Z � ¼ ðZ; iZÞ be connected RC-Riemann orbisurfaces

of finite type. Then we shall refer to as an RC-quasiconformal morphism

(respectively, RC-Teichmüller morphism) Y � ! Z � an equivalence class of RC-

quasiconformal (respectively, RC-Teichmüller) maps Y ! Z compatible with

iY , iZ, where we consider two such maps equivalent if they di¤er by com-
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position with iY [or, equivalently, iZ]. If PY , PZ are tempered topological

groups, and

p1ðY �Þ ! PY ; p1ðZ �Þ ! PZ

are dense [cf. § 0] morphisms of tempered [cf. § 0] topological groups [i.e., we

think of p1ðY �Þ, p1ðZ �Þ as being equipped with the discrete topology, so

p1ðY �Þ, p1ðZ �Þ are tempered topological groups], then we shall say that an

RC-quasiconformal morphism Y � ! Z � is ðPY ;PZÞ-compatible if there exists

a [necessarily unique, by the ‘‘dense-ness’’ assumption] isomorphism PY !@ PZ

that is compatible [in the evident sense] with the outer isomorphism p1ðY �Þ !@

p1ðZ �Þ induced by the RC-quasiconformal morphism Y � ! Z �.

(vi) A Teichmüller pair ðX ; fÞ (respectively, RC-Teichmüller pair ðX �; f�Þ)
is defined to be a pair consisting of a connected hyperbolic Riemann (re-

spectively, RC-Riemann) orbisurface of finite type X (respectively, X �) and a

non-identically zero logarithmic square di¤erential f (respectively, f�) on X

(respectively, X �).

Remark 2.1.1. We refer to [Lehto], Chapter V, § 7, § 8, for more on the

theory of Teichmüller mappings between Riemann orbisurfaces of finite type.

Note that although the theory of Teichmüller mappings is typically only

developed for compact Riemann surfaces, it extends immediately to the case of

an arbitrary Riemann orbisurface of finite type Y by passing to an appropriate

Galois finite étale covering Z ! Y which extends to a ramified covering of

compact Riemann orbisurfaces Z ! Y , where Z is a Riemann surface, and

Z ! Y is ramified at every point of ZnZ. [Indeed, the ramification condition

implies that a logarithmic square di¤erential on Y pulls back to a logarithmic

square di¤erential on Z which extends to a square di¤erential without poles

on Z.]

Remark 2.1.2. Let F : Y � ! Z � be an RC-quasiconformal morphism

(respectively, RC-Teichmüller morphism), as in Definition 2.1, (v) [so Y �, Z �

are connected ]. Then [cf. Remark 1.1.4] there exists a unique quasiconformal

map (respectively, Teichmüller mapping) f : Y ! Z lying in the equivalence

class that constitutes F.

Remark 2.1.3. One important example of an RC-Teichmüller pair

ðX �; f�Þ

is the case where X � admits a finite étale covering Y � ! X � such that Y � is a

punctured RC-torus of complex type, and the square di¤erential f�jY � extends to

a square di¤erential on the canonical compactification [cf. Remark 1.3.2] of Y �.

Note that in this case, f� is completely determined, up to a nonzero constant
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multiple. In the following, we shall refer to such a pair as toral. Note that

if Z � ! X � is also a finite étale covering of X � by a punctured RC-torus of

complex type Z � such that f�jZ � extends to a square di¤erential on the ca-

nonical compactification of Z �—in which case we shall say that Z � ! X � is

toralizing—then one verifies immediately [by considering the natural parameters

associated to f�] that there exists a toralizing finite étale covering W � ! X �

that dominates the coverings Y � ! X �, Z � ! X �. In particular, it follows

that there exists a unique [up to not necessarily unique isomorphism] ‘‘minimal

toralizing finite étale covering’’ Y �
min ! X � [i.e., such that every other toralizing

finite étale covering Y � ! X � factors through Y �
min ! X �].

Let ðX � ¼ ðX ; iX Þ; f�Þ be an RC-Teichmüller pair. Suppose that we have

been given a tempered topological group P and a dense morphism

p1ðX �Þ ! P

of tempered topological groups. Thus, for every open subgroup HJP, the

induced morphism p1ðX �Þ ! P=H is surjective. Let us refer to a connected

covering of X � as being a P-covering if it appears as a subcovering of the

covering determined by such a quotient p1ðX �Þ !! P=H. In the following, we

shall also make the following two assumptions on P:

(1) ‘‘P is totally ramified at infinity’’ in the sense that there exist Galois finite

P-coverings of X � which are ramified over every point of the canonical

compactification [cf. Remark 1.3.2] X � KX � which is not contained in X �.

(2) ‘‘P is stack-resolving’’ in the sense that there exist Galois finite P-coverings

of X � which are of complex type and whose ‘‘stack structure’’ is trivial.

Now we define the category of parallelogram (P-)localizations of ðX �; f�Þ

Loc
P
PðX �; f�Þ

as follows: The objects

Z �

of this category are the RC-Riemann orbisurfaces which are either pre-compact

f�-parallelograms of the universalization X �
non or RC-Riemann orbisurfaces

that appear as connected [but not necessarily finite] P-coverings of X �.

Objects of the former type will be referred to as parallelogram objects; objects

of the latter type will be referred to as complete objects. A parallelogram object

defined by a f�-rectangle (respectively, f�-square) will be referred to as a

rectangle object (respectively, square object). A complete object that arises

from a finite covering of X � will be referred to as a finite object. The

morphisms

Z �
1 ! Z �

2
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of this category are arbitrary étale morphisms of RC-orbifolds over X � which,

moreover, satisfy the property that if Z �
1 is a parallelogram object, then either

the given arrow Z �
1 ! Z�

2 is an isomorphism of RC-orbifolds or the given

arrow Z �
1 ! Z �

2 has pre-compact image [i.e., the image of Z �
1 ½C� lies inside a

compact subset of Z �
2 ½C�].

Similarly, we define the category of rectangle (P-)localizations of ðX �; f�Þ

LocRPðX �; f�Þ

to be the full subcategory of Loc
P
PðX �; f�Þ determined by the objects which

are either complete objects or rectangle objects, and the category of square

(P-)localizations of ðX �; f�Þ

LocSPðX �; f�Þ

to be the full subcategory of LocPPðX �; f�Þ determined by the objects which are

either complete objects or square objects.

Observe that when X � is of complex type, and we think of the objects

Z � ! X � of LocPPðX �; f�Þ as being endowed with the ‘‘holomorphic structure’’

determined by a connected component X0 JX , then all of the morphisms

Z �
1 ! Z �

2 of Loc
P
PðX �; f�Þ induce holomorphic morphisms between the con-

nected components of the complexifications of Z �
1 , Z �

2 lying over X0 [cf.

Remark 1.1.4]. Put another way, in this case, the category Loc
P
PðX �; f�Þ may

be thought of as the image via the fully faithful functor R of Proposition 1.2 of

a certain category of holomorphic morphisms between Riemann orbisurfaces. A

similar statement holds for LocRPðX �; f�Þ, LocSPðX �; f�Þ.

Proposition 2.2 (Basic Categorical Properties). Let r be either ‘‘P’’,

‘‘R’’, or ‘‘S’’. Then:

(i) The result of applying ‘‘>’’ to the full subcategory of LocrP ðX �; f�Þ
determined by the complete objects is a connected temperoid [cf. [Mzk11],

Definition 3.1, (ii)], with tempered fundamental group isomorphic to P. In

particular, it makes sense to speak of complete objects as being Galois [cf.

[Mzk11], Definition 3.1, (iv)].

(ii) The codomain of any arrow of LocrP ðX �; f�Þ with complete domain is

also complete.

(iii) An object Z � of LocrP ðX �; f�Þ is complete if and only if every

monomorphism Z � gW � [in LocrP ðX �; f�Þ] is an isomorphism.

(iv) The object of LocrP ðX �; f�Þ determined by X � is a terminal object of

the category LocrP ðX �; f�Þ.
(v) The category LocrP ðX �; f�Þ is a totally epimorphic category of quasi-

connected objects [cf. § 0].
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(vi) The automorphism group AutðZ �Þ of a complete object Z � of

LocrP ðX �; f�Þ is isomorphic to a subquotient of a group of the form P=H, where

HJP is an open subgroup.

(vii) If Z � is a parallelogram object of LocrP ðX �; f�Þ, then every endo-

morphism of Z � [in LocrP ðX �; f�Þ] is an automorphism, and, moreover, the

automorphism group AutðZ �Þ [of Z � as a object of LocrP ðX �; f�Þ] is finite.

(viii) Every morphism Z �
1 ! Z �

2 between parallelogram objects of

LocrP ðX �; f�Þ is a monomorphism.

(ix) Every monomorphism Z �
1 ! Z �

2 of LocrP ðX �; f�Þ which is not an

isomorphism factors as a composite Z �
1 ! Z�

3 ! Z�
2 of non-isomorphisms

Z �
1 ! Z �

3 , Z
�
3 ! Z �

2 , where Z �
1 , Z

�
3 are parallelogram objects.

Proof. Assertions (i), (iv), (v), (vi) are immediate from the definitions

[cf. also the proof of Lemma 1.6, (iii), in the case of assertion (v)]. To prove

assertion (ii), let Z � ! Y � be an arrow such that Z � is complete, but Y � is not

complete. Thus, Y � is a parallelogram object, and the morphism Z� ! Y � is

over X �, hence over X �
non. In particular, we conclude that X �

non ¼ X �. Note,

moreover, that Z � ! X � is a covering morphism which [outside of the category

LocrP ðX �; f�Þ] is a subcovering of the covering X �
non ! X �. In particular, if

we base-change over X � by X �
non ! X �, we obtain [since Y � is simply con-

nected ] a morphism X �
non ! Y � over X �

non, which is absurd [since, for instance,

Y �½C�, unlike X �
non½C�, has pre-compact image in X �

non½C�]. In light of assertion

(ii), assertion (iii) is immediate from our pre-compactness assumption in the

definition of the morphisms of LocrP ðX �; f�Þ with parallelogram domain [to-

gether with the observation that morphisms between complete objects are

always covering morphisms, hence are monomorphisms if and only if they are

isomorphisms].

Next, we consider endomorphisms of parallelogram objects, i.e., assertion

(vii). First, let us observe that pulling back the standard volume form on C

via a natural parameter yields a volume form mX non
on X �

non½C� that is com-

patible with the a‰ne linear structure on X �
non½C� determined by the natural

parameters, and, moreover, is held fixed by GalðX �
non=X

�
nonÞ [since auto-

morphisms of GalðX �
non=X

�
nonÞ fix f�, hence map natural parameters associated

to f� to natural parameters associated to f�]. In particular, since all mor-

phisms of LocrP ðX �; f�Þ are over X �, it follows that mXnon
(respectively, the

a‰ne linear structure on X �
non½C�) determines a volume form mZ (respectively,

a‰ne linear structure) on Z �½C� that is compatible with all endomorphisms

of Z �. Thus, the fact that every endomorphism of Z � is an automorphism

follows immediately from the [easily verified, elementary] fact that every

volume-preserving, a‰ne linear automorphism of C that maps a parallelogram

of X non into itself necessarily induces a bijection of this parallelogram onto
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itself. Moreover, it is immediate [for instance, by considering the induced

bijections of edges and vertices of the closure of the parallelogram] that the

group of a‰ne linear automorphisms of this parallelogram that arise in this

fashion is finite.

Next, we consider assertion (viii). First, observe that any two morphisms

Z �
i ! X �

non [where i ¼ 1; 2] that arise from lifting morphisms Z �
i ! X � of

LocrP ðX �; f�Þ di¤er by composition with an element of GalðX �
non=X

�
nonÞ, and

that it is immediate from the definitions that there exist such morphisms

Z �
i ! X �

non which are open immersions. In particular, it follows that every

morphism Z �
i ! X �

non that arises from lifting a morphism Z �
i ! X � of

LocrP ðX �; f�Þ, hence, in particular, every composite Z �
1 ! Z �

2 ! X �
non of such

a lifted morphism Z �
2 ! X �

non with an arbitrary morphism Z �
1 ! Z �

2 of

LocrP ðX �; f�Þ is an open immersion. Thus, it follows immediately that any

morphism Z �
1 ! Z �

2 is a monomorphism, as desired.

Finally, we consider assertion (ix). First, we recall that it is immediate

from the definition of a ‘‘connected temperoid’’ [cf. [Mzk11], Definition 3.1, (ii)]

that any monomorphism between connected objects of a connected temperoid

is, in fact, an isomorphism. Thus, it follows from assertion (i) that Z�
1 is a

parallelogram object. If Z �
2 is also a parallelogram object, then it follows

immediately from our pre-compactness assumption in the definition of the

morphisms of LocrP ðX �; f�Þ with parallelogram domain that Z �
1 ! Z �

2 admits a

factorization of the desired type. If, on the other hand, Z �
2 is complete, then

[as discussed above], the morphism Z �
1 ! Z �

2 factors as a composite Z �
1 !

X �
non ! Z �

2 . Now since the image of the morphism Z �
1 ! X �

non is [by the

definition of the ‘‘parallelogram objects’’ of LocrP ðX �; f�Þ] pre-compact, it

follows immediately that the morphism Z �
1 ! X �

non factors as a composite

Z �
1 ! Z �

3 ! X �
non, where Z �

1 ! Z �
3 is a non-isomorphism of LocrP ðX �; f�Þ

between parallelogram objects, and Z �
3 ! X �

non is an open immersion. Thus,

by composing the arrow Z �
3 ! X �

non with the arrow X �
non ! Z �

2 , we obtain a

factorization Z �
1 ! Z �

3 ! Z �
2 of the desired type. This completes the proof of

assertion (ix). r

Theorem 2.3 (Categorical Reconstruction of the Quasiconformal or Con-

formal Structure of an RC-Teichmüller pair). For i ¼ 1; 2, let ðX �
i ; f

�
i Þ be an

RC-Teichmüller pair; P i a tempered topological group;

p1ðX �
i Þ ! P i

a dense [cf. § 0] morphism of tempered [cf. § 0] topological groups such that P i

is ‘‘totally ramified at infinity’’ and ‘‘stack-resolving’’ [cf. the above discussion].

Then:

(i) The categories Loc
P
P i
ðX �

i ; f
�
i Þ, LocRP i

ðX �
i ; f

�
i Þ, LocSP i

ðX �
i ; f

�
i Þ are slim

[cf. § 0].
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(ii) There is a natural bijection between isomorphism classes of equivalences

of categories

F : LocPP1
ðX �

1 ; f
�
1 Þ !

@
LocPP2

ðX �
2 ; f

�
2 Þ

and ðP1;P2Þ-compatible RC-Teich-müller morphisms

X �
1 !@ X �

2

that ‘‘map’’ f�
1 to a nonzero complex multiple of f�

2 [i.e., f�
1 (respectively,

some nonzero complex multiple of f�
2) is the ‘‘initial’’ (respectively, ‘‘terminal’’)

di¤erential of the RC-Teichmüller morphism—cf., e.g., [Lehto], Chapter V,

Theorem 8.1]. Moreover, this bijection is obtained by considering the equiv-

alence of categories naturally induced by such an RC-Teichmüller morphism

X �
1 !@ X �

2 .

(iii) There is a natural bijection between isomorphism classes of equiv-

alences of categories

F : LocRP1
ðX �

1 ; f
�
1 Þ !

@
LocRP2

ðX �
2 ; f

�
2 Þ

and ðP1;P2Þ-compatible isomorphisms of RC-orbisurfaces

X �
1 !@ X �

2

that map f�
1 to a nonzero complex multiple of f�

2 . Moreover, this bijection is

obtained by considering the equivalence of categories naturally induced by such

an isomorphism of RC-orbisurfaces X �
1 !@ X �

2 . A similar statement holds when

‘‘LocR’’ is replaced by ‘‘LocS’’.

Proof. First, let us observe that it is immediate from the definitions that

an isomorphism X �
1 ! X �

2 of the type stated in assertions (ii), (iii), induces an

equivalence of categories between the respective categories ‘‘Locr’’ [where r is

‘‘P’’, ‘‘R’’, or ‘‘S’’]. [In the case of RC-Teichmüller morphisms, this follows

immediately from the manifestly a‰ne linear explicit local form of a Teich-

müller mapping—cf., e.g., [Lehto], Chapter V, Theorem 8.1.] In particular, we

note that the definition of each of these categories is una¤ected by multiplying

f� by a nonzero complex number.

Next, let us suppose that we have been given an equivalence F between the

respective categories ‘‘Locr’’. Write C ¼def LocrP i
ðX �

i ; f
�
i Þ. Let us refer to an

ordered set which is isomorphic, as an ordered set, to the set of natural

numbers [equipped with its usual ordering] as a naturally ordered set. If

W � A ObðCÞ, then let us refer to as a P-system [i.e., a ‘‘system of paral-

lelograms’’] over W � a projective system Z ¼ fZ �
j gj A J

� � � ! Z �
j 0 ! � � � ! Z �

j ! � � �
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in CW � , indexed by a naturally ordered set J, such that: (a) each object

Z �
j ! W � of this system is an arrow of C whose domain Z �

j is a parallelogram;

(b) no arrow Z �
j 0 ! Z �

j is an isomorphism. Recall from Proposition 2.2, (viii),

that every arrow Z �
j 0 ! Z �

j is a monomorphism. There is an evident notion of

morphisms between P-systems over W � [i.e., morphisms of projective systems].

We shall call a P-system Z over W � minimal if every morphism of P-systems

[over W �] Z 0 ! Z is an isomorphism.

Let Z ¼ fZ �
j gj A J be a P-system over W �. Then it follows from our pre-

compactness assumption in the definition of the morphisms of ‘‘Locr’’ with

parallelogram domain that if we denote the closure of the subset

Z j ¼def ImðZ �
j ½C�ÞJW ¼def W �½C�

by K j JW , then K j is compact; moreover, we have an equality

Zy ¼def 7
j A J

Z j ¼ 7
j A J

K j JW

of subsets of W . Now suppose that for each j A J, zj A Z j ; let z A W be a

cluster point of the set fzjgj A J [i.e., some subsequence of the sequence con-

stituted by the zj converges to z]. [Note that since the K j are compact, such

a cluster point always exists.] Then I claim that z A Zy. Indeed, we may

assume [by replacing J by a cofinal subset of J] that zj ! z. Then if we write

Aj ¼
def fzj 0 gj 0bj U fzg, then Aj JK j, so

z A 7
j A J

Aj J 7
j A J

K j ¼ Zy

as desired. In particular, since the Z j are nonempty, it follows that Zy is

nonempty.

Now I claim that Z ¼ fZ �
j gj A J is minimal if and only if the cardinality

jZyj of the set Zy is equal to 1. Indeed, if jZyj > 1, then it is immediate

that one can construct a morphism of P-systems Z 0 ! Z such that Z 0
y YZy

[where Z 0
y is the analogue of ‘‘Zy’’ for Z 0], so Z 0 ! Z is not an isomorphism

of P-systems. On the other hand, suppose that jZyj ¼ 1. Now since the

topological space W is clearly metrizable, let us assume that it is equipped with

a metric dð�;�Þ. Let

Z 0 ¼ fZ �
j 0 gj 0 A J 0 ! Z ¼ fZ �

j gj A J

be a morphism of P-systems over W �. Thus, Z 0
y ¼ Zy. Write Zy ¼ fzg.

Then observe that for every real e > 0, there exists a j0 A J such that for all

jb j0, Z j is contained in the set Bðz; eÞ ¼def fw A W j dðz;wÞ < eg. Indeed, if

this were false, then it would follow that for every [su‰ciently large, hence
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every] j A J, there exist aj; bj A Z j such that dðaj; bjÞb e. Moreover, by

choosing the aj , bj appropriately, we may assume that aj ! a, bj ! b, for some

a; b A W . But by our discussion of cluster points in the preceding paragraph, it

thus follows that a ¼ b ¼ z, hence that ea dðaj; bjÞ ! dða; bÞ ¼ 0, which

is absurd. Thus, we conclude that Z j JBðz; eÞ for su‰ciently large j A J. On

the other hand, since, given a j 0 A J 0, there exists an e > 0 such that

Bðz; eÞJZ 0
j 0 , it thus follows immediately that Z 0 ! Z is an isomorphism, thus

proving the asserted minimality of Z.

Thus, in summary, we conclude that:

There is a natural bijective correspondence between the set W �½C�non
[where the subscript ‘‘non’’ denotes the open subset determined by the

noncricital locus] and the set of isomorphism classes of minimal P-systems

over W �.

In particular, since, by Proposition 2.2, (iii), F preserves parallelogram objects,

we conclude that F induces natural bijections

W �
1 ½C�non !

@
W �

2 ½C�non
[where, for i ¼ 1; 2, W �

i A ObðLocPP i
ðX �

i ; f
�
i ÞÞ, FðW �

1 Þ ¼ W �
2 ] which are func-

torial in the W �
i . Moreover, since the images of parallelograms in W �

i ½C�
clearly form a basis for the topology of W �

i ½C�, we conclude [by considering

collections of isomorphism classes of P-systems over W �
i that factor through

some given fixed parallelogram over W �
i ] that these bijections are, in fact,

homeomorphisms.

Note that these functorial homeomorphisms are already su‰cient to

conclude that the category C is slim [cf. the proof of slimness in Theorem 1.12

via Lemma 1.8]. This completes the proof of assertion (i).

Next, let us observe that it follows from our assumption that P i is ‘‘stack-

resolving’’ that there exist finite Galois [cf. Proposition 2.2, (i)] W �
i such that

FðW �
1 Þ ¼ W �

2 , and, moreover, W �
i is of complex type, with trivial ‘‘stack

structure’’. Thus, it follows, by applying Proposition A.4 [of the Appendix] to

su‰ciently small pre-compact parallelogram neighborhoods of W �
i ½C�, that, in

the case of assertion (ii) (respectively, (iii)), the functorial homeomorphism

W �
1 ½C�non !

@
W �

2 ½C�non
constructed above is locally a‰ne linear (respectively, locally a‰ne ortho-

linear). Now in the a‰ne linear case, it follows from Proposition A.1 [of the

Appendix], together with the explicit local form of a Teichmüller mapping [cf.,

e.g., [Lehto], Chapter V, § 7 and § 8, especially Theorem 8.1] that there exists

an RC-Teichmüller mapping with domain W �
1 ½C�non and initial di¤erential a

nonzero complex multiple of the pull-back to W �
1 ½C�non of f�

1 [which is well-
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defined up to possible confusion with its complex conjugate] such that the

RC-holomorphic structure induced on this domain [via this RC-Teichmüller

mapping] by the RC-holomorphic structure of the codomain coincides with the

RC-holomorphic structure induced, via the above functorial homeomorphism,

by the RC-holomorphic structure of W �
2 ½C�non. In particular, this functorial

homeomorphism factors as the composite of an RC-Teichmüller mapping which

induces the identity map on the underlying real analytic manifolds with

an isomorphism of RC-Riemann orbisurfaces. That is to say, the functorial

homeomorphism considered above is an RC-Teichmüller mapping, as desired,

hence extends naturally to the canonical compactifications [cf. Remark 1.3.2] of

the W �
i ½C�non. Moreover, the functoriality of this homeomorphism [together

with the fact that W �
i is of complex type with trivial ‘‘stack structure’’] allows

one to descend the RC-Teichmüller mapping just obtained between the ca-

nonical compactifications of the W �
i ½C�non to an RC-Teichmüller mapping

between the canonical compactifications of the X �
i , hence [by our assumption

that P i is totally ramified at infinity] to an RC-Teichmüller mapping

X �
1 !@ X �

2

thus completing the proof of assertion (ii). [Here, we note in passing that

X �
i is of complex type if and only if the automorphisms of W �

i ½C�non induced

by elements of GalðW �
i =X

�
i Þ preserve some orientation of the a‰ne linear

structure.] The a‰ne ortho-linear case follows similarly [but is somewhat

easier, since it does not involve any Teichmüller theory!]. This completes the

proof of assertion (iii). r

Corollary 2.4 (The Type of a Finite Object). In the notation of Theorem

2.3, let

F : LocrP1
ðX �

1 ; f
�
1 Þ !

@
LocrP2

ðX �
2 ; f

�
2 Þ

[where r is ‘‘P’’, ‘‘R’’, or ‘‘S’’] be an equivalence of categories. Suppose

further that, for i ¼ 1; 2, W �
i is a finite object of LocrP i

ðX �
i ; f

�
i Þ such that

FðW �
1 Þ ¼ W �

2 . Then:

(i) W �
1 is of complex type if and only if W �

2 is.

(ii) The ‘‘stack structure’’ of W �
1 is trivial if and only if the same is true of

W �
2 .

(iii) Suppose that the ‘‘stack structure’’ of W �
i is trivial, and that W �

i is

of complex type; write W �
i for the canonical compactification [cf. Remark 1.3.2]

of W �
i . Then the genus of W �

i , as well as the cardinality of the set W �
i nW �

i

is independent of i. If, moreover, this genus is equal to 1, then the pair

ðW �
1 ; f

�
1 jW �

1
Þ is toral [cf. Remark 2.1.3] (respectively, and W �

1 is of torsion type)

if and only if the same is true of ðW �
2 ; f

�
2 jW �

2
Þ (respectively, and W �

2 ).
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Proof. All of these assertions follow formally from Theorem 2.3, (ii),

(iii). Here, we note that in the genus 1 case, ‘‘torality’’ is [easily verified to be]

equivalent to the condition that the natural parameters [arising from the a‰ne

linear structure] extend to neighborhoods of the ‘‘points at infinity’’ of the

canonical compactification. Once one has established ‘‘torality’’, the property

of being of torsion type is completely determined by the a‰ne linear structure

determined by the natural parameters. r

Next, we define a somewhat di¤erent type of category of localizations,

namely, a category of finite étale localizations [cf. the categories ‘‘Locð�Þ’’,
‘‘Lockð�Þ’’ of [Mzk7], § 2]

FELocðX �; f�Þ

associated to an RC-Teichmüller pair ðX �; f�Þ. The objects of this category

are RC-Teichmüller pairs ðY �;c�Þ, where Y � admits a finite étale morphism [of

RC-Riemann orbisurfaces] Y � ! X � such that c� is the pull-back to Y � of f�.

The morphisms

ðY �
1 ;c

�
1 Þ ! ðY �

2 ;c
�
2 Þ

are finite étale morphisms [of RC-Riemann orbisurfaces] Y �
1 ! Y �

2 [which are

not necessarily over X �!] with respect to which c�
2 pulls back to c�

1 . Similarly,

if X � is of complex type, then one may define a similar category

FELocCðX �; f�Þ

by taking the objects to be the objects of FELocðX �; f�Þ and the morphisms to

be the ‘‘holomorphic’’ morphisms, i.e., the morphisms ðY �
1 ;c

�
1 Þ ! ðY �

2 ;c
�
2 Þ of

FELocðX �; f�Þ that induce holomorphic maps from each connected component

of the complexification of Y �
1 lying over some fixed connected component X0 of

the complexification of X � to some connected component of the complex-

ification of Y �
2 lying over X0.

Definition 2.5. We shall refer to the RC-Teichmüller pair ðX �; f�Þ as

a core (respectively, C-core) if X � is of real or complex type (respectively,

of complex type), and, moreover, the object of FELocðX �; f�Þ (respec-

tively, FELocCðX �; f�Þ) determined by ðX �; f�Þ forms a terminal object of

FELocðX �; f�Þ (respectively, FELocCðX �; f�Þ) [cf. [Mzk7], Definition 2.1, (ii);

[Mzk7], Remark 2.1.1].

Corollary 2.6 (Extension of Equivalences of Categories). In the notation

of Theorem 2.3, suppose further that, for i ¼ 3; 4, ðX �
i ; f

�
i Þ is an RC-Teichmüller

pair, and that, for i ¼ 1; 2; 3; 4, the morphism p1ðX �
i Þ ! P i is the identity

morphism on p1ðX �
i Þ. [Thus, it is immediate that P i is both ‘‘totally ramified at
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infinity’’ and ‘‘stack-resolving’’.] Moreover, for i ¼ 1; 2, let us assume that we

have been given an equivalence of categories

F : LocrP1
ðX �

1 ; f
�
1 Þ !

@
LocrP2

ðX �
2 ; f

�
2 Þ

[where r is ‘‘P’’, ‘‘R’’, or ‘‘S’’], as well as a finite étale morphism of RC-

Riemann orbisurfaces

ðX �
i ; f

�
i Þ ! ðX �

iþ2; f
�
iþ2Þ

with respect to which f�
iþ2 pulls back to f�

i . Then:

(i) The morphism ðX �
i ; f

�
i Þ ! ðX �

iþ2; f
�
iþ2Þ induces a natural equivalence of

categories

LocrðX �
i ; f

�
i Þ !

@
LocrðX �

iþ2; f
�
iþ2ÞðX �

i
;f �

i Þ

[where i ¼ 1; 2; r is ‘‘P’’, ‘‘R’’, or ‘‘S’’; we omit the subscripted ‘‘P i’s’’]. In

particular, we obtain a natural functor

LocrðX �
i ; f

�
i Þ ! LocrðX �

iþ2; f
�
iþ2Þ

[i.e., by composing the natural functor LocrðX �
iþ2; f

�
iþ2ÞðX �

i
;f �

i Þ !
LocrðX �

iþ2; f
�
iþ2Þ with the above equivalence].

(ii) Suppose that r is ‘‘R’’ or ‘‘S’’, and that, for i ¼ 1; 2, ðX �
iþ2; f

�
iþ2Þ is

either a core or a C-core. Then there exists a 1-commutative diagram

LocrðX �
1 ; f

�
1 Þ ���! LocrðX �

1þ2; f
�
1þ2Þ???yF

???yC

LocrðX �
2 ; f

�
2 Þ ���! LocrðX �

2þ2; f
�
2þ2Þ

in which the vertical arrows are equivalences of categories; the horizontal arrows

are the natural functors of (i); C is uniquely determined, up to unique iso-

morphism, by the condition that the diagram 1-commute.

(iii) Suppose that ‘‘r ¼ P’’, and that, for i ¼ 1; 2, there exists a cartesian

commutative diagram of finite étale morphisms of RC-orbifolds

Y �
i ���! Y �

iþ2???y
???y

X �
i ���! X �

iþ2

in which the lower horizontal arrow arises from the morphism ðX �
i ; f

�
i Þ !

ðX �
iþ2; f

�
iþ2Þ given above; Y �

i , Y
�
iþ2 are punctured RC-tori of complex type; Y �

iþ2

is once-punctured [which implies that Y �
i is of torsion type, and that ðY �

i ; f
�
i jY �

i
Þ,

ðY �
iþ2; f

�
iþ2jY �

iþ2
Þ are toral]; the vertical arrows are ‘‘minimal’’ [in the sense of

Remark 2.1.3]. Then there exists a 1-commutative diagram
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LocPðX �
1 ; f

�
1 Þ ���! LocPðX �

1þ2; f
�
1þ2Þ???yF

???yC

LocPðX �
2 ; f

�
2 Þ ���! LocPðX �

2þ2; f
�
2þ2Þ

in which the vertical arrows are equivalences of categories; the horizontal arrows

are the natural functors of (i); C is uniquely determined, up to unique iso-

morphism, by the condition that the diagram 1-commute.

Proof. Assertion (i) (respectively, (ii)) is immediate from the definitions

(respectively, the definitions and Theorem 2.3, (iii)). Next, we consider as-

sertion (iii). Now it follows from Remark 2.1.3; Corollary 2.4, (i), (ii), (iii);

the minimality assumption on Y �
i ! X �

i [where i ¼ 1; 2], that F maps Y �
1 to

an isomorph of Y �
2 . Now assertion (iii) follows by observing that the auto-

morphism group of Y �
i that determines the quotient Y �

i ! Y �
iþ2 [hence also the

quotient Y �
i ! X �

iþ2, since the first commutative diagram in the statement of

Corollary 2.6, (iii), is cartesian] may be recovered category-theoretically within

LocPðX �
i ; f

�
i Þ, by applying Theorem 2.3, (ii) [i.e., the fact that F arises from a

map that is compatible with the a‰ne linear structures of the punctured RC-tori

Y �
i ], together with the fact that Y �

1 , Y
�
2 are of torsion type. Finally, we note

that the uniqueness assertions in assertions (ii), (iii) follow from the definitions,

together with Theorem 2.3, (i). r

Remark 2.6.1. The ‘‘extendability’’ property of Corollary 2.6, (ii), (iii),

is intended to be reminiscent of the ‘‘extendability’’ result proven in [Mzk7],

Corollary 2.5, (ii) [cf. also [Mzk8], Corollary 3.1.4, (iii); [Mzk9], Theorem 2.3;

[Mzk11], Theorem 6.8, (ii)] by applying the p-adic version of the Grothendieck

Conjecture, proven in [Mzk4].

Appendix: Quasiconformal linear algebra

In this Appendix, we review various well-known facts concerning the

geometry and linear algebra of the euclidean plane that are relevant to the

theory of quasiconformal maps.

Write

GL>0
2 ðRÞ;GL<0

2 ðRÞJGL2ðRÞ

for the subsets of matrices of positive and negative determinant, respective-

ly. In the following discussion, we shall often identify the real vector space

underlying the complex number field C with R2 via the bijection R2 C ða; bÞ 7!
aþ ib A C. This identification determines an immersion of topological groups
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C� ,! GL>0
2 ðRÞ

by mapping C� C aþ ib 7! a �b

b a

� �
. In the following discussion, we shall

often identify C� with its image under this immersion and write ‘‘C� J
GL>0

2 ðRÞ’’. The subgroup C� JGL>0
2 ðRÞ is normalized by the matrix

t ¼def 0 1

1 0

� �

conjugation by which induces complex conjugation on C�.

If M A GL2ðRÞ, then we shall write

fM : C ! C

for the associated map from C to itself. Also, we shall often think of GL2ðRÞ
as acting on the upper half-plane H in the standard fashion, via linear fractional

transformations, i.e., if z is the standard coordinate on H, then M ¼
a b

c d

� �
A GL2ðRÞ acts via the transformation

z 7! azþ b

czþ d

if M A GL>0
2 ðRÞ, and via the transformation

z 7! azþ b

czþ d

if M A GL<0
2 ðRÞ [cf. [Mzk5], Example 3.2].

Now we have the following:

Proposition A.1 (The Dilatation of a Quasiconformal Map).

(i) The map

t 7! t 0

0 1

� �

[where t A Rb1 ¼def fs A R j sb 1g] determines a structure of ‘‘one-dimensional

manifold with boundary’’ [i.e., f1g is the boundary of Rb1] on the double coset

space

C�nGL>0
2 ðRÞ=C� GSOð2ÞnSL2ðRÞ=SOð2Þ

—where ‘‘G’’ denotes the bijection induced by the natural inclusion

SL2ðRÞ ,! GL>0
2 ðRÞ.

(ii) The map

M 7! DilðMÞ ¼def qfM=qz

qfM=qz

����
����
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determines an isomorphism of manifolds with boundary

C�nGL>0
2 ðRÞ=C� !@ ½0; 1Þ

which is given, relative to the bijection with Rb1 appearing in (i), by the map

t 7! t� 1

tþ 1

[where t A Rb1]. Alternatively, if we apply the bijection of H with the open unit

disk given by z 7! izþ1
iz�1 , then the subset ½0; 1Þ of the open unit disk determines a

parametrization of C�nGL>0
2 ðRÞ=C� relative to which the map M 7! DilðMÞ is

given by the identity.

Proof. First, we consider assertion (i). It is immediate from the defini-

tions that the natural inclusion SL2ðRÞ ,! GL>0
2 ðRÞ induces a homeomorphism

of coset spaces C�nGL>0
2 ðRÞ=C� GSOð2ÞnSL2ðRÞ=SOð2Þ. Moreover, if we

apply the homeomorphism SL2ðRÞ=SOð2Þ !@ H given by letting SL2ðRÞ act on

the point i A H, followed by the homeomorphism discussed in assertion (ii) of H

with the open unit disk, then the parametrization of assertion (i) is clearly

mapped onto the inverval ½0; 1Þ, which may be identified with the quotient of

the unit disk by the action of the unit circle S1 JC�. This completes the proof

of assertion (i).

To verify assertion (ii), let us first observe that we may write fMðzÞ ¼
c1zþ c2z, where c1 ¼ a1 þ ib1, c2 ¼ a2 þ ib2; a1; a2; b1; b2 A R; DilðMÞ ¼
jc2j=jc1j. This description of fM , DilðMÞ renders evident the fact that

M 7! DilðMÞ depends only on the image of M in C�nGL>0
2 ðRÞ=C�. Now

applying Dilð�Þ to the parametrization of assertion (i) yields the function t�1
tþ1

[since 2ðtaþ ibÞ ¼ ðtþ 1Þðaþ ibÞ þ ðt� 1Þða� ibÞ]. This completes the proof

of assertion (ii). r

Proposition A.2 (Dictionary between Function Theory and Linear Algebra).

Let M A GL2ðRÞ. Then:

(i) The subgroup C� JGL2ðRÞ is equal to the set of matrices A GL2ðRÞ
that commute with the matrix determined by i A C�.

(ii) M lies in C� (respectively, GL>0
2 ðRÞ; C� � t; GL<0

2 ðRÞ) if and only

if the map fM is conformal (respectively, quasiconformal; anti-conformal; anti-

quasiconformal).

Remark A.2.1. Here, we use the term ‘‘anti-conformal’’ (respectively,

‘‘anti-quasiconformal’’) to refer to a map that is conformal (respectively,

quasiconformal) with respect to the holomorphic structure on the domain given

by the holomorphic functions and the holomorphic structure on the codomain

given by the anti-holomorphic functions.
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Proof. Assertion (i) (respectively, (ii)) is an easy exercise (respectively,

follows immediately from the definitions and assertion (i)). r

Definition A.3.

(i) We shall refer to any [necessarily nonempty] open subset of R2 given

by the interior of the convex hull of the points w;wþ u;wþ v;wþ uþ v A R2,

where u; v A R2 are a basis of R2 and w A R2, as a parallelogram [of R2]. If

SJR2 is a subset, then we shall refer to a parallelogram PJS as pre-compact

if it is contained in a compact subset of S [i.e., if the closure of P in R2 is

contained in S].

(ii) We shall refer to a parallelogram of R2 as a rectangle if all of its

angles are right angles [i.e., in the notation of (i), the vectors u; v A R2 are

orthogonal ]. We shall refer to a rectangle of R2 as a square if all of its sides

are of the same length [relative to the standard euclidean metric on R2].

(iii) We shall refer to a map R2 ! R2 as linear (respectively, ortho-

linear; quasiconformal linear; conformal linear; anti-quasiconformal linear; anti-

conformal linear) if it is equal to the map determined by an M A GL2ðRÞ, where
M is arbitrary (respectively, A C� UC� � t; A GL>0

2 ðRÞ; A C�; A GL<0
2 ðRÞ;

A C� � t).
(iv) We shall refer to a map R2 ! R2 as a‰ne linear (respectively, a‰ne

ortho-linear; a‰ne quasiconformal linear; a‰ne conformal linear; a‰ne anti-

quasiconformal linear; a‰ne anti-conformal linear) if it may be written as the

composite of a translation [i.e., the map R2 ! R2 given by adding a fixed

u0 A R2] with a linear (respectively, ortho-linear; quasiconformal linear; con-

formal linear; anti-quasiconformal linear; anti-conformal linear) map.

One way to show that some given homeomorphism of, say, R2 to

itself is a‰ne linear [i.e., either a‰ne quasiconformal linear or a‰ne anti-

quasiconformal linear] or a‰ne ortho-linear [i.e., either a‰ne conformal linear

or a‰ne anti-conformal linear] is by applying the following result:

Proposition A.4 (Squares, Rectangles, and Parallelograms). Let BJR2

be a connected open subset; let

h : B ! R2

be a map that determines a homeomorphism of B onto a parallelogram of R2.

Then:

(i) Suppose that h maps pre-compact parallelograms in B to parallelo-

grams in R2. Then h is [the restriction to B of a map R2 ! R2 that is] a‰ne

linear.

(ii) Suppose that h maps pre-compact rectangles in B to rectangles in R2.

Then h is [the restriction to B of a map R2 ! R2 that is] a‰ne ortho-linear.
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(iii) Suppose that h maps pre-compact squares in B to squares in R2.

Then h is [the restriction to B of a map R2 ! R2 that is] a‰ne ortho-linear.

Proof. First, we observe that, by considering squares with edges parallel

to the coordinate axes contained in B and applying an appropriate a‰ne ortho-

linear map to B, we may assume without loss of generality that B itself is

a square with edges parallel to the coordinate axes centered at the origin that

contains the points ða; bÞ, where a; b A R, jaj ¼ jbj ¼ 1.

Next, we consider assertion (i). Define an ‘‘edge-segment’’ of a pre-

compact parallelogram PJB to be an infinite set of the form K VK 0, where K

is the closure of P; K 0 is the closure of another pre-compact parallelogram P 0;

and PVP 0 ¼ q. Consider the equivalence relation on edge-segments of P

generated by the pre-equivalence relation that two edge-segments E1, E2 are

‘‘pre-equivalent’’ if the intersection E1 VE2 is infinite. Then observe that the

edges of a pre-compact parallelogram PJB are in natural bijective corre-

spondence with the equivalence classes of edge-segments of P, and that, under

this bijective correspondence, an edge of P is given by the union of edge-

segments that belong to the corresponding equivalence class of edge-segments.

The vertices of P may then be recovered as the nonempty intersections of

pairs of edges. Thus, the ‘‘a‰ne linear structure’’ of B may be recovered by

considering the combinatorics of intersections among the various edges of the

pre-compact parallelograms of B [i.e., in the notation of Definition A.3, (i), this

combinatorial data encodes precisely the information that ‘‘if one takes w as the

origin, then the sum of the points wþ u, wþ v is equal to wþ uþ v’’]. Since

this description of the a‰ne linear structure of B is preserved by h, we thus

conclude that h is a‰ne linear, as desired.

Next, we consider assertion (ii). By composing h with an appro-

priate a‰ne ortho-linear map R2 ! R2, we may assume, without loss of

generality, that h fixes the points ð0; 0Þ and ð1; 1Þ. Next, let us observe that

the [‘‘rectangle-theoretic analogue’’ of the ‘‘parallelogram-theoretic’’] topolog-

ical description of vertices and edges given in the preceding paragraph [i.e.,

where ‘‘P’’, ‘‘P 0’’ are assumed to be rectangles] implies that h preserves line

segments. Since, moreover, a square may be characterized as a rectangle P

such that the line segments given by the diagonals of the rectangle are

orthogonal [i.e., admit sub-line segments that appear as adjacent edges of some

rectangle], we conclude that h preserves squares. Thus, to complete the proof

of assertion (ii), it su‰ces to verify assertion (iii).

Finally, we consider assertion (iii). By composing h with an appropriate

a‰ne ortho-linear map R2 ! R2, we may assume, without loss of generality,

that h fixes the points ð0; 0Þ and ð1; 1Þ. Since [as one verifies immediately] there

is precisely one square SJR2 that has the points ð0; 0Þ as ð1; 1Þ as opposite
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vertices, one concludes from the topological description of vertices and edges

given above that h preserves this square S. Thus, by possibly composing h

with a reflection about the diagonal of S [which is manifestly an a‰ne ortho-

linear map], we may assume that h induces the identity morphism on the set of

edges of S. Moreover, the topological description of the vertices and edges

applied above also implies that h maps line segments in B that are parallel to

one of the two coordinate axes of R2 [i.e., to one of the edges of S] to line

segments in R2 that are parallel to one of the two coordinate axes of R2. On

the other hand, this last property implies [in light of the fact that h induces the

identity morphism on the set of edges of S] that h may be written in the form

hðða; bÞÞ ¼ ð f ðaÞ; gðbÞÞ

[where f , g are real-valued continuous functions on some open interval I JR

such that 0 A I and I is preserved by multiplication by �1]. Since, moreover, h

preserves squares, it follows that f ¼ g.

Next, let us observe that for a; b A I such that a; b0 0, ab A I , the fact that

h preserves line segments [cf. the argument applied in the discussion of assertion

(ii)] implies that f ðabÞ=f ðaÞ is independent of a, hence [since f ð1Þ ¼ 1] that

f ðabÞ ¼ f ðaÞ � f ðbÞ. Since f ð0Þ ¼ 0, we thus conclude that for all a; b A I such

that ab A I , we have f ðabÞ ¼ f ðaÞ � f ðbÞ. Thus, since R� is a real analytic Lie

group, we thus conclude [by Cartan’s theorem—cf., e.g., [Serre], Chapter V, § 9,

Theorem 2] that there exists a positive real a such that

f ðxÞ ¼ jxja � ðx=jxjÞ

for all nonzero x A I . On the other hand, since, for su‰ciently small e > 0, the

function

x 7! f ðxþ eÞ � f ðeÞ

satisfies similar hypotheses to f , we conclude that this function may be written,

at least for, say, x A JJ I , where J is some open inverval of positive real

numbers, in the form x 7! c � xa 0
, for some c; a 0 > 0. That is to say, we obtain

the relation

ðxþ eÞa � ea ¼ c � xa 0

[for x A J]. Thus, by, say, di¤erentiating this relation with respect to x, taking

the natural logarithm, and then di¤erentiating again with respect to x, we

obtain that

ða� 1Þx ¼ ða 0 � 1Þðxþ eÞ

[a contradiction, unless a ¼ a 0 ¼ 1]. Thus, a ¼ a 0 ¼ 1, i.e., f ðxÞ ¼ x for all

x A I , so h is a‰ne ortho-linear, as desired. r
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