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Abstract. In this paper, we give a formula for the quandle cocycle invariants

associated with the Fox shadow p-coloring of all pretzel links.

1. Introduction

A quandle cocycle invariant of a link L is defined when a quandle 3-

cocycle is fixed. In this paper, we consider a quandle cocycle invariant CpðLÞ
associated with the 3-cocycle yp of the dihedral quandle of order p founded

by Mochizuki [7], where p is an odd integer. This invariant takes value in

a Laurent polynomial ring Z½T ;T�1�=ðT p � 1Þ. It is calculated when L is a

torus knot and p is an odd prime [2], when L is a 2-bridge knot and p is an

odd prime [6], and when L is a 3-braid knot and p ¼ 3 [10]. The purpose of

this paper is to calculate the invariants CpðLÞ for all pretzel links. (Asami

[1] calculates quandle cocycle invariants of alternating odd pretzel knots.

However his result (Proposition 4 of [1]) is not correct.)

For integers m1; . . . ;mn, we denote by Dðm1; . . . ;mnÞ the diagram shown

in Fig. 1, where mi indicates an mi half twist on the i-th column for each i.

We call such a diagram a pretzel link diagram. A link represented by

Dðm1; . . . ;mnÞ is called a pretzel link and denoted by Pðm1; . . . ;mnÞ.
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Let p be an odd prime integer. We denote fi A f1; . . . ; ng jmi 1 0

ðmod pÞg by Ip ¼ Ipðm1; . . . ;mnÞ. The p-fundamental sequence of ðm1; . . . ;mnÞ
is the sequence obtained from ðm1; . . . ;mnÞ by dropping all elements that are

not multiples of p, and is denoted by Fp ¼ Fpðm1; . . . ;mnÞ. For example,

F3ð4;�6; 5; 3;�2; 0; 1Þ ¼ ð�6; 3; 0Þ. For an element x in Zp (or Zp2 , resp.), we

denote by x (or x�1, resp.) the multiplicative inverse element of x if there exists.

Put W ¼ m1 þm2 þ � � � þmn A Zp and ŴW ¼ m�1
1 þ � � � þm�1

n A Zp2 when Ip ¼ f.

Theorem 1.1. Let L ¼ Pðm1; . . . ;mnÞ be a pretzel link and p be an odd

prime integer. Let ðM1; . . . ;MlÞ be the p-fundamental sequence of ðm1; . . . ;mnÞ,
where l ¼ jIpj.

(i) If lb 2, then

CpðLÞ ¼ p2
X

s1þ���þsl10

T�fðM1=pÞs21þ���þðMl=pÞs2l g;

where s1; . . . ; sl run over 0; 1; . . . ; p� 1 such that s1 þ � � � þ sl 1 0 ðmod pÞ.
(ii) If l ¼ 0 and W 1 0 ðmod pÞ (i.e., ŴW is divisible by p), then

CpðLÞ ¼ p2
Xp�1

s¼0

T ðŴW=pÞs2 :

(iii) If l and W are not in the case of (i) nor (ii), then

CpðLÞ ¼ p2:

By Theorem 1.1, we see that the invariant CpðLÞ of a pretzel link L ¼
Pðm1; . . . ;mnÞ does not depend on the order of the sequence ðm1; . . . ;mnÞ, and
that if lb 2, then CpðLÞ depends only on the p-fundamental sequence of

ðm1; . . . ;mnÞ.
For a surface link S in R4, we denoted by FpðSÞ the quandle cocycle

invariant of S (defined in [3]) associated with the 3-cocycle yp. As a corollary

of Theorem 1.1, we have quandle cocycle invariants of twist-spin of pretzel

links.

Corollary 1.2. Let L ¼ Pðm1; . . . ;mnÞ be a pretzel link and p be an odd

prime integer. Let r be an even integer and let trL be an r-twist-spin of L.

Let ðM1; . . . ;MlÞ be the p-fundamental sequence of ðm1; . . . ;mnÞ, where l ¼ jIpj.
(i) If lb 2, then

FpðtrLÞ ¼ p
X

s1þ���þsl10

T�rfðM1=pÞs21þ���þðMl=pÞs2l g;

where s1; . . . ; sl run over 0; 1; . . . ; p� 1 such that s1 þ � � � þ sl 1 0 ðmod pÞ.
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(ii) If l ¼ 0 and W 1 0 ðmod pÞ (i.e., ŴW is divisible by p), then

FpðtrLÞ ¼ p
Xp�1

s¼0

T rðŴW=pÞs2 :

(iii) If l and W are not in the case of (i) nor (ii), then

Fpðt rLÞ ¼ p:

When r is an odd integer, any diagram of t rL has only p trivial p-

colorings, and hence FpðtrLÞ ¼ p (cf. [9]).

Throughout this paper, by x1 y and x12 y, we mean x1 y ðmod pÞ and
x1 y ðmod p2Þ, respectively. Furthermore, for a color a of an arc or a region,

we fix a representative element in Z, and it may be also denoted by the same

symbol a. Some elements in Zp2 may be defined by using such representative

elements. For example, d12 a
0 � a in Lemma 2.1 is an element in Zp2 such

that d12 z
0 � z, where z and z 0 are fixed representative elements in Z of a

and a 0, respectively. In § 2, we review quandle cocycle invariants. We prove

Theorem 1.1 in § 3, and Corollary 1.2 in § 4.

2. Quandle cocycle invariants

A quandle cocycle invariant of a link associated with a 3-cocycle f of a

finite quadle Q, which is based on [3, 8], is defined in [4]. When we calculate

it, we need to take account of signs of crossing points. However, when Q is

the dihedral quandle of order p and f is Mochizuki’s 3-cocycle yp, we do not

need to be careful about this as seen below (cf. [6, 11]).

Let D be a diagram of a link (or a tangle) L, and SðDÞ the set of arcs of

D. A map C : SðDÞ ! Zp is a p-coloring of D if Cðm1Þ þ Cðm2Þ1 2CðnÞ at

each crossing x, where m1 and m2 are under-arcs separated by an over-arc n. A

shadow p-coloring of D extending C is a map ~CC : ~SSðDÞ ! Zp, where ~SSðDÞ is

the union of SðDÞ and the set of regions separated by the underlying immersed

curve of D, satisfying the following conditions: (i) ~CC restricted to SðDÞ co-

incides with C, and (ii) if l1 and l2 are regions separated by an arc m, then
~CCðl1Þ þ ~CCðl2Þ1 2 ~CCðmÞ. The set of p-colorings (or shadow p-colorings) is

denoted by ColpðDÞ (or gColpColpðDÞ). A p-coloring of D is trivial if the image of

the p-coloring consists of a single element; otherwise non-trivial. A shadow p-

coloring ~CC of D is trivial if ~CC restricted to SðDÞ is a trivial coloring; otherwise

non-trivial.

Let ~CC be a shadow p-coloring, and at a crossing point x, let a, b, c, R and

R 0 A Zp be the colors of three arcs and two regions as in Fig. 2. We note that
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ðR� aÞ a
p þ cp � 2bp

p
1 ðR 0 � cÞ a

p þ cp � 2bp

p
A Zp. Thus, we can define the

Boltzmann weight at x by

Wpðx; ~CCÞ ¼ ðR� aÞ a
p þ cp � 2bp

p
A Zp:

We put Wpð ~CCÞ ¼
P
x

Wpðx; ~CCÞ, where x runs over all crossings of the diagram

D. Consider the state-sum

CpðDÞ ¼
X

~CC AfColpðDÞ

TWpð ~CCÞ A Z½T ;T�1�=ðT p � 1Þ:

The state-sum CpðDÞ is invariant under Reidemeister moves and does not

depend on a choice of the orientation of L, and hence we may denote it by

CpðLÞ (cf. [6, 11]). This is equal to the quandle cocycle invariant associated

with Mochizuki’s 3-cocycle yp, in the sense of [4].

We need the following lemma and corollary for later calculations.

Lemma 2.1 ([11]). Let D be a tangle diagram and let R, a and a 0 be the

colors of the region and two arcs in D as in Fig. 3 by a shadow p-coloring ~CC,

where m in Fig. 3 indicates m half twist. Then,

Wpð ~CCÞ1 ðR� aÞap þ ða� R� dÞa 0p

p

þ ða� RþmdÞðmdþ aÞp þ ðR� a� ðm� 1ÞdÞðmdþ a 0Þp

p
;

where d12 a
0 � a.

Corollary 2.2. In Lemma 2.1, if m is divisible by p, then

Wpð ~CCÞ1 �md2

p
:

Proof. Since m is divisible by p,
ðmdþ xÞp

p
1

xp

p
for any x A Zp.

Therefore, by Lemma 2.1,

Fig. 2
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Wpð ~CCÞ1 ðR� aÞap þ ða� R� dÞa 0p

p

þ ða� RþmdÞap þ ðR� a� ðm� 1ÞdÞa 0p

p

1
mdðap � a 0pÞ

p
:

Since m is divisible by p,

Wpð ~CCÞ1 mdða� a 0Þ
p

¼ �md2

p
: r

3. Pretzel links

Let L ¼ Pðm1; . . . ;mnÞ be a pretzel link and D ¼ Dðm1; . . . ;mnÞ be a

pretzel link diagram. Let mi, ni and li be the top-, bottom-left arcs and the

left-side region of the i-th column for each i. (Put mnþ1 ¼ m1, nnþ1 ¼ n1 and

lnþ1 ¼ l1.) See Fig. 4. Let ðM1; . . . ;MlÞ be the p-fundamental sequence of

ðm1; . . . ;mnÞ.

Lemma 3.1. Let D ¼ Dðm1; . . . ;mnÞ be a pretzel link diagram such that

Ip 0 f.

Fig. 3

Fig. 4
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(i) Any p-coloring C of D satisfies a condition that CðmiÞ1Cðmiþ1Þ if

i B Ip.

(ii) For a1; . . . ; al A Zp, there is a unique p-coloring C ¼ Cða1; . . . ; alÞ of D
such that CðmtiÞ1 ai, where ft1; . . . ; tlg ¼ Ip, t1 < � � � < tl .

(iii) Any p-coloring of D is represented as Cða1; . . . ; alÞ for some a1; . . . ;

al A Zp.

(iv) If jIpj ¼ 1, ColpðDÞ consists of trivial colorings.

Proof. Put mnþi ¼ mi and nnþi ¼ ni for each i. We remark that CðniÞ1
miðCðmiþ1Þ � CðmiÞÞ þ CðmiÞ and Cðniþ1Þ1miðCðmiþ1Þ � CðmiÞÞ þ Cðmiþ1Þ for

each i. Hence we have CðniÞ � CðmiÞ1Cðniþ1Þ � Cðmiþ1Þ for each i.

Therefore

Cðn1Þ � Cðm1Þ1Cðn2Þ � Cðm2Þ1 � � �1CðnnÞ � CðmnÞ:

Since Ip 0 f, there exists an integer i0 A Ip with mi0 1 0. Since Cðni0Þ1
mi0ðCðmi0þ1Þ � Cðmi0ÞÞ þ Cðmi0Þ, we have Cðni0Þ1Cðmi0Þ. Since CðniÞ � ðmiÞ
1Cðni0Þ � Cðmi0Þ for each i, we have CðniÞ1CðmiÞ for any i. Thus, if i B Ip,

then CðmiÞ1Cðmiþ1Þ by CðniÞ1miðCðmiþ1Þ � CðmiÞÞ þ CðmiÞ and CðniÞ1
CðmiÞ. This completes the proof of (i) and (iv) and induces that any p-

coloring is deteremined by the colors of mt1 ; . . . ; mtl . For a1; . . . ; al A Zp, we

can construct a unique p-coloring C ¼ Cða1; . . . ; alÞ of D such that CðmtiÞ1 ai
for each i. Concretely, there is a p-coloring C satisfying the following con-

ditions; see Fig. 5:

(a) CðmtiÞ1CðntiÞ1 ai for each i.

(b) If ti < j < tiþ1 ð j B IpÞ, then CðxÞ1 aiþ1 for any arc x in the i-th

column.

Thus, we have (ii). The statement (iii) follows from the fact that any

p-coloring C 0 can be represented as CðC 0ðmt1Þ; . . . ;C 0ðmtl ÞÞ. r

When Ip 0 f, by Lemma 3.1 (ii), for any a1; . . . ; al and R A Zp, we see that

there is a unique shadow p-coloring ~CC ¼ ~CCða1; . . . ; al ;RÞ such that ~CCjSðDÞ ¼ C

Fig. 5
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and ~CCðl1Þ ¼ R for the unbounded region l1. Any shadow p-coloring is rep-

resented as ~CCða1; . . . ; al ;RÞ by Lemma 3.1 (iii).

Proposition 3.2. Let D ¼ Dðm1; . . . ;mnÞ be a pretzel link diagram such

that jIpjb 2 and ðM1; . . . ;MlÞ be the p-fundamental sequence of ðm1; . . . ;mnÞ.
Let ~CC ¼ ~CCða1; . . . ; al ;RÞ. Put si 12 aiþ1 � ai A Zp2 for i ¼ 1; . . . ; l � 1 and

sl 12 a1 � al. Then,

Wpð ~CCÞ1�M1s
2
1 þ � � � þMls

2
l

p
:

Proof. Let Xi be the set of crossing points of the i-th column of D for

each i. By Lemma 3.1 (i), if i B Ip, then ~CCðmiÞ1 ~CCðmiþ1Þ, so
P
x AXi

Wpðx; ~CCÞ1

0. Thus, by Corollary 2.2, Wpð ~CCÞ1
Pn
i¼1

P
x AXi

Wpðx; ~CCÞ1
P
i A Ip

P
x AXi

Wpðx; ~CCÞ1

�
Pl
i¼1

Miðaiþ1 � aiÞ2

p
1�

Pl
i¼1

Mis
2
i

p
. r

Lemma 3.3. Let D ¼ Dðm1; . . . ;mnÞ be a pretzel link diagram such that

Ip ¼ f. Then,

(i) there is a non-trivial p-coloring of D if and only if W 1 0. If W 1 0,

then

(ii) for a1; b1 A Zp, there is a unique p-coloring C ¼ Cða1; b1Þ such that

Cðm1Þ ¼ a1 and Cðn1Þ ¼ b1,

(iii) any p-coloring of D is represented by Cða1; b1Þ for some a1 and b1.

Proof. Since CðniÞ1miðCðmiþ1Þ � CðmiÞÞ þ CðmiÞ and Cðniþ1Þ1
miðCðmiþ1Þ � CðmiÞÞ þ Cðmiþ1Þ for each i, we have Cðm2Þ1m1ðCðn1Þ�
Cðm1ÞÞ þ Cðm1Þ and Cðn2Þ1m1ðCðn1Þ � Cðm1ÞÞ þ Cðn1Þ. In the same way,

we have CðmiÞ1Cðm1Þ þ
Pi�1

j¼1

mj

 !
ðCðn1Þ � Cðm1ÞÞ and CðniÞ1Cðn1ÞþPi�1

j¼1

mj

 !
ðCðn1Þ � Cðm1ÞÞ for each i. In particular, Cðm1Þ1Cðmnþ1Þ1

WðCðn1Þ � Cðm1ÞÞ þ Cðm1Þ and Cðn1Þ1Cðnnþ1Þ1WðCðn1Þ � Cðm1ÞÞ þ Cðn1Þ.
Thus, there is a p-coloring C if and only if W 1 0 or Cðm1Þ1Cðn1Þ. When

Cðm1Þ1Cðn1Þ, C is trivial. When W 1 0 and Cðm1ÞDCðn1Þ, C is non-

trivial. Thus, we have (i). For a1; b1 A Zp, we can construct a unique

p-coloring C ¼ Cða1; b1Þ of D such that Cðm1Þ1 a1 and Cðn1Þ1 b1. Con-

cretely, there is a p-coloring C such that CðmiÞ1 a1 þ
Pi�1

j¼1

mj

 !
ðb1 � a1Þ and

CðniÞ1 b1 þ
Pi�1

j¼1

mj

 !
ðb1 � a1Þ. This completes the proof of (ii). The state-

ment (iii) follows from the fact that any p-coloring C 0 can be represented as

CðC 0ðm1Þ;C 0ðn1ÞÞ. r
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When Ip ¼ f and W 1 0, by Lemma 3.3 (ii), for any a1, b1 and R A Zp,

we see that there is a unique shadow p-coloring ~CC ¼ ~CCða1; b1;RÞ such that
~CCjSðDÞ ¼ C and ~CCðl1Þ ¼ R for the unbounded region l1. Any shadow p-

coloring is represented as ~CCða1; b1;RÞ by Lemma 3.3 (iii). Proposition 3.4

follows from Lemmas 3.5 and 3.6.

Proposition 3.4. Let D ¼ Dðm1; . . . ;mnÞ be a pretzel link diagram such

that Ip ¼ f and W 1 0. Let ~CC ¼ ~CCða1; b1;RÞ. Then,

Wpð ~CCÞ1 ŴWc20
p

;

where c0 12 b1 � a1.

For a shadow p-coloring ~CC ¼ ~CCða1; b1;RÞ, let a2; . . . ; an be the elements in

Zp such that ~CCðmiÞ ¼ ai. Put anþ1 ¼ a1. Let Ai and Bi be the elememts in

Zp2 such that

Ai 12 ðRi � aiÞap
i þ ðai � Ri � diÞap

iþ1

and

Bi 12 ðai � Ri þmidiÞðmidi þ aiÞp þ ðRi � ai � ðmi � 1ÞdiÞðmidi þ aiþ1Þp;

where

di 12 aiþ1 � ai and Ri 12 Rþ 2
Xi�1

j¼1

dj;

for each i. It is seen that c0 1m1d1 1 � � �1mndn and ~CCðliÞ1Ri, so we will

assume that for each i, Ri is given by a representative element in Z for ~CCðliÞ.
By Lemma 2.1,

Wpð ~CCÞ1 1

p

Xn
i¼1

ðAi þ BiÞ:

Lemma 3.5.

Xn
i¼1

Ai 12 0:

Proof. Since di�1 12 ai � ai�1 and Ri � Ri�1 12 2di�1 for i ¼ 2; 3; . . . ; n,

we have ðRi � aiÞ þ ðai�1 � Ri�1 � di�1Þ12 0 for i ¼ 2; 3; . . . ; n. Since dn 12

a1 � an and Rn 12 R1 þ 2
Pn�1

j¼1 dj, we have ðR1 � a1Þ þ ðan � Rn � dnÞ12
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�2
Pn

j¼1 dj 12 0. Therefore,
Pn
i¼1

Ai 12 ðR1 � a1Þap
1 þ

Pn
i¼2

a
p
i fðRi � aiÞ þ ðai�1 �

Ri�1 � di�1Þg þ ðan � Rn � dnÞap
1 12 0. r

Lemma 3.6.

Xn
i¼1

Bi 12 ŴWc20 :

Proof. Put m0 ¼ mn and d0 ¼ dn. Let hi be the element in Zp2 such that

hi 12 midi �mi�1di�1 for each i. By c0 1m1d1 1 � � �1mndn, hi is divisible

by p. This induces ðm1d1 þ xÞp 12 � � �12 ðmndn þ xÞp for any x A Zp2 . Thus,

since Ri � Ri�1 12 2di�1 and hi is divisible by p,

Xn
i¼1

Bi 12

Xn
i¼1

ðmidi �mi�1di�1Þðmidi þ aiÞp

12

Xn
i¼1

hiðc0 þ aiÞp

12

Xn
i¼1

hiðc0 þ aiÞ

12

Xn
i¼1

ð�mid
2
i Þ:

Let xi be the element in Zp2 such that xi ¼ c0 �midi for each i. Then,

di 12 ðc0 � xiÞm�1
i . Since dn ¼ �ðd1 þ d2 þ � � � þ dn�1Þ,

Xn
i¼1

Bi 12

Xn�1

i¼1

�ðmi þmnÞd2i � 2mn

Xn�1

i¼2

Xi�1

j¼1

didj

12

Xn�1

i¼1

�ðmi þmnÞðm�1
i Þ2ðc20 � 2c0xiÞ

� 2mn

Xn�1

i¼2

Xi�1

j¼1

m�1
i m�1

j ðc20 � ðxi þ xjÞc0Þ

12 �c20ðm�1
1 þ � � � þm�1

n�1 þmnðm�1
1 þ � � � þm�1

n�1Þ
2Þ

þ 2c0
Xn�1

i¼1

xi m�1
i þmnðm�1

i Þ2 þmnm
�1
i

X
1ajan; j0i

m�1
j

 !
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12 �c20ðm�1
1 þ � � � þm�1

n�1ÞmnŴW þ 2c0
Xn�1

i¼1

xim
�1
i mnŴW

12 �c20ðŴW �m�1
n ÞmnŴW þ 2c0

Xn�1

i¼1

xim
�1
i mnŴW :

Since xi and ŴW are divisible by p,

Xn
i¼1

Bi 12 �c20ðm�1
n ÞmnŴW 12 c

2
0ŴW : r

Proof of Theorem 1.1. (i) and (ii) follows from Propositions 3.2 and 3.4,

respectively. For the remaining cases, all colorings are trivial by Lemmas 3.1

(iv) and 3.3 (i). Thus, we have (iii). r

4. Twist-spin of pretzel links

Proof of Corollary 1.2. Asami and Satoh [2] defined a quandle cocycle

invariant C �
p ðLÞ of a link L with a base point and proved that if r is even,

FpðtrLÞ ¼ C �
p ðLÞjT!T r . It is shown in [12] that CpðLÞ ¼ pC �

p ðLÞ, and hence

C �
p ðLÞ ¼ p�1CpðLÞ. Thus, Corollary 1.2 is obtained from Theorem 1.1. r

Remark 4.1. For an n-component link L, there are n r-twist-spins of L.

They need not to be equivalent to each other, but quandle cocycle invariants

of them are the same by Corollary 1.2. For example, for a 2-component

pretzel link L ¼ Pð2; 3; 6mÞ, there are two 2-twist-spins of L. One is a union

of 2-twist-spin of a trefoil and an unknotted torus, and the other is a union of

an unknotted 2-sphere and a knotted torus. Thus, they are not equivalent.
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