Metacyclic groups of automorphisms of compact Riemann surfaces

GEORGE MICHAEL, A. A. (Received February 15, 1999) (Revised July 27, 2000)

ABSTRACT. Let $G_s^0(n) = \langle a,b:a^n=1=b^2,b^{-1}ab=a^s\rangle$ and for n even $G_s^1(n) = \langle a,b:a^n=1,a^{n/2}=b^2,b^{-1}ab=a^s\rangle$. In this paper we compute the minimum genus $g^* \geq 2$ of a compact Riemann surface that admits a metacyclic group $G_s^0(n)$ or $G_s^1(n)$ of biholomorphic homeomorphisms.

1. Introduction

It is known that for any compact Riemann surface of genus ≥ 2 the group of biholomorphic homeomorphisms, which we call automorphisms, is finite [9, p. 66] and that every finite group can be so realized [2 and 3]. Therefore, the following problem arises: Given a finite group G what is the minimum genus $g^* \geq 2$ of a compact Riemann surface that admits G as a group of automorphisms?

We solve this problem for G metacyclic group that belongs to two special classes of extensions of a cyclic group by an involution namely the classes

$$G_s^0(n) = \langle a, b : a^n = 1 = b^2, b^{-1}ab = a^s \rangle$$
 and $G_s^1(n) = \langle a, b : a^n = 1, a^{n/2} = b^2, b^{-1}ab = a^s \rangle$ with n even.

The solution of this problem for these two classes is given in Theorems 3.3 and 4.2 respectively.

The same problem has been solved for cyclic and abelian groups in [4] and [8] respectively. This paper treats the non-abelian case for the first time.

2. The Fuchsian group approach

We shall approach the problem using Fuchsian groups. All the details and the proofs of the following well-known facts can be found in [7] and [6], see also [5].

²⁰⁰⁰ Mathematics Subject Classification. 30F10, 20D99.

Key words and phrases. Metacyclic group, Riemann surface, Fuchsian group.

A Fuchsian group Γ is a discrete subgroup of the group of linear fractional transformation $LF(2, \mathbf{R})$

$$z \to \frac{az+b}{cz+d}$$

 $a,b,c,d \in \mathbf{R}$ and ad-bc=1. Such a transformation is an automorphism of the complex upper half plane D. Since we will be only interested in the case where D/Γ is compact, we shall use the term Fuchsian group to mean a discrete subgroup of $LF(2,\mathbf{R})$ with a compact orbit space so that a Fuchsian group has a presentation

$$\Gamma = \left\langle a_1, b_1, \dots, a_{\gamma}, b_{\gamma}, x_1, \dots, x_r : x_1^{m_1} = \dots = x_r^{m_r} = \prod_{i=1}^{\gamma} [a_i, b_i] \cdot \prod_{i=1}^r x_i = 1 \right\rangle.$$

The positive integers, m_1, \ldots, m_r , are called the periods of the group and γ is called the orbit genus. This group is written as $\Gamma = (\gamma; m_1, \ldots, m_r)$. If r = 0, there are no periods and the group is called a Fuchsian surface group.

Every Fuchsian group $\Gamma=(\gamma;m_1,\ldots,m_r)$ has a fundamental region F_Γ in the complex upper half plane with a strictly positive non-Euclidean measure, $\mu(F_\Gamma)$, given by $\mu(F_\Gamma)=2\pi\bigg(2(\gamma-1)+\sum_{i=1}^r\bigg(1-\frac{1}{m_i}\bigg)\bigg)$.

The following theorem is our starting point for the computation of g^* .

Theorem 2.1. A finite group G is a group of biholomorphic automorphisms of a compact Riemann surface of genus $g \ge 2$ if and only if G is isomorphic to a factor group Γ/K where Γ is a Fuchsian group (with a compact orbit space by our convention) and K is a Fuchsian surface group with orbit genus g.

By the above theorem, we have

$$|G| = \frac{\mu(F_K)}{\mu(F_\Gamma)}$$
 and $\frac{2(g-1)}{|G|} = 2(\gamma - 1) + \sum_{i=1}^r \left(1 - \frac{1}{m_i}\right)$

where F_K and F_Γ are the fundamental regions for K and Γ respectively, and $\Gamma = (\gamma; m_1, \dots, m_r)$.

For any finite group G and any natural number $r \ge 0$, we define

$$V_{\gamma,m_1,...,m_r}(G) = \left| \left\{ (A_1, B_1, \dots, A_{\gamma}, B_{\gamma}, E_1, \dots, E_r) \in G^{2\gamma+1} : |E_i| = m_i, \ 1 \le i \le r, \right.$$

$$\prod_{i=1}^{\gamma} [A_i, B_i] \cdot \prod_{i=1}^{r} E_i = 1 \ \text{and} \ \left\langle A_1, B_1, \dots, A_{\gamma}, B_{\gamma}, E_1, \dots, E_r \right\rangle = G \right\} \right|$$

where $|E_i|$ denotes the order of E_i in G.

Now *G* is isomorphic to Γ/K where Γ and *K* are as before if and only if $V_{\gamma;m_1,\ldots,m_r}(G) > 0$ and $2(\gamma - 1) + \sum_{i=1}^r \left(1 - \frac{1}{m_i}\right) > 0$.

For any natural number $n \ge 1$, let $d(n) = \{1 \le k \le n : k \mid n\}$ and define for all $r \in Z_+$

$$A_r = \left\{ (\gamma; m_1, \dots, m_r) \in Z_+ \times (d(|G|))^r : V_{\gamma; m_1, \dots, m_r}(G) > 0 \text{ and} \right.$$
$$\left. 2(\gamma - 1) + \sum_{i=1}^r \left(1 - \frac{1}{m_i} \right) > 0 \right\}.$$

Thus the minimum genus $g^* \ge 2$ of a compact Riemann surface that admits a group of biholomorphic automorphisms isomorphic to G is given by

$$\frac{2(g^* - 1)}{|G|} = \min\left(2(\gamma - 1) + \sum_{i=1}^r \left(1 - \frac{1}{m_i}\right)\right)$$
(2.1)

where the minimum is taken over all ordered r+1 tuples $(\gamma; m_1, \ldots, m_r) \in A_r$ for all $r \ge 0$.

The following proposition says that the number s is an invariant of the isomorphism type of $G_s^0(n)$ and $G_s^1(n)$ respectively.

Proposition 2.2 [1, p. 176].

$$G^0_s(n) \cong G^0_{s'}(n) \Leftrightarrow s = s'$$
 and $G^1_s(n) \cong G^1_{s'}(n) \Leftrightarrow s = s'$.

3. Determination of g^* for the Class $G_s^0(n)$

We consider $G_s^0(n) = \langle a, b : a^n = 1 = b^2, b^{-1}ab = a^s \rangle$ subject to $n \ge 3$, 1 < s < n, (s, n) = 1, $s^2 \equiv 1 \pmod{n}$ and it has order 2n.

Our goal is to solve equation (2.1) for g^* where $G = G_s^0(n)$ or, in other words, to compute the right-hand side of (2.1).

Let $n = p_1^{\alpha_1} \dots p_m^{\alpha_m}$, where $2 \le p_1 < p_2 < \dots < p_m$ and $\alpha_i > 0$ for $1 \le i \le m$, be the prime factorization of n.

First we consider the case r = 0. We observe that $2(\gamma - 1) > 0$ forces γ to be ≥ 2 and that [a,b][b,a] = 1 and $G_s^0(n) = \langle a,b \rangle$ so that $V_2(G_s^0(n)) > 0$. Therefore

$$\min_{\gamma \in A_0} 2(\gamma - 1) = 2 \tag{i}$$

Second we consider the case $\gamma = 0$ for all r > 0 with the elements $E_1, \ldots, E_r \in G_s^0(n)$ such that $E_1 E_2 \ldots E_r = 1$ and $\langle E_1, E_2, \ldots, E_r \rangle = G_s^0(n)$. We compute the strictly positive minimum of the expression

$$-2 + \sum_{i=1}^{r} \left(1 - \frac{1}{|E_i|} \right) \tag{3.1}$$

with respect to all such choices. Clearly we may assume that $E_i \neq 1$ for $1 \leq i \leq r$ and that $r \geq 3$. Note also that the number of E_i 's that lie outside $\langle a \rangle \subseteq G_s^0(n)$ is always ≥ 2 in each choice of $E_1, \ldots, E_r \in G_s^0(n)$ as above.

Case r = 3

Here $s \neq n-1$ because $G_{n-1}^0(n) = D_{2n}$ and the expression (3.1) is necessarily negative in this case. In fact, we must have at least two involutions among the E_i 's, $1 \leq i \leq 3$.

Therefore for r = 3 we must have the following situation:

$$1 \neq E_1 \in \langle a \rangle;$$
 $E_2, E_3 \in G_s^0(n) \setminus \langle a \rangle;$ $E_1 E_2 E_3 = 1;$ $\langle E_1, E_2 \rangle = G_s^0(n)$

and $s \neq n-1$.

Observe that $\langle E_1, E_2^2 \rangle = \langle a \rangle = Z_n$ because

$$2n = |\langle E_1, E_2 \rangle| = |\langle E_2, \langle E_1, E_2^2 \rangle\rangle| = 2|\langle E_1, E_2^2 \rangle|;$$

and also $|E_3| = |E_1E_2| = 2|(E_1E_2)^2| = 2|E_1^{s+1}E_2^2|$. Therefore by denoting $x = E_1$ and $y = E_2^2$ the problem now is to compute

$$M = \max\left(\frac{1}{|x|} + \frac{1}{2|y|} + \frac{1}{2|x^{s+1}y|}\right)$$

where the maximum is taken over all $x \in Z_n \setminus \{1\}$ and $y \in Z_{n/(n,s+1)}$ such that the least common multiple [|x|,|y|] = n. Taking d = [|x|,|y|] we have

$$M = \max \left\{ \frac{1}{|x|} + \frac{1}{2|y|} + \frac{1}{2|x^{s+1}y|} : |y| \left| \frac{n}{(n,s+1)} \right\} \right\}$$

$$= \max \left\{ \frac{|y|}{nd} + \frac{1}{2|y|} + \frac{1}{(d,|x^{s+1}y|)} \cdot \frac{\left(\frac{n}{|y|},s+1\right)d^2}{2|x||y|} : |y| \left| \frac{n}{(n,s+1)} \right\}$$

since

$$|x^{s+1}y| = (d, |x^{s+1}y|)|x^{d(s+1)}y^d| = (d, |x^{s+1}y|) \frac{|x|}{(d(s+1), |x|)} \cdot \frac{|y|}{d}$$
$$= (d, |x^{s+1}y|) \frac{|x||y|}{\left((s+1), \frac{n}{|y|}\right) d^2}.$$

Hence

$$M \le \max\left\{\frac{t}{nd} + \frac{1}{2t} + d\frac{(n,s+1)}{2n} : d|t|\frac{n}{(n,s+1)}\right\}. \tag{3.2}$$

Define $g(t) = \frac{t}{nd} + \frac{1}{2t}$, t > 0. Then $g'(t) = \frac{1}{nd} - \frac{1}{2t^2} = 0$ for $t = \sqrt{\frac{nd}{2}}$ which gives a unique local minimum for g. So, (3.2) becomes

$$M \le \max\left\{\frac{1}{n} + \frac{1}{2d} + d\frac{(n,s+1)}{2n}, \frac{1}{d(n,s+1)} + (d+1)\frac{(n,s+1)}{2n} : d \mid \frac{n}{(n,s+1)}\right\}. \tag{3.3}$$

Define $F(d) = \frac{1}{2d} + d\frac{(n, s+1)}{2n}$, d > 0. Then $F'(t) = \frac{-1}{2d^2} + \frac{(n, s+1)}{2n} = 0$ for $d = \sqrt{\frac{n}{(n, s+1)}}$ which gives a unique local minimum for F. Therefore

$$\max\left\{\frac{1}{n} + \frac{1}{2d} + d\frac{(n,s+1)}{2n} : d \mid \frac{n}{(n,s+1)}\right\} = \frac{1}{2} + \frac{1}{n} + \frac{(n,s+1)}{2n}.$$

Also define $G(d) = \frac{1}{d(n,s+1)} + d\frac{(n,s+1)}{2n}$, d > 0. Then $G'(d) = \frac{-1}{d^2(n,s+1)} + \frac{(n,s+1)}{2n} = 0$ for $d = \frac{\sqrt{2n}}{(n,s+1)}$ which gives a unique local minimum for G. Therefore

$$\max \left\{ \frac{1}{d(n,s+1)} + (d+1) \frac{(n,s+1)}{2n} : d \mid \frac{n}{(n,s+1)} \right\}$$

$$= \max \left(\frac{1}{(n,s+1)} + \frac{(n,s+1)}{n}, \frac{1}{2} + \frac{1}{n} + \frac{(n,s+1)}{2n} \right)$$

$$= \frac{1}{2} + \frac{1}{n} + \frac{(n,s+1)}{2n}$$

because

$$\frac{(n,s+1)}{2n} + \frac{1}{(n,s+1)} - \frac{1}{2} - \frac{1}{n}$$

$$= \frac{1}{2n(n,s+1)} ((n,s+1)^2 - (n+2)(n,s+1) + 2n)$$

$$= \frac{1}{2n(n,s+1)} ((n,s+1) - n)((n,s+1) - 2) \le 0.$$

Hence equation (3.3) becomes $M \le \frac{1}{2} + \frac{1}{n} + \frac{(n, s+1)}{2n}$.

Observe that for x = a and $y = b^2 = 1$ this upper bound is attained in equation (3.2). So $M = \frac{1}{2} + \frac{1}{n} + \frac{(n, s+1)}{2n}$ and the solution of (3.1) for r = 3 is

$$\min\left(-2 + \sum_{i=1}^{3} \left(1 - \frac{1}{|E_i|}\right)\right) = \frac{1}{2} - \frac{1}{n} - \frac{(n, s+1)}{2n}.$$
 (a)

Case r=4

The only possible choices for $E_1, \ldots, E_4 \in G_s^0(n)$ subject to the conditions mentioned earlier are of exactly two kinds:

- (1) Two elements are contained in $\langle a \rangle$ and the other two elements are in $G_s^0(n) \setminus \langle a \rangle$.
 - (i) If no elements outside $\langle a \rangle$ are involutions, then $s \neq n-1$ and in this case the minimum of (3.1) is

$$\geq -2 + 2\left(1 - \frac{1}{p_1}\right) + 2\left(1 - \frac{1}{2p_1}\right) = 2 - \frac{3}{p_1} \geq \frac{1}{2}.$$

So, this case can be ignored in view of (a) above.

(ii) If at least one of the elements outside $\langle a \rangle$ is an involution, then the two elements in $\langle a \rangle$ generate it and in this case the minimum of (3.1) is

$$\geq -1 - \max \left\{ \frac{1}{t} + \frac{1}{m} : [t, m] = n; t, m > 1 \right\}.$$

To compute this last quantity we need the following two Lemmas (see [4]).

LEMMA 3.1.

$$\operatorname{Max}\left\{\frac{1}{r} + \frac{1}{s} : [r, s] = n\right\} = 1 + \frac{1}{n}.$$

LEMMA 3.2. Let $n = p_1^{\alpha_1} \dots p_m^{\alpha_m}$, where $2 \le p_1 < p_2 < \dots < p_m$ and $\alpha_i > 0$ for $1 \le i \le m$, be the prime factorization of n. Then

$$\max\left\{\frac{1}{r} + \frac{1}{s} : [r, s] = n; r, s > 1\right\} = \begin{cases} \frac{1}{p_1} + \frac{p_1}{n} & \text{if } \alpha_1 = 1 \text{ and } n \text{ not prime} \\ \frac{1}{p_1} + \frac{1}{n} & \text{if } \alpha_1 > 1 \text{ or } n \text{ prime}. \end{cases}$$

Now if s = n - 1, then clearly the minimum of the expression (3.1) in this case is

$$\min\left(-2 + \sum_{i=1}^{4} \left(1 - \frac{1}{|E_i|}\right)\right) = \begin{cases} 1 - \left(\frac{1}{p_1} + \frac{p_1}{n}\right) & \text{if } \alpha_1 = 1 \text{ and } n \text{ not prime} \\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } \alpha_1 > 1 \text{ or } n \text{ prime;} \end{cases}$$
 (b)

and if $s \neq n-1$, then the minimum of the expression (3.1) is

$$\geq 1 - \left(\frac{1}{p_1} + \frac{p_1}{n}\right) \geq \frac{1}{2} - \frac{1}{n} - \frac{p_1}{2n} \geq \frac{1}{2} - \frac{1}{n} - \frac{(n, s+1)}{2n}.$$

So, this case can be ignored in view of the minimum attained earlier in (a).

(2) The four elements are in $G_s^0(n) \setminus \langle a \rangle$.

Clearly in this case we need only to consider the case $s \neq n-1$ because the expression (3.1) is zero for s = n-1.

- (i) If the number of involutions in E_1, \ldots, E_4 is ≤ 2 , then the minimum of the expression (3.1) is $\geq -2 + 2\left(1 \frac{1}{2p_1}\right) + 1 = 1 \frac{1}{p_1} \geq \frac{1}{2}$. So, this case can be ignored in comparison with (a).
- (ii) If there are 3 involutions among E_1, \ldots, E_4 , this forces the fourth element to be an involution and the expression (3.1) is zero in this case.

Case $r \ge 5$

In this case if $s \neq n-1$, then the minimum of the expression (3.1) is $\geq -2+5/2=1/2$; and this can be ignored compared to the value obtained in equation (a).

Also if s = n - 1 and n is even, then the minimum of the expression (3.1) is $\geq -2 + 5/2 = 1/2$. So, this case can be ignored compared to the value obtained in equation (b).

If s = n - 1, n odd and $r \ge 6$, the minimum of the expression (3.1) is $\ge -2 + 6/2 = 1$. So, this case can be ignored in view of equation (b) as before.

There remains the case s=n-1, n odd and r=5. In this case we have either exactly two or exactly four elements of E_1,\ldots,E_5 outside $\langle a \rangle$. In the first case the minimum of (3.1) is $\geq -2+2\cdot\frac{1}{2}+3\left(1-\frac{1}{p_1}\right)=2-\frac{3}{p_1}\geq 1$ and in the second case the minimum of (3.1) is $\geq -2+4\cdot\frac{1}{2}+\left(1-\frac{1}{p_1}\right)=1-\frac{1}{p_1}$. So, both cases can be ignored compared to the minimum attained in equation (b).

Summarizing the above analysis for the case $\gamma = 0$ and r > 0, we see that the minimum of the expression (3.1) is given by

$$\min\left(-2 + \sum_{i=1}^{r} \left(1 - \frac{1}{|E_i|}\right)\right) = \begin{cases} \frac{1}{2} - \frac{1}{n} - \frac{(n, s+1)}{2n} & \text{if } s \neq n-1\\ 1 - \left(\frac{1}{p_1} + \frac{p_1}{n}\right) & \text{if } s = n-1, \ \alpha_1 = 1\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1,\\ 1 - \left$$

Finally, we consider the case $\gamma \ge 1$ and $r \ge 1$. Here, we have to minimize the expression

$$2(\gamma - 1) + \sum_{i=1}^{r} \left(1 - \frac{1}{|E_i|} \right) \tag{3.4}$$

for all $\gamma \ge 1$ and all $r \ge 1$ and all choices of elements $a_1, b_1, \ldots, a_{\gamma}, b_{\gamma}$; $E_1, \ldots, E_r \in G_s^0(n)$ such that $\langle a_1, b_1, \ldots, a_{\gamma}, b_{\gamma}; E_1, \ldots, E_r \rangle = G_s^0(n)$ and $\prod_{i=1}^{\gamma} [a_i, b_i] \cdot E_1 \ldots E_r = 1.$

By equations (i) and (ii) we may restrict ourselves only to the case $\gamma = 1$ and $r \ge 1$.

If $s \neq n-1$, then the minimum of the expression (3.4) is $\geq 1/2$ which can be ignored compared to the value of equation (ii). Also if s = n-1 and n is even, then the minimum of (3.4) is $\geq 1/2$ and this can be also ignored compared to (ii).

If s = n - 1, n odd and $r \ge 2$ then the minimum of the expression (3.4) is ≥ 1 which can be ignored compared to (ii).

For the case s = n - 1, n odd and r = 1 we have $E_1 \in \langle a \rangle$ and the minimum of (3.4) is $\geq 1 - \frac{1}{p_1}$. So, this case also can be ignored compared to the result of (ii).

From the equations (i) and (ii) and the above equation (2.1) now reads

$$\frac{2(g^*-1)}{2n} = \begin{cases} \frac{1}{2} - \frac{1}{n} - \frac{(n,s+1)}{2n} & \text{if } s \neq n-1 \\ 1 - \left(\frac{1}{p_1} + \frac{p_1}{n}\right) & \text{if } s = n-1, \ \alpha_1 = 1 \ \text{and } n \ \text{not prime} \\ 1 - \left(\frac{1}{p_1} + \frac{1}{n}\right) & \text{if } s = n-1, \ \text{and } \alpha_1 > 1 \ \text{or } n \ \text{prime}. \end{cases}$$

Therefore we have the following theorem.

Theorem 3.3. The minimum genus $g^* \ge 2$ of a compact Riemann surface that admits a group of biholomorphic automorphisms to type $G_s^0(n)$, $n \ge 3$, is given by:

$$g^* = \begin{cases} \frac{n - (n, s + 1)}{2} & \text{if } s \neq n - 1 \\ n + 1 - \frac{n}{p_1} - p_1 & \text{if } s = n - 1, \ \alpha_1 = 1 \ \text{and } n \ \text{not prime} \\ n - \frac{n}{p_1} & \text{if } s = n - 1, \ \text{and} \ \alpha_1 > 1 \ \text{or } n \ \text{prime} \end{cases}$$

where p_1 is the minimum prime divisor of n and $n = p_1^{\alpha_1} m$ with $(p_1, m) = 1$.

COROLLARY 3.4. Hypotheses are the same as Theorem 3.3.

For $G = D_{2n}$, $n \ge 3$, we have

$$g^* = \begin{cases} n+1-\frac{n}{p_1}-p_1 & \text{if } \alpha_1=1 \text{ and } n \text{ not prime} \\ n-\frac{n}{p_1} & \text{if } \alpha_1>1 \text{ or } n \text{ prime}. \end{cases}$$

For $G = SD_{2^{n+1}}$, $n \ge 3$, we have $g^* = 2^{n-2}$.

PROOF. i) Put s = n - 1 in Theorem 3.3.

ii) Observe that the semi-dihedral group $SD_{2^{n+1}}$, $n \ge 3$, is defined by

$$SD_{2^{n+1}} = \langle a, b : a^{2^n} = 1 = b^2, b^{-1}ab = a^{2^{n-1}-1} \rangle.$$

So the result can be obtained by replacing n by 2^n and putting s = $2^{n-1} - 1$ in Theorem 3.3.

Determination of g^* for the Class $G_s^1(n)$

We consider $G_s^1(n) = \langle a, b : a^n = 1, a^{n/2} = b^2, b^{-1}ab = a^s \rangle$ subject to $n \geq 4$, $2 \mid n$, 1 < s < n, (s, n) = 1, $s^2 \equiv 1 \pmod{n}$ and it has order 2n. Our goal is to solve equation (2.1) for g^* where $G = G_s^1(n)$ or to compute

the right-hand side of (2.1).

Let $n = 2^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$, where $2 < p_2 < \dots < p_m$ and $\alpha_i > 0$ for $1 \le i \le m$, be the prime factorization of n.

By virtue of the following proposition we may consider only the case $2 \nmid \frac{n}{(n, s+1)}$.

PROPOSITION 4.1 [1, p. 176]. Suppose n is even, then $G_s^0(n) \cong G_{s'}^1(n) \Leftrightarrow s = s'$ and $2 \mid \frac{n}{(n, s+1)}$.

First we consider the case r = 0. Then clearly $2(\gamma - 1) > 0$ and $G_s^1(n) =$ $\langle a, b \rangle$. Therefore

$$\min_{\gamma \in A_0} \ 2(\gamma - 1) = 2. \tag{i}$$

Second we consider the case $\gamma = 0$ for all r > 0 with the elements $E_1, \ldots, E_r \in G_s^1(n)$ such that $E_1 E_2 \ldots E_r = 1$ and $\langle E_1, \ldots, E_r \rangle = G_s^1(n)$ and we compute the strictly positive minimum of the expression

$$-2 + \sum_{i=1}^{r} \left(1 - \frac{1}{|E_i|} \right) \tag{4.1}$$

with respect to all such choices. Clearly we may assume that $E_i \neq 1$ for $1 \leq i \leq r$ and that $r \geq 3$. Note also that the number of the E_i 's that lie outside $\langle a \rangle \subseteq G_s^1(n)$ is always ≥ 2 in each choice of $E_1, \ldots, E_r \in G_s^1(n)$ as above.

Case r = 3

Here we must have the following situation:

$$1 \neq E_1 \in \langle a \rangle$$
; $E_2, E_3 \in G_s^1(n) \setminus \langle a \rangle$; $E_1 E_2 E_3 = 1$ and $\langle E_1, E_2 \rangle = G_s^1(n)$.

Observe that $\langle E_1, E_2^2 \rangle = \langle a \rangle$ and that

$$|E_2| = 2|E_2^2|$$

$$= 4|E_2^2 \cdot a^{n/2}| \quad \text{since } 2 \not \mid \frac{n}{(n, s+1)}$$

$$= 4|y| \quad \text{where } y \in Z_{n/(n, s+1)} \text{ and also}$$

$$|E_3| = |E_1 E_2| = 2|(E_1 E_2)^2| = 2|E_1^{s+1} \cdot E_2^2| = 4|E_1^{s+1} \cdot y|.$$

Now we distinguish two cases:

Case 1: $\alpha_1 \geq 2$

In this case we only have $\langle E_1,y\rangle=\langle a\rangle$. Therefore the problem now is to compute $N_n=\max\left(\frac{1}{|x|}+\frac{1}{4|y|}+\frac{1}{4|x^{s+1}y|}\right)$ where the maximum is taken over all $x\in Z_n\setminus\{1\}$ and $y\in Z_{n/(n,s+1)}$ such that [|x|,|y|]=n. Taking d=(|x|,|y|) we have

$$N_{n} = \max \left\{ \frac{1}{|x|} + \frac{1}{4|y|} + \frac{1}{4|x^{s+1}y|} : |y| \left| \frac{n}{(n,s+1)} \right\} \right.$$

$$\leq \max \left\{ \frac{t}{nd} + \frac{1}{4t} + d\frac{(n,s+1)}{4n} : d|t| \frac{n}{(n,s+1)} \right\}. \tag{4.2}$$

Analyzing equation (4.2) in exactly the same way as was done before for equation (3.2) we get

$$\operatorname{Max}\left\{\frac{t}{nd} + \frac{1}{4t} + d\frac{(n,s+1)}{4n} : d|t|\frac{n}{(n,s+1)}\right\} = \frac{1}{4} + \frac{1}{n} + \frac{(n,s+1)}{4n}.$$

Note that $(n, s+1) \ge 4$ (since (s, n) = 1 gives s odd and $2 \mid (n, s+1)$. If (n, s+1) = 2, then $\frac{n}{2}$ is odd since $2 \nmid \frac{n}{(n, s+1)}$ and $s^2 \equiv 1 \pmod{n}$ gives $\frac{n}{2} \mid s-1$ and since 1 < s < n we must have $s = \frac{n}{2} + 1$ or s is even which is absurd).

Observe that for x = a and $y = b^4 = 1$, this upper bound is attained in (4.2). Therefore $N_n = \frac{1}{4} + \frac{1}{n} + \frac{(n, s+1)}{4n}$ and the solution of (4.1) for r = 3 and $\alpha_1 \ge 2$ is

$$\min\left(-2 + \sum_{i=1}^{3} \left(1 - \frac{1}{|E_i|}\right)\right) = \frac{3}{4} - \frac{1}{n} - \frac{(n, s+1)}{4n}.$$
 (c1)

Case 2: $\alpha_1 = 1$

In this case we only have $\langle E_1,y,a^{n/2}\rangle=\langle a\rangle$ and therefore the problem is to compute $k=\max\left(\frac{1}{|x|}+\frac{1}{4|y|}+\frac{1}{4|x^{s+1}y|}\right)$ where the maximum is taken over all $x\in Z_n\backslash\{1\}$ and $y\in Z_{n/(n,s+1)}$ such that $\langle x,y,a^{n/2}\rangle=\langle a\rangle$.

$$\begin{split} k &= \max \left(\max_{|x| \text{ even}} \left(\frac{1}{|x|} + \frac{1}{4|y|} + \frac{1}{4|x^{s+1}y|} \right), \max_{|x| \text{ odd}} \left(\frac{1}{|x|} + \frac{1}{4|y|} + \frac{1}{4|x^{s+1}y|} \right) \right) \\ &= \max \left(\max \left\{ \frac{1}{|x|} + \frac{1}{4|y|} + \frac{1}{4|x^{s+1}y|} : x \in Z_n \setminus \{1\}, y \in Z_{n/(n,s+1)}, [|x|, |y|] = n \right\}, \\ &\max \left\{ \frac{1}{|x|} + \frac{1}{4|y|} + \frac{1}{4|x^{s+1}y|} : x \in Z_{n/2} \setminus \{1\}, y \in Z_{(n/2)/(n/2,s+1)}, [|x|, |y|] = n/2 \right\} \right) \\ &= \max(N_n, N_{n/2}) \\ &= \max \left(\frac{1}{4} + \frac{1}{n} + \frac{(n, s+1)}{4n}, \frac{1}{4} + \frac{2}{n} + \frac{(n, s+1)}{4n} \right) = \frac{1}{4} + \frac{2}{n} + \frac{(n, s+1)}{4n}. \end{split}$$

Observe that for $x = a^2$ and $y = b^4 = 1$ the maximum is attained. Therefore the solution of (4.1) for r = 3 and $\alpha_1 = 1$ is

$$\min\left(-2 + \sum_{i=1}^{3} \left(1 - \frac{1}{|E_i|}\right)\right) = \frac{3}{4} - \frac{2}{n} - \frac{(n, s+1)}{4n}.$$
 (c2)

Case r = 4

Here the only possible choices for $E_1, \ldots, E_r \in G_s^1(n)$ subject to the conditions mentioned earlier are of exactly two kinds:

- (1) Two elements are in $\langle a \rangle$ and the other two elements are in $G_s^1(n) \setminus \langle a \rangle$.
 - (i) There is no element of order 4 in the elements outside $\langle a \rangle$. In this

case the minimum of (4.1) is $\geq -2 + 2(1 - \frac{1}{8}) + 2(1 - \frac{1}{2}) = \frac{3}{4}$ since every element outside $\langle a \rangle$ has order divisible by 4 as shown in the previous case r = 3. So, this case can be ignored in view of (c1) and (c2) above.

(ii) At least one of the elements outside $\langle a \rangle$ is of order 4.

If $\alpha_1 \ge 2$, then $\langle E_1, E_2 \rangle = \langle a \rangle$ and in this case the maximum of (4.1) is $\ge -2 + 2\left(1 - \frac{1}{4}\right) + 2 - \max\left\{\frac{1}{t} + \frac{1}{m} : [t, m] = n; t, m > 1\right\} \ge \frac{3}{2} - \left(\frac{1}{2} + \frac{2}{n}\right) = 1 - \frac{2}{n} \ge \frac{3}{4} - \frac{1}{n}$ which can be ignored in comparison with (c1).

If $\alpha_1 = 1$, then the case $\langle E_1, E_2 \rangle = \langle a \rangle$ can be excluded as above and we may consider only the case $\langle E_1, E_2 \rangle = \langle a^2 \rangle$. In this case the minimum of

(4.1) is
$$\geq -2 + 2\left(1 - \frac{1}{4}\right) + 2 - \max\left\{\frac{1}{t} + \frac{1}{m} : [t, m] = \frac{n}{2}; t, m > 1\right\}$$

$$\geq \frac{3}{2} - \left(\frac{1}{p_2} + \frac{2p_2}{n}\right) \text{ and } p_3 \mid n \text{ or } \frac{3}{2} - \left(\frac{1}{p_2} + \frac{2}{n}\right) \text{ by Lemma 3.2}$$

$$\geq 1 - \frac{1}{p_3} \qquad \text{or } 1 - \frac{2}{n}$$

$$\geq \frac{3}{4} \qquad \text{or } 1 - \frac{2}{n}.$$

So this minimum can also be ignored compared to the value of equation (c2).

(2) The four elements are in $G_s^1(n) \setminus \langle a \rangle$.

In this case the minimum of (4.1) is $\geq -2 + 4(1 - \frac{1}{4}) = 1$. So this can be ignored compared to (c1) and (c2).

Case $r \ge 5$

In this case the minimum of (4.1) is $\geq -2 + 2(1 - \frac{1}{4}) + \frac{3}{2} = 1$ and this case can be ignored as well.

Summarizing the above analysis for the case $\gamma = 0$ and r > 0, we see that the minimum of the expression (4.1) is given by

$$\min\left(-2 + \sum_{i=1}^{r} \left(1 - \frac{1}{|E_i|}\right)\right) = \begin{cases} \frac{3}{4} - \frac{1}{n} - \frac{(n, s+1)}{4n} & \text{if } \alpha_1 \ge 2\\ \frac{3}{4} - \frac{2}{n} - \frac{(n, s+1)}{4n} & \text{if } \alpha_1 = 1. \end{cases}$$
 (ii)

Finally, we consider the case $\gamma \ge 1$ and $r \ge 1$. Here we consider minimizing the expression

$$2(\gamma - 1) + \sum_{i=1}^{r} \left(1 - \frac{1}{|E_i|} \right) \tag{4.3}$$

for all $\gamma \ge 1$ and all $r \ge 1$ and all choices of elements $a_1, b_1, \ldots, a_{\gamma}, b_{\gamma}$; $E_1, \ldots, E_r \in G^1_s(n)$ such that $\langle a_1, b_1, \ldots, a_{\gamma}, b_{\gamma}; E_1, \ldots, E_r \rangle = G^1_s(n)$ and $\prod_{i=1}^{\gamma} [a_i, b_i] \cdot E_1 \ldots E_r = 1.$

By equations (i) and (ii) we may restrict ourselves only to the case $\gamma = 1$ and r = 1. Therefore, we consider the following situation:

$$[x_1, x_2] \cdot E_1 = 1$$
 where $x_1, x_2, E_1 \in G_s^1(n) \setminus \{1\}$ and $x_1 \notin \langle a \rangle$.

Case 1: $x_1 \notin \langle a \rangle$ and $x_2 \in \langle a \rangle$

In this case we have $|x_1| = 4|y|$ where $|y| \left| \frac{n}{(n,s+1)} \right|$ and $\langle y . a^{n/2}, x_2 \rangle = \langle a \rangle$. Also note that $[x_1, x_2]^{-1} = x_2^{s-1}$ so that our problem is to compute

$$L = \min \left\{ |x_2^{s-1}| : y, x_2 \in \langle a \rangle, |y| \, \left| \, \frac{n}{(n,s+1)}, \langle y . a^{n/2}, x_2 \rangle = \langle a \rangle, x_2 \neq 1 \right\} \right.$$

$$= \min \left\{ \frac{|x_2|}{(s-1,|x_2|)} : y, x_2 \in \langle a \rangle, |y| \, \left| \, \frac{n}{(n,s+1)}, [2|y|,|x_2|] = n, x_2 \neq 1 \right\} \right.$$

$$= \min \left\{ \frac{n}{\left(\frac{n(s-1)}{|x_2|}, n \right)} : 1 \neq |x_2| = \frac{n}{2|y|} (2|y|,|x_2|), |y| \, \left| \, \frac{n}{(n,s+1)} \right\} \right.$$

If $\alpha_1 \ge 2$, we have $2||x_2|$ and $\frac{n}{|x_2|}||y|$, then

$$L \ge \min \left\{ \frac{n}{(|y|(s-1), n)} : |y| \mid \frac{n}{(n, s+1)} \right\} = \frac{(n, s+1)}{(n, s+1, s-1)}.$$

If $\alpha_1 = 1$ and $|x_2|$ even, then $L \ge \frac{(n, s+1)}{(n, s+1, s-1)}$ as before.

If $\alpha_1 = 1$ and $|x_2|$ is odd, we have $\frac{n}{|x_2|} |2|y|$, and hence

$$\begin{split} L &\geq \min \left\{ \frac{n}{(2|y|(s-1),n)} : |y| \, \left| \, \frac{n}{(n,s+1)} \right\} \right. \\ &= \min \left\{ \frac{n}{(|y|(s-1),n)} : |y| \, \left| \, \frac{n}{(n,s+1)} \right\} \right. \quad \text{since } s-1 \text{ is even} \\ &= \frac{(n,s+1)}{(n,s+1,s-1)}. \end{split}$$

This lower bound is attained for $x_1 = ab$ and $x_2 = a^{n/(n,s+1)}$ and we get

$$L = \frac{(n, s+1)}{(n, s+1, s-1)}.$$

Case 2: $x_1, x_2 \notin \langle a \rangle$

In this case putting $x_1 = a^i b$ and $x_2 = a^j b$ we have $[x_1, x_2]^{-1} = a^{(i-j)(s-1)}$ so that our problem is to compute

$$P = \min\{|a^{(i-j)(s-1)}| : \langle a^i b, a^j b \rangle = G_s^1(n)\}$$

= \min\{|a^{t(s-1)}| : \langle a^{j+t} b, a^t \rangle = G_s^1(n)\} = \min|x^{s-1}|

where the minimum is taken over all $1 \neq x \in \langle a \rangle$ such that $\langle y . a^{n/2}, x \rangle = \langle a \rangle$ and $|y| | \frac{n}{(n,s+1)}$. So $P = L = \frac{(n,s+1)}{(n,s+1,s-1)}$.

Cases (1) and (2) show that the minimum of the expression (4.3) is given by

$$\min\left(2(\gamma - 1) + \sum_{i=1}^{r} \left(1 - \frac{1}{|E_i|}\right)\right) = 1 - \frac{(n, s+1, s-1)}{(n, s+1)}.$$
 (iii)

From (i), (ii), and (iii) we get

$$\frac{2(g^*-1)}{2n} = \begin{cases} \frac{1}{2} - \frac{1}{n} - \frac{(n,s+1)}{2n} & \text{if } 2 \mid \frac{n}{(n,s+1)} \\ \min\left\{\frac{3}{4} - \frac{2}{n} - \frac{(n,s+1)}{4n}, 1 - \frac{(n,s+1,s-1)}{(n,s+1)}\right\} & \text{if } 2 \not \mid \frac{n}{(n,s+1)} \\ \min\left\{\frac{3}{4} - \frac{1}{n} - \frac{(n,s+1)}{4n}, 1 - \frac{(n,s+1,s-1)}{(n,s+1)}\right\} & \text{if } 2 \not \mid \frac{n}{(n,s+1)} \\ \text{and } \alpha_1 = 1 \end{cases}$$

Therefore we have the following theorem.

Theorem 4.2. The minimum genus $g^* \ge 2$ of a compact Riemann surface that admits a group of biholomorphic automorphisms of type $G_s^1(n)$ is given by:

$$g^* = \begin{cases} \frac{n - (n, s + 1)}{2} & \text{if } 2 \mid \frac{n}{(n, s + 1)} \\ \min \left\{ \frac{3n - (n, s + 1)}{4} - 1, n + 1 - n \frac{(n, s + 1, s - 1)}{(n, s + 1)} \right\} & \text{if } 2 \not \mid \frac{n}{(n, s + 1)} \\ \min \left\{ \frac{3n - (n, s + 1)}{4}, n + 1 - n \frac{(n, s + 1, s - 1)}{(n, s + 1)} \right\} & \text{if } 2 \not \mid \frac{n}{(n, s + 1)} \\ \text{and } \alpha_1 = 1 \end{cases}$$
where $n = 2^{n}$ we with $m \in \mathbb{N}$

where $n = 2^{\alpha_1} m$ with m odd.

COROLLARY 4.3. For $G = DC_{2n}$, $n \ge 4$, we have

$$g^* = \begin{cases} \frac{n}{2} - 1 & \text{if } \alpha_1 = 1\\ \frac{n}{2} & \text{if } \alpha_1 \ge 2 \end{cases}$$

In particular for $G = Q_{2^{n+1}}$, $n \ge 2$, we have $g^* = 2^{n-1}$.

5. List of g^* for the groups of order $n \le 15$

The following table is a list of all groups G of order n, $2 \le n \le 15$, and the corresponding minimum genus g^* of a compact Riemann surface that admits G as a group of biholomorphic automorphisms:

n	G	g^*
2	Z_2	2 (Harvey)
3	Z_3	2 (Harvey)
4	Z_4	2 (Harvey)
	$Z_2 imes Z_2$	2 (Maclachlan)
5	Z_5	2 (Harvey)
6	Z_6	2 (Harvey)
	S_3	2
7	Z_{7}	3 (Harvey)
8	Z_8	2 (Harvey)
	$Z_2 imes Z_4$	3 (Maclachlan)
	$Z_2\times Z_2\times Z_2$	3 (Maclachlan)
	D_8	2
	Q_8	2
9	Z_9	3 (Harvey)
	$Z_3 imes Z_3$	4 (Maclachlan)
10	Z_{10}	2 (Harvey)
	D_{10}	4
11	Z_{11}	5 (Harvey)
12	Z_{12}	3 (Harvey)
	$Z_2 imes Z_6$	2 (Maclachlan)
	A_4	3
	D_{12}	2
	DC_{12}	2
13	Z_{13}	6 (Harvey)
14	Z_{14}	3 (Harvey)
	D_{14}	6
15	Z_{15}	4 (Harvey)

PROOF. All the values of g^* of this table follow directly from Harvey's and Maclachlan's results together with Corollaries 3.4 and 4.3 except $G = A_4$.

Suppose that A_4 acts as a group of biholomorphic automorphisms on a compact Riemann surface X of genus 2, then one can immediately see that X must be a ramified Galois covering of the Riemann sphere ramified over $\{a_1, \ldots, a_r\}$, $r \ge 3$, and that at least two of these points have ramification index = 3 so that equation (2.1) now gives

$$\frac{1}{6} = \min\left(-2 + \left(2 - \frac{2}{3}\right) + \left(1 - \frac{1}{m_3}\right) + \dots + \left(1 - \frac{1}{m_r}\right)\right)$$

which is impossible for $r \ge 4$ and also for r = 3 because A_4 has no element of order 6.

Now observe that there exists a ramified Galois covering of genus 3 of the Riemann sphere with Galois group isomorphic to A_4 where the ramification occurs over exactly four points with ramification indicies 3, 3, 2, 2 respectively. This shows that for $G = A_4$, $g^* = 3$.

References

- [1] B. G. Basmaji, On the isomorphisms of two metacyclic groups, Proc. Amer. Math. Soc. 22 (1969), 175–182.
- [2] W. Burnside, Theory of Groups of Finite Order, New York, 1955.
- [3] L. Greenberg, Maximal Groups and Signatures, Ann. of Math. Studies No. 79 (1974), 207–226.
- [4] W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. (2) 17 (1966), 86–97.
- [5] W. J. Harvey, Discrete Groups and Automorphic Functions, Academic Press, 1977.
- [6] J. Lehner, Discontinuous Groups and Automorphic Functions, Amer. Math. Soc. Surveys No. VIII, New York, 1964.
- [7] A. M. Macbeath, Fuchsian Groups, cyclostyled notes (Dundee 1961).
- [8] C. Maclachlan, Abelian groups of automorphisms of compact Riemann surfaces, Proc. London Math. Soc. (3) 15 (1965), 699–712.
- [9] P. Samuel, Lectures on Old and New Results on Algebraic Curves, Tata Institute of Fundamental Research, Bombay, 1966.

P.O. 141, Shoubra–Misr, Code No. 11231 Cairo, Egypt.