Quandle cocycle invariants of pretzel links

Masahide Iwakiri
(Received Nov. 4, 2005)
(Revised Sept. 6, 2005)

Abstract

In this paper, we give a formula for the quandle cocycle invariants associated with the Fox shadow p-coloring of all pretzel links.

1. Introduction

A quandle cocycle invariant of a link L is defined when a quandle 3cocycle is fixed. In this paper, we consider a quandle cocycle invariant $\Psi_{p}(L)$ associated with the 3-cocycle θ_{p} of the dihedral quandle of order p founded by Mochizuki [7], where p is an odd integer. This invariant takes value in a Laurent polynomial ring $\mathbf{Z}\left[T, T^{-1}\right] /\left(T^{p}-1\right)$. It is calculated when L is a torus knot and p is an odd prime [2], when L is a 2 -bridge knot and p is an odd prime [6], and when L is a 3-braid knot and $p=3$ [10]. The purpose of this paper is to calculate the invariants $\Psi_{p}(L)$ for all pretzel links. (Asami [1] calculates quandle cocycle invariants of alternating odd pretzel knots. However his result (Proposition 4 of [1]) is not correct.)

For integers m_{1}, \ldots, m_{n}, we denote by $D\left(m_{1}, \ldots, m_{n}\right)$ the diagram shown in Fig. 1, where m_{i} indicates an m_{i} half twist on the i-th column for each i. We call such a diagram a pretzel link diagram. A link represented by $D\left(m_{1}, \ldots, m_{n}\right)$ is called a pretzel link and denoted by $P\left(m_{1}, \ldots, m_{n}\right)$.

Fig. 1

[^0]Let p be an odd prime integer. We denote $\left\{i \in\{1, \ldots, n\} \mid m_{i} \equiv 0\right.$ $(\bmod p)\}$ by $I_{p}=I_{p}\left(m_{1}, \ldots, m_{n}\right)$. The p-fundamental sequence of $\left(m_{1}, \ldots, m_{n}\right)$ is the sequence obtained from $\left(m_{1}, \ldots, m_{n}\right)$ by dropping all elements that are not multiples of p, and is denoted by $F_{p}=F_{p}\left(m_{1}, \ldots, m_{n}\right)$. For example, $F_{3}(4,-6,5,3,-2,0,1)=(-6,3,0)$. For an element x in \mathbf{Z}_{p} (or $\mathbf{Z}_{p^{2}}$, resp.), we denote by \bar{x} (or x^{-1}, resp.) the multiplicative inverse element of x if there exists. Put $\bar{W}=\overline{m_{1}}+\overline{m_{2}}+\cdots+\overline{m_{n}} \in \mathbf{Z}_{p}$ and $\hat{W}=m_{1}^{-1}+\cdots+m_{n}^{-1} \in \mathbf{Z}_{p^{2}}$ when $I_{p}=\phi$.

Theorem 1.1. Let $L=P\left(m_{1}, \ldots, m_{n}\right)$ be a pretzel link and p be an odd prime integer. Let $\left(M_{1}, \ldots, M_{l}\right)$ be the p-fundamental sequence of $\left(m_{1}, \ldots, m_{n}\right)$, where $l=\left|I_{p}\right|$.
(i) If $l \geq 2$, then

$$
\Psi_{p}(L)=p^{2} \sum_{s_{1}+\cdots+s_{l} \equiv 0} T^{-\left\{\left(M_{1} / p\right) s_{1}^{2}+\cdots+\left(M_{l} / p\right) s_{l}^{2}\right\}}
$$

where s_{1}, \ldots, s_{l} run over $0,1, \ldots, p-1$ such that $s_{1}+\cdots+s_{l} \equiv 0(\bmod p)$.
(ii) If $l=0$ and $\bar{W} \equiv 0(\bmod p)$ (i.e., \hat{W} is divisible by p), then

$$
\Psi_{p}(L)=p^{2} \sum_{s=0}^{p-1} T^{(\hat{W} / p) s^{2}}
$$

(iii) If l and \bar{W} are not in the case of (i) nor (ii), then

$$
\Psi_{p}(L)=p^{2}
$$

By Theorem 1.1, we see that the invariant $\Psi_{p}(L)$ of a pretzel link $L=$ $P\left(m_{1}, \ldots, m_{n}\right)$ does not depend on the order of the sequence $\left(m_{1}, \ldots, m_{n}\right)$, and that if $l \geq 2$, then $\Psi_{p}(L)$ depends only on the p-fundamental sequence of $\left(m_{1}, \ldots, m_{n}\right)$.

For a surface link S in \mathbf{R}^{4}, we denoted by $\Phi_{p}(S)$ the quandle cocycle invariant of S (defined in [3]) associated with the 3 -cocycle θ_{p}. As a corollary of Theorem 1.1, we have quandle cocycle invariants of twist-spin of pretzel links.

Corollary 1.2. Let $L=P\left(m_{1}, \ldots, m_{n}\right)$ be a pretzel link and p be an odd prime integer. Let r be an even integer and let $\tau^{r} L$ be an r-twist-spin of L. Let $\left(M_{1}, \ldots, M_{l}\right)$ be the p-fundamental sequence of $\left(m_{1}, \ldots, m_{n}\right)$, where $l=\left|I_{p}\right|$.
(i) If $l \geq 2$, then

$$
\Phi_{p}\left(\tau^{r} L\right)=p \sum_{s_{1}+\cdots+s_{l} \equiv 0} T^{-r\left\{\left(M_{1} / p\right) s_{1}^{2}+\cdots+\left(M_{l} / p\right) s_{l}^{2}\right\}}
$$

where s_{1}, \ldots, s_{l} run over $0,1, \ldots, p-1$ such that $s_{1}+\cdots+s_{l} \equiv 0(\bmod p)$.
(ii) If $l=0$ and $\bar{W} \equiv 0(\bmod p)$ (i.e., \hat{W} is divisible by $p)$, then

$$
\Phi_{p}\left(\tau^{r} L\right)=p \sum_{s=0}^{p-1} T^{r(\hat{W} / p) s^{2}}
$$

(iii) If l and \bar{W} are not in the case of (i) nor (ii), then

$$
\Phi_{p}\left(\tau^{r} L\right)=p
$$

When r is an odd integer, any diagram of $\tau^{r} L$ has only p trivial p colorings, and hence $\Phi_{p}\left(\tau^{r} L\right)=p$ (cf. [9]).

Throughout this paper, by $x \equiv y$ and $x \equiv_{2} y$, we mean $x \equiv y(\bmod p)$ and $x \equiv y\left(\bmod p^{2}\right)$, respectively. Furthermore, for a color a of an arc or a region, we fix a representative element in \mathbf{Z}, and it may be also denoted by the same symbol a. Some elements in $\mathbf{Z}_{p^{2}}$ may be defined by using such representative elements. For example, $\delta \equiv_{2} a^{\prime}-a$ in Lemma 2.1 is an element in $\mathbf{Z}_{p^{2}}$ such that $\delta \equiv_{2} z^{\prime}-z$, where z and z^{\prime} are fixed representative elements in \mathbf{Z} of a and a^{\prime}, respectively. In §2, we review quandle cocycle invariants. We prove Theorem 1.1 in §3, and Corollary 1.2 in $\S 4$.

2. Quandle cocycle invariants

A quandle cocycle invariant of a link associated with a 3-cocycle f of a finite quadle Q, which is based on [3, 8], is defined in [4]. When we calculate it, we need to take account of signs of crossing points. However, when Q is the dihedral quandle of order p and f is Mochizuki's 3 -cocycle θ_{p}, we do not need to be careful about this as seen below (cf. [6, 11]).

Let D be a diagram of a link (or a tangle) L, and $\Sigma(D)$ the set of arcs of D. A map $C: \Sigma(D) \rightarrow \mathbf{Z}_{p}$ is a p-coloring of D if $C\left(\mu_{1}\right)+C\left(\mu_{2}\right) \equiv 2 C(v)$ at each crossing x, where μ_{1} and μ_{2} are under-arcs separated by an over-arc v. A shadow p-coloring of D extending C is a map $\tilde{C}: \tilde{\Sigma}(D) \rightarrow \mathbf{Z}_{p}$, where $\tilde{\Sigma}(D)$ is the union of $\Sigma(D)$ and the set of regions separated by the underlying immersed curve of D, satisfying the following conditions: (i) \tilde{C} restricted to $\Sigma(D)$ coincides with C, and (ii) if λ_{1} and λ_{2} are regions separated by an arc μ, then $\tilde{C}\left(\lambda_{1}\right)+\tilde{C}\left(\lambda_{2}\right) \equiv 2 \tilde{C}(\mu)$. The set of p-colorings (or shadow p-colorings) is denoted by $\operatorname{Col}_{p}(D)\left(\right.$ or $\left.\widetilde{C o l}_{p}(D)\right)$. A p-coloring of D is trivial if the image of the p-coloring consists of a single element; otherwise non-trivial. A shadow p coloring \tilde{C} of D is trivial if \tilde{C} restricted to $\Sigma(D)$ is a trivial coloring; otherwise non-trivial.

Let \tilde{C} be a shadow p-coloring, and at a crossing point x, let a, b, c, R and $R^{\prime} \in \mathbf{Z}_{p}$ be the colors of three arcs and two regions as in Fig. 2. We note that

Fig. 2
$(R-a) \frac{a^{p}+c^{p}-2 b^{p}}{p} \equiv\left(R^{\prime}-c\right) \frac{a^{p}+c^{p}-2 b^{p}}{p} \in \mathbf{Z}_{p} . \quad$ Thus, we can define the Boltzmann weight at x by

$$
W_{p}(x ; \tilde{C})=(R-a) \frac{a^{p}+c^{p}-2 b^{p}}{p} \in \mathbf{Z}_{p}
$$

We put $W_{p}(\tilde{C})=\sum_{x} W_{p}(x ; \tilde{C})$, where x runs over all crossings of the diagram D. Consider the state-sum

$$
\Psi_{p}(D)=\sum_{\tilde{C} \in \widetilde{C_{o l}^{p}}(D)} T^{W_{p}(\tilde{C})} \in \mathbf{Z}\left[T, T^{-1}\right] /\left(T^{p}-1\right) .
$$

The state-sum $\Psi_{p}(D)$ is invariant under Reidemeister moves and does not depend on a choice of the orientation of L, and hence we may denote it by $\Psi_{p}(L)$ (cf. [6, 11]). This is equal to the quandle cocycle invariant associated with Mochizuki's 3 -cocycle θ_{p}, in the sense of [4].

We need the following lemma and corollary for later calculations.
Lemma 2.1 ([11]). Let D be a tangle diagram and let R, a and a^{\prime} be the colors of the region and two arcs in D as in Fig. 3 by a shadow p-coloring \tilde{C}, where m in Fig. 3 indicates m half twist. Then,

$$
\begin{aligned}
W_{p}(\tilde{C}) \equiv & \frac{(R-a) a^{p}+(a-R-\delta) a^{\prime p}}{p} \\
& +\frac{(a-R+m \delta)(m \delta+a)^{p}+(R-a-(m-1) \delta)\left(m \delta+a^{\prime}\right)^{p}}{p}
\end{aligned}
$$

where $\delta \equiv_{2} a^{\prime}-a$.
Corollary 2.2. In Lemma 2.1, if m is divisible by p, then

$$
W_{p}(\tilde{C}) \equiv \frac{-m \delta^{2}}{p} .
$$

Proof. Since m is divisible by $p, \frac{(m \delta+x)^{p}}{p} \equiv \frac{x^{p}}{p}$ for any $x \in \mathbf{Z}_{p}$. Therefore, by Lemma 2.1,

Fig. 3

$$
\begin{aligned}
W_{p}(\tilde{C}) \equiv & \frac{(R-a) a^{p}+(a-R-\delta) a^{\prime p}}{p} \\
& +\frac{(a-R+m \delta) a^{p}+(R-a-(m-1) \delta) a^{\prime p}}{p} \\
\equiv & \frac{m \delta\left(a^{p}-a^{\prime p}\right)}{p} .
\end{aligned}
$$

Since m is divisible by p,

$$
W_{p}(\tilde{C}) \equiv \frac{m \delta\left(a-a^{\prime}\right)}{p}=\frac{-m \delta^{2}}{p} .
$$

3. Pretzel links

Let $L=P\left(m_{1}, \ldots, m_{n}\right)$ be a pretzel link and $D=D\left(m_{1}, \ldots, m_{n}\right)$ be a pretzel link diagram. Let μ_{i}, v_{i} and λ_{i} be the top-, bottom-left arcs and the left-side region of the i-th column for each i. (Put $\mu_{n+1}=\mu_{1}, v_{n+1}=v_{1}$ and $\lambda_{n+1}=\lambda_{1}$.) See Fig. 4. Let $\left(M_{1}, \ldots, M_{l}\right)$ be the p-fundamental sequence of $\left(m_{1}, \ldots, m_{n}\right)$.

Lemma 3.1. Let $D=D\left(m_{1}, \ldots, m_{n}\right)$ be a pretzel link diagram such that $I_{p} \neq \phi$.

Fig. 4
(i) Any p-coloring C of D satisfies a condition that $C\left(\mu_{i}\right) \equiv C\left(\mu_{i+1}\right)$ if $i \notin I_{p}$.
(ii) For $a_{1}, \ldots, a_{l} \in \mathbf{Z}_{p}$, there is a unique p-coloring $C=C\left(a_{1}, \ldots, a_{l}\right)$ of D such that $C\left(\mu_{\tau_{i}}\right) \equiv a_{i}$, where $\left\{\tau_{1}, \ldots, \tau_{l}\right\}=I_{p}, \tau_{1}<\cdots<\tau_{l}$.
(iii) Any p-coloring of D is represented as $C\left(a_{1}, \ldots, a_{l}\right)$ for some a_{1}, \ldots, $a_{l} \in \mathbf{Z}_{p}$.
(iv) If $\left|I_{p}\right|=1, \operatorname{Col}_{p}(D)$ consists of trivial colorings.

Proof. Put $\mu_{n+i}=\mu_{i}$ and $v_{n+i}=v_{i}$ for each i. We remark that $C\left(v_{i}\right) \equiv$ $m_{i}\left(C\left(\mu_{i+1}\right)-C\left(\mu_{i}\right)\right)+C\left(\mu_{i}\right)$ and $C\left(v_{i+1}\right) \equiv m_{i}\left(C\left(\mu_{i+1}\right)-C\left(\mu_{i}\right)\right)+C\left(\mu_{i+1}\right)$ for each i. Hence we have $C\left(v_{i}\right)-C\left(\mu_{i}\right) \equiv C\left(v_{i+1}\right)-C\left(\mu_{i+1}\right)$ for each i. Therefore

$$
C\left(v_{1}\right)-C\left(\mu_{1}\right) \equiv C\left(v_{2}\right)-C\left(\mu_{2}\right) \equiv \cdots \equiv C\left(v_{n}\right)-C\left(\mu_{n}\right) .
$$

Since $I_{p} \neq \phi$, there exists an integer $i_{0} \in I_{p}$ with $m_{i_{0}} \equiv 0$. Since $C\left(v_{i_{0}}\right) \equiv$ $m_{i_{0}}\left(C\left(\mu_{i_{0}+1}\right)-C\left(\mu_{i_{0}}\right)\right)+C\left(\mu_{i_{0}}\right)$, we have $C\left(v_{i_{0}}\right) \equiv C\left(\mu_{i_{0}}\right)$. Since $C\left(v_{i}\right)-\left(\mu_{i}\right)$ $\equiv C\left(v_{i_{0}}\right)-C\left(\mu_{i_{0}}\right)$ for each i, we have $C\left(v_{i}\right) \equiv C\left(\mu_{i}\right)$ for any i. Thus, if $i \notin I_{p}$, then $C\left(\mu_{i}\right) \equiv C\left(\mu_{i+1}\right) \quad$ by $C\left(v_{i}\right) \equiv m_{i}\left(C\left(\mu_{i+1}\right)-C\left(\mu_{i}\right)\right)+C\left(\mu_{i}\right)$ and $C\left(v_{i}\right) \equiv$ $C\left(\mu_{i}\right)$. This completes the proof of (i) and (iv) and induces that any p coloring is deteremined by the colors of $\mu_{\tau_{1}}, \ldots, \mu_{\tau_{l}}$. For $a_{1}, \ldots, a_{l} \in \mathbf{Z}_{p}$, we can construct a unique p-coloring $C=C\left(a_{1}, \ldots, a_{l}\right)$ of D such that $C\left(\mu_{\tau_{i}}\right) \equiv a_{i}$ for each i. Concretely, there is a p-coloring C satisfying the following conditions; see Fig. 5:

Fig. 5
(a) $C\left(\mu_{\tau_{i}}\right) \equiv C\left(v_{\tau_{i}}\right) \equiv a_{i}$ for each i.
(b) If $\tau_{i}<j<\tau_{i+1}\left(j \notin I_{p}\right)$, then $C(x) \equiv a_{i+1}$ for any arc x in the i-th column.

Thus, we have (ii). The statement (iii) follows from the fact that any p-coloring C^{\prime} can be represented as $C\left(C^{\prime}\left(\mu_{\tau_{1}}\right), \ldots, C^{\prime}\left(\mu_{\tau_{l}}\right)\right)$.

When $I_{p} \neq \phi$, by Lemma 3.1 (ii), for any a_{1}, \ldots, a_{l} and $R \in \mathbf{Z}_{p}$, we see that there is a unique shadow p-coloring $\tilde{C}=\tilde{C}\left(a_{1}, \ldots, a_{l}, R\right)$ such that $\left.\tilde{C}\right|_{\Sigma(D)}=C$
and $\tilde{C}\left(\lambda_{1}\right)=R$ for the unbounded region λ_{1}. Any shadow p-coloring is represented as $\tilde{C}\left(a_{1}, \ldots, a_{l}, R\right)$ by Lemma 3.1 (iii).

Proposition 3.2. Let $D=D\left(m_{1}, \ldots, m_{n}\right)$ be a pretzel link diagram such that $\left|I_{p}\right| \geq 2$ and $\left(M_{1}, \ldots, M_{l}\right)$ be the p-fundamental sequence of $\left(m_{1}, \ldots, m_{n}\right)$. Let $\tilde{C}=\tilde{C}\left(a_{1}, \ldots, a_{l}, R\right) . \quad$ Put $\quad s_{i} \equiv_{2} a_{i+1}-a_{i} \in \mathbf{Z}_{p^{2}} \quad$ for $\quad i=1, \ldots, l-1$ and $s_{l} \equiv_{2} a_{1}-a_{l}$. Then,

$$
W_{p}(\tilde{C}) \equiv-\frac{M_{1} s_{1}^{2}+\cdots+M_{l} s_{l}^{2}}{p}
$$

Proof. Let X_{i} be the set of crossing points of the i-th column of D for each i. By Lemma 3.1 (i), if $i \notin I_{p}$, then $\tilde{C}\left(\mu_{i}\right) \equiv \tilde{C}\left(\mu_{i+1}\right)$, so $\sum_{x \in X_{i}} W_{p}(x ; \tilde{C}) \equiv$ 0. Thus, by Corollary 2.2, $W_{p}(\tilde{C}) \equiv \sum_{i=1}^{n} \sum_{x \in X_{i}} W_{p}(x ; \tilde{C}) \equiv \sum_{i \in I_{p}} \sum_{x \in X_{i}} W_{p}(x ; \tilde{C}) \equiv$ $-\sum_{i=1}^{l} \frac{M_{i}\left(a_{i+1}-a_{i}\right)^{2}}{p} \equiv-\sum_{i=1}^{l} \frac{M_{i} s_{i}^{2}}{p}$.

Lemma 3.3. Let $D=D\left(m_{1}, \ldots, m_{n}\right)$ be a pretzel link diagram such that $I_{p}=\phi . \quad$ Then,
(i) there is a non-trivial p-coloring of D if and only if $\bar{W} \equiv 0$. If $\bar{W} \equiv 0$, then
(ii) for $a_{1}, b_{1} \in \mathbf{Z}_{p}$, there is a unique p-coloring $C=C\left(a_{1}, b_{1}\right)$ such that $C\left(\mu_{1}\right)=a_{1}$ and $C\left(v_{1}\right)=b_{1}$,
(iii) any p-coloring of D is represented by $C\left(a_{1}, b_{1}\right)$ for some a_{1} and b_{1}.

Proof. Since $C\left(v_{i}\right) \equiv m_{i}\left(C\left(\mu_{i+1}\right)-C\left(\mu_{i}\right)\right)+C\left(\mu_{i}\right) \quad$ and $\quad C\left(v_{i+1}\right) \equiv$ $m_{i}\left(C\left(\mu_{i+1}\right)-C\left(\mu_{i}\right)\right)+C\left(\mu_{i+1}\right)$ for each i, we have $C\left(\mu_{2}\right) \equiv \overline{m_{1}}\left(C\left(v_{1}\right)-\right.$ $\left.C\left(\mu_{1}\right)\right)+C\left(\mu_{1}\right)$ and $C\left(v_{2}\right) \equiv \overline{m_{1}}\left(C\left(v_{1}\right)-C\left(\mu_{1}\right)\right)+C\left(v_{1}\right)$. In the same way, we have $C\left(\mu_{i}\right) \equiv C\left(\mu_{1}\right)+\left(\sum_{j=1}^{i-1} \overline{m_{j}}\right)\left(C\left(v_{1}\right)-C\left(\mu_{1}\right)\right) \quad$ and $\quad C\left(v_{i}\right) \equiv C\left(v_{1}\right)+$
$\left(\sum_{j=1}^{i-1} \overline{m_{j}}\right)\left(C\left(v_{1}\right)-C\left(\mu_{1}\right)\right) \quad$ for each i. In particular, $C\left(\mu_{1}\right) \equiv C\left(\mu_{n+1}\right) \equiv$ $\bar{W}\left(C\left(v_{1}\right)-C\left(\mu_{1}\right)\right)+C\left(\mu_{1}\right)$ and $C\left(v_{1}\right) \equiv C\left(v_{n+1}\right) \equiv \bar{W}\left(C\left(v_{1}\right)-C\left(\mu_{1}\right)\right)+C\left(v_{1}\right)$. Thus, there is a p-coloring C if and only if $\bar{W} \equiv 0$ or $C\left(\mu_{1}\right) \equiv C\left(v_{1}\right)$. When $C\left(\mu_{1}\right) \equiv C\left(v_{1}\right), C$ is trivial. When $\bar{W} \equiv 0$ and $C\left(\mu_{1}\right) \not \equiv C\left(v_{1}\right), C$ is nontrivial. Thus, we have (i). For $a_{1}, b_{1} \in \mathbf{Z}_{p}$, we can construct a unique p-coloring $C=C\left(a_{1}, b_{1}\right)$ of D such that $C\left(\mu_{1}\right) \equiv a_{1}$ and $C\left(v_{1}\right) \equiv b_{1}$. Concretely, there is a p-coloring C such that $C\left(\mu_{i}\right) \equiv a_{1}+\left(\sum_{j=1}^{i-1} \overline{m_{j}}\right)\left(b_{1}-a_{1}\right)$ and $C\left(v_{i}\right) \equiv b_{1}+\left(\sum_{j=1}^{i-1} \overline{m_{j}}\right)\left(b_{1}-a_{1}\right)$. This completes the proof of (ii). The statement (iii) follows from the fact that any p-coloring C^{\prime} can be represented as $C\left(C^{\prime}\left(\mu_{1}\right), C^{\prime}\left(v_{1}\right)\right)$.

When $I_{p}=\phi$ and $\bar{W} \equiv 0$, by Lemma 3.3 (ii), for any a_{1}, b_{1} and $R \in \mathbf{Z}_{p}$, we see that there is a unique shadow p-coloring $\tilde{C}=\tilde{C}\left(a_{1}, b_{1}, R\right)$ such that $\left.\tilde{C}\right|_{\Sigma(D)}=C$ and $\tilde{C}\left(\lambda_{1}\right)=R$ for the unbounded region λ_{1}. Any shadow p coloring is represented as $\tilde{C}\left(a_{1}, b_{1}, R\right)$ by Lemma 3.3 (iii). Proposition 3.4 follows from Lemmas 3.5 and 3.6.

Proposition 3.4. Let $D=D\left(m_{1}, \ldots, m_{n}\right)$ be a pretzel link diagram such that $I_{p}=\phi$ and $\bar{W} \equiv 0 . \quad$ Let $\tilde{C}=\tilde{C}\left(a_{1}, b_{1}, R\right)$. Then,

$$
W_{p}(\tilde{C}) \equiv \frac{\hat{W} c_{0}^{2}}{p}
$$

where $c_{0} \equiv_{2} b_{1}-a_{1}$.
For a shadow p-coloring $\tilde{C}=\tilde{C}\left(a_{1}, b_{1}, R\right)$, let a_{2}, \ldots, a_{n} be the elements in \mathbf{Z}_{p} such that $\tilde{C}\left(\mu_{i}\right)=a_{i}$. Put $a_{n+1}=a_{1}$. Let A_{i} and B_{i} be the elememts in $\mathbf{Z}_{p^{2}}$ such that

$$
A_{i} \equiv_{2}\left(R_{i}-a_{i}\right) a_{i}^{p}+\left(a_{i}-R_{i}-\delta_{i}\right) a_{i+1}^{p}
$$

and

$$
B_{i} \equiv_{2}\left(a_{i}-R_{i}+m_{i} \delta_{i}\right)\left(m_{i} \delta_{i}+a_{i}\right)^{p}+\left(R_{i}-a_{i}-\left(m_{i}-1\right) \delta_{i}\right)\left(m_{i} \delta_{i}+a_{i+1}\right)^{p}
$$

where

$$
\delta_{i} \equiv_{2} a_{i+1}-a_{i} \quad \text { and } \quad R_{i} \equiv_{2} R+2 \sum_{j=1}^{i-1} \delta_{j},
$$

for each i. It is seen that $c_{0} \equiv m_{1} \delta_{1} \equiv \cdots \equiv m_{n} \delta_{n}$ and $\tilde{C}\left(\lambda_{i}\right) \equiv R_{i}$, so we will assume that for each i, R_{i} is given by a representative element in \mathbf{Z} for $\tilde{C}\left(\lambda_{i}\right)$. By Lemma 2.1,

$$
W_{p}(\tilde{C}) \equiv \frac{1}{p} \sum_{i=1}^{n}\left(A_{i}+B_{i}\right) .
$$

Lemma 3.5.

$$
\sum_{i=1}^{n} A_{i} \equiv_{2} 0
$$

Proof. Since $\delta_{i-1} \equiv_{2} a_{i}-a_{i-1}$ and $R_{i}-R_{i-1} \equiv_{2} 2 \delta_{i-1}$ for $i=2,3, \ldots, n$, we have $\left(R_{i}-a_{i}\right)+\left(a_{i-1}-R_{i-1}-\delta_{i-1}\right) \equiv_{2} 0$ for $i=2,3, \ldots, n$. Since $\delta_{n} \equiv_{2}$ $a_{1}-a_{n}$ and $R_{n} \equiv_{2} R_{1}+2 \sum_{j=1}^{n-1} \delta_{j}$, we have $\left(R_{1}-a_{1}\right)+\left(a_{n}-R_{n}-\delta_{n}\right) \equiv_{2}$
$-2 \sum_{j=1}^{n} \delta_{j} \equiv_{2} 0 . \quad$ Therefore, $\quad \sum_{i=1}^{n} A_{i} \equiv_{2}\left(R_{1}-a_{1}\right) a_{1}^{p}+\sum_{i=2}^{n} a_{i}^{p}\left\{\left(R_{i}-a_{i}\right)+\left(a_{i-1}-\right.\right.$ $\left.\left.R_{i-1}-\delta_{i-1}\right)\right\}+\left(a_{n}-R_{n}-\delta_{n}\right) a_{1}^{p} \equiv_{2} 0$.

Lemma 3.6.

$$
\sum_{i=1}^{n} B_{i} \equiv_{2} \hat{W} c_{0}^{2}
$$

Proof. Put $m_{0}=m_{n}$ and $\delta_{0}=\delta_{n}$. Let η_{i} be the element in $\mathbf{Z}_{p^{2}}$ such that $\eta_{i} \equiv{ }_{2} m_{i} \delta_{i}-m_{i-1} \delta_{i-1}$ for each i. By $c_{0} \equiv m_{1} \delta_{1} \equiv \cdots \equiv m_{n} \delta_{n}, \eta_{i}$ is divisible by p. This induces $\left(m_{1} \delta_{1}+x\right)^{p} \equiv_{2} \cdots \equiv_{2}\left(m_{n} \delta_{n}+x\right)^{p}$ for any $x \in \mathbf{Z}_{p^{2}}$. Thus, since $R_{i}-R_{i-1} \equiv_{2} 2 \delta_{i-1}$ and η_{i} is divisible by p,

$$
\begin{aligned}
\sum_{i=1}^{n} B_{i} & \equiv_{2} \sum_{i=1}^{n}\left(m_{i} \delta_{i}-m_{i-1} \delta_{i-1}\right)\left(m_{i} \delta_{i}+a_{i}\right)^{p} \\
& \equiv_{2} \sum_{i=1}^{n} \eta_{i}\left(c_{0}+a_{i}\right)^{p} \\
& \equiv_{2} \sum_{i=1}^{n} \eta_{i}\left(c_{0}+a_{i}\right) \\
& \equiv_{2} \sum_{i=1}^{n}\left(-m_{i} \delta_{i}^{2}\right) .
\end{aligned}
$$

Let ξ_{i} be the element in $\mathbf{Z}_{p^{2}}$ such that $\xi_{i}=c_{0}-m_{i} \delta_{i}$ for each i. Then, $\delta_{i} \equiv_{2}\left(c_{0}-\xi_{i}\right) m_{i}^{-1} . \quad$ Since $\delta_{n}=-\left(\delta_{1}+\delta_{2}+\cdots+\delta_{n-1}\right)$,

$$
\begin{aligned}
\sum_{i=1}^{n} B_{i} \equiv & \sum_{i=1}^{n-1}-\left(m_{i}+m_{n}\right) \delta_{i}^{2}-2 m_{n} \sum_{i=2}^{n-1} \sum_{j=1}^{i-1} \delta_{i} \delta_{j} \\
\equiv_{2} & \sum_{i=1}^{n-1}-\left(m_{i}+m_{n}\right)\left(m_{i}^{-1}\right)^{2}\left(c_{0}^{2}-2 c_{0} \xi_{i}\right) \\
& -2 m_{n} \sum_{i=2}^{n-1} \sum_{j=1}^{i-1} m_{i}^{-1} m_{j}^{-1}\left(c_{0}^{2}-\left(\xi_{i}+\xi_{j}\right) c_{0}\right) \\
\equiv & 2-c_{0}^{2}\left(m_{1}^{-1}+\cdots+m_{n-1}^{-1}+m_{n}\left(m_{1}^{-1}+\cdots+m_{n-1}^{-1}\right)^{2}\right) \\
& +2 c_{0} \sum_{i=1}^{n-1} \xi_{i}\left(m_{i}^{-1}+m_{n}\left(m_{i}^{-1}\right)^{2}+m_{n} m_{i}^{-1} \sum_{1 \leq j \leq n, j \neq i} m_{j}^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv_{2}-c_{0}^{2}\left(m_{1}^{-1}+\cdots+m_{n-1}^{-1}\right) m_{n} \hat{W}+2 c_{0} \sum_{i=1}^{n-1} \xi_{i} m_{i}^{-1} m_{n} \hat{W} \\
& \equiv_{2}-c_{0}^{2}\left(\hat{W}-m_{n}^{-1}\right) m_{n} \hat{W}+2 c_{0} \sum_{i=1}^{n-1} \xi_{i} m_{i}^{-1} m_{n} \hat{W} .
\end{aligned}
$$

Since ξ_{i} and \hat{W} are divisible by p,

$$
\sum_{i=1}^{n} B_{i} \equiv_{2}-c_{0}^{2}\left(m_{n}^{-1}\right) m_{n} \hat{W} \equiv{ }_{2} c_{0}^{2} \hat{W} .
$$

Proof of Theorem 1.1. (i) and (ii) follows from Propositions 3.2 and 3.4, respectively. For the remaining cases, all colorings are trivial by Lemmas 3.1 (iv) and 3.3 (i). Thus, we have (iii).

4. Twist-spin of pretzel links

Proof of Corollary 1.2. Asami and Satoh [2] defined a quandle cocycle invariant $\Psi_{p}^{*}(L)$ of a link L with a base point and proved that if r is even, $\Phi_{p}\left(\tau^{r} L\right)=\left.\Psi_{p}^{*}(L)\right|_{T \rightarrow T^{r}}$. It is shown in [12] that $\Psi_{p}(L)=p \Psi_{p}^{*}(L)$, and hence $\Psi_{p}^{*}(L)=p^{-1} \Psi_{p}(L)$. Thus, Corollary 1.2 is obtained from Theorem 1.1.

Remark 4.1. For an n-component link L, there are $n r$-twist-spins of L. They need not to be equivalent to each other, but quandle cocycle invariants of them are the same by Corollary 1.2. For example, for a 2 -component pretzel link $L=P(2,3,6 m)$, there are two 2-twist-spins of L. One is a union of 2-twist-spin of a trefoil and an unknotted torus, and the other is a union of an unknotted 2 -sphere and a knotted torus. Thus, they are not equivalent.

Acknowledgements

I would like to thank S. Kamada and S. Satoh for helpful comments. The author is partially supported by JSPS Research Fellowships for Young Scientists.

References

[1] S. Asami, The integrality of dihedral quandle cocycle invariants, preprint.
[2] S. Asami and S. Satoh, An infinite family of non-invertible surfaces in 4-space, Bull. London Math. Soc., 37 (2005), 285-296.
[3] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc., 355 (2003), 3947-3989.
[4] J. S. Carter, S. Kamada and M. Saito, Geometric interpretations of quandle homology, J. Knot Theory Ramifications, 10 (2001), 345-386.
[5] R. H. Fox, A quick trip through knot theory, in Topology of 3-manifolds and related topics, Ed. M. K. Fort Jr., Prentice-Hall (1962), 120-167.
[6] M. Iwakiri, Calculation of dihedral quandle cocycle invariants of twist spun 2-bridge knots, J. Knot Theory Ramifications, 14 (2005), 217-229.
[7] T. Mochizuki, Some calculations of cohomology groups of finite Alexander quandles, J. Pure Appl. Alg., 179 (2003), 287-330.
[8] C. Rourke and B. Sanderson, A new classification of links and some calculation using it, preprint at: http://xxx.lanl.gov/abs/math.GT/0006062
[9] S. Satoh, Surface diagrams of twist-spun 2-knots, J. Knot Theory Ramifications, 11 (2002), 413-430.
[10] S. Satoh, 3-colorings and cocycle invariants of 3-braid knots, preprint.
[11] S. Satoh, On the chirality of Suzuki's θ_{n}-curves, preprint.
[12] S. Satoh, A note on the shadow cocycle invariant of a knot with a base point, preprint.

Masahide Iwakiri
Department of Mathematics
Hiroshima University
Hiroshima 739-8526, Japan
iwakiri@hiroshima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: 57M25, 57M27, 57Q45.
 Keywords and phrases: quandle, quandle cocycle invariant, pretzel link.

