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ABSTRACT. Let G°(n) =<a,b:a"=1=0b%b"tab=a*) and for n even Gl(n)=
la,b:a" =1,a"? =b*b'ab=a*y. In this paper we compute the minimum genus
g* =2 of a compact Riemann surface that admits a metacyclic group G%(n) or G/ (n) of
biholomorphic homeomorphisms.

1. Introduction

It is known that for any compact Riemann surface of genus > 2 the group
of biholomorphic homeomorphisms, which we call automorphisms, is finite [9,
p. 66] and that every finite group can be so realized [2 and 3]. Therefore, the
following problem arises: Given a finite group G what is the minimum genus
g*>2 of a compact Riemann surface that admits G as a group of auto-
morphisms?

We solve this problem for G metacyclic group that belongs to two special
classes of extensions of a cyclic group by an involution namely the classes

Gl(n) =<a,b:a"=1=0b>b"'ab=a") and
Gl(n)=<a,b:a"=1,a"? =b*b"'ab=a*y  with n even.

The solution of this problem for these two classes is given in Theorems 3.3 and
4.2 respectively.

The same problem has been solved for cyclic and abelian groups in [4]
and [8] respectively. This paper treats the non-abelian case for the first time.

2. The Fuchsian group approach

We shall approach the problem using Fuchsian groups. All the details
and the proofs of the following well-known facts can be found in [7] and [6],
see also [5].
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A Fuchsian group I is a discrete subgroup of the group of linear frac-
tional transformation LF(2,R)

az+b
Z —
cz+d

a,b,c,d e R and ad — bc =1. Such a transformation is an automorphism of
the complex upper half plane D. Since we will be only interested in the case
where D/I' is compact, we shall use the term Fuchsian group to mean a
discrete subgroup of LF(2,R) with a compact orbit space so that a Fuchsian
group has a presentation

v r
m S —
I = <a1,b1,...,a},,by,xl,...,x,,:xl‘ = =X —H[ai,bi]-Hxi— 1>.
i1

i=1

The positive integers, my,...,m,, are called the periods of the group and y is
called the orbit genus. This group is written as I" = (y;my,...,m,). If r=0,
there are no periods and the group is called a Fuchsian surface group.
Every Fuchsian group I" = (y;my,...,m,) has a fundamental region Fr in
the complex upper half plane with a strictly positive non-Euclidean measure,

u(Fr), given by u(Fr)= 27z(2(y -1) +;(1 — mi)>

1

The following theorem is our starting point for the computation of g*.

THEOREM 2.1. A finite group G is a group of biholomorphic automorphisms
of a compact Riemann surface of genus g > 2 if and only if G is isomorphic to a
Sactor group I'/K where I is a Fuchsian group (with a compact orbit space by
our convention) and K is a Fuchsian surface group with orbit genus g.

By the above theorem, we have

) -1 (L
=i e M 0-n(-5)

where Fx and Fp are the fundamental regions for K and I" respectively, and
= (y;m,...,m).
For any finite group G and any natural number » > 0, we define

geery

y r
[[[4:Bi]- [ Ei=1 and {A41,By,...,A4,,B,,E\,...,E)= GH
i=1 i=1

where |E;| denotes the order of E; in G.
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Now G is isomorphic to I'/K where I and K are as before if and only
i Vo (G) >0 and 2(7— 1)+ 3 (1 _ L) =0,
i=1 ‘

For any natural number n > 1, let d(n) = {1 <k <n:k|n} and define for
all reZ,

2(y1)+i_il<lmli) >0}.

Thus the minimum genus g* > 2 of a compact Riemann surface that admits a
group of biholomorphic automorphisms isomorphic to G is given by

29 -1 . ~ (.1
G _m1n<2(y 1)+lzl:(l m,>> (2.1)

where the minimum is taken over all ordered r+ 1 tuples (y;my,...,m,) € A,
for all r > 0.

The following proposition says that the number s is an invariant of the
isomorphism type of G%(n) and G!(n) respectively.

ProrosiTiON 2.2 [1, p. 176].
G =G n)es=s and Gl(n)=Gln)es=5s.

3. Determination of g* for the Class G'(n)

We consider G%(n) = <a,b:a" =1=b*b"lab=a*) subject ton >3, 1 <
s<n, (s,n)=1, s> =1 (modn) and it has order 2n.
Our goal is to solve equation (2.1) for g* where G = G%(n) or, in other
words, to compute the right-hand side of (2.1).
Let n=p"...pJ, where 2 <p; <p, <---<ppand o; >0 for 1 <i<m,
be the prime factorization of n.
First we consider the case r =0. We observe that 2(y — 1) > 0 forces y
to be >2 and that [a,b][b,a] =1 and G°(n) = <a,b) so that V»(G’(n)) > 0.
Therefore
min 2(y —1) =2 (i)
y€dy
Second we consider the case y =0 for all r>0 with the elements
Ei,...,E, € G'(n) such that E\E,...E, =1 and <Ey, E, ..., E,) = G%(n). We
compute the strictly positive minimum of the expression
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2+Z( |E|) (3.1)

with respect to all such choices. Clearly we may assume that E; #1 for
1 <i<r and that »r > 3. Note also that the number of E;’s that lie outside
{ay = G%(n) is always >2 in each choice of Ey,...,E, € G'(n) as above.

Case r=3

Here s #n— 1 because G° |(n) = Dy, and the expression (3.1) is neces-
sarily negative in this case. In fact, we must have at least two involutions
among the E/’s, 1 <i <3.

Therefore for r =3 we must have the following situation:

1 # Ey € {a); E», Ex e G (n)\<a); E\EE3 = 1; (E1,Ex) = G)(n)

and s #n—1.
Observe that {Ej, E3) = {a) = Z, because

2n = |<E17E2>| = |<E27<E17E22>>| = 2|<E17E22>|7

and also |Es| = |E\Ey| = 2|(E\Ey)*| = 2|E{*'E3|. Therefore by denoting x =
Ei and y = E; the problem now is to compute

1 1
M = max + 7>
(I | 2ly] T2y

where the maximum is taken over all xe Z,\{1} and y € Z,/(, 1) such that
the least common multiple [|x|,|y|]] =n. Taking d = [|x],|y]] we have

1 1 n
M = + :
m"“‘{| 2yl aperny <n,s+1>}
(i,sﬂ)dz
= max M—l—— ! : i syl "
2|yl (d,[x5T1yl) 2|x| x| (n,s+1)
since
s+l s+1 d(s+1)3,d) — (g |5+ || M
eyl = (b Dy = () e s
_ (d |xs+1y|) |X| |y|

o
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Hence

| (n,s+1) n
M gmax{ﬁ—ki—kd P 2 d|1] st 1)} (3.2)

t 1 1 1 jnd .
Define g¢(¢) :ﬁ+5’ t>0. Then ¢'(¢) :@—?:O for 1= % which

gives a unique local minimum for g. So, (3.2) becomes

1 1 (n,s+1) 1 (n,s+1) n
M < -+ — 1 : .
_max{n+2d+d m dnssn TUTD T, CXES))
(3.3)
1 (n,s+1) von .~ (mys+1)
Deﬁne F(d)—ﬁ—‘rdT, d>0 Then F(Z)—ﬁ—‘rT—O for
d= |—" which gives a unique local minimum for F. Therefore
(n,s+1)
1 1 (n,s+1) n L1 (ns+1)
max{;—i—ﬁ—i—d 2n Hd (n,s+1)}_§+z+ 2n
1 (n,s+1)
Al defi d) = d > 0. Th "(d) =
o) efine  G(d) d(n,s—&—l)Jr PR > en G'(d)
dz(n,_s1+ 1)+(n,s2:1):0 for d:% which gives a unique local

minimum for G. Therefore

| (n,s+1) n
max{d(n,s+l)+(d+l) 2n (n,s—l—l)}

max<( 1 Jr(n,s—i—l) 1+1+(n,s+1))

n,s+1) n 2 n 2n
lJrlJr (n,s+1)
2 n 2n
because
(n,s+1) 1 1

1
2n +(n,s+1)_§_n

1
:m((n,s—i- 1) = (n+2)(n,s+ 1) +2n)

:m((’?,ﬂr 1) —n)((n,s+1)—2) <0.
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: 1 1 (ns+1)
H t 33) b M< —4-—4" )
ence equation (3.3) becomes <3 + . + 5
Observe that for x =a and y = bh*> =1 this upper bound is attained in

. 11 (ns+1)
equation (3.2). So M = §+Z+T

. I 1 (ns+1
mln( 2+Z( E|>> Z—Z—%- (a)
Case r =4

The only possible choices for Ej, ..., Es € G%(n) subject to the conditions
mentioned earlier are of exactly two kinds:
(1) Two elements are contained in {a) and the other two elements are in
G (n)\<a).
(i) If no elements outside {a) are involutions, then s # n — 1 and in this
case the minimum of (3.1) is

> —2+2<1—i> —|—2(1—L) :2—i > l
D1 2py p1 2

So, this case can be ignored in view of (a) above.
(i) If at least one of the elements outside <{a) is an involution, then

the two elements in {(a) generate it and in this case the minimum of
(3.1) is

and the solution of (3.1) for r =3 is

1 1
> —1 —max{—+—: [t,m] = n;t,m > 1}.
tr m

To compute this last quantity we need the following two Lemmas (see [4]).

Lemma 3.1.

Max{1+1:[r,s] n} :l+l.
ros n

LEmMMA 3.2. Let n=p{' ...pk, where 2 <p; <p) <---<py and o; >0
for 1 <i<m, be the prime factorlzation of n. Then

1
. 2 if o1 =1 and n not prime
n
max{—+—:[r,s]:n;r,s>1}= 1711 1
ros
4z if a;>1 or n prime.
poon

Now if s =n — 1, then clearly the minimum of the expression (3.1) in this
case is
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1
1— (—+p—1) if oy =1 and n not prime

4

. 1 ppon

min| -2 + 1 - = b

( Z;( EA)) AN : (®)

! 1—(—+- if oy >1 or n prime;
Py on

and if s # n— 1, then the minimum of the expression (3.1) is

S1_ <L+11) L1 1. pm 1 1 (ms+l)
pron

So, this case can be ignored in view of the minimum attained earlier in (a).
(2) The four elements are in G°(n)\<{a).

Clearly in this case we need only to consider the case s # n — 1 because the
expression (3.1) is zero for s=n—1.

(i) If the number of involutions in Ej,...,Es is <2, then the minimum of
. . 1 1 1 .
the expression (3.1) is 2—2+2(1 ——) +1=1—— = -. So, this
2p, P1 2
case can be ignored in comparison with (a).
(i) If there are 3 involutions among Ej,. .., Ey, this forces the fourth element

to be an involution and the expression (3.1) is zero in this case.

Case r > 5

In this case if s#n—1, then the minimum of the expression (3.1) is
>—2+45/2=1/2; and this can be ignored compared to the value obtained in
equation (a).

Also if s=n—1 and n is even, then the minimum of the expression (3.1)
is >—2+45/2=1/2. So, this case can be ignored compared to the value
obtained in equation (b).

If s=n—1, n odd and r > 6, the minimum of the expression (3.1) is
>—-2+6/2=1. So, this case can be ignored in view of equation (b) as before.

There remains the case s=n— 1, n odd and r=5. In this case we have
either exactly two or exactly four elements of Ej,..., Es outside (a). In the

1 1
first case the minimum of (3.1) is 2—2+2-§+3(1——) :2—121

1 1
and in the second case the minimum of (3.1) is >—-2 —&—45—&- (1 _p_) =1-
1

1 . .. . .
—. So, both cases can be ignored compared to the minimum attained in
P1

equation (b).

Summarizing the above analysis for the case y =0 and r > 0, we see that
the minimum of the expression (3.1) is given by
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n
1 Pl) if s=n—-1 a=1

1—(—+— ) 1 ..

<2+Z< |E|>> <p1 n and n not prime (ii)

1_<1+1) if s=n—1
ppon and o; > 1 or n prime.

Finally, we consider the case y > 1 and r > 1. Here, we have to minimize
the expression

+Z< |E> (3.4)

for all y>1 and all r>1 and all choices of elements ai,by,...,a,
by; Ei,...,E € G%n) such that <ay,bi,...,a,by;E,...,E>=G%n) and
ﬁ[dl’,b,’] 'E] . E, =1.
i=1

By equations (i) and (ii) we may restrict ourselves only to the case y =1
and r > 1.

If s # n — 1, then the minimum of the expression (3.4) is >1/2 which can
be ignored compared to the value of equation (ii). Also if s=n—1 and n
is even, then the minimum of (3.4) is >1/2 and this can be also ignored
compared to (ii).

If s=n—1, n odd and r > 2 then the minimum of the expression (3.4) is
>1 which can be ignored compared to (ii).

For the case s=n—1, n odd and r=1 we have E; € {a) and the

Vel

. . 1 . .
minimum of (3.4) is >1 ——. So, this case also can be ignored compared to
the result of (ii). P
From the equations (i) and (ii) and the above equation (2.1) now reads

1 1 (ns+1) .
—————7 f -1
2 n 2n hs#n
*_ 1 . .
M: 1—(—+&> if s=n—1, oy =1 and n not prime
2n pyon
I 1 . .
I——+- if s=n—1, and o; > 1 or n prime.
pon

Therefore we have the following theorem.

THEOREM 3.3.  The minimum genus g* > 2 of a compact Riemann surface
that admits a group of biholomorphic automorphisms to type G°(n), n >3, is
given by:
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— 1
ni(n,er ) if s#n—1
2
g" = n—i—l—ﬁ—pl if s=n—1, ay =1 and n not prime
P1
n—2 if s=n—1, and oy > 1 or n prime
P1

where py is the minimum prime divisor of n and n = p{'m with (p;,m) = 1.

COROLLARY 3.4. Hypotheses are the same as Theorem 3.3.
1) For G= Dy, n>3, we have

n—f—l—i—pl if o =1 and n not prime
P1

n
n—— if op>1 or n prime.
P

ii) For G= SDyu1, n>3, we have g* = 2",

Proor. i) Put s=n—1 in Theorem 3.3.
ii) Observe that the semi-dihedral group SD,um1, n >3, is defined by

SDyuii =<{a,b:a® =1=0b*b""ab = a2“7171>.

So the result can be obtained by replacing n by 2" and putting s =
2"~ — 1 in Theorem 3.3.

4. Determination of g* for the Class G!(n)

We consider G/ (n) =<a,b:a" =1,a"* =b> b 'ab = a*) subject to n >
4, 2|n, 1 <s<mn, (s,n) =1, s>=1 (modn) and it has order 2n.

Our goal is to solve equation (2.1) for g* where G = G!(n) or to compute
the right-hand side of (2.1).

Let n=2%p3*...pe, where 2<p> <---<p, and o; >0 for 1 <i<m,
be the prime factorization of n.

Bynvirtue of the following proposition we may consider only the case

2 ——.
4 (n,s+1)

PROPOSITI’(1)N 4.1 [1, p. 176].  Suppose n is even, then G%(n) =~ Gl (n) & s =

s and 2| ——.
(n,s+1)

First we consider the case r = 0. Then clearly 2(y — 1) > 0 and G!(n) =
{a,b). Therefore

min 2(y—1) =2. (1)

yedoy
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Second we consider the case y=0 for all »>0 with the elements
E\,...,E € G!(n) such that E\E;...E, =1 and {E\,...,E) = G!(n) and we
compute the strictly positive minimum of the expression

243 (1-1g) e

with respect to all such choices. Clearly we may assume that E; # 1 for 1 <
i <r and that r > 3. Note also that the number of the E;’s that lie outside
{ay < G!(n) is always >2 in each choice of Ej,...,E, € G!(n) as above.

Case r=3
Here we must have the following situation:

1 # Eyelay; EyE;eGl(n)\<{a); EE:E;=1 and <(E, E)=G!(n).
Observe that {Ej, E}) = <{a) and that

|Es| = 2| 5|
n . n
= 4|E22 -d /2| since 2* m
=4y where y € Z, ) 5+1) and also

|Es| = |EEx| = 2{(EiE)’| = 2|EY*" - B3| = 4|E -y,
Now we distinguish two cases:

Case 1: o >2
In this case we only have (E,y)> = {a). Therefore the problem now is to

1 . .
compute N, = max ( + i ) where the maximum is taken over
x| " 4ly] " Aty
all xe Z,\{1} and y € Z,(» s+1) such that [|x|,|y[] =n. Taking d = (|x],|y|)
we have
1 1 1 n
N, =ma
it awen | )
1 (n,s+1)
< —+d d|t . 4.2
—max{ wd w4 | |(n,s+l)} (42)

Analyzing equation (4.2) in exactly the same way as was done before for
equation (3.2) we get

(ns+)

I 1 (ns+1)

n
M : =—+4-
aX{ PRy +d dlt| (n,s+1)} it
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Note that (n,s+ 1) >4 (since (s,n) =1 gives s odd and 2|(n,s+1). If

(n,s+1) =2, then g is odd since ZJ(L and s> =1 (modn) gives

(n,

|s—1 and since 1 <s<n we must have s =

absurd).
Observe that for x =a and y = b* = 1, this upper bound is attained in

(4.2). Therefore N, = 1 + ! + s+ 1) and the solution of (4.1) for r = 3 and

a > 2 is 4 n an

31 (ns+1)
(”Z( E|>> A dn (c1)
Case 2: o3 =1

In this case we only have (E|,y,a"/?» = {a) and therefore the problem is
1 1
+—+
x| 4ly] 4ty
all xe Z,\{1} and y € Z,/(, 441y such that (x,p,a"*y = {a).

k = max| max ! L+ ! max L+L+#
B x| even \ |X] 4\y| AxsHy] )71 odd \ x| 4]y] - 4xstly|

:max(max{ :
"{| |

5 +1 or s is even which is

to compute k = max< > where the maximum is taken over

1
g g Y 2 € Zuan [ b = .
1

T
ma g 1 cxeZ,p)\{1},ye Z (x| y[] = n/2
4]y " 4lxsty] 2\ 15 Y € L) jnp2, 501 [1X] 1VI] =

= max(N,, N,/»)

~ max l+1+(n,s+l) 1+2+(n,s+1) 1+2+(n,s+1)
B 4 n 4n 4 n 4n n 4n

Observe that for x=a> and y=5h*=1 the maximum is attained.
Therefore the solution of (4.1) for r =3 and oy =1 is

_3.2 (n,s+1)
Case r =4

Here the only possible choices for Ej,...,E, € G!(n) subject to the
conditions mentioned earlier are of exactly two kinds:
(1) Two elements are in <{a) and the other two elements are in G/ (n)\<{a).
(i) There is no element of order 4 in the elements outside <a). In this
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case the minimum of (4.1) is >-2+2(1—-1)+2(1-1)=3 since
every element outside {(a) has order divisible by 4 as shown in the
previous case r = 3. So, this case can be ignored in view of (cl) and
(c2) above.

(i) At least one of the elements outside <a) is of order 4.

If o7 =2, then (E|,E;) = <{a) and in this case the maximum of (4.1)

1 1 1 I 2
is >-242(1—=)+2—max S—+—:[t,m =n;t,m>1 zg— —+-| =
4 t m 2 2 n

2 3 1 . . . . .
1 which can be ignored in comparison with (cl).

Y

If oy = 1, then the case {E;, E,) = {a) can be excluded as above and we
may consider only the case (Ej,E,> = <{a*>. In this case the minimum of

) 1 1 1 n
4.1) is 2—2+2(1 —Z> +2—max{?+a. £, m] =5itm> 1}

3 1 2 3 1 2
> - — <_+£> and D3 |n or —— (——|——> by Lemma 3.2
2 D> n 2 py n
1 2
>1-— or 1—-
p3 h
> 3 or 1 2
= 4 n.

So this minimum can also be ignored compared to the value of equation (c2).
(2) The four elements are in G!(n)\<a).

In this case the minimum of (4.1) is >—2+4(1 —1)=1. So this can be
ignored compared to (cl) and (c2).

Case r > 5
In this case the minimum of (4.1) is >—2+2(1 —§) +3 =1 and this case
can be ignored as well.

Summarizing the above analysis for the case y =0 and r > 0, we see that
the minimum of the expression (4.1) is given by

1
e if o =2

. 4 n 4n ..
min| -2 + 11
( Z( |E>> E_g_(n,s—&-l) i o= 1 (i)
4 n 4n ==

Finally, we consider the case y > 1 and r > 1. Here we consider mini-
mizing the expression

200 -1) +Z( |E> (4.3)
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for all y>1 and all r>1 and all choices of elements ai,by,...,a,
b,; E,...,E € Gl(n) such that <ay,b,...,a, b,;E,...,E>=G!(n) and
)
H[(J,’,b,’] 'E] . E, =1.
i=1

By equations (i) and (ii) we may restrict ourselves only to the case y =1
and r=1. Therefore, we consider the following situation:

[x1,x] - E1 =1 where xi,x,, E| € G‘f (m)\{1} and x; ¢ <{a).

Case 1: x; ¢ {a) and x; e <a)

In this case we have |xi| = 4|y| where |y n/2

and {y.a"* x> =

n
(n,s+1)
{a). Also note that [xl,xz}_l = xi“l so that our problem is to compute

. . n "
L= mind 157y € @b g 00 = s 1

. X n
—min{ o e | g Rl el = 1

s—1,]x2]) ,s+ 1)

)

. n n n
B [ A Tl Iy

|x2]
If o) >2, we have 2| |x3| and |)’:—| [|y|, then
2
. n n (n,s+1)
L > min : = .
s | )~
1
If oy =1 and |x;| even, then L > _(ms+ 1) as before.
(n,s+1,5—1)
If oy =1 and |x»| is odd, we have ‘;—l |2]y|, and hence
2
n n
L > min Sy }
temes el ivesy
= min{#~ || L} since s — 1 is even
(I¥lGs = 1),m) "] (s + 1)

(n,s+1)
(nys+1,5s—1)"
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This lower bound is attained for x; = ab and x, = @5+t and we get
__ (mst+D)
C(mys+1ls—1)7

Case 2: Xx1,x; ¢ <{a)
In this case putting x; = a’b and x, = a/b we have [x],x3] " = a1 50
that our problem is to compute

P = min{|a"6|: a'b,a’by = Gl (n)}

= min{|a'*"V| : <a/*'b,a'y = G!(n)} = min|x*7!|
where the minimum is taken over all 1 # x € (&> such that (y.a"/? x> = {(a)
(n,s+1)
d — So P=L=——"—""—,
and | Gy S0 (st Ls 1)

Cases (1) and (2) show that the minimum of the expression (4.3) is given by

. (n,s+1,s—1)
mm( (y—1) —|—Z( |E|>> I—W. (iii)

From (i), (ii), and (iii) we get

1 1 (ns+1)
2 n 2n if 2|(n +1)
* . (3 2 , 1 , l,s—1 _n
2y~ 1) _ mln{4__(n ot ) _(nz+ +s1) )} if 2)((M+1)
2n " " s and o; =1
min{%—l—(n’i—i_ 1),1_(71,34—1731_ 1)} if ZJ(W
n n (n,s+ 1) and @ > 2,

Therefore we have the following theorem.

THEOREM 4.2. The minimum genus g* > 2 of a compact Riemann surface
that admits a group of biholomorphic automorphisms of type G!(n) is given by:

n—(ns+1) . n
2 lf2|(n,s+1)
. [3n—(n,s+1) (nys+1,5—1) if 2§ ——
g* = { min #—l,n—kl—n—l (n s+1)
(n,s+1) and ocl—l
mm{w,nﬁ_nw} 24 T
(m,s+1) and o) > 2

where n=2%"m with m odd.



Metacyclic groups of automorphisms of compact Riemann surfaces
COROLLARY 4.3. For G = DCy,, n >4, we have
-1 lf o = 1

if ap =2

In particular for G = Qyu1, n>2, we have g* = 2",

5. List of g* for the groups of order n < 15
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The following table is a list of all groups G of order n, 2 < n < 15, and the
corresponding minimum genus ¢g* of a compact Riemann surface that admits G
as a group of biholomorphic automorphisms:

n G g*
2 Z, 2 (Harvey)
3 Z; 2 (Harvey)
4 Zy 2 (Harvey)
Zy X Zy 2 (Maclachlan)
5 Zs 2 (Harvey)
6 Zs 2 (Harvey)
S3 2
7 Z; 3 (Harvey)
8 Zs 2 (Harvey)
Zy X Zy 3 (Maclachlan)
Zry X Zy X Z> 3 (Maclachlan)
Dy 2
Os 2
9 Zy 3 (Harvey)
Z3 X Z3 4 (Maclachlan)
10 Zo 2 (Harvey)
Dy 4
11 Z1 5 (Harvey)
12 Z1» 3 (Harvey)
Zy X Zg 2 (Maclachlan)
Ay 3
Dy 2
DCy, 2
13 Zy3 6 (Harvey)
14 Z4 3 (Harvey)
D14 6
15 Zis 4 (Harvey)
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Proor. All the values of g* of this table follow directly from Harvey’s
and Maclachlan’s results together with Corollaries 3.4 and 4.3 except G = A4y.

Suppose that A4 acts as a group of biholomorphic automorphisms on a
compact Riemann surface X of genus 2, then one can immediately see that
X must be a ramified Galois covering of the Riemann sphere ramified over
{a1,...,a;}, r =3, and that at least two of these points have ramification
index = 3 so that equation (2.1) now gives

om0 (2-2) 0 (12 ) e (1)

which is impossible for r > 4 and also for r = 3 because 44 has no element of
order 6.

Now observe that there exists a ramified Galois covering of genus 3 of the
Riemann sphere with Galois group isomorphic to 44 where the ramification
occurs over exactly four points with ramification indicies 3, 3, 2, 2 respec-
tively. This shows that for G = A4, ¢g* = 3.
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